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Diabetic patients are known to be more susceptible to atherosclerosis and its associated cardiovascular
complications. However, the effects of hyperglycemia on atherosclerosis regression remain unclear. We
hypothesized that hyperglycemia impairs atherosclerosis regression by modulating the biological
function of lesional macrophages. HypoE (Apoeh/hMx1-Cre) mice express low levels of apolipoprotein E
(apoE) and develop atherosclerosis when fed a high-fat diet. Atherosclerosis regression occurs in these
mice upon plasma lipid lowering induced by a change in diet and the restoration of apoE expression. We
examined the morphological characteristics of regressed lesions and assessed the biological function of
lesional macrophages isolated with laser-capture microdissection in euglycemic and hyperglycemic
HypoE mice. Hyperglycemia induced by streptozotocin treatment impaired lesion size reduction (36%
versus 14%) and lipid loss (38% versus 26%) after the reversal of hyperlipidemia. However, decreases in
lesional macrophage content and remodeling in both groups of mice were similar. Gene expression
analysis revealed that hyperglycemia impaired cholesterol transport by modulating ATP-binding
cassette A1, ATP-binding cassette G1, scavenger receptor class B family member (CD36), scavenger
receptor class B1, and wound healing pathways in lesional macrophages during atherosclerosis
regression. Hyperglycemia impairs both reduction in size and loss of lipids from atherosclerotic lesions
upon plasma lipid lowering without significantly affecting the remodeling of the vascular wall.
(Am J Pathol 2013, 183: 1981e1992; http://dx.doi.org/10.1016/j.ajpath.2013.08.019)
Supported by a Department of Veterans Affairs Merit Review grant
5I01BX000532, NIH grant HL089871 (R.L.R.), American Diabetes As-
sociation grant 7-05-JF-36 (R.L.R.), Juvenile Diabetes Research Founda-
tion grant 5-2007-287 (R.L.R.), the Foundation for Accelerated Vascular
Research, and funds from the Department of Surgery at University of
California San Francisco (R.L.R.).
Evidence supporting the regression of atherosclerotic lesions
as a viable therapeutic goal has increased considerably since
the first studies reporting the shrinkage of vascular lesions in
both animal models and clinical trials. A drastic and sustained
lowering of plasma cholesterol levels is required to induce
regression of atherosclerotic lesions.1 Mechanisms identified
in atherosclerosis regression include decrease in lipoprotein
retention within the vascular wall,2,3 increase in reverse
cholesterol transport from foam cells,2,4e6 emigration, reduced
vascular recruitment of inflammatory macrophages,1,7 and
increased recruitment and conversion of macrophages to a
phenotype favoring the healing process of the vessel wall.2,3,8,9

Nevertheless, despite progress made in controlling hyperlip-
idemia, clinical therapeutic achievement of atherosclerosis
regression remains limited. Unfortunately, most patients
treated for dyslipidemia neither reach nor sustain plasma lipid-
lowering levels required to achieve atherosclerosis regres-
sion.10 Moreover, although shrinkage of lesion volume is
desirable, the remodeling and stabilization of vulnerable pla-
ques is required to reduce potential adverse cardiovascular
stigative Pathology.

.

outcomes.1 Hence, a greater understanding of the mechanisms
of atherosclerosis regression is needed to help generate
effective therapeutic treatments.

Treatment of atherosclerosis is particularly challenging for
individuals suffering from obesity and diabetes. Diabetics are
more susceptible to atherosclerosis and its associated cardio-
vascular complications.11,12 Although intensive hyperglyce-
mia management reduces cardiovascular events among type 1
diabetic patients, conflicting results have emerged from studies
performed among type 2 diabetic patients.13 In addition, a
clear distinction between the effects of hyperglycemia and
those of hyperlipidemia on the development of atherosclerosis
has been difficult to establish.14 Thus, whether hyperglycemia
can modulate atherosclerosis regression remains unclear.
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Studies from our laboratory using hypomorphic apoli-
poprotein E (apoE) mice, also referred to as HypoE mice
that carry the inducible Mx1-Cre transgene (Apoeh/hMx1-
Cre mice), have shown previously that apoE can promote
the regression of atherosclerosis beyond reducing plasma
cholesterol levels.15 The present study made use of HypoE
mice to identify mechanisms involved in lesion size
reduction and stabilization and the impact of hyperglycemia
on these processes. We hypothesized that hyperglycemia
impairs atherosclerosis regression by modulating the bio-
logical function of lesional macrophages. We found that
hyperglycemia impairs lesion size reduction by hindering
lipid removal and macrophage cholesterol transport, but that
it does not significantly affect loss of macrophages from the
lesion or remodeling of the vascular wall.

Materials and Methods

Materials

All reagents were purchased from Sigma-Aldrich (St. Louis,
MO), unless otherwise stated.

Study Design and Generation of Hyperglycemic Mice

The generation of hypomorphic Apoeh/h Mx1-Cre trans-
genic mice expressing wild-type mouse apoE, also referred
to as HypoE mice, has been previously described.16,17

Briefly, the Mx1-cre transgene allows the removal of the
neocassette after the induction of Cre recombinase with
polyinosinic-polycytidylic ribonucleic acid (pIpC) and
repair of the hypomorphic Apoe allele in all tissues.

Male mice were weaned at 21 days, housed in a 12-hour
cycle barrier facility, and fed a chow diet containing 4.2%
fat (Harlan Teklad, Madison, WI). At 8 weeks of age, all
mice were fed a high-fat diet (HFD) containing 1.25%
cholesterol, 3.5% coconut oil, 7.5% cocoa butter, and 0.5%
sodium cholic acid (Research Diets Inc., New Brunswick,
NJ) for 18 weeks (baseline group). After 17 weeks of HFD,
regressed groups of mice received an i.p. injection of either
70 mg/kg streptozotocin (STZ) or saline for 5 consecutive
days. To avoid weight loss commonly associated with STZ-
induced diabetes,18 mice received 0.1 U of recombinant
human insulin i.p. (Eli Lilly, Indianapolis, IN) every other
day. After 18 weeks of HFD, regressed groups of mice were
fed a low-fat diet (LFD) and given a 250 mg i.p. injection of
pIpC. All procedures were in accordance with the NIH
guidelines and the San Francisco VA Medical Center
committee for animal care and welfare.

Blood Glucose, Body Weight, and Glycated Hemoglobin

Blood was collected via the tail vein, and fasting blood
glucose (FBG) levels were measured with an AlphaTrack
blood glucose monitoring system (Abbott Laboratories,
Green Oaks, IL). FBG and body weights were measured
1982
every other day. HbA1c levels were measured with an
A1CNowþ Multitest A1C system (Cardinal Health, Pasa-
dena, CA) at sacrifice.

Tissue Collection

Overnight fasted mice were sacrificed after 18 weeks of
HFD (baseline group) or after an extra 4 weeks of LFD
(regressed groups). Mice were anesthetized with isoflurane
inhalation or tribromoethanol (Avertin) injection, and bled
by heart puncture. Mice were perfused via heart puncture
with ice-cold PBS containing ProtectRNA RNase Inhibitor
(1.5 mL/minute for 10 minutes). The aortic root was
embedded in Tissue-Tek optimum cutting temperature cry-
osectioning compound (Sakura Finetek, Tokyo, Japan) and
flash frozen in liquid nitrogen.

Plasma Lipid and Lipoprotein Fractionation

Plasma lipoproteins were fractionated by fast protein liquid
chromatography (FPLC) on a Superose 6 GL 10/30 column
(pooled plasma from fourmice per group;GEHealthcare, NJ).
Plasma and FPLC fraction cholesterol and triglycerides were
measured by colorimetric assays, according to the manufac-
turer’s instructions (Cholesterol E, L-Type TG M; Wako,
Chemicals, Richmond, VA) with a VersaMax microplate
reader (Molecular Devices Corporation, Sunnyvale, CA).

Western Blot Analysis of Apolipoproteins

Plasma and FPLC fractions were subjected to SDS-PAGE
and transferred to nitrocellulose membranes (Bio-Rad
Laboratories, Hercules, CA). Western blots were incubated
with primary antibodies, goat anti-mouse apoA1 (GenWay
Biotech Inc., San Diego, CA), rabbit anti-mouse apoE,19

and rabbit anti-mouse apolipoprotein B (apoB),16 followed
by detection with IRDye 680 LT donkey anti-rabbit anti-
body or IRDye 800 CW donkey anti-goat antibody (LI-
COR Biosciences, Lincoln, NE). Membranes were scanned
and integrated intensity was quantified on an Odyssey
infrared imaging system (LI-COR Biosciences).

Histological Quantification of Atherosclerosis

Tissue blocks were cut into sections (10 mm thick). Three
cross sections (50 mm apart) of the aortic root were stained
with oil red O and counterstained with hematoxylin. Adja-
cent sections were stained with Sirius red and counterstained
with Fast green. Slides were mounted on a Zeiss Axio-
Observer Z1 microscope (Carl Zeiss Microimaging Inc.,
Thornwood, NY), and images were captured with a Retiga-
SRV charge-coupled device camera equipped with an RGB
color filter (Qimaging, Surrey, BC, Canada). Images were
quantified with Metamorph software (Molecular Devices
Corporation). Collagen types (I and III) were visualized
with a circular polarizer.
ajp.amjpathol.org - The American Journal of Pathology
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Immunofluorescence Characterization of Aortic Root
Lesions

Formalin-fixed and glycine-quenched cross sections of the
aortic root were permeabilized with 0.5% saponin in PBS.
Non-specific labeling was blocked with 10% donkey serum
PBS for 2 hours at room temperature. Aortic root sections
were incubated overnight at 4�C with a combination of
antibodies, including rat antieMac-2 (Cedarlane Labs Ltd,
Burlington, ON, CA), rabbit anti-apoE, rabbit anti-apoB,
goat anti-apoA1, Cy3 mouse anti-smooth muscle a-actin,
and goat anti-human fibronectin (Santa Cruz Biotechnology
Inc., Santa Cruz, CA) in antibody buffer solution (solution
of sodium citrate) with 2% donkey serum, 0.1% bovine
serum albumin, and 0.1% saponin). After three washes with
0.1% saponin solution of sodium citrate, sections were
incubated with either Alexa488-conjugated donkey anti-rat
or anti-goat or Alexa594-conjugated anti-rabbit secondary
antibodies (Life Technologies, Grand Island, NY) for 2
hours at room temperature. After three more washes, nuclei
were stained with Hoechst 33342 (Life Technologies) and
slides were mounted in SlowFade Gold (Life Technologies).
Images of up to triple labels were acquired with a 5�
objective and processed as previously described.

Blood Leukocyte Analysis

Blood samples were collected by retro-orbital puncture in
EDTA and kept at room temperature. Aliquots of 50 mL of
blood were incubated for 10 minutes with Fc receptor block
(1:500). Leukocytes were labeled with the following antibodies
for 20 minutes: PERCP/CY5.5-CD45, PE-Ly6G, and PE-
CD3e (BioLegend, Inc., San Diego, CA); and FITC-CD11b,
FITC-CD45R/B220, APC-CD62L, FITC-Ly6C, and PE-
CD115 (BD Pharmingen, San Diego, CA). Red cells were
then lysed, and samples were fixed and diluted with BD Red
Cell Lysing Solution (BD Pharmingen). Samples were
analyzed with a C6 Flow Cytometer (Accuri Cytometers Inc.,
Ann Arbor, MI) and FlowJo software version 7.6 (Tree Star
Inc., Ashland, OR).

LCM of Lesional Macrophages

All laser-capture microdissection (LCM) procedures were
performed under RNase-free conditions. The aortic root
was divided into sections (20 mm thick) and mounted on
Membrane Slides 1.0 PEN (Carl Zeiss Microimaging
Inc.). Every fifth section was mounted on SuperFrost Plus
slides (Fisher Scientific, Waltham, MA) and stained for
MOMA-2 (guide slides; Cedarlane Labs Ltd). Sections for
LCM were fixed in 70% ethanol, rinsed in water, coun-
terstained with hematoxylin QS, rinsed in water, dehy-
drated in graded ethanol, and air dried. Macrophage areas
were identified from guide slides and quickly micro-
dissected (<30 minutes) with the P.A.L.M. system (Carl
Zeiss Microimaging Inc.).
The American Journal of Pathology - ajp.amjpathol.org
RNA Extraction and Gene Expression

Total RNA was extracted from microdissected macrophages
using RNeasy Micro kits and on-column DNase I treatments,
according to the manufacturer’s instructions (Qiagen,
Valencia, CA). RNA concentration was determined by the
Quant-iT RiboGreen RNA Kit (Life Technologies), and RNA
quality was verified with the 2100 Bioanalyzer and RNA
6000 Pico Kit (Agilent, Santa Clara, CA). RNA integrity
number averaged 7.93 and ranged between 7.0 and 8.8.

Microdissected macrophages from two to three mice were
pooled and 10 ng of total RNA per sample was reverse
transcribed and amplified using the RT2 PreAMP cDNA
Synthesis Kit (SABiosciences, Qiagen), according to the
manufacturer’s instructions. Quantitative RT-PCR analysis
was performed using the Mouse Wound Healing RT2 Profiler
PCR array (catalog no. PAMM-121Z; SABiosciences, Qia-
gen), according to the manufacturer’s instructions. A total of
84 key genes central to the wound-healing response were
analyzed. Data analysis was performed using the manufac-
turer’s integrated web-based software package for the PCR
Array System using 2�DDCT based fold-change calculations
(SABiosciences). Expression levels of candidate genes were
also assessed using retro-transcribed nonamplified RNA,
using an ABI Prism 7900 (Applied Biosystems, Foster City,
CA) and in-houseedesigned primer pairs (SYBR Green re-
actions) or Assay-On-Demand (Applied Biosystems). Each
target gene expression was normalized to the average
housekeeping genes (cyclophilin, Tata box protein, b-2-
microglobulin, or heat shock protein 90-b), and levels were
calculated according to the 2-DCT or 2�DDCT methods.

Statistical Analysis

Data were analyzed with GraphPad Prism software version
5 (GraphPad Software Inc., La Jolla, CA) using one- and
two-way analyses of variance, followed by Bonferroni
posttests or two-tailed Student’s t-tests. A difference with a
P < 0.05 was considered significant.

Results

Metabolic Parameters

The study design is shown in Figure 1A. Diabetes was
confirmed by a threefold increase in FBG levels (578.7 �
32.9 mg/dL versus 195.6 � 11.5 mg/dL; P < 0.001)
(Figure 1B) and a nearly twofold increase in the percentage
of glycated HbA1c (8.0% � 0.2% versus 4.7% � 0.1%; P <
0.0001) (Figure 1C) compared with saline-treated groups.
The STZ-treated mice maintained a slight, but significantly,
lower body weight than the saline-treated mice (26.6 � 0.4
g versus 33.1 � 0.6 g; P < 0.001) but never lost >15% of
their baseline body weights (results not shown). No signif-
icant differences in FBG (P Z 0.37) and plasma lipid
(cholesterol, P Z 0.47; triglycerides, P Z 0.60) levels were
1983

http://ajp.amjpathol.org


Figure 1 Experimental design and metabolic parameters. A: Hypo-
morphic apoE mice carrying the Mx1-cre transgene (Apoeh/h MX1-Cre) were
fed a high-fat diet (HFD) for 18 weeks. All mice received either a series of
five consecutive i.p. injections of saline (baseline and saline groups) or
streptozotocin (STZ group) during the 17th week of HFD. A group of mice
was sacrificed after 18 weeks of HFD and used as the baseline group. The
two other groups of mice were given an i.p. injection of pIpC and switched
to a low-fat diet (LFD) after 18 weeks of HFD. These two groups of mice
were sacrificed 4 weeks after the pIpC injection and consumption of a chow
diet. Blood glucose levels over time (B) and percentage of HbA1c at sac-
rifice (C) for both the saline and STZ groups. Plasma cholesterol (D) and
triglyceride (E) levels before (average of weeks 17 and 18) and 4 weeks
after the induction of diabetes. Two-way analysis of variance, followed by
Bonferroni posttests: ***P < 0.001, ****P < 0.0001.

Gaudreault et al
found between the two groups at baseline before STZ
treatment. The change to LFD and repair of the hypomor-
phic Apoe gene decreased plasma cholesterol levels by
sevenfold (555.5 � 30.3 to 81.1 � 3.3 mg/dL in the saline
group; P < 0.0001) within 1 week of pIpC. Reductions in
plasma cholesterol occurred at a similar rate among the STZ
group of mice treated with pIpC. No differences in plasma
cholesterol or triglyceride levels were noted between the
saline- and STZ-treated mice for the remaining 4 weeks
(analysis of variance, P > 0.05) (Figure 1, D and E).

The change to LFD and repair of the hypomorphic Apoe
gene significantly modified, at the same rate, the lipid profiles
for both groups of mice. At baseline, most of the plasma
cholesterol was distributed to very-low-density lipoprotein
(VLDL), intermediate density lipoprotein (IDL), and LDL
fractions. After 4 weeks of lipid lowering, VLDL- and IDL-
LDL-cholesterol levels were dramatically decreased, whereas
1984
high-density lipoprotein (HDL) cholesterol levels were main-
tained in both saline- and STZ-treated groups (Figure 2A).
Apolipoprotein B (apoB100 and apoB48) was on the VLDL,
IDL, and LDL fractions at both baseline and 4-week regression
time points. ApoA1, found in VLDL-LDL and HDL fractions
at baseline, was located almost exclusively in the HDL frac-
tions at the 4-week regression time point. ApoE was located
mostly in VLDL-LDL fractions at baseline and 4-week
regression time points but was also seen in early HDL frac-
tions after 4 weeks of regression (Figure 2B). No differences in
the apolipoprotein distribution were found between the saline-
and STZ-treated groups. The relative amounts of plasma
apoB100, apoB48, apoA1, and apoE were reduced by 34%,
82%, 19%, and 60%, respectively, after 4 weeks of regression
in both groups of mice (Figure 2C). This produced an increase
of 86% in the plasma apoA1/apoB ratio.

Hyperglycemia Impairs Atherosclerosis Regression

Four weeks of sustained lipid lowering induced a significant
36% reduction in lesion size in the aortic roots of saline-
treated mice (PZ 0.03). In contrast, we observed only a 14%
reduction in STZ-treated mouse lesion size (P Z 0.30)
(Figure 3A). The regressed lesions were characterized by a
decrease in neutral lipid content significantly greater in sa-
line- than STZ-treated mice (38% versus 26%; P Z 0.02)
(Figure 3, B and C). We first wondered if the impaired lipid
loss seen in the lesions of hyperglycemic mice was associated
with an increase in proteoglycan-mediated retention of
atherogenic apoB-containing lipoproteins. Thus, we assessed
the apolipoprotein content of the lesions (Figure 3, DeF).
Although the relative lesion content of apoA1 and apoE
remained the same after 4 weeks of regression, the apoB
content decreased significantly by 63% (PZ 0.002) and 55%
(P Z 0.0006) in saline- and STZ-treated mice, respectively.
These changes contributed to increase the apoA1/apoB ratio
by nearly twofold in the regressed lesions of both groups of
mice. Unexpectedly, hyperglycemia did not affect signifi-
cantly the relative apoB content or the apoA1/apoB ratio of
the regressed aortic lesions (P Z 0.34) (Figure 3F).
We next tested the possibility that the impaired lipid loss

from the lesion was due to a macrophage-mediated decrease
in lipid removal. Quantification of macrophage marker,
Mac-2, revealed a significant decrease in macrophage con-
tent in saline- and STZ-treated lesions, 41% (P < 0.0001)
and 32% (P < 0.001), respectively, compared with baseline
(Figure 3, G and H). However, the difference between sa-
line- and STZ-treated mice did not reach statistical signifi-
cance (P Z 0.24). Next, we tested whether hyperglycemia
altered lesional macrophage gene expression that could have
affected their function in remodeling atheroma. To this end,
we used LCM to isolate macrophages from aortic roots and
assessed the expression levels of genes associated with
cholesterol transport. The expression level of all genes
tested decreased after regression and by at least twofold for
ATP-binding cassette A1 (ABCA1) and ATP-binding
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Plasma lipoprotein profile. A: Pooled plasma samples from four animals per group were
fractionated with fast protein liquid chromatography (FPLC), and cholesterol was measured in each indi-
vidual fraction. B: FPLC fractions were resolved by gel electrophoresis and probed for apoB100, apoB48,
apoA1, and apoE. C: Total plasma was separated by gel electrophoresis and probed for apoB100, apoB48,
apoA1, and apoE and the corresponding quantification. One-way analysis of variance, followed by Bon-
ferroni posttests: *P < 0.05, **P < 0.01, and ***P < 0.001.

Diabetes and Atherosclerosis Regression
cassette G1 (ABCG1). We also found that hyperglycemia
resulted in the down-regulation of ABCA1, ABCG1, scav-
enger receptor class B1 (SRB1), and scavenger receptor
class B family member (CD36; CD36 and SRB1 increased
by 1.75- and 1.2-fold, respectively, compared with baseline)
gene expression levels (Table 1).
Effects of Hyperglycemia on Inflammatory Circulating
and Lesional Cells

To test whether hyperglycemia had an effect on the number
and subtype of circulating inflammatory cells, we performed
whole blood flow cytometry analysis. In the saline-treated
group, total leukocyte counts remained constant between
baseline and 4-week regression time points. However, total
leukocyte counts in STZ-treated mice increased significantly
by 25% compared with saline-treated mice (P Z 0.04)
(Figure 4A). This increase in total leukocytes was partly the
result of a 40% greater increase in B-cell count in STZ-
treated mice compared with both baseline and saline-
treated mice (Figure 4B). STZ-treated mice also had a
lower granulocyte cell count compared with saline-treated
mice. We next tested the possibility that hyperglycemia
and lipid lowering altered the activation of circulating
monocytes but found no significant difference in the total
count of Ly6Chigh and Ly6Clow monocytes (P Z 0.65 and
The American Journal of Pathology - ajp.amjpathol.org
P Z 0.34) or in the expression level of CD62L on Ly6Chigh

monocytes (P Z 0.46) (Figure 4, CeE).
In addition, we assessed expression levels of genes asso-

ciated with M1/inflammatory and M2/anti-inflammatory
phenotypes in microdissected macrophages and found no
significant differences between baseline and the two
regressed groups (Table 2).

Lipid Lowering and Hyperglycemia Modulate the
Expression of Genes Associated with Wound Healing in
Lesional Macrophages

Atherosclerosis regression involves a remodeling of the
vascular wall resembling that of the wound-healing response,
a pathway compromised in diabetic patients.20 To test
whether this pathway is involved in atherosclerosis regres-
sion and impaired by hyperglycemia, we analyzed the
expression of a panel of genes in microdissected macro-
phages, using pathway-focused PCR arrays. The array was
composed of 84 key genes central to the wound-healing
response. Subsets of these genes modulate processes,
including extracellular matrix remodeling, cellular adhesion,
cellular growth, and signal transduction. Nearly a third of the
genes analyzed (with a cycling threshold >30) were signif-
icantly up-regulated by at least twofold after 4 weeks of
regression in lesional macrophages of saline-treated mice
1985
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Figure 3 Hyperglycemia impairs atheroscle-
rosis regression. A: Lesion areas were measured
from aortic root cross sections of baseline and
both saline and streptozotocin (STZ) regression
groups. B and C: Quantification of the ORO lesion
content (B) and representative images of aortic
root cross sections stained with oil red O (ORO)
(C). Adjacent histological cross sections of aortic
roots stained with apoA1 (green), apoB (red),
and Hoechst (a nuclear dye, blue; D) or apoE
(red) and Hoechst (E) and the corresponding
quantifications (immunofluorescence intensity
(IFI); F). Quantification (G) and representative
(H) images of aortic root cross sections labeled
with mac-2 antibody (a macrophage marker,
green) and Hoechst (blue). One-way analysis of
variance, followed by Bonferroni posttests: *P<
0.05, **P < 0.01, and ***P < 0.001 between
baseline and regression groups; yP < 0.05 be-
tween saline and STZ groups.

Gaudreault et al
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Table 1 Gene Expression Analysis of Lesional Macrophages Focused on the Cholesterol Influx/Efflux Pathway

Variable Baseline n Regressed/saline n Regressed/STZ n

LXRa 0.52 � 0.08 4 0.39 � 0.04 4 0.39 � 0.08 4
ABCA1 8.99 � 2.16 4 4.33 � 1.12 4 9.59 � 1.74*y 4
ABCG1 2.88 � 0.98 4 1.17 � 0.24 4 2.45 � 0.11z 4
SRB1 0.20 � 0.07 4 0.16 � 0.08 4 0.24 � 0.03yx 4
CD36 5.33 � 0.85 4 4.23 � 1.77 4 9.33 � 1.62*{ 4

Data are presented as relative mRNA level normalized to the average of two housekeeping genes: cyclophilin and Tata box protein (means � SEM and
sample size).

*P < 0.01 between saline- and STZ-treated regressed groups (data analyzed with two-way analysis of variance, followed by Bonferroni posttests).
yP < 0.05 (data analyzed with t-test).
zP < 0.01 between saline- and STZ-treated mice (data analyzed with t-test).
xP < 0.05 between baseline and STZ-treated group (data analyzed with t-test).
{P < 0.05 between baseline and regressed groups (data analyzed with two-way analysis of variance, followed by Bonferroni posttests).
LXR, liver X receptor.

Diabetes and Atherosclerosis Regression
(Table 3). These included five types of collagens, the
remodeling enzyme matrix metalloproteinase 2 (MMP-2),
cellular adhesion integrin-a3, connective tissue, fibroblast
growth factors, and prostaglandin-endoperoxide synthase 2
(cyclooxygenase-2). In addition, and of particular interest,
was the significant 2.56-fold down-regulation of the remod-
eling enzyme, cathepsin L. By comparison, the array data
revealed that hyperglycemia blunted the up-regulation of
most collagen genes (types IV/V) and Mmp2 and the down-
regulation of cathepsin L, while preserving the modulation of
other genes. Hyperglycemia also modulated the expression
of genes in lesional macrophages that remained unchanged in
the euglycemic group of regressed mice. These included a
more than twofold up-regulation of cathepsin K, integrin-b3,
and transgelin. These results indicate that lipid lowering
modulates the expression level of genes associated with the
Figure 4 Flow cytometry analysis of circulating leukocytes in saline
control and streptozotocin (STZ)-treated mice at baseline and after 4 weeks
of regression. Leukocyte (CD45þ cell) counts (A) and percentage of leu-
kocytes identified as monocytes (CD115þ cells), granulocytes (CD115�,
Ly6Gþ cells), B cells (B220Rþ cells), and T cells (CD3þ cells) (B). Monocyte
subtype Ly6Chigh (C) and Ly6Clow (D) counts and the expression level of
CD62L (L-selectin) on Ly6Chigh monocytes (E). Mean fluorescence intensity
(MFI): *P < 0.05, **P < 0.01 by one-way analysis of variance (A) and two-
way analysis of variance (B), followed by Bonferroni posttests.

The American Journal of Pathology - ajp.amjpathol.org
wound-healing response in lesional macrophages and that
hyperglycemia alters this process.

Effect of Hyperglycemia on Regressed Lesion
Composition

Results of the array experiment suggested an impact of hy-
perglycemia on the remodeling of the regressed lesion.
Consequently, we examined the content of collagen, smooth
muscle cell (SMC), and fibronectin in lesions of baseline
and regressed mice, as an index of lesion stabilization. Un-
expectedly, we observed a similar 64% increase in total
collagen content (PZ 0.26, mostly type I fibers) (Figure 5C)
in lesions of saline- and STZ-treated mice (Figure 5, AeC).
SMC content was scarce and diffuse in baseline lesions
(1.2% � 0.3%) but more abundant and forming thin fibrous
caps in regressed lesions of both saline- and STZ-treated
mice (4.2% � 1.0% versus 5.0% � 1.4%; P Z 0.66)
(Figure 5, D and E). Fibronectin content in lesions decreased
by 47% and 32% in saline- and STZ-treated mice, respec-
tively (P Z 0.54) (Figure 5, E and F). Taken together, these
results suggest that hyperglycemia did not significantly affect
the remodeling and stabilization of atherosclerotic lesions.
Discussion

We previously reported the regression of advanced diet-
induced atherosclerotic lesions in HypoE (Apoeh/hMx1-Cre)
mice induced to express normal apoE levels and switched to
a chow diet.15 In this study, we aimed to identify mecha-
nisms involved in the regression of atherosclerosis and to
determine the impact of hyperglycemia on this process. To
this end, we induced hyperglycemia in HypoE mice with
preexisting atherosclerotic lesions, reversed hyperlipidemia,
and assessed gene expression in lesional macrophages after
4 weeks of lipid lowering. The main finding of this study is
that hyperglycemia impairs lesion size reduction. Our results
also show that hyperglycemia results in more lipid retention
and/or accumulation within atheroma after sustained plasma
1987
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Table 2 Gene Expression Analysis of Lesional Macrophage Phenotypes

Variable Baseline n Regressed/saline n Regressed/STZ n

Migration
CCR7 0.051 � 0.002 3 0.031 � 0.015 4 0.041 � 0.014 4

M1/M2 phenotype
iNOS 0.038 � 0.013 4 0.063 � 0.027 4 0.033 � 0.005 4
ARG1 0.002 � 0.001 3 0.010 � 0.008 3 0.008 � 0.006 3
CD86 0.090 � 0.013 4 0.073 � 0.019 4 0.105 � 0.012 4
HB-EGF 0.215 � 0.015 4 0.255 � 0.058 4 0.274 � 0.034 4
LIGHT 0.016 � 1.352 4 0.008 � 0.003 4 0.013 � 0.002 4

Data are presented as relative mRNA level normalized to the housekeeping gene Hsp90ab1 (means� SEM and sample size). Data were analyzed with two-way
analysis of variance and t-test.

ARG, arginase; CCR, chemokine receptor; HB-EGF, heparin-binding epidermal growth factorelike growth factor; iNOS, inducible nitric oxide synthase; LIGHT,
tumor necrosis factor superfamily-14.
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lipid lowering. Accordingly, a gene expression analysis
revealed that hyperglycemia altered the expression of genes
associated with cholesterol homeostasis in lesional macro-
phages that could have contributed to more abundant
cellular lipid. Our data also suggest the involvement of
lesional macrophages in the healing response of the vascular
wall and that hyperglycemia only has a mild impact on this
response and overall remodeling.

Although there is a clear association between diabetes and
increased risk for cardiovascular diseases, an independent
role of hyperglycemia in the development of atherosclerosis
has remained controversial. This is mainly the result of
hyperglycemia-mediated hyperlipidemia that, in turn, exac-
erbates atherosclerosis.14

In mouse models, STZ treatment has been identified to
decrease the expression of sulfation enzymes that normally
add negative charges to proteoglycans on liver hepato-
cytes.21 This reduces the trapping of remnant lipoproteins in
the liver of hyperglycemic mice deficient in Apoe or the
LDL receptorefed HFD, resulting in added hyperlipid-
emia.21,22 In this study, both STZ- and saline-treated mice
displayed similar plasma lipid levels and lipoprotein profiles
during the 4 weeks of sustained plasma lipid lowering
owing to the repair of the hypomorphic Apoe gene and to
the switch to LFD.

Previous studies have reported that hyperglycemia impairs
remodeling and stabilization of atherosclerotic lesions.23,24

To our knowledge, our study is the first to report that hy-
perglycemia impairs lesion size reduction. Johansson et al24

described the effect of hyperglycemia in LDLR�/� mice fed
an HFD for 16 weeks, followed by subsequent LFD for 14
weeks. Diabetes was induced after 2 weeks of LFD. In this
model, hyperglycemia was induced on aggressive plasma
lipid lowering achieved with a helper-dependent adenovirus
to stably overexpress the VLDL receptor in the liver. The
overexpression of the VLDL receptor allowed complete
normalization of plasma cholesterol and triglyceride levels.
The authors found that, in advanced atherosclerotic lesions,
hyperglycemia increased plaque disruption through a
mechanism that was dependent on elevated levels of
triglyceride-rich lipoproteins.24
1988
A more recent study, reported by Parathath et al,23 inves-
tigated the effect of hyperglycemia on atherosclerosis
regression in the Reversa mouse model. In this mouse model,
16 weeks of HFD produced advanced atherosclerotic lesions.
Hyperlipidemiawas then reversed by switching to an LFDand
by inactivation of the gene encoding the microsomal triglyc-
eride transfer protein. In this mouse model, lipid lowering
induced remodeling of atherosclerotic lesions without
changing lesion size. The authors also reported that hyper-
glycemia impaired the remodeling of atherosclerotic lesions
independentlyof triglyceride levels.23 In both Johansson’s and
Parathath’s models, lesions developed in the presence of high
plasma LDL-cholesterol and triglyceride levels. In contrast, in
our model, atherosclerosis developed in the presence of high
plasma VLDL-cholesterol and low plasma triglyceride levels.
Consequently, although initial atherosclerotic lesion sizes
were similar between studies, the lesions in our study had a
greater content in neutral lipid, macrophages, and collagen.
Thus, the composition of advanced lesions may affect the
process of regression induced by plasma lipid lowering.25 The
lipid profile is yet another important factor that may modulate
lesion regression.26e28 In contrast to Parathath et al,23 our
mice regressed in the presence of an increased ratio of plasma
HDL/LDL and an overall higher plasma HDL-cholesterol
level. In our model, the regressed lesions were characterized
by a decrease in neutral lipid, apoB-containing lipoproteins,
and macrophage contents. However, hyperglycemia only
impaired the loss in neutral lipid content.
The response to retention hypothesis implicates the in-

teractions of apoB lipoproteins with proteoglycans of the
subendothelial extracellular matrix.29 Diabetes has been
linked to increased synthesis of proteoglycans in the
vascular wall.30,31 In addition, the glycation of lipoproteins
has been shown to increase their binding affinity for pro-
teoglycans.32 Based on the literature, we expected hyper-
glycemia to increase lipoprotein retention in the lesions.
Although we observed a higher fibronectin content in the
regressed lesions of hyperglycemic mice, this increase did
not correlate with greater lesional apoB presence. Thus, the
impaired loss in lipid observed in regression is unlikely as
the result of an increased retention of atherogenic
ajp.amjpathol.org - The American Journal of Pathology
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Table 3 Gene Expression Profile of Lesional Macrophages Reveals the Involvement of Genes that Participate in Wound Healing during
Atherosclerosis Regression

Gene

Fold up- or
down-regulation
(baseline vs
saline regressed) P value

Fold up- or
down-regulation
(baseline vs
STZ regressed) P value Gene description

Extracellular Matrix
Col14a1 1.76 0.18 �1.06 0.77 Collagen, type XIV, a1
Col1a1 1.35 0.52 1.36 0.51 Collagen, type I, a1
Col1a2 2.69 0.003* 1.36 0.37 Collagen, type I, a2
Col3a1 1.41 0.06 �1.06 0.63 Collagen, type III, a1
Col4a1 2.00 0.001* 1.49 0.10 Collagen, type IV, a1
Col4a3 2.54 0.08 2.06 0.03* Collagen, type IV, a3
Col5a1 2.46 0.04* 1.99 0.12 Collagen, type V, a1
Col5a2 2.31 0.04* 1.62 0.09 Collagen, type V, a2

Remodeling Enzymes
Ctsk 1.80 0.05* 3.07 0.01* Cathepsin K
Ctsl �2.56 0.08 �1.40 0.28 Cathepsin L
Mmp2 2.81 0.01* 1.56 0.22 Matrix metallopeptidase 2
Plau �1.13 0.44 �1.40 0.31 Plasminogen activator, urokinase
Plaur �1.09 0.89 1.11 0.61 Plasminogen activator, urokinase receptor

Cellular Adhesion
Itga3 3.31 0.09 2.82 0.01* Integrin a3
Itga5 1.39 0.23 1.41 0.26 Integrin a5 (fibronectin receptor a)
Itga6 �3.24 0.01* �2.42 0.08 Integrin a6
Itgav �1.33 0.78 1.18 0.50 Integrin a5
Itgb1 �1.15 0.50 1.04 0.96 Integrin b1 (fibronectin receptor b)
Itgb3 �1.43 0.50 3.56 0.14 Integrin b3
Itgb5 1.30 0.28 1.34 0.20 Integrin b5

Cytoskeleton
Rac1 �1.36 0.55 �1.18 0.72 RAS-related C3 botulinum substrate 1
Rhoa 1.16 0.19 1.08 0.56 RAS homolog gene family, member A
Tagln 1.55 0.15 2.42 0.11 Transgelin

Growth Factors
Pdgfa 1.14 0.57 1.37 0.43 Platelet-derived growth factor, a
Tgfb1 �1.17 0.89 �1.05 0.85 Transforming growth factor, b1
Ctgf 2.16 0.01* 2.72 0.01* Connective tissue growth factor
Fgf2 3.41 0.01* 2.89 0.12 Fibroblast growth factor 2
Hgf 1.76 0.27 �1.53 0.16 Hepatocyte growth factor
Igf1 �1.44 0.24 1.05 0.92 Insulin-like growth factor-1

Signal Transduction
Mapk1 �1.02 0.69 �1.07 0.86 Mitogen-activated protein kinase 1
Mapk3 1.09 0.59 1.60 0.18 Mitogen-activated protein kinase 3
Pten 1.03 0.76 1.19 0.27 Phosphatase and tensin homolog
Il6st 1.87 0.06 1.36 0.27 IL-6 signal transducer
Ctnnb1 1.26 0.37 �1.31 0.58 Catenin (cadherin associated protein), b1
Ptgs2 3.02 0.01* 2.71 0.03* Prostaglandin-endoperoxide synthase 2

*P < 0.05.

Diabetes and Atherosclerosis Regression
lipoproteins. However, we cannot exclude the possibility
that a longer period of hyperglycemia may induce sufficient
glycation of atherogenic plasma lipoproteins and increase
their retention in the lesion.

Lipid loss from atherosclerotic lesions has been attributed
to an increase in HDL-dependent reverse cholesterol trans-
port.10 Interestingly, nonenzymatic glycosylation of HDL
has been shown to decrease its ability to promote cholesterol
efflux33 and, thus, could explain the impaired lipid loss
observed in the lesion of hyperglycemic mice. In
The American Journal of Pathology - ajp.amjpathol.org
macrophages, several receptors mediate cholesterol trans-
port. High glucose has been shown to increase the expres-
sion and activity of CD3634 and SRB1,35 leading to higher
influx, while suppressing that of ABCG134 and ABCA1,36

diminishing the efflux. We analyzed gene expression
levels of these mediators of cholesterol transport in micro-
dissected macrophages. A sustained 4-week period of lipid
lowering led to lower expression levels of ABCA1 and
ABCG1 by at least twofold in euglycemic mice. In contrast,
in the presence of hyperglycemia, ABCA1 and ABCG1
1989
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Figure 5 Hyperglycemia does not impair lesion remodeling during atherosclerosis regression. Quantification of total collagen (A) and representative
images of cross sections of aortic roots stained with Sirius red (bright-field and polarized images) (B). C: Quantification of collagen type I (bright orange-
yellow polarized fibers) and collagen type III (green polarized fibers) is shown. Quantification (D) of smooth muscle cell (SMC) content of the lesion and
representatives images of aortic root cross sections labeled with antieSMC-a-actin antibody (red) and Hoechst (blue; E, top). Quantification (F) of fibronectin
content of the lesion and representatives images of aortic root cross sections labeled with anti-fibronectin antibody (green) and Hoechst (blue; E, bottom). One-
and two-way analysis of variance, followed by Bonferroni posttests: *P < 0.05, **P < 0.01 between baseline and regression groups.

Gaudreault et al
expression levels remained unchanged, whereas SRB1 and
CD36 were significantly up-regulated. ABCA1 and ABCG1
expression levels are regulated by the interaction of oxy-
sterols with the transcription factor, liver X receptor a.37

Thus, lower levels of cellular oxysterols after 4 weeks of
lipid lowering could explain the decrease in expression of
ABCA1 and ABCG1 in lesional macrophages of euglyce-
mic mice. Higher intracellular lipid levels in macrophages of
hyperglycemic mice may have resulted in maintaining a
higher expression of these transporters. It is possible that
hyperglycemia-associated glycosylation of plasma proteins,
including apoA1 in HDL, could have negatively affected
reverse cholesterol transport in lesional macrophages, as
previously suggested.38 Taken together, these results sug-
gest that hyperglycemia impaired lipid loss or enhanced
lipid uptake in lesions by modulating macrophage reverse
cholesterol transport or enhancing its import.

Hyperglycemia has been associated with increased sys-
temic inflammation.39 Four weeks of lipid lowering
increased circulating granulocytes without affecting total
leukocyte counts. Hyperglycemia hindered the increase in
granulocytes but significantly increased total leukocyte and
1990
circulating B-cell counts. B cells are atheroprotective
cells,40 and their higher count in hyperglycemic mice un-
likely explains the impairment of lesion regression. We
cannot exclude the possibility that hyperglycemia or other
consequential metabolic stress could have potentially
modulated the inflammatory status of other cells41 and
increased systemic inflammation.42 However, in our model
of atherosclerosis regression, hyperglycemia did not
modulate significantly the inflammatory state of circulating
monocytes or lesional macrophages.
In addition to their involvement in lipid removal from

the lesion, we demonstrate that lesional macrophages are
active participants in the vascular healing response. The up-
regulation of genes responsible for the synthesis of collagen
and the down-regulation of enzymes promoting degradation
of the extracellular matrix suggest that macrophages con-
tribute to lesion stabilization and remodeling. The rupture-
resistant nature of the regressed lesion was confirmed by in-
creases in collagen, fibronectin, and fibrous cap formation. In
contrast, the up-regulation of MMP-2 in our regression model
is intriguing. MMP-2 is typically seen as a pro-atherogenic
enzyme43 associated with unstable lesions.44 Indeed, MMP-2
ajp.amjpathol.org - The American Journal of Pathology
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is involved in the breakdown of collagen type IV. It is possible
that its increased expression may have contributed to lesion
size reduction. In this regard, regression studies that showed
down-regulation of MMP-2 failed to observe a decrease in
lesion size despite important lesion remodeling.23 In this
study, lesional macrophages of hyperglycemic mice
expressed lower levels of MMP-2 and also had a significantly
larger lesion size than euglycemicmice, providing compelling
evidence for its participation in lesion shrinkage.

Although hyperglycemia attenuated changes in gene
expression levels in lesional macrophages induced by lipid
lowering, we found no such evidence at the protein level.
Small increases in macrophage and SMC lesion content of
hyperglycemic mice may have compensated for the lower
gene expression levels. Alternatively, other cell types, such
as endothelial cells and SMCs, could have contributed to the
lesion remodeling. Limitations of our findings as they relate
to atherosclerosis vascular disease in human diabetic in-
dividuals include the site of atherosclerosis, the duration of
hyperglycemia, and the absence of obesity or even insulin
treatment of our diabetic mouse model. It is possible that
extended periods of hyperglycemia accompanied with
enhanced systemic inflammation caused by obesity could
render atheroma even more refractory to regression on
therapeutic plasma lipid lowering. Alternatively, it is
possible that regular insulin treatment to control hypergly-
cemia could alleviate lesional macrophage dysfunction and,
thereby, enhance atherosclerosis regression in response to
plasma lipid lowering. Last, it will be important to assess the
impact of hyperglycemia on the regression of atheroscle-
rosis in different vascular beds, including coronary and
peripheral vessels, because findings derived from our study
focused solely on atherosclerosis in the aortic root. These
possibilities will be addressed in future studies of our model.

In conclusion, our study provides evidence that hypergly-
cemia impairs lesion regression and better control of hyper-
glycemia could enhance atherosclerosis regression. Based on
the analysis of plaque composition and lesional macrophage
gene expression, we propose that hyperglycemia impairs
atherosclerosis regression by decreasing lipid removal from
lesional macrophages through modulation of reverse choles-
terol transport. Our results also suggest the participation of
lesional macrophages in the vascular healing response, which
is compromised by hyperglycemia. Thus, the development of
therapies targeting biological functions of macrophages asso-
ciated with both cholesterol transport and the healing response
may enhance atherosclerosis regression both in the presence
and absence of hyperglycemia.
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