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ABSTRACT OF THE THESIS

Exocentric To Egocentric Transfer For Action Recognition

by

Anirudh Thatipelli

Master of Science, Graduate Program in Computer Science
University of California, Riverside, September 2024

Dr. Amit K. Roy-Chowdhury, Chairperson

Egocentric vision captures the scene from the point of the view of the camera wearer while

exocentric vision captures the overall scene context. Jointly modelling ego and exo views is

a crucial step towards developing next-generation AI agents. The community has regained

interest in the field of egocentric vision. While, third-person view and first-person has been

thoroughly investigated, very few works aim to study the both synchronously. Exocentric

videos contain many relevant signals transferrable to egocentric videos. We propose a

multimodal-LLM model that leverages large-scale exocentric information for the task of

egocentric action recognition. This thesis also provides a broad overview of works combining

both the egocentric and exocentric vision.
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Chapter 1

Introduction

Human beings perceive the world from multiple viewpoints. We watch Do-it-yourself

videos to learn new skills. A bicycle repair video alternates between the ego (1st-person) and

exo (3rd-person) viewpoints. An ego (close-up) view of the bicycle captures vital hand-object

interactions and an exo (third-person) view captures the overall context in the environment.

We are able to relate the object from 3rd-person to 1st person perspective. Being able to map

skills to one’s own body has been a well-studied problem in cognitive science [40, 94, 119].

Capturing video from both the ego and exo views is a vital frontier for AI to understand

human activities. Widespread applications exist in augmented reality [113, 95] and robotics

[64, 92, 116].

Despite the importance of multi-view learning, most efforts into video understanding

have focused to only one view, 3rd-person (exocentric) viewpoint [127, 35, 20, 3, 4, 71]

or 1st-person (egocentric) viewpoints [43] separately. While existing algorithms perform

considerably well on 3rd-person settings [1], a significant gap exists in the egocentric
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Figure 1.1: Hand-object interactions in the 3rd person view(right) are useful for identifying
the action from the 1st person viewpoint(left).

settings [44, 24, 23].

Exocentric view contains many relevant cues for recognizing in the egocentric view.

For example in Fig 1.1, the hand-object interaction of ”cutting” in 3rd-person view can be

useful to recognize in the 1st-person view.

Existing vision-language models [107, 61] trained on large amounts of 3rd person

perspective contain many signals that can be transferable for egocentric tasks. Previous

works like [75, 11] utilize simpler architectures to learn egocentric representations from

3rd-person data. VLMs are more capable of learning stronger representations.
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The intention of this thesis is twofold:

• Propose an approach that leverages the exocentric signals embedded in VLMs for

solving egocentric vision task.

• Provide a high-level overview of the various egocentric-exocentric learning tasks.
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Figure 1.2: Ego-Exo Datasets and corresponding tasks. This figure illustrates the
different Ego-Exo datasets in literature and compares them with respect to the associated
benchmarks. Newly released Ego-Exo4D [44], EgoExoLearn [57], EgoExoFitness [76] consti-
tute a large suite of novel tasks to further research in this arena.
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Chapter 2

Datasets

Several datasets containing paired ego-exo views have been proposed in the literature

[69, 70, 110, 122, 125]. ”Mixed” ego-exo views have been covered by [89, 133, 160, 161, 146,

19, 22, 67, 145]. Zhang et al. [154] captures egocentric interactions in a 3D viewpoint. Xue

et al.’s AE2 dataset [145] is sampled from multiple existing ego and exo datasets. These

datasets have several shortcomings: lack of magnitude, weak synchronization and poor

diversity. The release of two new large-scale datasets [44, 57, 76] attempts to bridge this

gap. Refer Table 2.1 for an in-depth review.

The CMU-MMAC dataset [70] is one of the earliest dataset that captures ego

and exo video. It is composed of 43 participants cooking 5 recipes in the kitchen setting.

Multiple modalities like audio, video, accelerations, and motion capture are present in this

dataset.

The Charades-Ego dataset [125] was one of the former large-scale joint multi-

view dataset efforts containing 68.8 hours of first and third-person video. 112 actors hired
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Table 2.1: Comparison of existing datasets across various parameters, arranged in a chrono-
logical order.

Dataset
Year

Published

Hours
Num.

action clips

Num.

scenarios

Num.

subjects

Num.

verb classes

Num.

noun classes

Num.

action classes

CMU-MMAC [70] 2009 - 5 1 43 - - 8

Charades-Ego [125] 2018 68.8 68536 15 112 33 36 157

Lemma [60] 2020 10.1 324 15 8 24 64 641

Homage [110] 2021 25.4 453 70 27 29 86 -

H2o [69] 2021 5 500 36 4 11 8 36

Assembly101 [122] 2022 513 4321 15 53 24 90 1380

AE2 [145] 2023 - 322 6 - - - 4

Ego-Exo4D [44] 2024 1286 5035 43 740 1481 2924 689

EgoExoLearn [57] 2024 120 747 8 - 95 254 39

EgoExo-Fitness [76] 2024 31 1248 1 49 - - 76

by Amazon Mechanical Turk recorded 34 hours of scripted scenarios.

The Lemma dataset [60] is composed of multi-view and multi-agent daily-life

activities. 3D skeletons and RGB-D are collected to give a broad perspective.

The Homage dataset [110] is a synchronized multi-view dataset consisting of 30

hours of ego-exo video from 27 participants performing household activities in the same

environment. It is well annotated with both the hierarchical and atomic action-labels.

The H2O dataset [69] focuses on 3D egocentric object-level manipulations. It is

composed of 3D hand-poses, 6D object poses, camera poses, object meshes and scene-point

clouds. 4 different participants perform 36 unique actions in three unique environments.

The Assembly101 dataset [122] features non-scripted multi-step activities. 101

toy-vehicles are manipulated in 4321 video sequences for a total of 513 hours. It constitutes
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1380 fine-grained and 202 coarse-grained action classes. AssemblyHands [99] is a subset

of Assembly101 to study the challenging problem of 3D hand pose estimation and action

classification.

The AE2 dataset [145] is one of the premier attempts to learn a view-invariant

self-supervised embedding from unpaired ego and exo videos. To this end, they create a

new benchmark, sampled from five public datasets [23, 70, 68, 69, 156], and a self-collected

tennis dataset. It is composed of 322 clips.

The Ego-Exo4D dataset [44] is the largest multi-view dataset including egocentric

view and the corresponding exocentric information. Moreover, it also offers multiple natural

language descriptions including expert commentary, narrate-and-act descriptions and atomic

action descriptions. It is rich in modalities like audio, IMU, video, depth, gaze, stereo,

3D environments, thermal IR, GPS, motion capture, 6DOF, barometer and magnetometer

readings. 740 subjects shot 123 scenes across different cities. It releases new challenging

benchmarks like keystep recognition, efficient action detection and proficiency estimation.

The EgoExoLearn dataset [57] is another concurrent large-scale ego-exo syn-

chronized dataset. It contains 120 hours of demonstration activities recorded in the lab and

daily-life settings. It is richly annotated with fine-grained captions. Unlike previous datasets,

it releases benchmarks on cross-view action anticipation and proficiency estimation.

The EgoExo-Fitness dataset [76] was also concurrently released along with the

previous two ego-exo datasets. While the previous datasets extensively explored daily-life

activities, EgoExo-Fitness focuses exercise-related activities. It comes with a new set of

benchmarks for cross-view sequence verification.
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Chapter 3

Related work

Egocentric vision focuses on camera-wearer centric cues while exocentric vision

focuses on a broader perspective of the subject in the context of the entire scene. Leveraging

the complementary signals from both the viewpoints will enable us to learn human skill

effectively.

Some early work has investigated the task of jointly relating egocentric and exo-

centric vision [5, 128]. In this section, we discuss important tasks jointly modelling vision

from first-person and third-person perspective.

3.0.1 Identification

It is the task of matching a camera wearers in a egocentric video to an exocentric

video. Lack of visibility in the egocentric video makes this task challenging. Being able to

match a participant in both views is an important preliminary task for joint ego-exo learning.

It is a well-researched problem. Ardeshir et al.[6, 7] is one of the first works that proposes a
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graph-matching technique to solve this problem. Ardeshir et al.[9, 7] further propose a joint

approach to tackle temporal alignment and person re-identification. Fig 3.2 shows some

examples of this dataset. Similarly, Han et al. [50] propose a different matching function

based on spatial distributions. Fan et al. [36] learns a joint-embedding space. The model

proposed by Ardeshir et al. [10] extended to focus on temporal alignment. In Han et al.

[51], a conditional random field is proposed to identify the subjects in different viewpoints.

Xu et al. [144] perform simultaneous matching and segmentation of the subject across both

the views.

While identification focuses on solely matching the camera wearer, re-identification

aims to learn the associations between the different subjects present in the egocentric and

exocentric views. Work by Ardeshir et al. [12] is one of the earliest approaches exploring the

task of re-identification between the different views. To enable further research in multi-view

video-based re-identification, Basaran et al.[18] release a novel multimodal dataset, consisting

of around 176, 000 detections. Han et al. [50] utilizes the spatial information such as the

view-angle of the camera to perform the association. Han et al. [48] attempts to solve a

challenging version of the problem by assuming limited appearance matching and different

viewing angles in the ego and exo image. Example images from this dataset can be seen

in 3.3.Han et al.[49] considers another challenging variant of this matching problem having

minimal overlap of the field-of-view.

9



3.0.2 Action Recognition

Action Recognition is the task of identifying or assigning a category or multiple

categories to the action performed by the subject in the video. The release of GoPro

wearable cameras led to a large production of first-person videos. However, limited works

have combined ego and exo views for identifying actions. The earliest attempt to recognize

human activity across first and multiple third-person cameras was done in [128]. It presents a

learnable weighted importance classification approach. Truong et al. [136] learns a geometric

constraint to transfer knowledge between the multiple views. Rocha et. al [120] learns

an invariant space, based on skeleton pose information. Huang et al. [56] extends to a

multi-domain scenario, learning a holographic feature space based on both view-invariant

and view-specific features. In Peng et al.[101], virtual features from first-person perspective

are synthesisized and combined to perform action recognition. Different from other works,

Ramirez et al. [111] incorporates gaze information into the robot’s internal representation

for improved imitation of human behaviour.

3.0.3 Tracking

Tracking is an important Computer Vision problem, where we estimate the global

trajectories and match subjects across the video. Yang et al. [148] is one of the earliest

works that jointly identifies and tracks the subjects across the first and third-person views.

A deep neural network (DNN), robust to action and motion changes is used to generate

the 3D trajectory. Han et al. [47] learns a spatio-temporal correspondence between the

images of different viewpoints. 3.4 shows some sample frames released in their dataset [47].
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In a follow-up work, Han et al. [?] treats the task as a joint optimization problem. Han

et al.[45] extends the optimization approach for relating a single third-person view with

multiple first-person view images. Recent work by DivoTrack [52] presents a new baseline

for multi-view object tracking. Multi-view tracking has also gained importance in other

areas like robotics [78].

3.0.4 Generation

In generation, we aim to synthesize an egocentric image, conditioned on an exo-

centric image and vice versa. Elfeki et al. [34] was the first landmark dataset for exo-ego

synthesis and retrieval. A conditional GAN [91] is used to syntheize first-person images.

Refer to Fig. 3.5 for example frames. Liu et al. [80] also utilize a variation of a GAN.

Similarly, Tang et al. [132, 131] utilize semantic information to generate images in different

views. Liu et al. [79] utilize a shared network between the ego-exo frames to aid generation.

Liu et al. [81] syntheize egocentric videos by combining the semantic map with GANs.

Recent work by Luo et al. [87] presents a diffusion-based technique [54] for exocentric to

egocentric video synthesis. Different from all the other works, Luo et al. [86] uses action

description and egocentric frames to synthesize a video from the third-person perspective.

The new Ego-Exo4D dataset [44] constitutes a benchmark for synthesis.

A lot of progress has been made in a related problem of aerial view to ground view

synthesis [117, 134, 130].
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3.0.5 Affordance

Much attention has been drawn to affordance [41, 63, 14]. The objective is to

understand the different possible actions that can be performed with an object. Luo et

al. [84, 85] extracts affordance-level features from exocentric human-object interactions

and transfers it to the egocentric view. Li et. al [73] extend the same work, but use a

weakly-supervised technique. Chen et al. [21] extends affordance learning from videos using

an attention-based network. Xu et al. [?] also uses a weakly-supervised technique leveraging

cross-view knowledge. Recent work by Zhang et al. [157] integrates a self-explainable module

to aid affordance learning. Yang et al. [147] presents a joint coarse and fine-grained feature

extraction technique. Different from other techniques, Rai et al. [109] leverage VLM’s

knowledge as an auxiliary mask for the task of grounding. Check Fig. 3.6 for images and

corresponding affordance.

3.0.6 Exo-Ego Transfer

A vast amount of knowledge in the form of motion cues is embedded in exocentric

videos that can be transferred to the egocentric domain. Ardeshir et al. [11] is a premier

work that learns mappings between the ego-exo views. In Ardeshir et al. [8], the authors

propose a two-stream view-specific architecture to adapt from exo to ego view. Ho et al.

[53] utilizes a semi-supervised domain adaptation technique to adapt exocentric visual cues

to egocentric videos. Xu et al. [141] uses a prompt-masking technique for transferring

information for egocentric hand-object interaction. Different from previous approaches, Li

et al. [75] proposes an improved pre-training approach to extract signals from exocentric

12



videos helpful for the egocentric domain. Ohkawa et al. [100] aids further adaptation by

performing view-invariant pretraining and finetuning. Different from previous techniques,

Quattrocchi et al. [106] proposes an adaptation technique for temporal action segmentation.

In Nishimura et al. [97], geometric transformation is used to tackle a novel problem

of view-birdification(bird’s eye-view trajectory estimation) is computed from the egocentric

movement. Qian et al. [105] is an extension to a more challenging problem of bird’s eye

view estimation in the absence of proper calibration.

3.0.7 Joint ego-exo works

This section outlines works that aim to learn a joint ego-exo representation. Sig-

urdsson et al. [124] makes the first attempt to jointly relate first-person and third-person

viewpoints. Yu et al. [150, 151] leverages a joint attention mechanism to extract a shared

representation between the views. In Wang et al. [138], a sentence-bert language model

[118] is utilized to semantically align the unpaired exocentric and egocentric videos. Xue

et al.[145] became the first work to propose a self-supervised learning approach to learn

a view-invariant representation. Zhao et al. [159] solves a novel task of identifying and

segmenting the egocentric camera wearer in a third-person view.

3D egocentric pose estimation has also benefited from a joint ego-exo learning

framework [27, 82]. A novel thermal image-based 3D hand-pose dataset has been released

in ThermoHands [29]. Lu et al. [83] covers a scene-graph generation technique based on a

self-attention mechanism between the ego and exo views. The authors of Wen et al. [139]

present a solution combining 3rd person and 1st person images to predict the subject’s

location in the 3rd person viewpoint. Jia et al. [62] extracts exocentric and egocentric

13



conversational signals to generate a scene-graph. Xu et al. [142] shows an improvement in

egocentric captioning by retrieving semantically relevant 3rd person videos [15].

3.0.8 Miscellaneous applications

Jointly relating exocentric and egocentric vision has applications in Robotics and

Virtual Reality. Kennedy et al. [66] illustrate the importance of combining egocentric

and exocentric information for mapping. Multi-view visual feedback to the robots of the

swarm can improve performance [115]. This has been corroborated in robotics manipulation

as well [59]. Supervision from third-person videos have been well-adapted to egocentric

vision in robotics [123, 17, 129]. A combination of hand and third-person perspective has

been used in [55]. Young et al. [149] demonstrates the superior performance on the aerial

telemanipulation task using egocentric-exocentric views. Abdullash et al. [2] synthesize

third-person view from first-person view for enhanced teleoperation. Video captioning has

also benefited from a joint ego-exo information [64].

Combining ego and exo views has been thoroughly researched in virtual reality

[25, 90, 31]. Multiple works [42, 112, 152] demonstrate the possibility of using a mixed

viewpoint space for collaboration. Soares et al. [126] proposes a novel cooperative virtual

environment with fixed freedom of movement per user. Peschel et al. [102] illustrates the

use-case of a joint ego-exo system for unmanned aerial systems. Automatic rendevous and

docking (ARD) also benefits from a joint view system [72]. Duncan et al. [30]’s work

proposes a camera system to reconstruct embodied experiences in real-time.
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Figure 3.2: Ego and corresponding exo-view images taken from Ego2Top [6]

.

Figure 3.3: Top and side view-images taken from DMHA dataset released in [48]. Image
taken from [48].
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Figure 3.4: Example ego-exo frames taken from the CVMHT dataset released in [47]. Image
taken from [47].

Figure 3.5: Pairs from simultaneously recorded Ego-Top and Ego-Side dataset. Image taken
from [34].

Figure 3.6: Frames from the Demo2Vec paper
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Chapter 4

Methodology

In this section, we describe our approach for recognizing egocentric actions using

prior exocentric knowledge. We leverage the large-scale information encoded in vision-

language models [107] and large language models [155, 135] for solving the task of egocentric

action recognition. Our approach is illustrated in the figure 4.1.

Figure 4.1: This presents a figure of our approach. Firstly, a frozen visual encoder extracts
features. Then, a trainable video Q-former extracts k queries and project to LLM’s embedding
space. Finally, the visual prompts and concatenated with the textual prompts and passed
to the LLM.

18



4.0.1 Problem Definition

We describe the problem statement of egocentric action recognition. We follow the

same approach as given in [24]. Formally, given a video clip A, we aim to classify to the

action class, which is a tuple Ca = {(cv, cn)}, where cv ∈ Cv is the possible set of verbs and

cn ∈ Cn is the possible set of nouns. For an accurate classification, we want to correctly

predict both the verb and noun. Top-1 accuracy is used as a metric. A good survey of

previous approaches can be found in Nunez et. al [98]. While previous approaches have

achieved good verb-level accuracy, a significant gap exists in the noun-level and action-level

accuracies.

4.0.2 Network architecture

Our architecture is based on the BLIP-2 architecture [74] and [153]. BLIP-2

proposes a novel and efficient training strategy, bootstrapping from a pretrained CLIP-

based image encoder [107] and LLM. We use a hand-crafted prompt for the task of action

recognition. It is a computationally efficient approach focusing on only training a lightweight

Querying Transformer. It is pre-trained on a large-scale Internet-image dataset of 129M

images, mostly composed of exocentric images. We hypothesize that exo-pre-trained VLM

encodes useful signals that can be transferrable to egocentric images. Similar approaches are

covered in ??. Our model consists of three major components: 1) a pretrained frozen visual

encoder, 2) Lightweight Trainable Video Query-former and 3) Frozen LLM. We describe the

components below in more detail.

1) Visual encoder. This is a ViT-L/14 CLIP-based image-encoder, a dark-green
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block in the 4.1. We sample T frames from a video (usually chosen to be 8/16). They are

preprocessed to a shape of (224 × 224) before passing into the image encoder. The last layer

of the ViT is used, having shape (P ∗ T ×D), where P is the number of patches and D is

the dimension of the image-encoder. The output of this layer is V ∈ RB×K×D, where K is

the product of the number of patches across all the frames and B is the batch-size.

2) Video Q-former. It is an attention-based transformer [137] that generates a

visual representation via self-attention between the shared layers. For a detailed overview,

check the BLIP-2 paper by Li. et. al [74]. A fixed number of query tokens, t are learned. V

is input to this layer and we get an output Q ∈ RB×t×D. We set t as 32 and the dimension

D as 768.

3) LLM. We use a pre-trained, frozen LLM, OPT-175B [155] from Meta. LLMs

encode commonsense knowlede that we can utilize for the task of action recognition. The

previous layer’s input Q is projected to the LLM’s embedding space, I ∈ RB×t×D, where D

is the LLM’s input-embedding dimension. The textual prompt ”What is the camera wearer

doing?” is also converted to LLM’s embedding space. J ∈ RB×N×D, where N is the number

of input ids obtained from the input text. We concatenate I and J and pass it to the LLM.

The model is end-to-end trained using a cross-entropy loss with the next-token

prediction objective for the LLM. However, only the parameters of Video Q-former are

trained.

4.0.3 Experiments

We provide a comprehensive overview to the various experiments that we performed

and compare with the existing state-of-the art methodologies. We analyze the results
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thoroughly and understand the gaps.

We conduct evaluations on the two largest egocentric action recognition datasets:

Ego4D [43] and EPIC-Kitchens100[23]. The top-1 verb, noun and action accuracy is used

for the comparison. Refer to Tables 4.1 and 4.2 for results.

Table 4.1: Comparison of our technique vs the existing state-of-the-art methods on Ego4D
action recognition

Method Prior Exo knowledge Verb Acc. Noun Acc. Action Acc.

MViT [37] ✓ 19.87 2.55 0.51

SlowFast [39] ✓ 19.42 14.65 3.12

StillFast [108] ✓ 19.12 19.41 4.06

OURS + full response ✓ 24.56 37.62 10.88

OURS + action response ✓ 24.74 37.1 11.52

EgoVLPv2 [104] × 33.84 40.63 16.31

EgoVLP [77] × 40.32 45.53 20.63

In the table 4.1, OURS + full response means that the LLM response is the

entire sentence The camera wearer is performing the action ”wear shirt”, where the verb is

”wear” and ”noun” is shirt and the OURS + action response forces the LLM to predict

wear shirt. We can see a slight improvement when we predict only the verb-noun pair rather

than the entire sentence.

From the table 4.1, we can see that our technique outperforms other exo-to-ego

transfer techniques. This is due to the large-scale information embedded in VLM and

LLMs. However, we are still behind EgoVLP [77] and EgoVLPv2 [104], that are large-scale
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Table 4.2: Comparison of our technique vs the existing state-of-the-art methods on EPIC-
Kitchens100 action recognition

Method Verb Acc. Noun Acc. Action Acc.

OURS + full response 24.86 34.68 12.8

TAdaFormer-L/14 [58] 71.7 64.1 51.8

M&M [140] 72 66.3 53.6

Avion [158] 73 65.4 54.4

egocentric pretrained models. We hypothesize that large-scale pretraining on egocentric data

learns better egocentric cues for classification. Similarly, from table 4.2, we observe that

Avion, a large-scale video pretrained model outperforms other approaches by a huge margin.

4.0.4 Analysis

We analyze the limitations behind our technique in this section. Some of the

possible drawbacks are:

a) noun recognition. A huge drawback behind noun-based recognition is the

difficulty to accurately predict nouns in the egocentric view. Since our model is trained on

the objects captured from the third person view, detecting the same from the egocentric view

is challenging. Additionally, challenges of occlusion and cluttered scene makes it difficult to

accurately detect the objects. From (c) Figure 4.2, we can see that the ground-truth object

multimeter is composed of many different parts and the model is unable to accurately
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detect it.

b) verb recognition. The (a) Figure 4.2 shows that the model struggles to

identify the ground-truth verb cut and is confused by the background noise.

c) action recognition. Predicting both the verb and noun exactly in the case of

egocentric action recognition is very challenging. Due to the presence of the motorcycle in

(b) of Figure 4.2, the model misses the hand-object interaction with the bucket.

Figure 4.2: Analyzing the qualitative results of our method on Ego4D.
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Chapter 5

Conclusion and Future Works

This thesis is an attempt to transfer exocentric knowledge for egocentric tasks.

Large-scale exocentric pretrained VLMs contain relevant cues that can be transferrable to

downstream egocentric tasks. In our work, we propose a computationally efficient model

for the task of egocentric action recognition. While, we are able to outperform previous

exo-to-ego transfer techniques for egocentric action recognition, we lag behind pure ego-to-ego

methods. In the future work, we will focus on utilizing the paired ego-exo data present in

the new datasets [44, 57, 76] and focus on learning hand-object centric cues during training.
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[158] Yue Zhao and Philipp Krähenbühl. Training a large video model on a single machine
in a day. arXiv preprint arXiv:2309.16669, 2023.

[159] Ziwei Zhao, Yuchen Wang, and Chuhua Wang. Fusing personal and environmental
cues for identification and segmentation of first-person camera wearers in third-person
views. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16477–16487, 2024.

[160] L. Zhou, N. Louis, and J. Corso. Weakly-supervised video object grounding from text
by loss weighting and object interaction. In BMVC, 2018.

[161] Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk Cinbis, David Fouhey, Ivan
Laptev, and Josef Sivic. Cross-task weakly supervised learning from instructional
videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3537–3545, 2019.

38


	List of Figures
	List of Tables
	Introduction
	Datasets
	Related work
	Identification
	Action Recognition
	Tracking
	Generation
	Affordance
	Exo-Ego Transfer
	Joint ego-exo works
	Miscellaneous applications


	Methodology
	Problem Definition
	Network architecture
	Experiments
	Analysis


	Conclusion and Future Works
	Bibliography

