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Abstract 
 

Cortical representation of social communication in Egyptian fruit bats 

 

by 

 

Maimon C. Rose 

 

Doctor of Philosophy in Neuroscience 

  

University of California, Berkeley 

 

Professor Michael Yartsev, Chair 

 

Social interactions often occur in group settings and are mediated by communication 
signals that are exchanged between individuals, frequently utilizing vocalizations. The neural 
representation of group social communication remains largely unexplored. Here, we conducted 
simultaneous wireless electrophysiological recordings from the frontal cortices of groups of 
Egyptian fruit bats engaged in both spontaneous and task-induced vocal interactions. We found 
that the activity of single neurons distinguished between vocalizations produced by self and others, 
as well as among specific individuals. Coordinated neural activity among group members 
exhibited stable bidirectional inter-brain correlation patterns specific to spontaneous 
communicative interactions. Tracking social and spatial arrangements within a group revealed a 
relationship between social preferences and intra- and inter-brain activity patterns. We also present 
preliminary results relating to the neural correlates of social-vocal interactions in juvenile bats. 
Combined, these findings reveal a dedicated neural repertoire for group social communication 
within and across the brains of freely communicating groups of bats.    
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Chapter 1: Introduction 
 

1.1 Motivation 
 

From the mundane to the most meaningful, it is easy to take for granted how the brain 
allows us to navigate social interactions. However, when one considers the massive amount of 
information that needs to be processed, stored, recalled, and manipulated on very short time scales 
while at the same time paying attention, perceiving, and actively communicating with other 
individuals, this feat can be appreciated for its complexity. One must be able to recall long-term 
memories, ranging from the recent past to one’s earliest memories. One must also be able to 
empathize and understand another’s feelings and intentions, frequently through a combination of 
direct as well as indirect cues. Complicating the task even further is the requirement to be able to 
“step into another’s shoes” and see the world through their eyes in order to predict and respond to 
what they might do or say. Maintaining these mentals models of other individuals requires a vast 
amount of information especially when considering nested models wherein one models how 
another individual would model a third separate individual. Indeed, while artificial intelligence has 
made great strides in other realms hitherto considered the exclusive domain of the human brain 
such as chess, facial recognition, and language generation, we are still far removed from realizing 
a convincing artificial intelligence that replicates the social skills of a young child. Clearly the ease 
with which many of us are able to interact with others belies a deep complexity. This complexity 
in turn suggests that the brain may have evolved specific circuits and mechanisms to enable 
successful social interactions despite their large cognitive demands. 

The large cognitive demands imposed by social interactions as well as their vital 
importance to a fulfilling life can also be appreciated by considering the decreased ability to 
socially interact in a wide range of psychiatric disorders. Social deficits are a defining symptom of 
autism spectrum disorder (1) and are also frequently found in most forms of mental illness from 
depression (2) to schizophrenia (3) to attention hyperactive deficit disorder (4). The etiology of 
these social deficits varies across diseases as well as across individuals. This variety in etiology 
illustrates the many intricate cognitive processes that must function individually as well as fit 
together as a whole in order to successfully interact with others.  

Despite the great complexity of the cognitive processes underlying social interactions, it is 
of vital importance to better understand the neural underpinning of these processes, both because 
it is an intrinsic part of our humanity and day-to-day life, but also because an improved 
understanding may lead to better treatment of social deficit disorders. When social cognitive 
processes fail to function correctly social impairment can be devastating and exact a great toll on 
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one’s life and well-being. These impairments are prevalent across society, and even incremental 
improvements in our understanding and ability to treat them would result in improved well-being 
for many. 

 

1.2 The neuroethological approach to social interactions 
 

Considering the great need for a better understanding of the neural underpinnings of social 
interactions along with its inherent complexity, multiple different complementary approaches are 
necessary to achieve that goal. Of course, the primary approach to understanding human social 
cognition is to study human neuroscience. However, to probe and manipulate neural activity at 
fine resolution in order to determine its role in neural computations, one must make use of animal 
models that recapitulate certain aspects of social interactions (5). One such approach, which 
constitutes the vast majority of work in systems neuroscience, is to use the standard model 
organisms, such as mice. Because human social interactions are such a multifaceted and 
complicated behavior, inevitably, no single model system will mirror all relevant aspects (6). 
Frequently studies of mouse behavior rely on well-tested, but simplistic behavioral paradigms (7–
10). Furthermore, until recently it has been technically challenging or impossible to perform 
neuroscience experiments on multiple interacting individuals simultaneously (11) which is an 
obvious reductionist deficit when studying a behavior that is intrinsically about the interactions 
between multiple individuals. Consequently, a gap exists in our ability to study the neural basis 
for group social interactions in a model organism that exhibits important aspects of social 
interactions.  

We propose, therefore, to take a neuroethological approach to fill in these gaps. 
Neuroethology takes the position that because natural selection and evolution have endowed 
certain species with specific behaviors relevant to survival, researchers who wish to study the 
neural underpinnings of those behaviors should utilize the corresponding species for their 
investigations and should study their behaviors in a context where those selective pressures are 
relevant (12, 13). By allowing the behavior of the animal to inform the neural investigation, we 
can be more certain that the neural findings will be more relevant to the behavior under study 
rather than to other spurious or unrelated behavioral phenomena. 

 

1.3 Social-vocal interaction in Egyptian fruit bats 
 

Vocal communication is a vital component of social interactions. Humans, and many other 
social organisms, use vocalizations to convey information and mediate social interactions. 
However, most neuroscientific studies of vocalizations have in the past focused on either 
production or perception, independent of a social interaction taking place (14–21). This has 
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allowed a deep understanding of the neural basis for vocal behavior such as the production and 
perception of learned birdsong in zebra finches (22, 23) and the auditory processing of 
echolocation signals in bats (24–27). However, because these studies have primarily been 
conducted in single, isolated individuals, they have not been able to study social interactions per 
se.  

In order to bridge the gap in our understanding of social-vocal interactions in group 
settings, I have studied groups of interacting Egyptian fruit bats (Rousettus aegyptiacus) while 
they freely engage in spontaneous social-vocal interactions. These bats offer a number of distinct 
behavioral advantages that make them well suited to studying these phenomena. First, like many 
bat species, they are a highly social species. They can live up to 25 years (28). During that extended 
lifespan they live in large colonies that consist of hundreds to thousands of individuals (28, 29). 
They appear to engage in self-quarantine when exposed to pathogens (30).  They form long-lasting 
social relationships based on past experiences (31, 32). In particular, they exhibit stable producer-
scrounger dynamics that persist over long periods of time (>16 months). Producer bats scavenge 
for food from trees and other resources, while scroungers take the food directly from the mouths 
of other bats (31). These dynamics show up in mating patterns as well, with female bats 
preferentially mating with male bats from whom they consistently scrounge food (32). Individual 
bats have also been shown to be able to distinguish familiar from unfamiliar bats within their 
colonies (33). This ability to identify individuals within a large colony may enable the non-random 
associations these bats form, which are not explained by genetic relatedness (34, 35). These social 
dynamics indicate that long-term relationships must be remembered by individual bats within the 
larger colony and that those relationships impact their interactions.  

These bats also exclusively use vocalizations as part of close-proximity social interactions 
(36, 37). This has been demonstrated in previous work, and we have confirmed that in our 
experimental setup, this is indeed the case (Figure 3B). Furthermore, when placed in groups and 
allowed to freely interact, these bats will spontaneously engage in a large number of social-vocal 
interactions, and do not need to be trained or encouraged to vocalize. These vocalizations are not 
broadcast as in bird song or in territorial calls, rather they are directed at specific individuals during 
an interaction (36). Consistent with the directed nature of their vocalizations, Rousettus 
vocalizations have been shown to potentially contain context specific and individual specific 
information suggesting that they may mediate certain aspects of social interactions (36). To 
varying degrees of accuracy, it is possible to decode the emitter of the call, the addressee, the 
context of the vocal interaction and the behavioral response of the interacting bats (36). 
Vocalizations are primarily produced during interactions involving feeding, sleeping, aggression 
and mating (36–38). The frequent use, context and individual specific nature of their vocalizations 
suggest that these bats are using their vocalizations as a form directed inter-individual 
communication. 

These vocalizations also develop and are plastic into adulthood in a feedback dependent 
manner, indicating the possibility of vocal learning or vocal usage learning. Juvenile bats produce 
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a unique call that is eliminated from their repertoire during development (28, 29, 38–40). Juvenile 
bats that have been isolated from other bats from birth and subsequently introduced to non-isolated 
bats produce calls more similar to their juvenile state than normally developing bats (38). 
Similarly, juvenile bats exposed to a frequency shifted acoustic input relative to the normal 
repertoire produce frequency shifted calls matched to the acoustic input (38, 40). Furthermore, 
adult bats exposed to prolonged acoustic disturbances will make modifications to their 
vocalizations which persist even when the disturbance is removed, indicating adult vocal plasticity 
(37). These studies indicate that both juvenile and adult bats can learn certain aspects of their 
vocalization, making Rousettus a possible candidate for studying vocal learning in mammal. This 
is advantageous because very few mammalian species are vocal learners (41), and none are 
tractable model organisms for neuroscience research. 

 Because vocalizations are discreet events and only occur during social interactions, they 
can be used as an easily detectable index into the occurrence of social interaction events. Combined 
with their directed, communicative usage, social vocal interactions in this bat species present a 
tractable and relevant model for studying the neural basis of social interactions in freely behaving 
groups of individuals. We therefore developed the technology and techniques necessary for 
performing electrophysiological recordings in the brains of multiple bats simultaneously while 
also monitoring and characterizing their social vocal interactions.  The results of those experiments 
constitute the bulk of this dissertation. Additionally, we piloted the study of neural correlates of 
vocal development in juvenile Rousettus and present the results of that work.   

There are many aspects of neural activity during social-vocal interactions that can be 
studied simply by allowing groups of individuals to interact freely while recording neural activity. 
The experiments described below can be framed as an initial foray into describing the neural 
correlates of social-vocal interactions, but we hope they also serve as inspiration for future work. 
Furthermore, there are many potential regions in the brain that are likely involved during social-
vocal interactions. We chose to study the frontal cortex (our reasoning can be found below), but 
the same techniques described here can be used to study other brain regions as well. The primary 
lines of research into neural activity during social-vocal interactions we performed can be grouped 
into four main categories: 1) The representation of individual identity and interaction status in 
single neuron activity in individual’s brains; 2) The correlation between activity in different brains; 
3) Comparing neural activity between spontaneous and trained vocal interactions; and 4) the 
influence of social status on intra- and inter-brain neural activity.  

 Following this work, I present the results of a preliminary investigation into neural activity 
in the frontal cortex of juvenile bats during social-vocal interactions. I describe our efforts 
developing the methodologies necessary for recording electrophysiological signals from juvenile 
bats during free behavior. I then describe our attempts at relating that activity to the process vocal 
development and possibly vocal learning. Although this effort did not ultimately succeed in its 
goal of describing the neural correlates of vocal learning in a mammal, we found that the neural 
activity between adults and juveniles in the same brain area are remarkably similar. I discuss 
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possible implications of these results and future directions that neural recording in juvenile bats 
could take. Finally, I discuss the implications of the results presented in this dissertation and 
suggest directions for future research. 

 

Chapter 2: Cortical Representation of Group Social 
Communication in Bats   

  

2.1 Introduction 
 

For many animals, including humans, social interactions often occur in group settings. 
These interactions are commonly mediated by vocal communication signals that convey social 
information, such as participant identity, context and social preferences (1–3). Substantial progress 
has been made towards investigating the neural representation of sensory, motor and social aspects 
of vocalizations separately (4–8), but rarely have all aspects been examined together (9) or in a 
group setting where behavioral and neural activity were recorded from more than two animals 
simultaneously. This has limited our ability to connect behavior and neural activity to that 
occurring between individuals or pairs, rather than within groups. It has also limited exploration 
of the specific social and neural relationships that exist within a group (10).  A combined approach 
will allow us to better understand how communication signals are represented within and across 
the brains of freely interacting group members. 

We studied social-vocal communication in groups of Egyptian fruit bats (Rousettus 
aegyptiacus). Similar to other bats (11), this species lives in large colonies where individuals form 
long-term and persistent relationships (12–14) and communicate using vocalizations that contain 
socially relevant information, including individual identity and behavioral context (3). These 
vocalizations exclusively occur as part of close-range, direct interactions with conspecifics (3, 15, 
16), providing a reliable indicator of social communication between group members. The social-
vocal behavior of the Egyptian fruit bat thus presents an opportunity to investigate neural 
computations related to key aspects of group communication including: 1) representations of self 
versus others and individual identities 2) shared activity patterns across the brains of group 
members 3) influence of social context and 4) impact of social relationships between individuals.   

To study social-vocal communication under group conditions, we allowed multiple bats to 
interact freely while monitoring their behavior in an enclosure in the dark (“free communication 
session”; Fig. 1A, group sizes of n = 4 and n = 5 male bats). Under these conditions the entire 
group is in close proximity and vocalizations only occur during social interactions (3, 15, 16). We 
therefore considered all interactions that included a spontaneously occurring vocalization to be a 
social-vocal interaction involving all bats in the group. These interactions occurred hundreds of 
times per session and were non-stereotyped (see supplementary methods for a list of defined 
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behavior types). Because video recordings alone are not sufficient to accurately and consistently 
assign the identity of the vocalizer (3, 15, 16), we developed an on-animal wireless vibration sensor 
that allows for unambiguous identity detection (Fig. 1B and fig. S1; development of this 
technology was done in close collaboration with Dr. Julie Elie). We found that vocalizations varied 
within and across bats in their spectral and temporal features (fig. S2 and Table S1) and that just 
1% of vocalizations overlapped in time across bats, indicating that only one bat vocalized at a time 
during social interactions (Fig. 1B; fig. S1).  

 

2.2 Single neuron activity distinguishes between vocalizations 
produced by self and others  
 

We wirelessly recorded the activity of 1,153 single neurons and local field potential (LFP) 
activity from the frontal cortices of multiple bats simultaneously in each free communication 
session (fig. S3 and S4; Table S2; electrophysiological data from n = 7 total bats from two separate 
groups). Activity in this area has previously been shown to relate to social behaviors across a range 
of mammalian species (17–21), including bats (22). We began by looking for modulation of neural 
activity when an individual bat vocalized (“self”) as well as when it listened to calls produced by 
other group members (“others”), in accordance with previous studies demonstrating vocalization 
related frontal cortical activity in multiple species (23–26). We found that single neurons 
modulated their firing rates around the time of vocalizations both in the bat vocalizing (“self-
responsive neurons”, 20.7% of neurons; see Tables S2 – 4 for subpopulations of neurons), and in 
the other bats in the group (“other-responsive neurons”, 11.7% of neurons) (Fig. 1, C and D; fig. 
S4 and S5). These neuronal populations were primarily non-overlapping (fig. S5D; Table S2), 
indicating that the same area of frontal cortex contains distinct representations of self- and other-
generated vocalizations. A complementary decoding analysis indicated that 26% of all neurons 
exhibited firing rates containing sufficient information to differentiate between calls made by self 
and others (Table S2). Firing rate modulation occurred at short latencies, specifically during 
vocalizations and followed the fast temporal dynamics of vocalization sequences (fig. S6). 
Furthermore, manual annotation of individual bats’ behavior around vocalizations showed that 
bats engaged in interactive and variable behavior before and after the time of the vocalizations, 
but that the type of behavior did not significantly affect firing rates for most call responsive neurons 
(fig. S7).  

 

2.3 Self and other responsive neurons are not modulated by specific 
acoustic features, playback or echolocation production 
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The neuronal responses we observed could potentially be related primarily to the 
sensorimotor rather than social aspects of the social-vocal interactions. However, we found that 
neither self- nor other-responsive neurons modulated their firing rates in relation to the acoustic 
features of the vocalizations that were produced or heard (fig. S8 and S9). In order to further 
dissociate the sensorimotor and social aspects of vocalizations, we conducted an additional set of 
experiments where bats heard or produced acoustic signals in isolation (fig. S10). In contrast to 
group social communication, we did not observe any neurons that responded when an isolated bat 
was exposed to playback of pre-recorded vocalizations (Fig. 1E; fig. S10 A and B; Table S2). 
Similarly, we found that solitary bats flying freely and producing tongue-click echolocation pulses 
(fig. S10 C and D), that recruit many of the same orofacial muscles as vocalizations (27, 28), 
elicited few echolocation-responsive cells (5.9% of neurons) and importantly, no overlap between 
echolocation and self-responsive neurons (Fig. 1E; fig. S10E; Table S2). Collectively, the low 
responsivity rates to non-social acoustic production and auditory stimulation, as well as the lack 
of neuronal modulation in relation to acoustic details of vocalizations, indicate that the observed 
neuronal responses to vocalizations produced by self or others were specific to vocal behavior 
occurring in a social context.   

 

2.4 Single neuron activity exhibits selectivity for calls produced by 
specific individuals  
 

In addition to discriminating between self and others, the group setting of our experiments 
enabled us to test if neural activity in the frontal cortex contains a representation of individual 
identity, an important aspect of social interactions which has been shown to be behaviorally 
relevant during vocal communication in this species of bat (3, 13, 14). We found that a subset of 
neurons in listening bats responded selectively to vocalizations produced by specific individuals 
within the group (Fig. 1F). Using the firing rates of these “identity-selective” neurons, we could 
decode the identity of one bat vs. other bats present in the group specifically around the time of 
vocal interactions (9.3% of neurons; cross-validated and false discovery rate corrected p < 0.05, 
bootstrap test; Fig. 1, F and G; fig. S11A; Table S3 and S4). We found that for the majority of 
identity selective neurons acoustic features failed to provide significant classification of caller 
identity (Fig. 1H, 56% of identity-selective neurons), indicating that these results could not be 
accounted for solely by acoustic differences across individual bats. Similarly, we found that 
physical contact and participation in social-vocal interactions did not drive the identity selectivity 
of single neurons. In particular, single neuron identity decoding accuracy generally did not 
significantly decrease either when restricting our analyses to include only interactions where all 
bats were in close physical contact (fig. S11B) or when only including interactions not involving 
the bat from which the identity selective neuron was recorded (fig. S11C). These analyses do not 
rule out contributions of unconsidered sensory, social or multimodal factors which have been 
shown to modulate frontal cortical activity (29) but do indicate that identity selectivity was not 
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solely dependent on proximity, participation in the vocal interaction or acoustic details. Combined, 
these results indicate that frontal cortical activity contains sufficient information to distinguish 
vocalizations produced by self vs. others as well as between individual group members.   

 

 
Figure 1 Neural correlates of social-vocal interactions during free group vocal communication. 

 (A) Experimental setup. Calling bat (“self”) indicated by green symbol. Other bats are indicated by a 
yellow outline. Bats were monitored using cameras and a microphone. (B) (i) Ticks indicate vocalizations 
from different bats on each row (n = 4) during example session. (ii) Zoom-in on an example train of calls. 
Top: microphone recording of example calls. Bottom: corresponding filtered recordings from on-animal 
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call detectors, colored according to (A). (C) Example call-aligned raster (top) and peri-event time 
histograms (PETHs, bottom) of self and other-responsive neurons (in all following, calls start at ‘0’). (D) 
Max normalized average firing rates of all responsive cells, sorted by time of maximum firing rate, for self- 
and other-responsive neurons. (E) Average fraction of responsive neurons per condition. SEM error bars 
(n = 7 bats).  (F) Example identity-selective neurons modulating firing rates in response to one select bat’s 
calls, but not for others (colored traces are one neuron’s firing rates when listening to vocalizations from 
different bats). Right two examples are identity selective neurons recorded simultaneously from the same 
bat, each one selective for a different bat. Shaded areas indicate SEM. (G) Top: percent of all cells that are 
significantly identity selective, averaged across bats. Bottom: identity decoding accuracy over time 
averaged across all neurons that were identity selective at the moment of vocalizations. Plotted are 
decoding accuracies for the individual bat that drove identity selectivity (black) and for all other bats 
(gray). SEM error bars. (H) Decoding accuracy using neural data (left) and acoustic data (right). Shown 
are data only from neurons that exhibit significant neural identity selectivity. Instances with both significant 
neural and acoustic selectivity in red, instances with only significant neural selectivity in black. *** p < 
10-20, paired t-test.  

 

 

2.5 Vocal interactions elicit stable correlated neural activity across 
the brains of group members  
 

Having considered the relationship between social-vocal communication and frontal 
cortical activity in the brains of individual bats, we next assessed the relationship in neural activity 
across the brains of group members during vocal interactions. Correlation in brain activity between 
pairs of individuals has been observed in studies in humans (30), duetting birds (9) and in dyads 
of socially, but not vocally, interacting rodents (20) and bats (22). Inter-brain correlation has 
further been shown to indicate, and possibly facilitate, successful vocal communication in humans 
(31–34). Previous findings in bats indicate that local field potential (LFP) activity was modulated 
on a long time scale (seconds to minutes) by non-vocal social interactions and was correlated 
across brains (22). We observed a strong, temporally precise modulation of LFP power on short 
time scales (milliseconds) around vocalizations in both low (<20Hz) and high (>70Hz) frequency 
bands (Fig. 2, A and B, and fig. S12). Moreover, we observed increased inter-brain correlation 
precisely around the time of vocalizations between pairs of calling and listening bats as well as 
between pairs of listening bats (Fig. 2C; fig. S13; n = 8,962 bat pairs and calls across two groups). 
Consistent with previous findings (22), pairwise inter-brain correlation was found to be most 
pronounced in high frequency LFP power (70 – 150 Hz; fig. S13). We therefore focused our 
subsequent analysis of inter-brain relationships on power in the high frequency LFP range.  

The group setting of the experiment allowed us to measure directed inter-brain 
relationships simultaneously between multiple pairs of bats while also accounting for potential 
spurious correlations driven by common input from other group members using conditional 
Granger causality (GC) (Fig. 2D). We found that GC magnitude sharply increased around the time 
of vocal interactions across all calls (Fig. 2E, n = 995 calls and n = 4 bats; fig. S14, A-C, n = 827 
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calls and n = 3 bats), and also when separately considering the caller to listener and the listener to 
caller directions (Fig. 2F; n = 7 bats). This suggests a bidirectional inter-brain relationship during 
spontaneous social-vocal interactions between group members which may reflect vocal as well as 
other associated behavioral aspects of the interactions between the bats. These results do not, 
however, imply a causal relationship between the behaviors of individuals. The increase in GC 
was significantly greater than that observed in trial shuffled data, indicating a precise coordination 
in activity rather than simple co-activation (fig. S14D). Next, we assessed whether the variability 
in GC we observed across bats, and by listener and caller direction (fig. S14, E and F), reflected 
random association or a stable pattern of inter-brain activity. We found that the correlation in GC 
values throughout the experimental timeline was significantly higher than in data shuffled across 
bats (Fig. 2G) and GC values changed less than what would be expected by chance throughout the 
experimental timeline (Fig. 2H; fig. S14G). Lastly, we found that providing shared auditory input 
to two bats in separate, isolated chambers (Fig. 2I, n = 2 bats) did not elicit an increase in GC 
magnitude, indicating that social context was necessary for the existence of coordinated inter-brain 
activity between group members (Fig. 2I). To verify that these findings were not a result of our 
choice of parameters or the parametric assumptions of GC, using the same data we repeated the 
above GC analysis at different values of time lag and also calculated inter-brain relationships using 
the transfer entropy between pairs of bats. Using these measures, we observed similar results (fig. 
S15). 
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Figure 2 Group inter-brain activity patterns around social vocalizations produced during free group 
vocal interactions. 

(A) Example average LFP spectrograms (normalized at each frequency bin) from one bat during one 
session. (B) Average power of high frequency LFP (70-150Hz) for all sessions, displayed as in (A). (C) 
Left, schematics of inter-brain correlation between bat pairs involving the calling bat (top) and involving 
only listening bats (bottom). Right, call aligned inter-brain Pearson correlation of high frequency (70-
150Hz) LFP power averaged across all vocalizations and bat pairs. Throughout this figure shaded areas 
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are SEM. (D) Schematic illustrating all possible connections in a group of four bats. Nodes indicate bats, 
edges indicate inter-brain relationships, and arrows indicate directionality. (E) Group inter-brain GC 
graphs using all vocalizations (both calling and listening), calculated using a sliding window of 1s duration 
around call onset. GC magnitude are represented by both color and line width. (F) Left: illustration of the 
different directional relationships that exist when a given bat is vocalizing. Right: baseline-subtracted GC 
values aligned to call onset, calculated separately for vocalizations from each bat and averaged across 
bats. Data are shown according to the relationships delineated on the diagram to the left (colors). (G) 
Distribution of average correlation values between GC magnitudes calculated using vocalizations equally 
binned across all experimental days (red) compared to shuffled data (gray). High values indicate similarity 
over time. Actual values are significantly higher than shuffled (p = 0.03, Mantel test). (H) Bin-to-bin 
percent change in GC values over the duration of the experiment presented as percentage of experimental 
timeline and compared to shuffled values for the same bins. (I) Left: illustration of listener to listener 
relationships in the group setting. Right: simultaneous playback experiment. Middle: average baseline 
subtracted GC values during playback compared to listener-listener GC values during free communication.   

 

 

2.6 Intra and inter-brain activity patterns are restructured outside the 
group social context between spontaneous and trained vocal 
behavior 
 

The results presented thus far show that social-vocal communication strongly modulated 
intra- and inter-brain neural activity in groups of freely interacting bats. We next sought to 
dissociate vocalizations from their typical social context in order to assess the impact of engaging 
in spontaneous, communication-driven vocal interactions. To that end, we developed an operant 
conditioning task wherein pairs of bats learned to produce vocalizations for reward in a context 
where they would not normally vocalize (this task was developed by Drs. Tobias Schmid and Julie 
Elie). This permitted testing the influence of social context on neural activity by comparing trained, 
reward-driven vocal interactions to spontaneous group vocal interactions.   

In the operant conditioning task, a pair of bats was placed in a divided cage such that they 
were physically separated, but could still see, hear and smell each other and even interact in a 
limited way across the mesh divider (n = 4 bats; two pairs of trained bats; Table S3; Fig. 3A). Over 
the extensive course of training (fig. S16A) bats went from the naïve state of never calling in this 
context (Fig. 3B; Pre-training) to reliably producing hundreds of calls within a session (Fig. 3B; 
Trained). We found that under these conditions one bat in each pair spontaneously became the sole 
caller while the other became the listener, in clear contrast to the vocal behavior observed in the 
free-communication session (Fig. 3C and fig. S16B). Once conditioned, bats produced calls drawn 
from a similar vocal repertoire as in the free-communication session, but with less variability (Fig. 
3D, and fig. S16 C and D). To enable a direct comparison of neural activity across contexts, we 
performed the operant session immediately prior to the free-communication session and recorded 
the same neural activity throughout (Tables S2 and S4). This comparison revealed marked 
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differences between the spontaneous and reward-driven contexts at both the intra- and inter-brain 
activity levels.   

At the level of the single brain, certain neurons exhibited ‘self’ or ‘other’-related response 
profiles during the operant session as in the free-communications session (compare fig. S17 and 
S18A with fig. S4 A – C). However, we also saw substantial differences between the two sessions 
(fig. S18). Specifically, during the operant session as compared to the free communication session 
we observed an increased variability in call related response latencies (Fig. S18E), decreased firing 
rate consistency when firing rates were aligned to vocalizations compared to aligning to reward 
(Fig. S18F), and an increase in neural activity modulation occurring during the reward period (Fig. 
S18 A and C). Most strikingly however, we observed a reorganization of the responsivity of single 
neurons between the free-communication and operant sessions. We found that 78% (50/64) of 
neurons responsive in either session were not similarly responsive in both sessions (Fig. 3E; fig. 
S18 G and H; Table S2), indicating that their responsivity was contextually dependent. This 
reorganization was evident across the population of responsive neurons which showed a systematic 
lack of firing rate consistency across sessions compared to within sessions (Fig. 3F). These 
differences were not driven primarily by acoustic differences between the calls produced in either 
session, as indicated by comparing acoustically similar calls across sessions and acoustically 
different calls within sessions (fig. S18I).   

At the level of neural activity across brains, we compared inter-brain GC values across 
session types. We found that the bi-directional inter-brain relationship that we observed during 
communicative behavior breaks down during conditioned vocalizations. Instead of both caller and 
listener influencing one another (Fig. 2F), we observed no vocalization related change in GC in 
the listener to caller direction during the operant session (Fig. 3G). As in the single neuron activity, 
the observed differences in inter-brain correlation were not driven primarily by acoustic 
differences across session (fig. S18J). Combined, these results suggest that the neural activity 
shifted away from the communication-related representation seen during spontaneous group social 
communication to a task-related representation in the reward-driven context.   
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Figure 3 Restructuring of neural activity during task-induced vocal behavior. 

 (A) Operant session schematic. As above, green and yellow represent the calling and listening bat, 
respectively. (B) Number of vocalizations per session before (17 sessions, n = 4 bats) and after training 
(28 sessions, n = 4 bats). Box plot display showing median, interquartile range and ± 1.5 STD. (C) Average 
number of calls, compared to chance (assuming each bat is equally likely to call), produced by each bat 
and normalized by the number of bats in a given session. Calling and listening bats in the operant task 
separated to illustrate caller-listener dichotomy and to contrast with free communication where all bats 
vocalized at similar rates, on average. Displayed in box plot as in (B). (D) Contour plots representing the 
distribution of operant session vocalization by two acoustic features. Black and grey dashed lines 
correspond to areas encompassing 95% and 99% of a Gaussian distribution, respectively, fit to free 
communication session vocalizations.  (E) Top: experimental timeline over the course of a day: operant 
and free communication sessions are performed in direct succession over the course of approximately seven 
hours. Bottom: normalized average firing rates from two example single units and normalized average high 
frequency LFP power from two example tetrode channels. Shown is activity aligned to vocalizations in the 
operant (left) and free communication (right) sessions. Shaded areas indicate SEM. (F) Cross- vs. within-
session correlation of the PETHs of individual responsive neurons, colored according to session exhibiting 
responsivity (n = 64 neurons). Marginal distributions of cross- and within-session correlations are also 
shown. Note the deviation from unity due to high within- but not cross-session correlations. (G) Comparison 
of inter-brain GC values averaged across bats during the operant session. Shown for both possible 
directional relationships. SEM error bars.   
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2.7 Inter-brain correlation and identity selectivity vary with social 
preferences of group members  
 

Our findings thus far indicate that the neural activity patterns we identified during group 
communication depend on the social context at the group level. Next, we wanted to understand 
how these neural activity patterns vary according to social factors at the individual level. To do so, 
we utilized the fact that bats demonstrate robust spatial behavioral patterns that reflect social 
preferences of individuals within the group (11, 35). We developed a system to precisely track the 
individual positions of a group of eight bats moving freely in a large enclosure (1.2 x 1.2 x 0.6 m 
[width, length, height]; Fig. 4 A and B; fig. S19) as part of a complementary experimental session 
(termed the “social-space” session) performed prior to each free communication session. This 
approach revealed stable social preferences of group members which were reflected in the neural 
activity during vocal interactions in the free communication session.   

During the social-space session most bats spent the majority of the time, and exclusively 
vocalized, near other bats (Fig. 4B; fig. S19B and S20). However, individual bats differed in their 
proximity preferences relative to other group members, resulting in a bimodal distribution of inter-
bat distances (Fig. 4C and fig. S21). Based on this bimodal distribution we derived a boundary to 
define distances between a pair of bats as either close together or far apart (Fig. 4C) and defined 
that pair’s “social dwell time” as the percentage of a session spent close together. Using this metric, 
we found that the way individuals positioned themselves relative to each other was highly stable 
over weeks (Fig. 4D; fig. S22). Importantly, we observed two distinct social-spatial positioning 
preferences exhibited by different individuals: some bats consistently spent time far apart from 
other group members, while others spent the majority of time close together (example shown in 
Fig. 4E). We quantified these preferences for each individual (Fig. 4 F and G; fig. S23) and defined 
the “cluster status” of each bat as either “in-cluster” or “out-of-cluster” reflecting their social-
spatial preferences with respect to other group members.  

During the corresponding free communication sessions where all eight bats were close 
together, we recorded neural activity from the frontal cortex of four of the bats simultaneously. 
We found that the same neural activity patterns described in the previous smaller groups (n = 4 
and n = 5 bats) were replicated in the larger group, including the representation of self vs. others, 
individual identity and inter-brain relationships (n = 8 bats; fig. S24 A and B and Table S3). We 
additionally performed a group playback session with all eight bats present to test if acoustic 
stimulation in a social context would drive other-responsive or identity-selective neurons. 
Consistent with our previous findings, we found that during group playback none of the other-
responsive or identity-selective neurons significantly modulated their activity (Table S3), nor did 
we observe any increased inter-brain correlation (fig. S24C). Furthermore, using position tracking 
during the free communication session we found that individual bats’ positions during calls could 
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not account for the observed identity selectivity in single neurons (fig. S25). Next, we asked 
whether the cluster status of individual bats inferred from the social-space session was related to 
the neural activity during vocal interactions in the free communication session. We focused our 
analysis on neural measures that intrinsically involve relationships between bats, namely the single 
neuron identity selectivity and inter-brain correlations.  

We first examined whether the accuracy with which a calling bat could be decoded from 
the activity of identity selective single neurons was related to its cluster status. We found that 
neurons selective for in-cluster bats had 34% higher decoding accuracy on average compared to 
neurons selective for out-of-cluster bats (Fig. 4H; n = 68 neuron and bat pairs; p = 0.006, 
likelihood-ratio test; fig. S26). In- and out-of-cluster bats vocalized at similar rates across sessions 
(n = 14 sessions, p = 0.48, paired t-test) and produced calls that could not be discriminated using 
acoustic features (n = 15,061 calls, p = 0.15, bootstrap test) suggesting that differences in acoustic 
content between the groups alone did not account for the neural differences we observed. 

Next, we asked whether vocalization related inter-brain correlation in the free 
communication session was related to the cluster status of the caller. Recent studies in humans 
have suggested that inter-brain synchrony can be modulated by differences across individuals in 
verbal communication (32, 34, 36) as well as social group affiliation (37, 38). Consistent with 
these studies, we found that across all calls, inter-brain correlation was 43% higher between all 
pairs of bats when in-cluster bats vocalized compared to out-of-cluster bats (Fig. 4I; n = 5,758 bat 
pairs and calls; p = 1.0 x 10-10, likelihood-ratio test, controlling for bat pair and date of recording). 
This effect was persistent and stable over weeks and not driven by day-to-day variability (Fig. 4J). 
Furthermore, difference in pairwise inter-brain correlation according to the cluster status of the 
caller could not be accounted for by (i) the cluster status of the pair, (ii) whether the pair included 
the caller or (iii) the physical distance between the bats in the free communication session (fig. 
S27). Lastly, the difference in inter-brain correlation during calls produced by in- vs. out-of-cluster 
bats was greater than the difference in inter-brain correlation for 98.6% of all other possible 
subgroupings of this group of eight bats (n = 146 subgroups; Fig. 4K), supporting the notion that 
social-spatial preferences influenced inter-brain neural activity. Combined, these results indicate 
that intra- and inter-brain neural activity patterns during group social communication were 
modulated by the social-spatial preferences of individual group members. 
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Figure 4 Social-spatial patterns are related to both intra- and inter-brain neural activity during group 
communication.  

(A) Schematic of the “social-space” enclosure: a large environment (1.2 x 1.2 x 0.6 m) where bats could 
move freely (bats and cameras not to scale). Transparent plexiglass on two side and at the cage bottom 
allowed unobstructed video monitoring of all individuals (n = 8 bats). (B) Left, all tracked positions in an 
example session of each bat colored separately. Positions are shown on the XY plane corresponding to the 
enclosure ceiling where bats spent the majority of the time. Right, all bats’ positions overlaid. (C) 
Histogram of all measured instantaneous distances between pairs of bats displayed on a logarithmic scale. 
Blue and red lines indicate a two-component Gaussian mixture model fit to these data. Dashed line 
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indicates the threshold for distances that were considered “close together” or “far apart”. (D) Correlation 
between dwell times for all bat pairs on a given day and the median pairwise dwell time across all other 
days. Statistically significant correlation values are indicated with red dots (p < 0.05; Mantel test). (E) 
Still image from the color video camera positioned below the cage. Each bat has a different color LED. 
Individual bat positions indicated by circles. Lines are solid or dashed for in-cluster and out-of-cluster 
bats, respectively. (F) Cumulative probability distribution of the difference in mean dwell times between 
subgroups for all possible subgroupings of bats into two groups (n = 146 subgroupings). The in- and out-
of-cluster subgrouping maximizes this value and is highlighted in red. (G) As in Panel F, showing the 
difference in mean dwell time within subgroups instead, which is minimized by the in- and out-of-cluster 
subgrouping. (H) Identity decoding accuracy of identity selective neurons when representing in-cluster vs. 
out-of-cluster bats (**, p = 0.006, likelihood-ratio test; n = 68 neurons and bat pairs). Bars indicate mean 
decoding accuracy across neurons; error bars indicate SEM. (I) Average IBC between bat pairs during 
vocalizations produced by in-cluster vs. out-of-cluster bats (***, p = 1.0 x 10-10, likelihood-ratio test, n = 
5,758 calls and bat pairs). Each line indicates average IBC values for one bat pair; error bars indicate 
SEM. (J) Average IBC values separated as in panel I during all vocalizations across all free communication 
sessions, separated into equal sized bins over time. Shaded area indicates SEM. Note that IBC values during 
calls from in- vs out-of-cluster bats are higher at every time point considered, indicating persistence of 
effect across days. (K) Cumulative probability of absolute differences in mean IBC between subgroups for 
all possible subgroupings of bats into two groups. Red dot indicates difference in IBC between the in- and 
out-of-cluster bat groups. Note that only one other subgrouping has a larger difference in IBC. 

 

2.8 Discussion  
 

In this study we recorded neural activity from the frontal cortex of groups of bats engaged 
in spontaneous social communication and studied neural processes both within and across the 
brains of individual group members. At the level of the individual brain, we found that frontal 
cortical neural activity distinguished not only between calls produced by self vs. others but also 
between individual identities. Furthermore, examining neural activity across the brains of group 
members revealed robust, bidirectional, stable inter-brain neural activity patterns that emerged 
only during spontaneous group vocal interactions.  

Previous studies have demonstrated auditory responses in the frontal auditory field, an 
anatomically restricted region of the frontal cortex in microbats (39–41), even under anesthesia 
(42), whereas we did not observe neural responses to vocalization playback. This apparent 
discrepancy may be explained by our recordings being in an area outside of the frontal auditory 
fields, or possibly the lack of a frontal auditory field region in Egyptian fruit bats, especially 
considering the substantial neuroanatomical (43–45) and genomic (46) differences between micro- 
and megabats, as well as auditory functional specializations of the microbats (47–49). Future 
comparative studies will be crucial to further uncover the shared, as well as species-specific, neural 
circuits involved in vocal communicative behaviors. Yet collectively, our results are in line with 
findings in multiple species demonstrating the role of frontal cortex in processing cognitive or 
associative aspects of acoustic information in a contextually dependent manner (50–53).   
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By comparing neural activity during a highly trained, task-based vocal behavior to activity 
during a more ethologically relevant social-vocal behavior, we found that single neuron activity 
was highly contextually dependent and that inter-brain correlation was entirely absent in the task-
based context. This breakdown in inter-brain correlation supports the hypotheses that bidirectional 
inter-brain activity patterns are a feature of socially interactive behaviors (54, 55) and that shared 
inter-brain activity patterns may play an important role in social communication between group 
members (19, 31, 33, 34, 54). These findings also underscore the importance of incoporating 
components of ethologically relevant spontaneous behavior to complement the prevailing 
approach of less ethologically relevant, and often highly trained, experimental designs (56, 57). 

  Consistent with the hypothesis that the repertoire of intra- and inter-brain activity 
patterns we observed reflects, or possibly serves as the basis for, social interactions, we found that 
bats that chose to spend more time together elicited a more accurate representation of identity at 
the single neuron level as well as higher levels of inter-brain correlation between the group 
members. It is possible that the reduced inter-brain correlation and identity accuracy elicited by 
out-of-cluster bats reflects differential communicative efficacy, as suggested by studies in humans 
(34, 36). This, in turn, may relate to the abilities of individuals to negotiate a place within a group. 
Therefore, an important avenue for future studies will be to follow the co-evolution of neural and 
social dynamics during the formation and restructuring of social groups of varying compositions. 
Similarly, future studies that perturb neural activity during social interactions will be able to dissect 
the circuits supporting the social behaviors described here.  

In addition to bats, a wide range of species naturally interact in groups and exhibit a 
diversity of social structures and forms of communication. Extending the approach taken here to 
other species in order to uncover similarities and differences in neural repertoires for social 
communication may provide important insight into the neural mechanisms that facilitate successful 
group living. 

 

2.9 Materials and methods summary 
 

To study social-vocal interactions under ethologically relevant group conditions, we 
allowed groups of bats to interact freely in a dark enclosure and spontaneously vocalize while 
recording audio, video and neural data. We used wireless tetrode-based electrophysiology to 
record single neuron activity and local field potentials from the frontal cortices of multiple 
Egyptian fruit bats (Rousettus aegyptiacus) simultaneously (these experiments were repeated in 
three separate groups of size n = 4, 5 and 8). The identity of the vocalizing bat was determined 
using a custom-made on-animal call detector device. For certain subsets of bats, we also performed 
the additional following experiments: (1) playback of vocalizations from a loudspeaker to either 
individual isolated bats or bats in the group setting; (2) production of echolocation signals by an 
individual bat while freely flying; (3) pairs of bats engaged in an operant vocalization production 



20 
 

task; and (4) tracking the position of individual bats in a larger enclosure to determine social-
spatial preferences of members in the group. Single neuron firing rates were calculated and used 
to determine which neurons modulated their firing rates while producing a vocalization (self-
responsive) or listening to other bats’ vocalizations (other-responsive). Single neuron firing rates 
were also used to determine if responsive neurons encoded the acoustic features of vocalizations. 
Identity selectivity of single neurons was assessed by training classifiers to use firing rates around 
vocalizations in order to predict the identity of the vocalizer. The power in the high frequency band 
(70 – 150Hz) of the local field potential was calculated and used to determine the level of inter-
brain correlation and Granger causality between the brains of individual bats around vocalizations. 
Responsivity of single neurons, identity selectivity of single neurons, and inter-brain correlation 
measures were compared between spontaneous and trained vocalizations. Elicited identity 
selectivity accuracy and inter-brain correlation measures were also compared between 
vocalizations produced by individual bats that exhibited one of two different modes of social-
spatial preferences: (i) those preferring to position themselves close to other group members (in-
cluster) or (ii) those preferring to remain further away from other group members (out-of-cluster). 
Further detailed description of the methods are provided in the online supplementary materials.  

 

Chapter 3: Neural activity in the frontal cortex of juvenile 
bats during vocal interactions 

 

3.1 Motivation 
 

As described above, several studies have suggested that the development and plasticity of 
social vocalizations of Rousettus contains certain aspects of what is typically considered vocal 
learning. They can modify their vocalizations in response to acoustic feedback both as adults and 
as juveniles and they readily engage in social-vocal interactions in group settings. The number of 
vocally learning model organisms for neuroscience research is highly limited (41), and of those 
that are experimentally tractable, we are generally limited to songbirds. It would be very valuable, 
therefore, to develop a mammalian model of vocal learning considering the large evolutionary and 
anatomical differences between mammalian and avian brains (38, 41–45). Toward this end, we 
piloted a study of electrophysiological recording in the frontal cortex of juvenile bats. Here I 
describe those efforts, providing both practical details as well as our results. 

Prior to this study, no neural recordings had been reported in juvenile Egyptian fruit bats, 
so we had to develop the methodologies to enable this study. We successfully implanted tetrodes 
and recorded single unit neural activity in four juvenile bats (experiments for one bat took place 
in a different enclosure than the remainder of the juvenile bats and all the adult bats, and therefore 
excluded those data from analysis) ages 54-123 days in order to target the age range that has been 
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suggested to display maximal vocal variability during development. Juvenile bats are substantially 
more sensitive to anesthesia than adult bats, requiring careful dosing and monitoring during 
surgical procedures. They are also more sensitive to being kept under anesthesia for long periods 
of time, presumably due to their smaller energy reserves. This necessitates a quick surgical 
procedure and close post-surgical care. We found that subcutaneous injections of saline-ringer 
solution during anesthesia improved surgical outcomes. We also found that providing food and 
liquid to the recovering juvenile bat as quickly as possible resulted in more favorable post-
procedure outcomes. Juvenile bats also possess a thinner skull than adults, requiring greater care 
during craniotomies and when placing anchor and ground screws. After tetrodes and micro-drives 
were successfully implanted, we found that after an adjustment period juvenile bats could still 
crawl and climb without apparent handicap, despite the greater implant to body weight ratio 
compared to adults. We did not test if juvenile bats could fly post implantation. In at least one of 
the implanted juveniles, we were able to successfully record neural activity at least 2 months post-
surgery, despite the growth exhibited by the bat during this time period. 

 

3.2 Experimental design 
 
To assess the relationship between neural activity and vocalizations in juvenile bats, we 

performed a modified version of the free-communication experiment described above in adults, 
wherein recordings were made from multiple animals simultaneously in a group setting. With the 
juveniles, we only recorded one animal at a time and only ever with one additional non-implanted 
adult male bat. In this setting we observed that the juvenile will interact with the adult and vocalize, 
but the adult virtually never vocalizes itself (manual annotation of video from 849 calls from two 
juvenile/adult bat pairs showed 846 juvenile calls and 3 adult calls). We did not use the 
piezoelectric call detector device with the juveniles. For the one bat recorded in a smaller cage, 
video was recorded using a webcam unsynchronized with other systems. For the other three bats: 
for one bat we recorded continuous video throughout the experiment, for the other two we recorded 
sound triggered video clips attempting to isolated video around vocalizations alone. We recorded 
a total of 114 free communication sessions with the juvenile bats. During those sessions, we 
recorded a total of 711 well isolated single neurons and 7,476 vocalizations. Of those neurons, 463 
were recorded on days with at least 15 calls produced allowing us to perform further analysis.  

 

3.3 Results 
 
The goal of this pilot study was initially to test if neural activity in frontal cortex tracked 

vocal development in the juvenile bats. However, we were ultimately unable to assess this 
relationship for several reasons. Primarily, we were unable to observe evidence of vocal 
development in the vocalizations we recorded from the juveniles implanted with tetrodes. The 
most prominent reported feature of vocal development in Rousettus is the development of the 
fundamental frequency of their vocalizations. To assess vocal development, we regressed 
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fundamental frequency (log values were used to account for the large range of frequency values 
measured) of all vocalizations on the age in days of the individual juvenile when it produced that 
vocalization. Over a range of 50 days of age across the three bats used for analysis a mixed effect 
linear model accounting for the identity of the bats resulted in null result (fixed effect of days of 
age, p = 0.12). Including the fourth bat for a range of 68 days similarly resulted in a null effect (p 
= 0.054). Considering the relatively small sample size of calls recorded (previous studies showing 
vocal learning in this species analyzed approximately 1,000,000 calls from 10 juveniles and adults 
over >6 months (38)), it is likely that we simply did not collect enough data to observe a reliable 
trend.  

The secondary goal of this pilot study was to compare the neural responses observed in 
adults to those observed in juveniles in the same brain area (stereotactic coordinates for implants 
were calibrated for the different brain sizes of juveniles and adults, and coarse anatomy 
histologically compared post-hoc for similarity). Due to the complexity of the experiments at such 
a young age, only one implanted juvenile bat was placed in a chamber at a time with one adult bat 
and these were allowed to freely interact (Fig. 5a). These interactions also differed from adult-
adult interactions under the same conditions. Only the juvenile bat produced social vocalizations 
with little to no vocal response from the adult, in agreement with previous reports of minimal vocal 
exchange between juvenile and adult bats of this species (38). The vocalizations the juvenile bats 
produced had higher average fundamental frequencies than adult calls (Fig. 5b). We observed a 
similar pattern of neuronal responses in juveniles during vocalizations to that found in the adult 
experiments. In detail, at both the levels of single unit and LFP responses, we found a substantial 
modulation of neural activity tightly locked to vocal communication (Fig. 5c, f) with nearly 
identical response latencies (Fig. 5d-g), proportions of responsive neurons (Fig. 5h; adult: 23%, 
juvenile: 26%; t-test p = 0.72) and a similar lack of correlation between firing rates and acoustic 
features of the produced vocalizations (Fig. 5i, j). Combined, these similarities between the neural 
representation in the frontal cortex of adult and juvenile bats suggests that the neural signatures 
related to the production of social calls are already present at very early stages of development in 
which both the acoustic content and nature of the social interaction differ greatly from adulthood. 
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Figure 5  Neural correlates of social-vocal interactions in juveniles.  

(a) Schematic of free communication session with a juvenile bat. (b) Distribution of juvenile vocalization 
acoustic features. (c) Example raster and PSTH for a juvenile production responsive cell. (d) Distribution 
of response latencies for all juvenile production responsive cells. (e) Example average frequency-
normalized LFP spectrograms for production from one bat during one session. (f) Max-normalized average 
firing rates of all juvenile production responsive cells, sorted by time of max firing rate. (g) Power in high 
frequency LFP (70-150Hz) for all sessions, displayed as in (e). (h) Overall rates of responsive neurons, 
averaged across bats. Error bars represent SEM. (i) Distributions of normalized differences in firing rates 
between vocalizations with high and low F0. 12/98 juvenile production responsive cells have significantly 
different firing rates (p < 0.05; two-tailed Wilcoxon rank sum test). (j) Encoding model correlations as in 
Fig. 3d, e for juvenile production responsive neurons. 
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3.4 Discussion 
 

Establishing a mammalian model of vocal learning remains an important goal for 
neuroscientific research. Being able to dissect the circuits implementing vocal learning and 
manipulate them in a mammalian brain could provide valuable insights into how humans can learn 
such a wide variety of vocalizations, in development and into adulthood. The Egyptian fruit bat 
similarly remains a promising model for achieving this goal; however, more work still must be 
done both from a behavioral and neuroscientific perspective. Behaviorally, the vocal repertoire 
needs to be much more thoroughly understood in terms of what calls are used in what context and 
what acoustic features are important to their use and learning, and what features are irrelevant. To 
accomplish this, one would need to create a highly detailed ethological catalog of vocalizations 
and behavior surrounding those vocalizations, delineate the different type of vocalizations (if 
discrete categories exist), and determine the association between behavioral context and 
vocalization. On top of this, it will be necessary to know how reliable those associations are in 
different contexts. Without this prior behavioral knowledge, one must simplify the analysis of 
vocal learning to certain pre-determined acoustic features which will almost surely lose a 
substantial amount of information, if not obscure any results whatsoever. With a defined repertoire 
of vocalizations, one can track the emergence and development of individual sounds, giving the 
ability to ask much more finely detailed questions about those changes. Our attempts at 
understanding vocal learning in these bats based solely on a limited number of vocalizations, 
without a deep ethological understanding of the vocal ontogeny resulted in our inability to 
determine if that learning was happening or not. That then translated into being unable to relate 
the behavior we were interested in (vocal learning) to the neural activity we observed. 

Future studies of vocal learning in juvenile Egyptian fruit bats will require a more refined 
understanding of their vocal behavior in order to be able to analyze the changes over time. Studies 
of vocal learning could also proceed instead from adult vocal learning (training a bat to produce 
new sounds) or adult vocal usage learning (training a bat to produce existing sounds in new 
contexts). Given that we have already demonstrated that vocal usage learning is possible in the 
operant conditioning experiments presented above, one possible route forward would be to record 
neural activity during the vocal usage learning process. This process takes place over weeks to 
months of training, providing ample time to collect neural data and relate it to the changes taking 
place in vocal usage. This behavior is already well quantified and described, allowing for more 
detailed analysis. Determining the change in neural activity during usage learning, and where that 
change occurs in the brain would provide valuable information, as well as providing useful 
hypotheses for how vocal learning may occur during development.  

Furthermore, having developed the methodologies to perform neural recordings in juvenile 
bats, we can now ask other questions in juvenile bats beyond vocal learning. One such example 
would be the inter-brain synchronization between juveniles and adults and, in particular, between 
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juveniles and their mothers. Recent work in humans has shown elevated inter-brain synchrony in 
prefrontal cortex between mother-child dyads, specifically during cooperation (46). While difficult 
to perform such experiments in humans, one could easily track inter-brain correlation between 
juvenile and mother bats over time and manipulate context and dyads to assess when and how 
mother-pup inter-brain synchrony occurs. This could provide valuable information about parent-
child relationships and the developmental roots of inter-brain synchrony.  

A recent study showed that juvenile bats passively learn navigational routes by being 
transported by their mothers to different sites (47), providing an intriguing behavior whose neural 
basis is unknown. One could record from both mother and pups during such transport flights and 
in later independent navigation by mother and pup individually. Doing so, one could assess how, 
e.g., the juvenile hippocampus represents space while being transported and learning new routes 
vs. flying those routes themselves or learning them themselves. One could also assess for the 
presence of inter-brain synchrony between mother and pups during such tutorial flights. One 
hypothesis that could be tested is that mother-pup dyads that exhibit higher synchrony transmit 
higher fidelity navigational information. To the best of our knowledge, inter-brain synchrony in 
the hippocampus of simultaneously recorded animals has never been studied and could yield 
valuable information about development and spatial learning.  

 

Chapter 4: Conclusion 
 

In this dissertation I have explored the neural basis of social-vocal interactions in group 
settings. I described a neural repertoire found in the frontal cortex specific to spontaneous social-
vocal interactions that represents relevant social information about the vocalizing bats within 
individual brains. I also described an inter-brain activity pattern that is observed during 
spontaneous social interactions, but not during a trained vocalization task.  Both of these intra- and 
inter-brain activity patterns are modulated by the social preferences of individual bats as reflected 
in social-spatial preferences. Finally, I described how neural activity in the same area of the 
juvenile brain is modulated in a manner similar to that in adult brains.  

The representation of individual identity and role in vocal interactions is an important 
prerequisite for successfully navigating social interactions. Especially in a species with long term 
social relationships, knowing which individual is interacting and how is essential to properly 
respond. In a concurrent study of social interactions in groups of rhesus macaques Báez-Mendoza 
and colleagues found that single neurons represent the identity of individuals, their role in social 
interactions, and the history of those interactions as well (48). They hypothesize that these neurons 
could map group dynamics and form the basis for navigating short- and long-term social 
interactions. Both this study and the results presented above find that single neurons in the frontal 
cortex encode the identity of individual animals during social interactions and are modulated by 
social characteristics of those individuals. This is a remarkable result considering the considerable 
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differences between bat and monkey behavior, social structure, and neuroanatomy; however, it 
suggests that there are shared neural mechanisms for navigating social interactions across species. 
This is precisely the strength of the neuroethological approach which seeks to understand the 
neural underpinnings of natural behaviors in the appropriate context and then compare across 
species to find commonalities. We believe that the similarity in findings here indicates that the 
neural dynamics described truly reflect social dynamics and warrant future investigation. 

The ability to record from multiple animals simultaneously while tracking their vocal 
behavior, spatial position, and neural activity opens the possibility for many possible future 
studies. One clear step forward would be to manipulate activity in the frontal cortex (and possibly 
other brain regions) during social interactions. The tendency for these bats to cluster tightly 
together provides a clear behavioral signal that can be observed relative to neural manipulation. 
Inhibiting activity either on medium- (e.g. DREADDs) or short-timescales (e.g. optogenetics) 
during social interactions and observing if individual bats change their social-spatial preferences 
in response to that manipulation would provide valuable information about the causal role of this 
area in social-spatial interactions. Similarly, one could transiently inhibit activity on-line 
selectively during social-vocal interactions and determine if those interactions resolve as they 
normally would, or if the outcomes change. In a similar vein, administering or blocking receptors 
for oxytocin in this area, or systemically, and observing the effect on the tendency to cluster could 
complement a large body of research on the role of oxytocin in social interactions. Because the 
tendency to cluster with other bats is so strong in this species and the observation that certain bats 
exhibit tendencies to cluster less, the ability induce or change these social-spatial tendencies could 
serve as a powerful platform for studying the neural mechanisms for social interactions beyond 
vocalizations. 

Our investigation into the correlation between neural activity across brains was initially 
inspired by previous work by a different member of the Yartsev lab, Dr. Wujie Zhang, who showed 
that neural activity, especially high frequency local field potential power, is highly correlated 
between pairs of interacting bats and is not dependent on specific or shared behaviors (49). This 
accorded with two decades of work in humans has shown that inter-brain correlation is 
phenomenon observable in humans as well (50–52), and is modulated by relevant social factors 
such as teacher-student interactions (53), and inter-group conflict (54). Similar phenomena have 
also been observed in primates and mice (55, 56). We then showed that inter-brain correlation 
exists in groups of multiple bats and is elevated specifically around the time of social-vocal 
interactions. We additionally found that vocalization related inter-brain correlation is specific to 
spontaneous vocal interactions and is modulated by the social-spatial preferences of the individual 
bats producing vocalizations. In particular, we found that bats that tend to spend less time in close 
proximity to other bats (which is atypical behavior in this species of bats, see e.g. (30)) elicit lower 
levels of inter-brain correlation than bats that spend more time within the cluster of other bats. As 
with the similar findings of identity related neurons in frontal cortex across bats and monkeys, the 
presence of inter-brain synchrony across a range of species indicates a fundamental phenomenon 
is being observed. Furthermore, our findings that social status modulates inter-brain correlation 
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concords well not only with an intuitive expectation of this phenomenon, but also with the 
observed relationship between inter-brain correlation and relevant social factors in humans.  

Our findings of inter-brain correlation in groups of bats that is modulated by social 
preferences opens new possible lines of research for future studies. In particular, while measuring 
inter-brain synchrony is very feasible with non-invasive methodologies, using an animal model to 
perform invasive manipulations to determine what underlies this phenomenon could be highly 
useful. One study in humans showed that administering oxytocin intranasally enhanced inter-brain 
synchrony between pairs of interacting adult males (57). Similar studies could be carried out with 
more precise methods in bats and tracked over long periods of time. One could also carefully use 
behavioral manipulations which would be difficult to perform in humans, to assess what social 
relationships and behaviors contribute to inter-brain synchrony.  

These findings in bats may also inform possible studies of inter-brain synchrony in humans. 
The difference between in- and out-of-cluster bats is reminiscent of humans with high or low social 
affinity. Determining the degree of social affinity in humans is not simple; however, there are 
disorders that manifest as decreased social functioning which may be studied using inter-brain 
synchrony as a tool. In particular, autism spectrum disorder (ASD) is characterized by difficulty 
in social communication and interaction. There has been very limited study of inter-brain 
synchrony in individuals with ASD; however, at least one study found that inter-brain synchrony 
and behavioral performance was modulated by severity of ASD symptoms (58). However, a 
different recent study found no significant difference in neural synchrony between pairs including 
typically developing children and children with ASD (59). More substantial and detailed research 
is needed to characterize the relationship between ASD and inter-brain synchrony. If such a 
relationship is found, however, it could be a valuable tool not only for diagnostic purposes, but 
also as a means to track treatment progress and possibly a component of novel treatment 
approaches. 

The neuroethological approach to studying group social vocal interactions in Egyptian fruit 
bats enabled the discovery of neural activity patterns in and between individual brains that are 
specific to spontaneous, social interactions. By performing these experiments in a non-standard 
model organism, we were able to contribute to a cross-species evaluation of these neural 
phenomena and suggest that certain components of our findings reflect shared neural mechanisms 
across species. Developing the methodologies for studying freely behaving animals in group 
settings may enable future studies in bats, but also in other species. Our hope is that these findings 
will provide a framework for future studies and findings and possibly inspire new understandings 
of social interactions: both how the brain accomplishes such a complex task, but also how we 
might be able to help individuals who suffer from its dysfunction. 

 

Chapter 5: Supplementary Methods 
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Supplementary materials and methods for Chapter 2: 

Experimental model and subject details 

Neural activity was recorded from a total of 11 adult male Egyptian fruit bats, Rousettus 
aegyptiacus (weight 141 - 165 g at implantation), across three experimental groups. 20 additional 
male bats were used to elicit interactions between the bats over the course of all experiments. The 
implanted bats consisted of N = 3 lab born (Group #1), N = 4 wild caught (Group #2), of N = 4 
lab born animals (Group #3). The lab born bats, for which birth dates could be estimated, were 1 - 
3 years of age at implantation. While the precise age of the wild caught bats could not be precisely 
estimated, all were greater than 4 years old. Prior to the start of experiments, bats were housed in 
a communal vivarium. After implantation, bats were initially single housed and subsequently, 
following recovery from surgery, were co-housed in cages with the other bats. The implanted bats 
from groups 1 and 2 were housed in standard housing cages. The implanted bats from group 3 
were housed in the same cage used for the social-space session. All cages were kept in a humidity- 
and temperature-controlled room. The bats were kept on a 12-hour reversed light-dark cycle, and 
all experiments were conducted during the dark cycle. All experimental procedures were approved 
by the Institutional Animal Care and Use Committee of UC Berkeley. 

Experimental design and details 

Neural activity was recorded from a total of 11 bats. All 11 bats participated in free communication 
sessions. Three of the bats participated in the playback and echolocation sessions, but not operant 
sessions (group 1). Four bats participated in the operant sessions, but not playback or echolocation 
sessions (group 2). Four bats participated in the social space session and group playback session, 
but not operant or echolocation sessions (group 3) (Table S3). Unless otherwise stated, all analyses 
presented in and relating to Figures 1 – 3 and S1 – S18 use data only from groups 1 and 2 and all 
analyses presented in and relating to Figure 4, S19 – S23 and S25 – S27 use data only from group 
3. 

Experimental sessions 

Free communication sessions 

All free communication experiments were conducted inside a 40.6 x 33.7 x 52.1 cm (length, width, 
height) transparent plexiglass enclosure, which had netting on top that allowed bats to hang. For 
group 1 and group 2, enclosures were placed inside a 64.8 x 61 x 64.8 cm (length, width, height) 
chamber lined with anechoic foam and experiments were conducted in the dark (10-5 lux; 
corresponding to near complete darkness for this species of bat (59, 60)) with infrared (IR) lights 
to allow video recording. Illuminance levels were measured using ILT5000 Research/Lab 
Radiometer (International Light Technologies). Fans circulated air between the inside and outside 
of the chambers. Group 3 experiments were conducted in the same enclosure, but in this group the 
enclosure was not placed inside an intermediate chamber in order to allow for LED position 
tracking. Instead, the enclosure was in a large room lined with anechoic foam. Video was recorded 
throughout the experimental sessions using one (group 1) or two (group 2) high-speed IR-sensitive 
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cameras (Chameleon3, FLIR) at 100 frames/s. Video recording for group 3 used two IR-sensitive 
cameras (Chameleon3, FLIR) and two color cameras (Blackfly S, FLIR) at 20 frames/s (see social-
space session below). Video recordings were made using StreamPix video recording software 
(StreamPix multi-camera version 7, NorPix Inc.). Ultrasonic microphones (USG Electret 
Ultrasound Microphone, Avisoft Bioacoustics; frequency range: 10-120 kHz) sampled at 250 kHz 
were used to record audio throughout the experimental sessions. Wireless piezoelectric vibration 
sensors (“call detectors”) were placed on each animal. These were used to assign bat identity to 
vocalizations (see below and fig. S1 for further details). Transistor-transistor logic (TTL) pulses 
were sent via coaxial cables using a UltraSoundGate Player 216H (Avisoft Bioacoustics) 
simultaneously to: 1) the master transceiver that controls the neural recording devices and on-
animal call detectors of all bats; 2) the audio recording system (UltraSoundGate 416H, Avisoft 
Bioacoustics); and 3) the data acquisition board of the computer controlling the video recording 
(USB-6525 Analog DAQ, National Instruments [groups 1 and 2]; mic-input port [group 3]). TTL 
pulses arriving simultaneously on all the above devices allowed us to synchronize these distinct 
recording systems. All experiments took place in an electromagnetically and acoustically shielded 
room (IAC Acoustics).   

A total of 63 free communication sessions were conducted. Of those, 26 were conducted with three 
implanted bats and one interlocutor bat (group 1), 23 were conducted with four implanted bats and 
one interlocutor bat (group 2), and 14 were conducted with four implanted bats and four 
interlocutor bats (group 3) (Table S3). The non-implanted “interlocutor” bats were included in 
order to stimulate more vocal interactions. The interlocutor bats in groups 1 and 2 were selected 
daily and were not co-housed with the implanted bats. The interlocutor bats in group 3 were the 
same bats for all sessions in order to track the same group’s social dynamics across days. One of 
the interlocutor bats was co-housed with the four implanted bats and the remaining three were 
housed separately. All free communication sessions lasted between 2-4 hours.  

Audio playback sessions 

Three types of playbacks sessions were performed: (1) single bat playback experiment (fig. S10A), 
(2) simultaneous pair playback experiment (Fig. 2I) and (3) playback experiments in the group 
social setting (Supplementary Table 3). 

Single bat playback experiments were conducted using bats from group 1, always immediately 
prior to free communication session and in the same enclosure where the free communication 
session took place (fig. S10A). One of the three implanted bats was placed in this enclosure and 
between 8-14 pre-recorded vocalizations were played using ultrasound speakers (Vifa, Avisoft 
Bioacoustics; frequency range: 1-120 kHz). Bats never vocalized during the playback experiments. 
The pre-recorded vocalizations were from the same group of bats recorded during free 
communication sessions and the list of vocalizations played back was updated every 2-4 recording 
days. Vocalization recordings were compensated to account for the frequency response properties 
of both the recording microphone and the loudspeaker before being played back to ensure acoustic 
fidelity. Vocalizations were played in random order, with repetition, continuously throughout the 
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playback session, and with uniformly distributed intervals between vocalizations (1.5 - 3s interval 
range). The playback was designed to provide an auditory experience that is similar to the near-
constant chatter of bat calls in a bat cave in the wild or in our bat colony room, as was done 
previously (15). Playback sessions lasted approximately 30 minutes in length. A total of 29 single 
bat playback sessions were conducted. On average, 267 ± 18 (median ± inter-quartile range) total 
vocalizations (including repeats) were played during a session.  

Simultaneous pair playback experiments were performed seven times in the same manner as 
described above, but with two bats in two separate enclosures hearing the same playback 
simultaneously (Fig. 2I). These experiments were designed to test the influence of auditory input 
on the observed interbrain correlation between group members (Fig. 2). Because this phenomenon 
was primarily observed in the high-frequency LFP and because during these simultaneous 
playback sessions, our recording signal quality had degraded such that we no longer were able to 
reliably record single unit activity, we only analyzed LFP activity during these sessions.  

Playback experiments in the group social setting were performed 14 times using bats from group 
3, always immediately after the social-space session and before the free communication session. 
These experiments were meant to test if the responses of other-responsive and identity selective 
neurons were present even when the vocalizations of group members were broadcasted from a 
speaker instead of as part of ongoing social interactions. These experiments were identical to the 
single bat playback experiments with the following changes. Instead of a single bat present in the 
free communication enclosure, all eight bats were present, such that the social and environmental 
settings were similar to the free communication session, and neural activity was recorded from all 
four implanted bats simultaneously. Instead of selecting from a library of randomly chosen 
vocalizations, each day 10 pre-recorded vocalizations from each of the five most vocal bats were 
chosen at random and played back with uniformly distributed intervals between vocalizations (1.5 
- 3s interval range) for 30 minutes.  

Echolocation sessions 

Echolocation experiments were conducted using the bats in group 1, always immediately after the 
free communication session. A single implanted bat was allowed to fly freely around a 2.5 x 3.3 x 
2.4 m (length, width, height) room lined with anechoic foam (fig. S10C). Bats were familiarized 
with this room prior to experimentation by allowing them to fly freely in the same room. An 
experimenter was present in the room to encourage the bat to fly after it had landed and was 
equipped with an IR illuminator night vision goggle system (Edge GS, Pulsar). All lights were 
turned off in the room, aside from the IR illuminator used by the experimenter. Echolocation clicks 
were recorded using the same audio recording equipment as in the free communication session. 
Echolocation sessions lasted for approximately 15 minutes. Bats produced 427 ± 308 echolocation 
clicks (median ± inter-quartile range) per session. A total of 20 echolocation sessions were 
conducted.  

Operant sessions  
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Operant session task design  

Two separate pairs of implanted bats (N = 4 bats; group 2) were trained to voluntarily produce 
vocalizations during an automated reward-based conditioning task. This approach differed from a 
recent behavioral study of vocal plasticity in a different species of bats where individuals were 
conditioned to vocalize in isolation (61). The paired designed was important as it allowed studying 
neural activity in both calling and listening bats and hence facilitated direct comparison to the free 
communication session for the same individuals and neural activity. Operant sessions were 
conducted always immediately prior to the free communication session. Operant sessions lasted 
between 2-4 hours. A total of 47 operant sessions (one session per pair of bats) were 
conducted. Each pair of bats was placed in separate 30.4 x 20.3 x 20.3 cm (length, width, height) 
enclosure lined with plastic mesh netting. The composition of the bat pairs was always the same 
across all sessions. A mesh divider was present in the enclosure, dividing it in half lengthwise. The 
divider prevented bats from directly physically interacting, but they could still see, hear, and smell 
each other and could fit their digits between the spacing in the mesh. Each cage was placed inside 
a 64.8 x 61 x 64.8 cm (length, width, height) chamber lined with anechoic foam. Fans circulated 
air between the inside and outside of the chambers. The experiments were conducted with red LED 
lights illuminating the chambers. Video monitoring was done with webcams. Ultrasonic 
microphones (Earthworks, M50) were used in conjunction with an analog to digital convertor 
(MOTU, 896mk3) to record audio at a sampling rate of 192kHz throughout the session as well as 
detect task-relevant vocalizations online. Call detector devices were used to assign bat identity to 
vocalizations (fig. S1). We used a microcontroller (Arduino, Uno Rev3) in conjunction with IR 
beam-break sensors in the food ports to detect nose-pokes and to control a linear actuator 
(Actuonix, P16-200-256-12-S) which delivered a banana smoothie through a syringe tip in the 
food port when the bat successfully performed the task. LED’s were also present to signal reward 
(green) or timeout (white). All task control and audio recordings were fully automated and 
controlled through a custom MATLAB program that was written in-house. This program recorded 
audio and processed it in real-time to detect vocalizations. Vocalization detection was performed 
as follows: we applied a low-pass filter (20kHz) and then binned the incoming signal in 20ms 
chunks and calculated the RMS of the signal within each bin. We set a threshold manually to 
discriminate between vocalizations and noise and kept that threshold constant throughout 
experimentation. During these sessions either bat from a pair could produce a vocalization loud 
enough to cross that threshold, at which point either of the two bats could break the IR beam in the 
food port to trigger delivery of a smoothie reward to both bats’ food ports (see fig. S16A, right 
panel for schematic of operant chamber used during experimentation).  

Operant session training 

For each pair, two male bats were randomly selected from the colony at UC Berkeley and housed 
together for one week prior to starting training in order to collect baseline weights. Bats were 
motivated through food deprivation in their home cage while retaining their weight above 80-90% 
of normal baseline. The training was divided into three phases culminating in a ‘trained’ pair of 
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bats ready for experimentation (fig. S16A). The bats used for this experiment were trained and had 
been undergoing maintenance training for >24 months (non-consecutively) prior to 
experimentation. 

During training and experimentation, bats were rewarded with a fruit smoothie for each correct 
trial. Each reward delivered a fixed amount of smoothie. The smoothie was made fresh daily with 
roughly equal parts of banana and cantaloupe melon, along with small amounts of apple juice, 
honey, and fruit bat supplemental powder.  

Phase 1: Classical conditioning of reward cue light  

The goal of the first phase of training (fig. S16A, left) was to teach the bats to associate the 
conditioned stimulus (green LED on) with performing a correct action. Each session of 
conditioning lasted about four hours. On the first day of training, two bats were introduced to the 
operant chamber and both bats could freely move around to access either side of the cage. Both 
bats had access to a single food port on the front side of the cage. The bats had to learn to poke 
their nose into the reward port to activate the conditioned stimulus followed by delivery of the 
reward.  

As the training progressed, an additional IR beam break was placed on the side of the cage as a 
trigger for the conditioned stimulus. The bats freely moved around each day until they learned that 
when they crossed the beam break, a conditioned stimulus (green LED) was activated, after which 
they had 30 seconds to go to the food port to dispense the reward. As the conditioning procedure 
continued, the time they had to retrieve reward was continuously lowered until bats reached 80% 
success for retrieving the reward within five seconds after crossing the beam break. 

Phase 2: Operant conditioning to vocalize for reward 

During the second phase of conditioning, we aimed to reinforce vocalizations produced when the 
two bats interacted (fig. S16A, middle). We stopped the IR beam break activating the LED and set 
the activation of the LED and the delivery of the reward at the food port to be dependent on the 
production of any vocalization by the bats. The cage divider was open during this stage so bats 
could interact and there was still only one food port that both bats could access to retrieve reward. 
A trial started when either bat voluntarily produced a vocalization during a normal social 
interaction. These vocalizations occurred only with direct physical social contact between the two 
bats. When one bat vocalized, either bat could go to the food port to retrieve reward. Through this 
process, the bats learned to increase their call rate during this phase in order to receive more 
reward. 

Phase 3: Operant conditioning to vocalize with a physical barrier 

The goal of the final phase of training was to change the social context of vocal production by 
physically separating the bats into different sides of recording chamber and conditioning them to 
vocalize outside the spontaneous social context (fig. S16A, right). To do so, one bat was placed in 
the back half of the cage, the other in the front half, and the mesh divider was closed such that the 
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bats could not physically interact with each other as they normally would. The bats could still see, 
smell, and hear each other and even interact in a limited way across the mesh divider. Both the 
front and back sides of the cage had their own reward port. For each successful trial, reward was 
simultaneously delivered to both reward ports so that both bats had access to the reward at the 
same time. When either bat produced a vocalization, the conditioned stimulus (green LED) 
signaled a correct action and both bats had the opportunity to retrieve the reward from the reward 
port within 5s.  

The bats learned to approach the divider and cooperate to activate the reward. The call rate 
increased through training and the bats began to produce more stereotyped calls to activate the 
reward. Interestingly, without shaping, the bats segregated roles in the task so that one bat became 
the ‘caller’ and the other bat became the silent ‘listener’ (Fig. 3C and fig. S16B). In all pairs of 
bats, the ‘caller’ learned to make high numbers of vocalizations on one side of the enclosure while 
the ‘listener’ bat passively listened and retrieved the reward on each trial. We continued to train 
the bats until they reliably segregated roles and produced sufficient numbers of vocalizations in 
this context. 

Social-space session  

Social-space experiments were conducted using the bats from group 3, always immediately prior 
to a group playback session followed by a free communication session. Social-space experiments 
were specifically designed to allow bats to move freely in a larger environment so that their precise 
location, and how individual bats chose to position themselves relative to others in the group (their 
social-spatial preferences), could be assessed. Thus, the sessions were conducted inside a 122 x 
122 x 60 cm (length, width, height) enclosure. The enclosure had mesh netting on top and on two 
of the four sides to allow bats to hang upside down and move around freely (Fig 4A). The floor 
and two remaining sides of the enclosure were fitted with transparent Plexiglass, to allow for video 
recording from below and from the sides. The enclosure was placed on stands at a height of 60 cm 
above the floor, in a room (3 x 3 x 3 m) lined with anechoic foam. The experiments were conducted 
in the dark with infrared lights to allow for video monitoring. Video was recorded using two IR-
sensitive cameras (Chameleon 3, FLIR) and two color cameras for color detection (Blackfly S, 
FLIR). Paired IR and color cameras were placed to the side of the cage pointing inward and also 
on the floor beneath the cage pointing upward. For both camera types, video was captured at 20 
Hz. Video acquisition was made using StreamPix video recording software (StreamPix multi-
camera version 7, NorPix Inc.). An ultrasonic microphone (USG Electret Ultrasound Microphone, 
Avisoft Bioacoustics; frequency range: 10-120 kHz) was used to record audio throughout the 
experimental sessions. Call detector devices were used to assign bat identity to vocalizations (fig. 
S1). LEDs onboard the call detectors were used to assign a specific color to each bat to allow for 
tracking of individual bats during the session.  

14 social-space sessions were conducted. All social-space sessions and the group playback and 
free-communication sessions that followed were conducted with the same eight bats from group 
3. 
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Surgery 

Anesthesia and surgical procedures for the implantation of four tetrode microdrives generally 
followed those described previously in detail for Egyptian fruit bats (22). Anesthesia was induced 
using a subcutaneous injection of a cocktail of ketamine (22 mg/kgBW), dexamedetomidine (0.09 
mg/kgBW) and midazolam (0.31 mg/kgBW). For the duration of surgeries, bats were placed in a 
stereotaxic apparatus (Kopf) and anesthesia was maintained throughout surgery by repeated 
injections (approximately once per hour) of an anesthesia maintenance cocktail of 
dexamedetomidine (0.125 mg/kgBW), midazolam (2.5 mg/kgBW) and fentanyl (0.025 
mg/kgBW). The depth of anesthesia was assessed by regular testing for toe pinch reflexes and 
measuring the bat’s breathing rate. The body temperature of the bat was kept constant at 
approximately 35-36°C, using a heating pad placed under the bat in conjunction with a rectal 
temperature probe (FHC). 

Each bat was implanted with a lightweight four-tetrode microdrive (Harlan 4-Drive, Neuralynx; 
weight 2.1 g). Tetrodes (~45 um diameter) were constructed from four strands of platinum-iridium 
wire (17.8 um diameter, HML-insulated), twisted and bound by melting their insulation together. 
Each of the four tetrodes were kept in separated telescoped assemblies of polyimide tubes within 
the microdrive and could be moved independently. The tetrodes exited the microdrive through a 
guide cannula with ~300 um horizontal spacing between tetrodes. On the day before surgery, each 
tetrode’s tip was cut flat using high-quality scissors (tungsten-carbide scissors ceramic coating, 
CeramaCut; FST) and plated with Platinum Black (Neuralynx) to reduce the impedance of 
individual wires to 0.3-0.8 MΩ (at 1 kHz).  

During surgery, prior to placing the microdrive, the skull was scored to improve adhesion and 
mechanical stability. A circular craniotomy of 1.8 mm diameter was made in the skull over the left 
hemisphere. The center of craniotomy was positioned over the frontal cortex of the bat at 1.7 mm 
lateral to the midline and 12.19 mm anterior to the transverse sinus that runs between the posterior 
part of the cortex and the cerebellum (fig. S3A). These coordinates are identical to the coordinates 
used in a recent study in this bat species (22). After a durotomy, the microdrive was placed 
vertically such that the tip of the microdrive’s guide tube was flush with the brain’s surface. The 
remaining exposed craniotomy was then filled with a biocompatible elastomer (Kwik-Sil, World 
Precision Instruments) to protect the brain. A bone screw (FST) with a soldered stainless-steel wire 
was fixed to the skull in the frontal plate contralateral to the microdrive and served as a ground 
screw after its electrical connection with the brain was verified. An additional set of 3-5 bone 
screws were fixed to the skull to serve as anchor screws for maintaining mechanical stability of 
the implant. The exposed skull and the bases of the anchor screws were then covered with a thin 
layer of quick adhesive cement (C&B Metabond, Parkell) to provide a substrate for the adhesion 
of dental acrylic. Dental acrylic was then added to secure the entire microdrive to the screws and 
to the skull. At the end of the surgery, bats were given the analgesic Metacam and if needed the 
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anti-inflammatory drug dexamethasone. The bat was treated with antibiotics for one week and with 
pain medication for three days, post-operation. 

Electrophysiological recording 

Electrophysiological recordings were conducted using a wireless neural data logging device 
(“neurologgers”; MouseLog-16 (vertical version), Deuteron Technologies) that interfaced with the 
microdrive of each implanted animal. The neurologger amplified the voltage signals from the 16 
channels of the four tetrodes referenced to the ground screw, performed analog-to-digital 
conversion at a sampling rate of 31.25 kHz, and stored the digitized data on an on-board 32GB SD 
card which can hold up to 9 hours of recording. The system has a bandwidth of 1 Hz - 7 kHz, 
records voltage with a fine resolution of 3.3 μv, and has a low level of noise generally close to the 
limit of Johnson noise from the impedance of a given source. The neurologger and its lithium-
polymer battery were encapsulated in an in-house 3D-printed plastic casing to prevent damage to 
the electronics and weighed a total of only 9.9 g. The Egyptian fruit bats in our experiment weighed 
more than 140 g and could fly while equipped with the neurologgers with ease, as expected from 
previous experiments using wireless recording systems with heavier or comparable weights during 
free flight for over an hour and covering multiple kilometers (62, 63). The individual neurologgers 
(and audiologgers) were wirelessly controlled and synchronized by a single transceiver.  

After all recording sessions were concluded for the day, we connected the tetrodes to a wired 
recording system (Digital Lynx, Neuralynx) to monitor the neural signals and advance the tetrodes. 
Tetrodes were moved downward once every one to two days (generally by 20-160 mm), in order 
to record single units and LFP at new sites. 

Histology  

Histology was done as described previously (22). Each bat was given a lethal overdose of sodium 
pentobarbital and, with tetrodes left in situ, was perfused transcardially using a flush of phosphate-
buffered saline followed by fixative (4% formaldehyde + 0.1 M phosphate-buffered saline). 
Tetrodes were left in the brain for 30 minutes after perfusion and then the brain was removed and 
stored in fixative. Subsequently, a cryostat was used to cut 40 μm coronal sections of the brains. 
The sections were then Nissl-stained with cresyl violet. Slides were imaged using a light 
microscope and tetrode positions were determined by manually examining those images (fig. 
S3B). 

Vocal and behavioral data analysis 

Detection of vocalizations 

All vocalizations were first automatically detected from the microphone recordings and then 
manually curated to eliminate noise and determine the vocalizer identity. Automatic detection was 
performed as follows: the envelope of the audio recording was calculated as the sliding RMS of 
the recording in 1ms long windows and then every time the amplitude of the envelope crossed a 
low threshold of 0.01 (set low to detect even very soft vocalizations) was considered a possible 
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call. All possible calls were then recursively merged if separated by <5ms. After merging, only 
possible calls longer than 15ms were considered. This resulted in a large number of possible calls, 
including many instances of noise. Each of these possible calls was then manually annotated as 
noise or as a call by listening to the microphone recordings and by visually examining the 
spectrograms of the on-animal call detector recordings on each animal.  

On animal call detector device design  

In order to reliably assign identity to bat vocalizations without the need for video annotation (3, 
15, 16), we designed a wearable wireless piezoelectric accelerometer that detects laryngeal 
vibrations produced during vocalization (“call detector”; fig. S1A). Each bat wore a call detector 
throughout the group experiments (excluding echolocation and playback sessions). We 
used single-axis, low mass, piezo-ceramic accelerometers (BU-27135, Knowles Electronics) to 
detect laryngeal vibrations. These accelerometers have previously been used as bone-conduction 
microphones (64) and are sensitive in the 0-10kHz range which overlaps substantially with the 
acoustic frequency range of bat vocalizations. We attached these devices to a flexible rubber 
“necklace” sized for individual bats that is worn around the bat’s neck. The necklace is fitted to 
maintain contact with the bat’s throat, without restricting normal behavior. On the back side of the 
necklace we attached a wireless “audiologger” (AudioLog1 or AudioLog2, Deuteron 
Technologies) which records, digitizes, and saves the accelerometer recordings to a removable SD 
card. The audiologger and its lithium-polymer battery were encapsulated in an in-house 3D-printed 
plastic casing to prevent damage to the electronics (fig. S1A). All audiologgers were controlled by 
a single transceiver (the same transceiver also controlled the neural data loggers, see below). For 
these recordings, the accelerometers were sampled at 50 kHz and we focused our analysis on the 
0-10 kHz frequency range where the accelerometers we used were most sensitive. 

Vocalizer identity assignment 

To assign individual caller identity, we needed to be able to discriminate between vocalizations 
made by the bat wearing a given call detector and vocalizations made by bats in close proximity 
to that bat. Both types of vocalizations elicit some response from the accelerometer; however, we 
empirically determined that on-animal and close proximity vocalizations can be easily and reliably 
distinguished by comparing power in the recorded accelerometer signal between the 1-3 kHz 
band (low) and the 5-10 kHz band (high). On-animal vocalizations have strong responses confined 
to the low band, while loud close proximity vocalizations have relatively weak responses confined 
to the high band (fig. S1, B and C). We compared the classification obtained with the call detectors 
with classification obtained using video annotation of two bats interacting. We found that 
classification using the ratio of low to high frequency power of the call detector signal during calls 
resulted in identical predictions of the vocalizing bat compared to classification using video 
annotation 98% of the time. We further verified this method by positioning a loudspeaker playing 
vocalizations at full volume 1cm from a call detector suspended in the air to mimic the input of a 
close proximity vocalization from another bat. We found that the same low vs. high frequency 
power comparison reliably distinguished the on-animal vocalizations from the close-range 
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playback (fig. S1B). For all vocalization experiments, we manually labeled individual bat identity 
by aligning spectrograms of all accelerometer recordings with the microphone recording and by 
comparing relative power in the relevant frequency bands (fig. S1, C and D). We manually 
annotated these data to ensure the highest degree of accuracy by eliminating misplaced identity 
due to non-vocal noise (fig. S1C) and to assess for the rare case of multiple bats vocalizing at the 
same time (fig. S1D). Individual identity was assigned to the call detector which showed the 
highest power in the low frequency range (~1-3kHz; fig. S1, B-D) and the most consistent 
dynamics with the microphone recording. 

Call selection 

We defined trains of vocalizations each separated by less than 1s as a call bout. In our recordings, 
55% of calls occurred in a bout. For all subsequent analyses a minimum of 15 calls or bouts of 
calls was imposed (e.g. a given bat had to hear or produce at least 15 calls or bouts to assess cells 
recorded from that bat for listening or calling responsivity, respectively) unless otherwise noted. 
Calls and bouts of calls were only used if they met the following conditions: 1) separated by at 
least three seconds from a prior call such that there were no call of any kind present prior to call 
onset (time of zero corresponds to call onset) and 2) separated by at least three seconds from 
succeeding calls of a different type (e.g. for listening related analyses, no calls produced by the  
listening bat could occur 3s  after call onset, and for calling related analyses, no calls produced by 
any bat other than the calling bat could occur 3s after call onset). This resulted in only using calls 
and call bouts containing vocalizations that a given bat heard or produced but not both. Because 
bats generally do not vocalize at the same time or exchange vocalizations in rapid succession (only 
16% of recorded call bouts had a different bat produce a vocalization within 3s of the call bout 
starting), these restrictions did not result in excluding a large fraction of our data. It did, however, 
result in different size subpopulations of neural data used for different analyses (e.g. Table S2). 

Bioacoustic feature calculations  

All bioacoustic features are calculated as in (15). All recordings were compensated for the 
frequency response properties of the recording microphone. In brief, bioacoustic features for each 
call were calculated using a sliding window of 15ms with an overlap of 14ms across the call and 
then taking the average across those windows. The following features were calculated for each 
call: fundamental frequency (F0), aperiodicity, loudness (RMS), power spectral centroid 
(centroid), and Wiener entropy. Fundamental frequency and aperiodicity were calculated using the 
YIN algorithm (65). Inter-call intervals were calculated as the time between the end of a call and 
the beginning of the next call. 

Calculation of acoustic discriminability  

In order to determine the degree of discriminability between individual bats or between groups of 
bats we calculated the cross-validated classification accuracy of a logistic regression classifier with 
a uniform prior using the following bioacoustic features calculated for each individual call: 
fundamental frequency, call length, aperiodicity, and Wiener entropy. In order to calculate 
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discriminability of individual bats (fig. S16D, left), we tested how well this classifier could 
discriminate between the calls made by an individual bat and all the calls made by all the other 
bats in its respective group. To generate an estimate of the distribution of classification accuracies 
for each bat, we trained the classifier using 90% of the calls chosen at random and tested on the 
remaining 10%. This procedure was repeated 1,000 times. We used the same approach to calculate 
the discriminability of calls between groups (fig. S16D, right), but instead we calculated the 
classification accuracy between all calls made in the first group and all calls made in the second 
group. In order to test if calls made by in-cluster bats were significantly different from calls made 
by out-of-cluster bats we calculated the classification accuracy of a logistic regression classifier 
between the two groups of bats. To obtain a p-value for the significance of this accuracy we 
compared that accuracy to a bootstrapped distribution of accuracies obtained by randomly 
permuting the group labels and repeating 10,000 times.  

Behavioral annotation 

In order to describe the behavior that the bats engaged in and to control for behavior as a factor in 
determining neural responses (fig. S7), we manually annotated all vocal interactions in group 1 for 
which we had high quality, well illuminated, high speed video recordings from multiple cameras 
during the free communication sessions (n = 3 bats; 2,096 vocal interactions annotated). To do so, 
we examined the behavior that the bats engaged in during a ±1s window around the initiation of 
vocalization bouts. Based on our own empirical observations of the behaviors that these bats 
engage in when only male bats are present without food and not during sleep hours, in conjunction 
with previous detailed reports of this species’ behavior (3, 22), we annotated for the following 
behaviors: 

Aggression: Any behavioral interaction that involved directed aggressive behavior including 
biting, scratching, and striking. 

Incidental contact: Any physical contact that was not made in a directed fashion. This includes 
wing flapping, climbing over other bats, and any ambulatory movement resulting in contact. 

Spontaneous initiation: Any vocalization that was produced with no clear behavior preceding the 
vocalization, i.e. all other bats were motionless prior to vocalization. 

Probing: One bat placing its snout close to another bat’s head or body. 

Grooming: A bat either licking itself or another bat or picking at its own claws with its teeth. 

Non-social: Any vocalization that was produced by a bat not in close physical proximity or direct 
contact with other bats. 

Other: Any other behavior that was not commonly observed. 

The typical spatial arrangement that bats take on during vocalizations is one where all bats are 
tightly grouped together. As a result, in some cases, the cameras or illumination sources that we 
used were occluded by one or more of the bats in the chamber. In these cases, and others when the 
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camera’s view was occluded or the bats were out of the camera’s frame, the behavior could not be 
determined, and these behaviors were marked as ‘unclear’. 

We found that overall, two main behavioral modes accounted for the majority of annotated 
interactions: aggression and incidental contact (fig. S7). This is consistent with previous 
descriptions of this species’ vocal behavior that reported that vocalizations primarily occur during 
sleep, mating, eating, and space negotiations (3). Considering that during these sessions bats: (i) 
were not sleeping in our chambers, as it was during their waking hours; (ii) were not mating, as 
there were no female bats present; and (iii) were not eating, as there was no food present, we found 
that the primary vocal behavior the bats engaged in consisted of negotiating perching position and 
personal space, which, under the above annotation scheme, are included under aggression and 
incidental contact. Therefore, in our analysis of neural responses according to behavioral mode, 
we focused on the differences in firing rates between those two main behavioral categories, as well 
as between those behaviors and all others to verify that other behaviors, especially when the 
behavior was unclear, did not have an outsized impact on firing rates (fig. S7C; modulation index 
is calculated as the difference in firing rates between categories divided by the sum of the firing 
rates). 

We also quantified to what extent bats were in close physical proximity to one another during 
vocal interactions (fig. S11B). Previous reports and our observations indicate that bats only 
vocalize when in physical contact with one another (3, 15, 16). To quantify this, we also annotated 
vocal interactions for grouped or non-grouped interactions. We took a conservative approach and 
defined ‘grouped interactions’ as interactions when all bats in the chamber were in direct physical 
contact with one another (we observed zero vocal interactions where the vocalizing bat was not in 
physical contact with at least one other bat). We found that even using this conservative definition 
71.6% of all annotated vocal interactions were grouped interactions.  

Finally, we attempted to quantify the participants in vocal interactions (fig. S11C). We defined 
participants as 1) any bat that vocalized during the interaction 2) any bat that exhibited a change 
in behavior or movement patterns immediately prior to vocalization that appeared to elicit a 
vocalization or 3) any bat that exhibited a change in behavior or movement patterns immediately 
after vocalization that appeared to be due to the vocal interaction. This definition was intentionally 
broad to give us a conservative quantification of which bats were obviously not involved in an 
interaction, as our ability assign intention to behaviors is inherently limited. 

Group positional data analysis 

Automated location tracking in a group 

To monitor the position preferences of individual group members during the social-space session 
and the corresponding set of free-communication sessions, we developed a new automated 
tracking system. This system allowed tracking the position and identity of all eight bats in Group 
3 simultaneously with 2.5 cm spatial resolution and 50 msec temporal resolution. Summarized 
briefly (further detailed in the following sections), the location tracking was based on assigning a 
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unique color to each bat using the onboard LEDs on the call detectors. Color video was captured 
using the upward pointing floor camera. Video frames were segmented by light intensity and a 
classifier trained on manually annotated video recordings was used to assign location and bat 
identity based on average pixel color (fig. S19). Automated tracking results were tested against a 
subset of manually annotated data to determine detection performance. Location tracking was only 
used while bats were hanging from the ceiling and side cameras were used to assess the amount of 
time bats spent below ceiling level.  

 Assignment of LED colors   

The “audiologgers” (AudioLog1 and AudioLog2, Deuteron Technologies) stored inside the call 
detector plastic protective casing (fig. S1) were equipped with three colored LEDs (red, green and 
blue). Each LED can be set to a specific intensity level (at 4-bit resolution), and additive color 
mixing can be used to produce unique colors. We choose a set of eight colors that were maximally 
separable in RGB color space. The additive colors used were the following (numbers represent % 
of maximal intensity of red, green and blue LEDs accordingly: Color #1, ‘Red’, (100, 0, 0). Color 
#2, ‘Green’, (0, 100, 0). Color #3, ‘Orange’ (100, 50, 0). Color #4, ‘Spring green’, (0, 100, 50). 
Color #5, ‘Azure’, (0, 50, 100). Color #6, ‘Violet’, (50, 0, 100). Color #7, ‘Rose’ (100, 0, 50). 
Color #8, ‘Chartreuse’, (50, 100, 0). To allow for better diffusion of color from all angles, we 
encased the 3 LEDs with a drop of translucent adhesive. In addition, call detector casing was 3D 
printed from translucent resin (Formlabs Clear Resin GPCL04), which was then sanded down to 
increase diffusion of the LED color and ensure a uniform appearance of the additive color mix 
from different angles. The spatial resolution imposed by the call detector for bat location is equal 
to the length of the long axis of the call detector casing, or 2.5 cm.   

Color prediction model 

To automatically identify the color for each detected bat, we trained a classifier to predict the color 
class from each individual segmented area. Video recordings were manually annotated using the 
MATLAB Image Labeler app. This resulted in an annotated data set consisting of 2,366 frames 
with the location and area of all visible LED lights and their respective color labels for each frame.  
Color values for each annotated color area were then converted from RGB to CIE L*a*b* 
(CIELAB) color space. This color space was chosen in order to assess the color hue independent 
of intensity which can vary with the bats’ movements. Median *a*b* values measured for each 
annotated area clustered according to color (fig. S19A, third panel from the left). A linear support 
vector machine (SVM) classifier was trained on a portion of the manually annotated data set in 
order to predict the color of each LED light by its *a*b* color values. This classifier achieved a 5-
fold holdout cross-validated color prediction accuracy of 99.7%.  

Automatic detection of bat identity and location 

As video recordings were done in the dark the location of the LEDs carried by the bats could be 
detected using a simple luminance threshold using the following procedure (fig S19A). First, a 
binary map of each frame was created using a luminance threshold (7% of maximum intensity). 
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Regions of connected components that constituted putative LED locations were identified based 
on pixels that crossed the luminance threshold. Small gaps in these regions were filled in using a 
flood fill algorithm. Next, region properties (size, bounding box, centroid location), were 
extracted. Regions with centroids closer than 15 pixels were recursively merged until all region 
centroids were at least 15 pixels apart. Remaining regions with areas less than 15 pixels after 
merging (e.g. faint reflections of light from the enclosure walls) were discarded. Regions with 
areas greater than 200 pixels were split using a watershed algorithm and reprocessed. Next, median 
*a*b* color values were calculated for each region which were used to predict each region’s color 
using the color prediction model. When two or more regions were assigned the same color 
prediction (e.g. when an obstruction resulted in a single LED light source being split into two 
regions during the region detection step), the region with the highest posterior probability (as 
calculated by the SVM), was chosen, and the other regions with the same color prediction were 
discarded. This process was repeated for each frame independently. Predicted color was then 
converted to bat identity according to the unique color assigned to each bat. After all frames were 
processed, locations of each detected bat were extracted as the centroid of the corresponding 
regions. All detected locations that were outside the boundaries of the ceiling were discarded (see 
below). Each bat’s location trace was then smoothed using a moving median with a window size 
of 250ms. To account for brief occlusions, gaps in location traces of less than 2 seconds were filled 
using linear interpolation. Finally, all distances were converted from pixel to cm using the 
conversion ratio of 1 cm to 4 pixels which was estimated from an image of a ruler taken prior to 
recording.  

To assess the quality of tracking, location predictions were tested against an annotated data set. 
First, the accuracy of location predictions was assessed by measuring the Euclidean distance 
between the predicted and manually annotated locations. This location prediction error had a mean 
and standard deviation of 1.27 ± 0.17 cm across bats, less than the spatial resolution limit imposed 
by the size of the call detectors (2.5 cm). Second, we observed a false positive rate of 1.80 ± 2.68% 
(mean ± standard deviation across bats) referring to automatic detections that were not present in 
the manual annotation. Finally, to quantify the tracking coverage, the percentage of all frames 
across all session in which each bat was detected was calculated. On average each bat was detected 
89.25 ± 4.33 % (mean ± standard deviation) of the total recorded time per session (range: max 
94.36 %, min 83.60 %) and for 82% of all frames at least 7 bats detected.  

Estimation of bat vertical movement  

The size of the social-space enclosure allowed the bats to move freely in three dimensions. The 
bats could climb up and down along the two opposite mesh walls (60 cm vertically) and the larger 
volume of the enclosure (0.89 m3) even allowed bats to perform short flights. However, during our 
recording sessions the bats spent the majority of their time hanging or moving along the 
enclosure’s ceiling, with rare short excursions. To precisely measure the amount of time that bats 
ventured away from the enclosure ceiling, the vertical positions of bats during the social-space 
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session were recorded using the cameras placed to the side of the enclosure where a clear Plexiglas 
wall was fitted.  

Bat size within Group 3 averaged approximately 20 cm along the cranial-caudal axis. 
Consequently, LEDs (placed on the neck of the bats near the head) were detected by the side 
cameras to be approximately 20 cm lower than the enclosure ceiling when bats were resting on the 
ceiling. A threshold of 25.6 cm below the ceiling (to account for movement while hanging) was 
set to quantify how much time bats spent not hanging on the ceiling. Bat vertical location were 
estimated using the same automated procedure described above. For each session the amount of 
time when at least one bat (out of the group of 8) was detected below the horizontal threshold was 
calculated.  On average, all of the eight bats in the group were found above this threshold 96.5% 
of the time. Of the 3.5% of the time that any bat took an excursion away from the ceiling, 87% of 
these detected excursions consisted of only one bat out of the eight. Following these results, we 
focused our analysis on the 2D plane of the enclosure ceiling.   

Correction of lens distortion  

To capture the whole enclosure ceiling in the cameras’ field of view, a 3.8 mm lens was used which 
introduced a slight distorting effect on the edges of the frame. Distortion correction was done using 
Camera Calibrator app in MATLAB. Specifically, we collected 58 images of a non-symmetric 
checkerboard pattern placed in varying positions on the enclosure ceiling. These images were used 
to create a model of the camera and lens that could be applied to correct the distortion. All images 
had a mean reprojection error of under 0.6 pixels (< 1.5 mm) individually, and the calibrated model 
using all images had a mean reprojection error of 0.41 pixels (1.0 mm). All position tracking in 
the social-space session was done after this correction.   

Calculation of distance threshold and dwell time 

In order to quantify the bimodality of the distribution of pairwise distances between bats, a two 
component Gaussian mixture model was fit to the distribution of all measured pairwise log10 

distances between all bats (Fig. 4C). The distance threshold that defined when a bat pair was “close 
together” or “far apart” was calculated by extracting the mixing probability, p, of the short-distance 
component of the model and calculating the p-th quantile of the distance distribution, resulting in 
a value of 35.8cm. At all distances greater than that value, pairs of bats were considered far apart 
and at all distances below that value, pairs of bats were considered close together. Using this 
distance threshold, a “social dwell time” value was calculated for each bat pair for each session as 
the fraction of the time that the pair was close together out of the total time that both of the bats in 
that pair were tracked for that session (i.e. excluding time where one or both bats’ LEDs could not 
be tracked) (fig. S22A; average distances between bat pairs for each session are shown in fig. 
S22B). Dwell time was used as the primary measure of bat social spatial preference as it captured 
the tendency of bats to associate with other bats or not while discarding variability due to potential 
large changes in distance that are beyond the distance threshold. 

Calculation of spatial stability  
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To determine if the social-spatial preferences of pairs of bats were stable across days, dwell time 
matrices were constructed representing the social dwell times of each bat pair for each day (fig. 
S22). The Pearson correlation was then calculated between all unique values in each day’s dwell 
time matrix with the median of the corresponding values across all other days’ dwell time matrices 
(Fig. 4D). The significance of these correlation values was assessed using the Mantel test with 
10,000 iterations which computes a p-value by comparing correlation values between matrices to 
a distribution obtained by randomly permuting the rows and columns of the matrices (MATLAB 
implementation from (66)). The same analysis was applied to distance matrices composed of the 
average distance between pairs of bats on each session (fig. S22C). 

Determining individual bat cluster status 

To determine which bats exhibited consistent preferences toward spending time close to other bats 
and which bats preferred to spend time far from other bats, we performed the following analysis. 
First, the metric used to capture these preferences was the average dwell time of each bat on each 
session which was calculated by averaging all the pairwise dwell times that involve that bat (each 
bat was involved in N – 1 = 7 pairwise distances). This quantity reflects how much time each bat 
spent in proximity to all other bats during each session. Next, all possible ways to split the group 
of eight bats in two (“subgrouping”) were enumerated and searched for the subgrouping that best 
reflected the two social positioning patterns exhibited by the different bats. In order to decide 
which subgrouping to use, subgroups were ranked by average dwell times that were similar within 
groups, but different across groups. The cross-group difference in average dwell time for candidate 
subgrouping was calculated as the difference between the averaged mean dwell times of the 
members in both subgroups. The within-group difference in average dwell time for candidate 
subgrouping was calculated by taking the mean across subgroups of the average difference 
between each unique pair in both subgroups. One subgrouping both maximized the cross-group 
difference and minimized the within-group differences of average dwell time by a wide margin 
(Fig. 4 F and G). Membership in these subgroups thus defined the “cluster status” of each bat as 
either “in-cluster” or “out-of-cluster”. 

To test if cluster status was robust to different values of distance thresholds, the same analysis was 
performed to determine which bats were in- and out-of-cluster using different values of the 
distance threshold when calculating social dwell time. The same bats were classified as in- and 
out-of-cluster using distance thresholds 45% less or 20% greater than the empirically derived value 
of 35.8cm (fig. S23 B and C). 

Electrophysiological data analysis 

Preprocessing of electrophysiological data 

To analyze local field potential (LFP) signals, we first low-pass filtered the raw voltage traces 
using a Kaiser window-based FIR filter with a low pass cutoff of 1 kHz and a stopband from 1 
kHz to 1.2 kHz with 40 dB attenuation at 1.2 kHz and a 5% passband ripple. Filtering was done in 
the forward and reverse directions to eliminate phase delays. The voltage traces were then down-
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sampled by a factor of 15, resulting in a sampling frequency of 2083.3 Hz. Power line noise was 
then filtered out using a 2nd order Butterworth band-stop filter with cut-off frequencies 59.5 Hz 
and 60.5 Hz, and another one with cut-off frequencies 119.5 Hz and 120.5 Hz. We only analyzed 
LFP data in windows of ± 4s around the start of vocalization bouts. We observed some transient 
artifacts in our recordings in the form of large amplitude, irregular voltage fluctuations that are 
visually distinct from normal LFP signals. To automatically detect and discard vocalizations 
during which these artifacts occurred we used a simple threshold crossing algorithm that we found 
worked well for our data. For each channel of each tetrode for a given bat on each recording day 
we assembled all vocalization-aligned LFP signals and calculated the mean and standard deviation 
of the LFP during a baseline period of 2-4s before vocalization onset. We then calculated the 
fraction of time from -2s to 4s after each vocalization onset that the LFP signal was above or below 
its baseline mean ± 5 standard deviations. Any channel that had >1% of its signal over threshold 
for a given vocalization was excluded from all further analyses. The average fraction of 
vocalizations that were excluded due to artifacts across all channels, bats, and sessions was 0.4 ± 
0.29 % (mean ± standard deviation). 

In order to extract spikes, we followed the same approach as described previously (22). First, we 
band-pass filtered (in both the forward and reverse directions) the raw voltage traces using a 6th-
order Butterworth filter with cut-off frequencies of 600 Hz and 6000 Hz (fig. S4 B and F). For 
each recording channel and each session, a voltage threshold was set as the following quantity: the 
difference between the 75th percentile and the median of the voltage trace, divided by the 75th 
percentile of the standard normal distribution, and multiplied by a factor of three (67). Each time 
the voltage on one recording channel crossed its threshold, we found the sample having the peak 
voltage among the over-threshold samples and extracted 32 samples (1.02 ms) from each channel 
of the tetrode around the time of the peak sample: from the 7th sample before the peak sample to 
the 24th sample after. These extracted samples were then used for spike sorting. We performed 
spike sorting manually using SpikeSort3D (Neuralynx). Spike sorting was done using a 
combination of features including spike height and peak as well as principal components (fig. S4 
C, D, G, and H). Sorted single units were further assessed for stability across the recording 
session(s). Time periods of stability were manually determined by visual inspection of cluster 
features for long lasting gaps in time of spikes or cessation of activity. Single units were then only 
analyzed during those periods of stability. For each tetrode on each session, after excluding spikes 
belonging to single units and after excluding artifacts based on waveform shape, all remaining 
spikes were grouped into multiunit activity.  

Calculation of LFP spectrograms 

For each vocalization we calculated the LFP spectrogram for each channel. Using sliding windows 
192ms in length and 168ms of overlap, we calculated the LFP power spectrum in each window 
using the multitaper method with a time half bandwidth product of 4. We calculated power at 
integer frequencies between 5 and 150 Hz. We then separately z-scored the power in each 
frequency band for all further analyses. For assessing the relationship of neural activity between 
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brains, LFP spectrograms were reduced to power in high and low frequency bands (5-20 Hz and 
70-150 Hz, respectively). These bands were used in order to reflect dynamics observed across 
many vocalizations. Figure 2A shows an example frequency-normalized, vocalization-averaged 
spectrogram where those bands are clearly present. The average power spectra around vocalization 
onset in shown in fig. S12, with two separate peaks visible within the defined low and high 
frequency bands. Similar frequency bands were found to be behaviorally relevant in a previous 
study of interbrain correlation in bats (22). We repeated the same analyses using the frequency 
bands defined in that study and observed similar results. 

Calculation of firing rates 

Firing rates were calculated by counting spikes in 5ms bins and smoothing with a Gaussian filter 
with a bandwidth of 50ms. For the purpose of determining responsive neurons, baseline firing rates 
were calculated as the average firing rate of each neuron in the range -3s to -2s relative to 
vocalization onset, averaged across all vocalization bouts.  

Vocalization responsive neurons 

In order to assess individual neurons as vocalization responsive we used a change point detection 
algorithm to determine if and when vocalization averaged firing rates changed substantially from 
baseline. We assessed for both self and other responsivity (as well as playback and echolocation 
responsivity). For self responsivity, we considered only calls produced by the bat from which the 
neuron under consideration was recorded from. For other responsivity, we considered only calls 
produced by other bats. Vocalization firing rates were calculated ±3s around call onset for all 
vocalizations separated by at least three seconds (see above for selection of used calls and call 
bouts) and then averaged across all of those instances. The algorithm we used to determine 
responsivity and response latency was the CUSUM method based on Poisson distribution of firing 
rates with multiplicative spike rate shift (68, 69) which attempts to detect changes in firing rates 
compared to a baseline by recursively calculating a cumulative sum of residuals. We used this 
method because it makes few assumptions regarding the profile of response expected and is based 
only on the baseline firing rate. Considering the variety of response profiles we observed in our 
data, including both excitatory and inhibitory responses (Fig. 1C, fig. S5, S17, S18), this method 
provided qualitatively better results than other similar methods (e.g. simple threshold crossing). 
We calculate the CUSUM algorithm as follows: Let {𝑦𝑦1, … , 𝑦𝑦𝑛𝑛} represent data points in a time 
series of firing rates, i.e. the vocalization averaged firing rate and μ0 is the baseline firing rate. 
Then: 

𝑆𝑆0 = 0 
𝑆𝑆𝑡𝑡 = max(0, 𝑆𝑆𝑡𝑡−1 + 𝑠𝑠𝑡𝑡) 
Where  𝑠𝑠𝑡𝑡 =  𝑦𝑦𝑡𝑡𝑙𝑙𝑙𝑙(𝛿𝛿) + (1 − 𝛿𝛿)μ0  
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A neuron is considered responsive if any 𝑆𝑆𝑡𝑡 > 𝛼𝛼 and the response latency is calculated as the first 
time t that 𝑆𝑆𝑡𝑡 > 𝛼𝛼. S is calculated twice with 𝛿𝛿 set to 𝛿𝛿 or 1

𝛿𝛿
 to assess for a positive or negative 

change in firing rate, respectively. If a given neuron is considered responsive for both a positive 
and negative change in firing rate, the response valence is considered the change with the greater 
difference from baseline. Further details and mathematical justification for this approach can be 
found in (69). Here, we set 𝛼𝛼 = 20 and 𝛿𝛿 = 2 based on empirical observation and we consider the 
window ±1s around vocalization onset for responsivity.  

Association of high firing rates with vocalization 

To assess if the firing rates changes we observed around vocalizations can be explained by chance 
association, we compared the fraction of time that high firing episodes of responsive neurons occur 
around vocalizations to the overall fraction of time that vocalizations occur (fig. S6B). We did this 
as follows: for each responsive neuron we calculated the firing rate over the entire session, 
smoothed with a 2s wide Gaussian window and found the top 100 peaks in firing rate separated in 
time by at least 2s. Then, for each peak, we assessed if a vocalization occurred in a window ± 1s 
around that peak. We divided the number of times a vocalization was associated with a firing rate 
peak by 100 and compared with the total fraction of time spent vocalizing (calculated as the sum 
of the duration of all call bouts plus 2s for each bout).  As shown in fig. S6B, nearly all responsive 
neurons fire much more frequently during vocalizations than would be expected by chance (the 
average probability of vocalization during the session), indicating that modulation in neural 
activity was specifically related to vocalization interactions.  

Comparison of call to inter-call interval firing rates  

To determine if firing rates of responsive neurons were modulated with the temporal dynamics of 
call bouts, we compared firing rates during the times when calls were being produced or heard to 
the inter-call intervals immediately surrounding those calls (fig. S6C). To do this, for each call 
bout we calculated 1) the call firing rates as the number of spikes that occurred during calls 
(defined as the time between call onset and offset padded by  ±100ms to account for very short 
calls) divided by the total time spent calling, and 2) the inter-call interval firing rate as the number 
of spikes that occurred during the rest of the call bout (i.e. all time not during calls). For plotting 
purposes, the difference between call and inter-call firing rates were normalized for each neuron 
by the baseline firing rate standard deviation for that cell. For each cell we tested the significance 
of the difference in firing rates using a paired, two sided Wilcoxon signed rank test. As shown in 
fig. S6C, approximately 60% of responsive cells have significantly different firing rates between 
call and inter-call intervals, indicating a precise modulation of activity with the temporal dynamics 
of vocalizations.   

Calculation of firing rate differences by bioacoustic features 

The comparison of firing rates according to bioacoustic features (fig. S8) was performed as 
follows: for each feature the overall median value of that feature across all vocalizations was used 
to split vocalizations and their corresponding firing rates into high and low categories. Then for 
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each cell, if there were at least 10 calls in each category, the firing rate was calculated for each call 
in that category (± 100ms around each call) and the difference was calculated by subtracting the 
averages of all calls in either category. For plotting purposes, the difference between firing rates 
were normalized for each neuron by the baseline firing rate standard deviation for that cell. For 
each cell we tested the significance of the difference in firing rates using a two-sided Wilcoxon 
rank sum test (fig. S8C). 

Linear encoding model 

In order to systematically assess the contribution of different acoustic features to the encoding of 
individual neurons’ firing rates, we built a linear encoding model (schematized in fig. S9A) with 
banded ridge regularization (70) inspired by a recent analysis of cortex wide activity in mice (71). 
Our model used various vocalization-derived features to predict the firing rate of a single neuron. 
In our case, we had three separate feature spaces: binary “call-on”, principal components of call 
spectrograms, and bioacoustic features. Because these features inherently have very different 
distributions, we took advantage of banded ridge which allows for separate regularization of 
different feature spaces. Because we wanted to remain agnostic as to the temporal relationship 
between vocalization features and firing rates, we included as separate predictors time-shifted 
copies (in the positive and negative directions) of each vocalization derived feature. To prevent 
overfitting and accurately assess the predictive capacity of our model, we used a nested cross-
validation scheme to simultaneously determine the ridge regularization parameter and fit our 
model. We then used the Pearson correlation coefficient between the predicted firing rate and the 
actual firing rate as a measure of the encoding capability of our model and compared between 
models with various features removed. 

In detail, we considered only time around call bouts by reducing the entire session into a 
concatenation of all call bouts with ±2s padding. During the span of this concatenated time series, 
we calculated the firing rate of a given neuron by counting spikes in 5ms windows with 1ms step 
size and smoothing with a Gaussian window (20ms standard deviation). Nine total call features 
were calculated on the same time series. “Call on” was simply an indicator variable for if a call 
was occurring at a given time point. Bioacoustic features were calculated as above at 1ms 
resolution, here we used fundamental frequency, RMS, and Weiner entropy. Spectrograms 
principal components were calculated as follows: spectrograms were calculated as the power 
spectral density over time using a 1024-point short-time Fourier transform and a 150ms Kaiser 
window. Those spectrograms were then reduced using principle components analysis to their first 
five principal components to reduce dimensionality and maintain computational tractability. These 
nine call features were then copied and time shifted by 1ms for ± 200ms, and then smoothed by 
averaging every other 1ms for a design matrix with a total of 1,800 predictors. We then regressed 
the observed firing rates on this design matrix in the following way: we split the data into five 
even, contiguous cross-validation folds (each fold Fi consisted of a training set composed of 4/5ths 
of the data, and a test set with the remainder). For each fold, we considered five logarithmically 
spaced possible values for ridge regularization values 10{3…7}. Within each fold we performed a 
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further five-fold nested cross-validation to determine the optimal regularization value. That is, for 
each fold Fi we split the training set into five further folds, then for each nested fold, 𝐹𝐹𝑖𝑖𝑗𝑗, we trained 
and tested 53 different models consisting of every possible combination of regularization 
parameters for each feature space. For each fold Fi separately, we then used the regularization 
parameters that resulted in the lowest average cross-validated mean squared error from the nested 
folds, 𝐹𝐹𝑖𝑖1−5. Finally, for each fold Fi we measured the model fit by assessing the Pearson correlation 
coefficient between the predicted firing rates and the observed firing rates.  

To assess the relative contribution of each feature type (call on, bioacoustics, spectral PCs) we 
calculate its unique encoding contribution by removing the feature from the model and assessing 
the decrease in model fit (fig. S9C “unique”). In order to maintain the same number of predictors 
so that we were comparing similar models, we randomly permuted the time series corresponding 
to that feature, thereby abolishing any relationship between that feature and the firing rate. We also 
wished to assess the contribution of just the binary predictor, “call on.” However, because the other 
call-derived features are trivially highly correlated with the presence or absence of a call, we 
decided to perform the same analysis, but with “call on” regressed (because “call on” is a binary 
variable, regressing out “call on” from other variables consists simply of subtracting off the mean 
of each respective variable whenever a call occurred) out of all the other features to assess how 
well a model using only the residual information would fit (fig. S9C “orthogonal”). The values 
plotted in fig. S9 B and C are the average for all responsive neurons, where each neuron’s value is 
the average across its cross-validation folds.  

Within and across session firing rate correlation 

To quantify the consistency of single neurons’ firing rates around vocalizations within and across 
sessions (Fig. 3F and fig. S18F) we either split the calls in a given session into two groups of every 
other vocalization bout (within session) or one for each session (across sessions) and then 
calculated the average Pearson correlation coefficient for firing rates across all pairs of 
vocalization bouts (Fig. 3F). We assessed the significance of differences across contexts using the 
Wilcoxon rank sum test.   

Comparing neural data between acoustically similar and distinct calls 

To test if acoustic differences between calls produced in the free-communication sessions and the 
operant sessions drove the observed differences in intra- and inter-brain neural activity we 
classified calls as acoustically similar or distinct across sessions. This allowed comparing firing 
rates of all self and other responsive neurons and interbrain correlation across bat pairs during 
similar and distinct calls between the two sessions. To classify calls as acoustically similar or 
distinct between the free-communication and operant sessions (fig. S18 I and J) we took the 
following approach: using all calls from both sessions, we trained a binary classification decision 
tree to classify calls according to session type using the calls’ bioacoustic features (fundamental 
frequency, call length, aperiodicity, and Wiener entropy). We limited the decision tree to a 
maximum of two splits in order to identify the most relevant features for classification. Those 
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features were aperiodicity and Weiner entropy. After fitting the classification tree, we extracted 
the values for those features at the two split points of the decision tree. We then defined 
acoustically “similar” calls as calls which had aperiodicity and Weiner entropy values within ±1 
standard deviation of their respective split points. This resulted in selecting only those calls that 
were acoustically overlapping across sessions. Acoustically “distinct” calls were defined as all 
other calls, i.e. those calls that generally only occurred in one session or the other.  

To calculate the difference in firing rates of responsive neurons within a given session between 
acoustically “distinct” and “similar” calls (fig. S18I, left) we performed the following analysis. 
First we calculated the average firing rates of each responsive cells in each session separately in 
the window ±500ms around the onset of each used calls and then calculated the difference between 
average firing rates during “distinct” calls and “similar” calls. Only cells for which we had at least 
10 used calls of either type were used for this analysis (n = 146 neurons). Similarly, to calculate 
the difference in firing rates of responsive cells during acoustically “similar” calls, but across 
sessions (fig. S18I, right), we performed the following analysis. We first calculated the average 
firing rates of each cell that was used in both sessions and responsive in either session in the 
window ±500ms around the onset of each used calls in both sessions and then calculated the 
difference between average firing rates across sessions only during acoustically “similar” calls. 
Only cells which had at least 10 used calls of either type were used for this analysis (n = 51 
neurons). To determine if the difference in interbrain correlation we observed across sessions was 
driven by acoustic differences, we used the same approach and calculate the average interbrain 
correlation during acoustically “similar” and “distinct” calls during each session (fig. S18J). 

Pairwise interbrain correlation 

To assess for pairwise interbrain correlation between bats as they vocally interacted, we took a 
similar approach to (22) and calculated the correlation between brains in different frequency bands 
of LFP power. However, here we compute the correlation around moments of social 
communication (vocalizations) and at a much finer time scale than done previously. In detail, we 
calculated the Pearson correlation coefficient of the power of the LFP spectrogram averaged in a 
given frequency band (5-20Hz and 70-150Hz) between pairs of bats. We did so using a sliding 
window of 0.5s and a step size of 0.25s in the range ± 2.5s around each vocalization separated in 
time by at least 3s. Correlation coefficients were calculated for each pair of bats, for each pair of 
16 tetrode channels on each bat, for each vocalization, and for each time window. Correlation 
coefficients were then averaged across all pairs of tetrodes, resulting in one correlation coefficient 
per vocalization, bat pair, and time window. We did not include any vocalizations where artifacts 
in any LFP channel were detected.  

For correlation in spiking data (single units and multi-unit activity), we performed the same 
analysis, but using the firing rates (calculated as described above) of the corresponding spiking 
signal instead. 

Interbrain conditional Granger causality 
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We used the multivariate granger causality (MVGC) toolbox (72) to calculate Granger causality 
(GC) values around vocalizations in the high frequency (70-150Hz) power of the LFP which had 
an effective sampling rate of 41.6Hz (see above). We only used vocalizations where all tetrodes 
of all bats in a group were artifact free. We performed GC calculations in 1s long windows ±3s 
around call onset with a step size of 0.25s. Here we average LFP power across channels of each 
tetrode to maintain computational tractability such that each bat was characterized by four channels 
instead of 16. The MVGC toolbox calculates GC by modelling time series data as a vector 
autoregressive (VAR) process with a certain order, or lag, p. The Akaike information criterion was 
used to estimate the proper order of the VAR(p) model with a maximum lag of 20 samples 
(equivalent to 480ms). By windowing the data and using all vocalizations for each VAR estimate 
in so-called “vertical regression” we mitigate the strict stationarity requirements for GC analysis. 
In each window we calculated the GC value of each bat pair conditioned on the activity of the 
other bats present. Non-conditional GC, 𝐹𝐹𝑌𝑌→𝑋𝑋 , intuitively, measures the increase in predictability 
of a (potentially multivariate) time series X using past values of X and a separate time series Y 
beyond the predictability using only past values of X. Conditional GC, 𝐹𝐹𝑌𝑌→𝑋𝑋|𝑍𝑍 includes the 
possibility that other separate variable(s) Z drive both X and Y. It measures the increase in 
predictability of X given X, Y, and Z beyond the predictability using just X and Z. This allowed 
us to measure the increase in predictability of a given bat’s, Bat1, neural activity using the neural 
activity of Bat2 while simultaneously accounting for the activity of Bat3…N. Each bat’s neural 
activity is a multivariate time series corresponding to the four time series obtained by averaging 
activity within each tetrode. By calculating this value for all bat pairs and in both directions, we 
obtain a connectivity matrix that represents the interbrain connectivity patterns across all bats in a 
group. This can be referred to as a “Granger causal graph” (72). Granger causal graphs can be 
displayed equivalently in graph or matrix form (Fig. 2E; fig S14, B, C and G). We used bits as the 
units for GC values reported here following the asymptotic equivalence between GC and transfer 
entropy (73). All GC calculations were done separately for each group and experimental session. 

To compare GC values across conditions and bats we subtracted a baseline level calculated during 
the period >1.5s before the call (Fig. 2, F and I; fig. S14, E and F). In this way, we could directly 
compare the change in GC from a baseline level to values around vocal interactions.  

To determine if the observed GC values were due to precisely coordinated activity rather than 
simple co-activation of LFP power across bats, we created a trial-shuffled distribution of GC 
values by bootstrap. For each bat pair we randomly shuffled the vocalization “trial” order of one 
of those bats LFP activity and recalculated the GC values 1,000 times (fig. S14D). 

Because we used all vocalization to fit a given VAR model, we did not have the capability to 
estimate trial-by-trial variation in GC to obtain distribution estimates. For values averaged over 
bats (Fig. 2, F and I), error bars are estimated as the SEM across bats. For distribution estimates 
for individual bats, we used the MVGC toolbox routine bootstrap_tsdata_to_mvgc which 
randomly resamples the full VAR model residuals and adds those to the model predictions to form 
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surrogate time series. GC values were then calculated for those time series. This process was 
repeated 1,000 times and distributions were estimated based on the results (fig. S14E). 

To assess the stability of interbrain connectivity patterns we sorted all vocalizations produced 
across all experimental days by time and grouped them into nine time bins such that each bin had 
the same number of vocalizations. Succeeding bins then represent steps in time, but each step is 
not necessarily uniform (due to the variable number of vocalizations produced each day). We then 
calculated Granger causal matrix for each bin and calculated the correlation of each bin’s matrix 
with all other bins to estimate the degree of similarity across time (Fig. 2G). Bin-to-bin changes in 
connectivity matrices were also examined to validate the stability over time (Fig. 2H). We 
compared these values to a shuffled distribution using a Mantel test to assess for significance by 
using the same values in each bin’s vector, but first randomly permuting the rows and columns of 
the corresponding Granger causal matrices, so that bin to bin values did not represent the same bat 
pair (Fig. 2, G and H).  

Interbrain transfer entropy 

Granger causality entails the assumption that the time series in question can be modeled by vector 
autoregressive process. This assumption may be violated by if the time series has long-term 
memory (i.e. autocorrelation does not decay exponentially) or if there exists a strong, slow moving 
average component (72). These assumptions may be violated by LFP data. We therefore performed 
a complementary analysis using transfer entropy (TE), an asymptotically equivalent measure to 
Granger causality (73). We used the neuroscience information theory toolbox (74) to calculate TE 
values around vocalizations in the high frequency (70-150Hz) power of the LFP which had an 
effective sampling rate of 41.6Hz (see above). We only used vocalizations where all tetrodes of 
all bats in a group were artifact free. As with the GC calculation described above, TE was 
calculated “vertically” across trials which mitigates the stationarity assumptions of TE generally. 
The values of the continuous LFP power data were binned (not in time) into 10 discrete states. 
Then, at each time point in the time series, 𝑇𝑇𝑇𝑇(𝑋𝑋 → 𝑌𝑌) = 𝐼𝐼(𝑌𝑌𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓;𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) was calculated 
where the past state occurs one time step before the future state (fig. S15B). Unlike GC analysis, 
TE does not as readily admit of incorporating multivariate (greater than 2) data. 

Analysis of identity selectivity 

Identity selectivity of single neurons 

In order to quantify which single neurons were identity selective (Fig. 1 F-H and fig. S11), we 
looked at firing rates of neurons recorded in bats that were listening to vocalizations and asked if 
we could decode the identity of the vocalizing bat. This analysis was performed for each single 
neuron from bats that had heard at least 10 separate used calls from at least 2 other bats (N = 669 
single neurons). For each neuron we trained one-vs-all logistic regression classification models to 
decode the identity of each other bat (if it produced at least 10 separate vocalization bouts) based 
on that neuron’s firing rates during vocalizations. In detail, given bats Bat1…B and a single neuron 
from Bat1 (“self-bat”), classifiers were trained to decode from that neuron’s firing rate the identity 
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of Bat2 (“target-bat”) vs. Bat3…B (“non-target-bats”), then Bat3 vs. Bat2,4,…B, etc. We collected all 
vocalization bouts from the target-bat and all bout from non-target-bats and calculated the time-
varying firing rates during each call in a window ±1s around the start of the bout in windows of 
250ms. Next, we fitted a logistic regression classifier on the observed firing rates to predict if a 
vocalization came from the target-bat or non-target-bats and tested the classifier using five-fold 
cross-validation. The reported classification accuracy is the average classification accuracy across 
cross-validation folds. To test the statistical significance of the classification accuracy, we 
performed a permutation test with 10,000 repetitions by randomly permuting the labels of “target-
bat” and “non-target-bat” and retraining the model in the same cross-validated manner as above. 
Because we tested up to N-1 one-vs-all classifiers, we used the Benjamini-Hochberg procedure to 
control the false discovery rate (FDR) at a level of 0.05 for each individual neuron. A neuron was 
considered “identity selective” if at least one of the classifiers had a significant classification 
accuracy.  

Identity selectivity using acoustic features 

We tested if vocalization acoustic features alone could reproduce the identity selectivity observed 
in single unit responses (Fig. 1H). We took the same approach used for each single neuron, but 
instead of firing rates we substituted a collection of call-averaged bioacoustic features (F0, Weiner 
entropy, RMS, call length, spectral centroid, and aperiodicity) for each call that occurred in the 
same window we used for calculating firing rates and kept all other parameters the same. 

Identity selectivity using spatial position 

We tested if the spatial positions of individual bats during the vocalizations produced in the free 
communication session alone could reproduce the identity selectivity observed in single unit 
responses (fig. S25). We took the same approach described above for each single neuron, but 
instead of firing rates we used either the position of the target-bat or the distance between the self-
bat and the target-bat at the time of the vocalization. 

Identity selectivity over time 

To calculate decoding accuracy of single neurons over time we performed the same analysis on 
the same window size of 2s starting at 3s before the start of a call until 3 seconds after the call with 
a step size of 1s. For Fig. 1G we selected all significantly identity selective neurons at zero time-
lag and found the average decoding accuracy of those neurons over time when decoding the 
identity of the bat(s) that they were selective for at zero time-lag. We also plot, for comparison, 
the decoding accuracy of the same neurons, but for the identity of the other bats present in the 
chamber for which that neuron was not selective. 

Effect of proximity and participation on identity selectivity 

In order to verify that the identity selectivity that we observed was not due to proximity or distance 
between bats (e.g. that one bat is consistently further away than all other bats), we used the 
behavioral annotation of spread and grouped interactions (see above; grouped interactions are 
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interactions where all bats were clearly in physical contact with one another) to exclude all non-
grouped interactions and therefore guarantee relatively small distances between bats during these 
interactions. We then performed the same single unit analysis as above, this time only including 
interactions that were annotated as grouped. There were 1,501 such grouped interactions, which 
resulted in a total of N = 37 previously identified identity selective neurons that still met the criteria 
for a sufficient number of vocalizations using only grouped interactions (fig. S11B).  

We took a similar approach in order to verify that the identity selectivity we observed was not due 
to participation or lack of participation in vocal interactions. As an example, if we recorded a 
neuron from self Bat1 that was selective for target Bat2 it could have been the case that target Bat2 
vocalizes primarily when it is interacting with the self-bat and that the self-bat was not involved 
in vocal interactions with other bats. In that case, the observed identity selectivity could have been 
because the self-bat was physically active when target Bat2 called, but inactive during all the other 
bats’ vocalizations. To control for this and other similar situations, we used the behavioral 
annotation of participants in vocal interactions to exclude all interactions that involved the self-
bat. In this way, we limited the available interactions to those where the self-bat was effectively a 
bystander so that its behaviors during all such interactions were more similar. We performed the 
same single unit analysis as above, this time only including interactions not involving the self-bat. 
This resulted in a total of N = 19 previously identified identity selective neurons that still met the 
criteria for a sufficient number of vocalizations using interactions not involving the self-bat (fig. 
S11C).  

For both controls for proximity and self-bat involvement we decreased the amount of available 
data according to a certain behavior and observed a decrease in decoding accuracy on average. To 
test if that decrease in accuracy is greater than what we would expect by randomly excluding trials, 
we estimated the expected change in accuracy when randomly subsampling the available calls to 
the same number of calls available for both above two analyses. We repeated this subsampling 
1,000 times for each neuron and found the 95% confidence interval using that distribution. The 
average lower bound of that interval across identity selective neurons included in fig. S11, B and 
C is plotted. We found that for only 3/37 and 1/19 neurons in the proximity and self-bat controls, 
respectively, were lower than their individually calculated lower bounds, indicating that the 
decrease in accuracy that we observed could be due to chance and not due to proximity or self-bat 
interactions. 

Self vs. other selectivity 

In order to determine which single neurons were self vs. other selective (Table S2), we used the 
same decoding approach as when decoding individual bat identity. Here, the target-bat was the 
self-bat and the non-target-bats were all other bats.  

Impact of caller cluster status on identity selectivity and interbrain correlations 

In order to assess the impact of caller cluster status on neural activity in the free communication 
session, we asked whether a significant difference existed in single neuron identity decoding 
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accuracy and inter-brain correlation according to the cluster status of the caller. We used inter-
brain correlation instead of Granger causality for this analysis because we could calculate inter-
brain correlation on a call-by-call basis. Granger causality values were estimated using many calls 
at once and could therefore not be analyzed on a call-by-call basis. 

To test if the cluster status of the calling bat had an effect on the accuracy with which pre-identified 
identity selective neurons could decode the identity of a target bat, we examined the cross-
validated decoding accuracy values of all identity selective neurons. We used each accuracy value 
for all pairs of identity decoding neurons and target bats that had a bootstrap p-value less than 0.05 
(n = 68 neuron-bat pairs). We then grouped identity decoding accuracy values according to the 
cluster status of the target-bat (Fig. 4H and fig. S26) and calculated the percent difference between 
the average values in either group. To test if this difference was significant, we fit a linear mixed-
effects model to predict identity decoding accuracy values. In this model the only fixed effect was 
the cluster status of the target-bat. The other predictors, self-bat identity and recording date, were 
considered nuisance covariates and taken as random effects in order to control for them. We then 
performed a likelihood-ratio test between the model containing all predictors and the reduced 
model not containing the cluster status of the target-bat.  

To test if a difference existed in the interbrain correlation between pairs of bats when an in-cluster 
bat vocalized compared to an out-of-cluster bat, we used the average interbrain correlation values 
in the window ±250ms around call onset (this window was chosen to capture to increase in inter-
brain correlation observed around calls Fig. 2C) from all pairs of bats for all usable calls (excluding 
artifact contamination as described above; n = 5,758 calls and bat pairs composed of 1,569 calls 
and 6 bat pairs). Interbrain correlation values were then grouped according to the cluster status of 
the calling bat (Fig. 4I) and we calculated the percent difference between the average values in 
either group. To assess the effect of the calling bat’s cluster status on the elicited interbrain 
correlation, we used a linear mixed-effect model with cluster status as the fixed effect and bat pair 
identity and recording date as the two random effects. Significance was assessed using a 
likelihood-ratio test comparing the full model to a reduced model without the cluster status of the 
caller. This test was repeated for different subsets of the data including only pairs of bats that were 
both listening (i.e. pairs not including the calling bat) (fig. S27A), only pairs of bats that included 
both one in-cluster bat and one out-of-cluster bat (fig. S27B), and only pairs of bats that included 
two in-cluster bats (fig. S27C). The final control we performed was to include the distance between 
each pair of bats during each vocalization in the free-communication session as an additional fixed 
co-variate in the model followed by performing the same test of significance (fig. S27D).  

To assess if the difference in interbrain correlation was persistent across days, we sorted all 
vocalizations produced across all experimental days by time and binned them into nine bins such 
that each bin had equal number of vocalizations. Succeeding bins then represent steps in time, but 
each step is not necessarily uniform (due to the variable number of vocalizations produced each 
day). We then calculate the interbrain correlation during calls from bats with different cluster status 
in each bin (Fig. 4J).  
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To assess if the difference in interbrain correlation we observed was large relative to other possible 
subgroupings of bats aside from according to cluster status, we calculated the difference in 
interbrain correlation for all possible subgroupings of bats into two groups such that each group 
had at least 1,000 call and bat pair observations (n = 146 subgroupings; Fig. 4K). 
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Chapter 6: Supplementary Figures for chapter 2 
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