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Universal chromatin state annotation 
of the mouse genome
Ha Vu1,2 and Jason Ernst1,2,3,4,5,6,7*   

Abstract 

A large-scale application of the “stacked modeling” approach for chromatin state dis-
covery previously provides a single “universal” chromatin state annotation of the human 
genome based jointly on data from many cell and tissue types. Here, we produce an 
analogous chromatin state annotation for mouse based on 901 datasets assaying 14 
chromatin marks in 26 cell or tissue types. To characterize each chromatin state, we 
relate the states to external annotations and compare them to analogously defined 
human states. We expect the universal chromatin state annotation for mouse to be a 
useful resource for studying this key model organism’s genome.

Background
Mouse is widely adopted as a model organism for human for many reasons, including 
its genetic and physiological proximity to humans, relatively short life span, and avail-
ability as test subjects for genetic manipulations [1–3]. A wealth of epigenomic datasets 
in mouse, including maps of histone modifications and variants and sites of accessible 
DNA, has accumulated thanks to efforts from different consortia and individual labs, 
which can be used to annotate the mouse genome, including non-coding regions [4–10]. 
This type of data has previously been integrated through methods such as ChromHMM 
and Segway [11–14] to generate chromatin state maps for various organisms’ different 
cell and tissue types [6, 15–19]. These chromatin state maps have traditionally been used 
to annotate genomes in a per-cell-type manner, using either the “independent” or “con-
catenated” modeling approaches (for ease of presentation, we will refer to tissue types 
also as cell types) [14, 20].

Recently, we applied an alternative “stacked” modeling approach of ChromHMM to 
learn chromatin states from over 1000 human datasets representing more than 100 
cell types, to generate a universal annotation of the human genome that can be shared 
across human cell types [21]. This modeling approach provided a single annotation of 
the genome per position based on data from all the input cell types. Such an annota-
tion, denoted full-stack annotation, offers complementary advantages to per-cell-type 
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annotations, such as differentiating constitutively active regions from cell-type-specific 
ones and simplifying genome annotations across cell types through a single annotation 
shared across cell types, as opposed to one for each cell type. Additionally, the full-stack 
annotation allows researchers to bypass picking a single cell type for analyses or con-
ducting analyses separately for every cell type. This can be particularly useful in studies 
involving data that is not inherently cell-type-specific such as analyses of genetic vari-
ants or conserved DNA sequence. However, an analogous full-stack annotation has not 
been previously available in mouse.

To address this, we train a full-stack model with ChromHMM using input data 
from > 900 mouse datasets of 14 chromatin marks from 26 mouse cell type groups 
(“Methods” section). We analyze these states with respect to their enrichments with 
external datasets and annotations to provide detailed characterizations for each state. 
We also analyze to what extent each mouse state shows enrichment for human states 
at sequence mapped positions. We expect the mouse full-stack annotations, along with 
the provided biological characterizations, will be a useful resource for studying this key 
model organism.

Results and discussion
We learned the mouse full-stack model by applying ChromHMM to over 900 mouse 
epigenomic datasets, similar to how it was previously applied in human [12, 21] 
(“Methods” section, Fig. 1, Fig. S1). We used a 100-state model for consistency with the 
previously analyzed human full-stack model.

We manually grouped these 100 states into 16 groups. One of the groups contains 
states associated with assembly gaps or alignment artifacts (mGapArtf ), the latter of 
which are often marked by signals of both open chromatin mark (ATAC or DNase) and 
heterochromatin mark H3K9me3 (Fig.  1). Another group, Quiescent group (mQuies), 
consists of states associated with minimal signals of any chromatin marks. We defined 
a heterochromatin (mHET) group primarily associated with H3K9me3 and a Zinc 
finger genes (mZNF) group associated with both H3K36me3 and H3K9me3. We also 
defined a Polycomb repressed group (mReprPC) associated with primarily H3K27me3 
and another group (mReprPC_openC) associated with both open chromatin marks 
(DNase- and/or ATAC-seq) and polycomb-repressed-associated mark H3K27me3. We 
also defined a group of states associated with just open chromatin (mOpenC), based on 
high DNase-seq and ATAC-seq signals relative to other chromatin marks.

We defined three groups of states associated with candidate enhancers: active enhanc-
ers (mEnhA), weak enhancers (mEnhWk), and transcribed enhancers (mTxEnh). States 
in the mEnhA group were associated with open chromatin, H3K27ac and H3K4me1. 
States in the mEnhWk group also showed association with those marks, but at lower 
levels compared to those in the mEnhA group. States in the mTxEnh group showed sig-
nals of open chromatin (ATAC and/or DNase), H3K4me1, H3K27ac, and transcription-
associated marks (H3K36me3 or H3K79me2/3).

In addition to the mTxEnh group, we defined three additional transcription groups: 
transcription (mTx), transcription and exons (mTxEx), and weak transcription 
(mTxWk). States in the mTx group are associated primarily with the transcription marks 
H3K36me3 and/or H3K79me2/3. Meanwhile, states in transcription and exons group 
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Fig. 1 Mouse full-stack state emission parameters. A Each of the 100 rows in the heatmap corresponds 
to a mouse full-stack state. Each of the 901 columns corresponds to one input dataset. For each state and 
each dataset, the heatmap gives the probability within the state of observing a binary present call for the 
dataset’s signal. Above the heatmap, the first color bar indicates the assay/chromatin mark measured by each 
dataset. The second color bar shows the cell type groups associated with each dataset. The corresponding 
color legends are shown towards the bottom. The states are displayed in 16 groups based on biological 
interpretations indicated by the color legend at the bottom, with white space between each group. 
Full characterization of states is available in Additional file 2. The model’s transition parameters between 
states can be found in Additional file 1: Fig. S1. Columns are ordered such that datasets profiling the same 
chromatin marks are next to each other. B Each row corresponds to a full-stack state as ordered in A. The 
columns correspond to the top 10 datasets with the highest emission value for each state, in order of 
decreasing ranks, colored by their associated chromatin marks as in A. C Similar to B, but datasets are colored 
by the associated cell type groups. The cell type groups primarily associated with some of the enhancer 
states are noted inside the heatmap. A fully annotated version of Fig. 2B–C is provided in Additional file 3
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(mTxEx) are associated with both open chromatin and transcription marks. States in the 
mTxWk group are associated with low levels of transcription marks.

We also defined three promoter-associated groups: bivalent promoters (mBivProm), 
promoter flanking (mPromF), and transcription start sites (mTSS). States in these 
groups generally had relatively high levels of H3K4me2 and H3K4me3, and for some of 
them also H3K4me1 and/or open chromatin marks. mBivProm states were also asso-
ciated with the repressive mark H3K27me3. States in the mTSS group tended to have 
weaker H3K4me1 levels.

Within each group, there were differences among individual states, such as the mag-
nitude of the emission probabilities associated with specific chromatin marks, or their 
association with different cell type groups (Fig. 1). For example, different states in the 
active (mEnhA) and weak enhancer (mEnhWk) groups have enhancer-associated marks 
that were specific to different cell type groups such as the brain, blood, immune, liver, 
and embryo (Fig. 1C). Detailed descriptions of each state’s chromatin mark signals and 
cell-type-specific activities are provided in Additional file 2.

We also conducted various enrichment analyses to further characterize the states 
(Fig.  2A). Enrichments with external annotations further highlight the distinctions 
among states from different groups, as well as among those within the same group. 
For example, the state mGapArtf1 overlapped with 99.9% of annotated assembly gaps 
in mm10 (6.6-fold) (Fig.  2A). States mGapArtf1 and mGapArtf3 jointly overlapped 
with 81.1% of the blacklisted regions from ENCODE (5.4- and 5.0-fold, respectively) 
(Fig. 2A). States in promoter-associated groups (mTSS, mPromF, mBivProm) showed 
relatively high enrichments with regions within 2 kb of annotated TSSs (9.4–26.7 fold, 
Fig.  2A). These states vary in their enrichments with regions upstream and down-
stream of annotated TSSs (Fig. 2D, Additional file 1: Fig. S2). The three states from 
the TSS group (mTSS1-3) had the strongest enrichment for TSS (59.2–159.9 fold). 
These three states along with mBivProm2 were strongly enriched with CpG islands 

(See figure on next page.)
Fig. 2 Mouse full-stack state enrichments for external genomic annotations. A Fold enrichments of mouse 
full-stack states with external genome annotations (“Methods” section). Each row corresponds to a state 
and each column corresponds to one external genomic annotation: coding sequences, CpG islands, exons, 
gene bodies (exons and introns), transcription end sites (TES), transcription start sites (TSS), TSS and 2-kb 
surrounding regions, assembly gaps, pseudogenes, blacklisted regions, repeat elements, annotated Zfp 
genes, and PhastCons conserved elements (“Methods” section). The last row shows the percentage of the 
genome that each external genome annotation covers. The heatmap colors are column-normalized, i.e., 
within each column, the colors of the cells are such that the highest values are colored red and the lowest 
values are colored white. B Each row indicates the states’ average LECIF score, indicating evidence at 
the functional genomics level of human-mouse conservation based on epigenetic annotations [22] 
(“Methods” section). The list of states with top average LECIF scores and highest enrichments with PhastCons 
elements is in Additional file 1: Fig. S9 and Additional file 4. C Average weighted expression of genes 
that overlap each full-stack state in different groups of cell types (“Methods” section). Each column in the 
heatmap corresponds to a cell group indicated at the top. Each row corresponds to a state, as ordered 
in A. D, E Positional enrichments of full-stack states relative to annotated D transcription start sites (TSS) 
and E transcription end sites (TES). Positive coordinate values represent the number of bases downstream 
in the 5′ to 3′ direction of transcription, while negative values represent the number of bases upstream. 
Each line shows the positional enrichments in a state. Lines are colored corresponding to the state group 
as indicated in A. F Geometric mean and geometric standard deviation of enrichments of full-stack states 
CTCF elements across 28 cell types (“Methods” section). States are displayed vertically in the same order as 
A. The mOpenC6-7 state showed the strongest enrichment for CTCF elements in all observed cell types. The 
geometric mean and standard deviation are calculated such that for each state, fold enrichment values of 0 
are replaced by the state’s minimum non-zero value. The fold enrichment values accompanying this plot are 
available in Additional file 4
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(101.1–159.2 folds, Fig.  2A). States in the transcription-associated groups (mTx, 
mTxWk, mTxEnh, mTxEx) all had enrichments greater than 2.4-fold for annotated 
gene bodies. States in the transcription and exon group (mTxEx1-3) showed the high-
est enrichments for annotated exons (11.3–14.7 folds, Fig. 2A) and regions surround-
ing annotated TESs (Fig. 2E, Additional file 1: Fig. S2). States mOpenC6-7, which had 
strong constitutive DNase-seq and/or ATAC-seq signal while having relatively lim-
ited histone modification signals, had the strongest enrichments with CTCF binding 
sites in multiple cell types (geometric mean 146- and 98-fold for states mOpenC6-7, 
respectively) (Figs. 1 and 2F, Additional file 3).

Additionally, we analyzed the enrichment of full-stack states for different chromo-
somes. This uncovered three states in the polycomb repressed group (mReprPC4-6) 
that were highly enriched on chromosome X (8.9–11.4 fold, Additional file 1: Fig. S3), 
likely related to H3K27me3-associated chromosome X inactivation [23, 24]. We also 

Fig. 2 (See legend on previous page.)
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found chromosome Y strongly enriched for mGapArtf1 state (6.4 fold, corresponding 
to 96% of chrY) (Additional file 1: Fig. S3).

We also analyzed the states’ enrichments for different classes of repeat elements [25]. 
For the two largest classes of repeats, long interspersed nuclear elements (LINE) and 
long tandem repeats (LTRs) (Additional file 1: Fig. S4-5), the most enriched states were 
both in the HET group (mHET9 and mHet7) (2.7- and 3.3-fold, respectively). Satellite 
and rRNA repeats had the strongest enrichments for the mGapArtf3 state, 22.5- and 
95.5-fold, respectively.

We also related the full-stack states to the average expression of overlapping genes 
(“Methods” section). States in the transcription-associated groups (mTxEnh, mTx, 
mTxEx), along with those related to the promoter (mPromF and mTSS groups) tended 
to be associated with higher average gene expression across cell types compared to other  
groups (Fig.  2C). State mTxEx3 was associated with the highest gene expression  
of all states.

Additionally, we analyzed the mouse full-stack states’ association with per-cell-type 
chromatin state annotations defined across 66 reference epigenomes from 12 unique 
cell type groups and 7 developmental stages, based on 8 marks (Additional file 1: Fig. 
S6-7, Additional file 5) [19]. This revealed, for example, that state mEnhA17 showed the 
strongest enrichments with per-cell-type active enhancer states across all developmen-
tal stages for the liver (Additional file 1: Fig. S6-7, Additional file 5), which is consist-
ent with this state’s highest signals in enhancer-associated chromatin marks (H3K4me1, 
H3K27ac) for liver datasets (Fig. 1, Additional file 3). State mTSS2 was most enriched 
with per-cell-type active promoter states in all reference epigenomes (Additional file 1: 
Fig. S6-7, Additional file  5), consistent with its association with individual chromatin 
marks (Fig. 1, Additional file 3).

In addition, we analyzed how the mouse full-stack states correspond to those of an 
analogous previously defined full-stack model in human [21]. We evaluated the enrich-
ments of each mouse full-stack state with each human full-stack state after mapping 
the human annotations to mouse based on DNA sequence information (“Methods” 
section). Sixty-four and 22 states showed > ten-fold and > 50-fold enrichment, respec-
tively, with at least one human state (Additional file 1: Fig. S8-9, Additional file 4) [21], 
and these states’ biological implications highlight strong correspondence of states from 
the human and mouse models. For example, mouse state mTxEx3 showed 378.8-fold 
enrichment for human state TxEx4—the largest enrichment across any pair of states—
(Additional file 1: Fig. S9, Additional file 4). These two states showed the highest aver-
age gene expression across multiple mouse and human cell types, respectively [21] 
(Fig.  2C). All 13 mouse states in the promoter groups (mPromF, mBivProm, mTSS 
states) showed strong enrichments with human full-stack states that are also promoter-
associated, with 12 of these mouse states showing > 90-fold enrichment (Additional 
file 1: Fig. S9, Additional file 4). Mouse states mOpenC6-7 showed the strongest asso-
ciation with the human DNase state, and all these states are associated with constitutive 
open chromatin and CTCF elements (Fig.  2F, Additional file  3) [21]. However, there 
exist differences between states from the two organisms’ models. For example, the 
state group mReprPC_OpenC (showing DNase-seq and/or ATAC-seq and repressive 
mark H3K27me3 signals) was only observed in the mouse model, while the group Acet 
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(showing signal primarily for a diverse set of acetylation marks) was only present in the 
human model, which was as expected as most of these acetylation marks were not in 
the mouse model input. Seven states in the mOpenC group (all except mOpenC6-7) 
showed cell-type-specific signals of open chromatin, a pattern not observed in the 
human model (Additional file 1: Fig. S8-9, Additional file 4). Other states such as those 
in the mouse mHET and human HET groups shared an association with H3K9me3 and 
enrichments for repetitive elements, but did not show strong enrichments in this analy-
sis. This was expected because the mapping of human and mouse states was based on 
corresponding DNA sequences between the two species.

We also evaluated each full-stack state’s average human-mouse LECIF score, which 
quantifies evidence of  conservation at the functional genomics level between a pair 
of sequence-aligned positions from the two species and is bounded between 0 and 1 
(Fig. 2B) [22] (“Methods” section). Here, the average LECIF score in each state ranged 
from 0.04 (mHET9) to 0.71 (mBivProm3) (Fig.  2B, Additional file  1: Fig. S9). All 14 
mouse states that had an average LECIF score ≥ 0.5 also had a > 50-fold enrichment with 
a human full-stack state, highlighting that mouse states with high LECIF scores show 
concordance with specific human states. In addition, we looked at each state’s enrich-
ment for sequence constraint elements as defined by PhastCons [26]. Across all states, 
the states’ enrichments for PhastCons elements and average LECIF score showed 
overall consistency (Spearman correlation 0.70; p-value: 3.8e −16 ). We found 10 mouse 
states that are among the top 20 states based on (1) average LECIF score, (2) enrich-
ments for PhastCons element, and (3) enrichments for a specific human full-stack state 
(Additional file  1: Fig. S9). Among these states, seven are associated with promoter 
activities (mBivProm1-3, mTSS1-3, mPromF1), two states are characterized by strong 
exon enrichments and constitutive transcriptional activities (mTxEx2-3), and one state 
(mEnhA3) corresponds to constitutively strong candidate enhancers (Additional file 1: 
Fig. S9). Interestingly, a few states stand out as associated with either high sequence 
constraint or functional conservation (LECIF score), but not in both. For example, con-
stitutive DNase-candidate insulator states mOpenC6-7 are among the top 20 with the 
highest average LECIF scores yet had lower (PhastCons) sequence constraint enrich-
ment (ranked 50, 59) (Additional file 1: Fig. S9).

Conclusions
We introduced the mouse full-stack annotation to provide a universal chromatin state 
map using > 900 epigenomic datasets from 26 cell type groups. The mouse full-stack 
model and its characterization are analogous to the previous human full-stack model 
[21] (Availability of data and materials, Additional file 2). As discussed previously, the 
full-stack model has a number of advantages, such as being able to differentiate constitu-
tive from cell type-specific annotations and simplifying the overall genome annotation 
across cell types, in that there is a single genome annotation per position [21]. However, 
this does come at a trade-off of a more complex set of model parameters and potential 
loss of modeling power when one is interested in a specific cell type. The full-stack anno-
tation is not meant to replace existing per-cell-type annotations, but rather to comple-
ment them and the most appropriate annotation will likely depend on the application 
[21]. Here, we applied the stacked modeling approach to data from different cells types, 
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though the same modeling approach could be applied to data measured within the same 
cell type but under different treatments to potentially uncover latent enhancers [27]. We 
expect the full-stack model to serve as an additional resource for work that leverages 
mouse as a model organism to gain insight into human biology.

Methods
Input data and processing

We obtained mouse data generated by the ENCODE or mouse ENCODE projects from 
the ENCODE Project Portal [5, 6, 28] restricted to those files with “File analysis title” 
starting with “ENCODE4” and “File assembly” of “mm10.” In total, we downloaded data 
of read alignment (.bam files) for 901 experiments, 114 of which were DNase-seq, 83 
were ATAC-seq, and 704 were ChIP-seq data targeting 12 chromatin marks represent-
ing 26 cell type groups (Additional file 2). For each .bam file resulting from a ChIP-seq 
assay, we extracted the corresponding control  .bam file by matching the  .fastq files of 
reads from the ChIP-seq assay with the control reads. As the DNase-seq or ATAC-seq 
experiments did not have paired control .bam files, we assumed a uniform background 
read distribution. Links to download all input data for the stacked model are provided 
in Additional file 2.

We then constructed the cell_mark_file input table required by ChromHMM Binari-
zeBam such that there are four tab-delimited columns in the table. The first column is 
set as “Genome” across all rows. The second column denotes the experiment names of 
the form “ < Biosample term name > _ < Experiment target > _ < Experiment accession > ,” 
where “Biosample term name,” “Experiment target,” and “Experiment accession” corre-
spond to the cell type, the histone mark/DNase/ATAC profiled, and the accession code 
of such experiments, respectively, from the metadata from ENCODE. The third column 
contains the experiments’ .bam file names. The last column contains the matched con-
trol .bam file names, which is left blank for DNase-seq or ATAC-seq experiments, since 
we assumed a uniform background distribution for these assays.

Using this cell_mark_file input table, we next binarized the data at 200 base pair 
resolution using the BinarizeBam and MergeBinary commands of ChromHMM 
(v.1.23), following the procedures of [21]. 

Training the full‑stack model and generating genome‑wide state annotations

We learned the mouse full-stack chromatin state model for the 901 datasets using the 
LearnModel command of ChromHMM (v.1.23). We applied the same set of flags 
as in learning the human full-stack model (-splitrows -holdcolumnorder 

-pseudo -many -p 6 -n 300 -d -1 -lowmem -gzip), described in Vu and 
Ernst [21]. We trained models with numbers of states ranging from 5 to 120, in incre-
ments of 5 states. We then calculated the negative log-likelihood, Akaike information 
criterion (AIC), and Bayesian information criterion (BIC) measures on a random set of 
300 genomic regions, each of length 1Mbp, for all models (Additional file 1: Fig. S10). 
These measures show how well each model fit with the observed data, while also putting 
penalty on the model complexity (more states, more model parameters and hence more 
complex models). We observed that as the number of states increase, the negative log-
likehood, AIC, and BIC measures (the lower the better) all decreased, but at diminishing 
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magnitude (Additional file 1: Fig. S10). We decided to focus on analyzing a model with 
100 states since it is similar to the number of states in the human model, to facilitate 
comparisons between the two models [21]. Additionally, using the ChromHMM Com-
pareModels function, we also calculated the maximum correlation between each state 
in the 100-state model presented here, with a state from each of the alternative models 
(with different numbers of states) (Additional file 1: Fig. S10). The correlation was cal-
culated across emission probabilities for the 901 experiments. The reported correlations 
indicate how well each state in the chosen 100-state model can be captured by one state 
in each of the alternative models. We observed that the minimum correlations between 
the 100-state model with any other alternative models range from 0.20 (5-state model) 
to 0.85 (120-state model). 

Enrichment and estimated probabilities of overlap with per‑cell‑type chromatin state 

annotations

We obtained per-cell-type 15-chromatin state annotations for 66 reference epigenomes/
cell types from Gorkin et al. [19], with download links provided in Kwon and Ernst [22]. 
For simplicity, we use the terms “reference epigenome” and “cell types” interchangeably, 
and we refer to the chromatin state segmentation that is used to annotate the individual 
reference epigenomes as per-cell-type annotations. This model was trained using the 
concatenated modeling approach from data of 8 chromatin marks measured in 12 cell 
type groups at up to 8 distinct stages during mouse fetal development [19]. We applied 
the same procedure as outlined in Vu and Ernst [21] to obtain two types of summary 
results of the relationship between mouse full-stack states with states in per-cell-type 
annotations. First, for each full-stack state, we report, for each of the 64 reference epig-
enomes, the chromatin state from the per-cell-type model that is maximally enriched in 
the full-stack state [21]. Second, for each of the 12 tissue types, we report the estimated 
probabilities of each full-stack state overlapping with each of the 15 states in the per-
cell-type model [21]. These results, along with detailed comments about the observed 
patterns of overlap between each full-stack state and per-cell-type state, are available in 
Additional file 5. Data of all per-cell-type annotations were in mm10 [19].

Average gene expression associated with each full‑stack state

We obtained data of gene expression for 19 tissue types in mouse from Ref. [29] 
(http:// chrom osome. sdsc. edu/ mouse/ downl oad/ 19- tissu es- expr. zip). The pro-
vided data contains two gene expression datasets for each tissue type, correspond-
ing to two replicates. We converted the gene expression values for the 19 tissues into 
log

2
(FPKM + 1) values, where FPKM (fragments per kilo base of transcript per mil-

lion mapped fragments) were the provided values from the source data, and we added 
a pseudo count of 1 for each value.

Since the gene expression data was provided in mm9, we lifted the mouse full-stack 
annotation from mm10 to mm9. To do so, we first wrote the full-stack annotation in 
mm10 into a  .bed file such that each line corresponds to a 200-bp segment. We then 
used the liftOver tool with default parameters to convert the 200-bp segments from 
mm10 to mm9. We filtered out regions in the lifted-over mm9 annotation that were 
mapped from ≥ 2 distinct segments in mm10.

http://chromosome.sdsc.edu/mouse/download/19-tissues-expr.zip
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For each full-stack state and each of the gene expression datasets (there are 38 of them 
with 2 replicates for each tissue type), we calculated the average gene expression of all 
genes that overlap with the state, while taking into account the genes’ length. We fol-
lowed the same procedure described in Vu and Ernst [21]. In particular, within a dataset, 
let the length and expression of gene g be denoted Lg and Eg , respectively. Let Bs be the 
set of 200-bp genomic segments i ’s that are assigned to state s in the mouse full-stack 
annotation, in mm9. Let Gi denote the set of genes that overlap with genomic segment 
i . The gene-length-normalized average expression for state s is calculated as done previ-
ously [21]:

We then obtained the average gene expression for each full-stack state in each dataset. 
To calculate the average gene expression for the states in each of the 19 tissue types, we 
averaged the calculated average expression across the two replicate datasets for the same 
tissue type.

Overlap enrichments between mouse and human full‑stack states

We first lifted over the human full-stack annotation from hg19 to mm10, using the pro-
cedure previously described in Vu and Ernst [21], such that each genomic bin of size 
200-bp was independently mapped from hg19 to mm10, and any genomic segments in 
hg19 that were mapped to the same location in mm10 were excluded from the analysis. 
Then, we used the ChromHMM OverlapEnrichment function to calculate the over-
lap fold enrichment between each human state (liftedOver to mm10) and each mouse 
state. 

For each pair of human-mouse states, we determined whether the pair of states cor-
respond to a one-to-one mapping by checking whether the human state was most 
enriched with the mouse state compared to the other 99 human states and vice versa for 
the mouse state.

External annotation sources

The sources for external annotations for enrichment analyses are as follows (all down-
load links are listed in Additional file 2).

• Annotations of CpG islands, exons, gene bodies (exons and introns), transcription 
start sites (TSS), and transcription end sites (TES), 2-kb windows surrounding TSSs 
(TSS2kb) in mm10 were RefSeq annotations included in ChromHMM (v 1.23) and 
originally based on annotations obtained from the UCSC genome browser [30, 31] 
on July 26, 2015.

• Annotation of coding gene regions corresponds to coordinates of genes whose fea-
ture type is “CDS” from GENCODE mm10 gene annotation, vM25 [32], accessed on 
February 3, 2022.

• Annotation of assembly gaps in mm10 was obtained from the UCSC genome 
browser and corresponds to the Gap track [30, 31], accessed on February 3, 2022.

avg exp bp normalizeds =
i∈Bs g∈Gi

Eg
Lg

i∈Bs g∈Gi

1

Lg
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• Annotations of pseudogenes in mm10 correspond to coordinates of genes whose 
gene type or transcript type contained “pseudogene” from GENCODE’s mm10 
gene annotation, vM25 [32].

• Blacklisted regions were downloaded from ENCODE project portal in mm10 
from [33]. We note that two states stood out in their enrichments with black-
listed regions, GapArtf1 and GapArt3. In total, 413,502,000 bp were annotated as 
either state GapArtf1 or GapArtf3, and 238,977,200 bp are annotated as the black-
listed region. The Jaccard index between the blacklisted region and GapArtf1/3 
regions is 0.42 (193,765,600 bp of intersection, constituting 81.1% of all blacklisted 
regions, and 458,713,600 bp of union).

• Annotations of different repeat classes were downloaded from the UCSC genome 
browser repeat masker track in mm10, accessed on Jan. 14, 2022 [25].

• Annotations of Zinc finger genes in the mouse genome correspond to the coordi-
nates of genes whose name contained “Zfp” based on GENCODE mm10 annota-
tion vM25 [32].

• Annotations of different chromosomes’ coordinates were downloaded from the 
UCSC genome browser’s data of chromosome sizes in mm10, from https:// hgdow 
nload. gi. ucsc. edu/ golde nPath/ mm10/ bigZi ps/ mm10. chrom. sizes [30, 31].

• LECIF scores measure the human-mouse evidence of  conservation at the func-
tional genomics level and were downloaded in version 1.1 from https:// github. 
com/ ernst lab/ LECIF [22]. For each full-stack state, we reported the average LECIF 
score of overlapping genomic bases with the state.

• CTCF peaks data for mouse were downloaded as .bed files format from the 
ENCODE portal [5, 6, 34–36]. We only included data files that have “File analysis 
title” starting with ENCODE4 based on the metadata. In total, we obtained data 
of CTCF peaks for 42 ChIP-seq experiments from profiling CTCF in 28 unique 
biosamples. Details and download links for CTCF peaks data are available in 
Additional file 2.

• PhastCons conserved elements [26] based on the 60-way multi-species sequence 
alignment were downloaded from the UCSC genome browser (https:// hgdow nload. 
soe. ucsc. edu/ golde nPath/ mm10/ datab ase/ phast ConsE lemen ts60w ay. txt. gz).
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