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The NMDA receptor (R) participates in many important physiological and pathological
processes. For example, its activation is required for both long-term potentiation (LTP)
and long-term depression (LTD) of synaptic transmission, cellular models of learning and
memory. Furthermore, it may play a role in the actions of amyloid-beta on synapses
as well as in the signaling leading to cell death following stroke. Until recently, these
processes were thought to be mediated by ion-flux through the receptor. Using a
combination of imaging and electrophysiological approaches, ion-flux independent
functions of the NMDAR were recently examined. In this review, we will discuss the
role of metabotropic NMDAR function in LTD and synaptic dysfunction.

Keywords: ion-flux independent, FRET-FLIM, long-term depression (LTD), NMDAR interactions with CaMKII,
amyloid-beta induced depression, PP1, excitotoxicity

INTRODUCTION

Transmembrane receptors have traditionally been divided into two classes: ionotropic and
metabotropic. Ionotropic glutamate receptors (iGluRs) form channels that allow the passage of
ions into the cell to drive signaling, while metabotropic glutamate receptors (mGluRs) generate
downstream effects without ion-flux. The boundary between these two classes is not completely
distinct, as there has been evidence that several iGluRs are capable of producing effects in the
absence of ion-flux. For example, the N-terminal domain of GluA2, a subunit of the AMPA
receptor (AMPAR), is sufficient to promote spine formation in hippocampal neurons (Passafaro
et al., 2003). Another iGluR, the kainate receptor, can modulate GABA transmission without
ion-flux (Rodríguez-Moreno and Lerma, 1998).

The NMDA receptor (NMDAR), a member of the iGluR family, is ubiquitously expressed
and plays numerous roles in the brain (Traynelis et al., 2010). Given its ability to conduct
calcium ions (Ca2+) well, it has been assumed that downstream signaling triggered by NMDARs
was mediated by Ca2+ influx and increased cytoplasmic Ca2+. However, to allow Ca2+ entry
through the receptor, several conditions have to be fulfilled: (1) glutamate must bind to
GluN2 subunits; (2) glycine, the co-agonist must bind to GluN1 subunits; and (3) neurons
must be sufficiently depolarized to eliminate the voltage-dependent magnesium ion (Mg2+)
block of the channel. During high-frequency stimulation (HFS) these three conditions are
met resulting in long-term potentiation (LTP; Bliss and Collingridge, 1993). For long-term
depression (LTD), however, the role of the NMDAR is not as clear. A long-standing model
has proposed that while LTP requires a large increase in cytoplasmic Ca2+, a moderate rise
in cytoplasmic Ca2+ would produce LTD (Lisman, 1989; Malenka, 1994). However, several
recent studies indicate that NMDARs can induce LTD without ion-flow through the receptor
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(Nabavi et al., 2013; Dore et al., 2015; Stein et al., 2015; Carter and
Jahr, 2016). Other publications have shown that excitotoxicity
as well as amyloid-beta-induced synaptic depression depend
on NMDAR activity but are likewise independent of ion-flow
(Kessels et al., 2013; Tamburri et al., 2013; Birnbaum et al., 2015;
Weilinger et al., 2016). In this review, we will discuss how these
studies probed NMDAR metabotropic activity with an emphasis
on the imaging techniques used.

NMDAR-DEPENDENT LTD CAN BE
INDUCED INDEPENDENTLY OF ION-FLUX

Interestingly, evidence for ion-flux independent LTD can
be observed in data from older literature. Over 20 years
ago, data were published indicating that MK-801, which
blocks NMDAR channels, blocked LTP but failed to block
LTD (Mayford et al., 1995). A similar effect was obtained
by a different group (Scanziani et al., 1996). Surprisingly,
these observations were not discussed in either study. The
ion-flux dependence of LTD was recently examined more
closely (Nabavi et al., 2013). Low-frequency stimulation
(LFS) produced LTD in the presence of either MK-801 or
7-chloro-kynurenate (7CK, a competitive GluN1 antagonist;
see Figure 1A) but not APV (a competitive GluN2 antagonist);
all three antagonists effectively blocked ion-flux through the
NMDAR. Moreover, LTD was observed in experiments in which
intracellular Ca2+ was clamped to basal levels, suggesting that
a rise in intracellular Ca2+ is not required for LTD. It was
thus proposed that glutamate binding to the NMDAR could
induce a conformational change in the cytoplasmic domain
of the NMDAR that triggers downstream signaling resulting
in LTD.

To test if ligand binding could drive movement of the
NMDAR intracellular domain, FRET-FLIM [Forster resonance
energy transfer measured by fluorescence lifetime imaging of the
FRET donor, see Toolbox and (Wallrabe and Periasamy, 2005;
Yasuda, 2006)] was employed (Dore et al., 2015). Recombinant
GluN1 subunits of the NMDAR were tagged with GFP or
mCherry at their carboxyl(c)-terminus and co-expressed in
neurons. As the magnitude of FRET is very sensitive to
the distance and orientation of the interacting fluorophores,
nanometer-scale changes in distance can be reliably detected.
Bath application or uncaging of glutamate in the presence
of MK-801 or 7CK, but not APV, produced a transient
change in FRET consistent with conformational movement
of the NMDAR cytoplasmic domain (Figure 1B). Infusing
neurons with a GluN1 c-terminus antibody through a patch
pipette blocked the ligand-driven FRET change as well as LTD,
suggesting that this conformational change is required for LTD
induction.

Downstream signaling events were also examined using
FRET-FLIM (Aow et al., 2015). Protein-phosphatase 1 (PP1)
is one of the first molecules whose activity was shown
to be required for LTD (Mulkey et al., 1993) and it
co-immunoprecipitates with the NMDAR complex (Husi
et al., 2000). FRET between GluN1-GFP and PP1-mCherry,
observed in baseline conditions, was transiently reduced

during chemical LTD induction. This ligand-driven decrease
in FRET required NMDAR conformational movement but
not PP1 activity (Aow et al., 2015). It is possible that
the transient movement of PP1 relative to the NMDAR
cytoplasmic domain exposes the catalytic active site of PP1
to a target unavailable under basal conditions. One potential
target is calcium-calmodulin dependent protein kinase II
(CaMKII; Strack et al., 1997), which is recruited to the
NMDAR complex during LTP stimuli (Otmakhov et al.,
2004) and whose activity is required for both LTP (Malenka
et al., 1989; Malinow et al., 1989; Silva et al., 1992) and
LTD (Coultrap et al., 2014). By monitoring FRET between
fluorescently-tagged GluN1 and CaMKII, a delayed decrease
in the NMDAR-CaMKII interaction was observed during ion-
flux independent LTD (Aow et al., 2015). This effect depended
on PP1 activity and was not seen with a CaMKII mutant
that cannot be dephosphorylated at Thr-286 (CaMKII-Thr-
286-Asp), suggesting that dephosphorylation of Thr-286 is
necessary to modify the NMDAR-CaMKII interaction (Aow
et al., 2015). Co-immunoprecipitation experiments additionally
revealed that the amount of total CaMKII bound to the NMDAR
was unaffected by ion-flow independent LTD, whereas levels
of phosphorylated Thr-286 were reduced both during and
after LTD induction (Aow et al., 2015). These results are
consistent with a model for ion-flux independent LTD in which
glutamate binding to the NMDAR induces a conformational
change in the NMDAR intracellular domain that facilitates
PP1 access to and dephosphorylation of CaMKII at Thr-286,
thereby repositioning the CaMKII holoenzyme within the
NMDAR complex. The relocated CaMKII could in turn
potentially act on a novel site of the GluA1 subunit (Ser-567)
that undergoes phosphorylation during LTD (Coultrap et al.,
2014). Consistent with this model, CaMKII phosphorylation of
GluA1-Ser-567 does not require Ca2+ or calmodulin (Coultrap
et al., 2014). Ultimately, this process could increase AMPAR
endocytosis (Lüscher et al., 1999; Lin et al., 2000; Kim
et al., 2001; Shi et al., 2001) and lead to depressed synaptic
transmission.

Ion-flow independent NMDAR activation of downstream
signaling pathways has also been linked to shrinkage of
dendritic spines (Stein et al., 2015). Stein et al. used 2-
photon laser scanning microscopy (TPLSM) to monitor
structural changes in the dendritic spines of GFP-
expressing hippocampal neurons. Low-frequency uncaging
of glutamate produced a ∼20% decrease in spine size
that was independent of ion-flow through the NMDAR
(Figure 1C). While high-frequency glutamate uncaging
produced an increase in spine volume, the same stimulus
in the presence of either 7CK or MK-801 led to spine
shrinkage. This result is consistent with the finding that
HFS (delivered electrically) in the presence of MK-801
produces LTD instead of LTP (Nabavi et al., 2013). Spine
shrinkage was also abolished when p38 MAPK activity
was blocked (Stein et al., 2015), which is again consistent
with the observation that levels of phosphorylated p38
(which is the active form) were increased during ion-flow
independent LTD (Nabavi et al., 2013). In the future, it will
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be important to elucidate how the initial movement in the
NMDAR cytoplasmic domain subsequently affects signaling
molecules, such as cofilin, calcineurin and p38, implicated
in LTD.

An ion-flux-independent mechanism for NMDAR-
dependent LTD has been challenged by some recent studies
(Babiec et al., 2014; Volianskis et al., 2015; Sanderson et al.,
2016) but confirmed by others (Kim et al., 2015; Stein
et al., 2015; Carter and Jahr, 2016). It is notable that the
experimental conditions used in these recent studies that failed
to detect ion-flux-independent LTD were not identical to
those supporting this form of LTD. For instance, NMDAR

antagonists were typically acutely washed in and then out
of the preparation during LTD induction (Volianskis et al.,
2015), instead of being present throughout the experimental
duration. Furthermore, control pathways, which monitor
transmission onto the same neurons but do not receive the
conditioning stimulus, were generally not included (Babiec
et al., 2014; Volianskis et al., 2015; Sanderson et al., 2016). These
differences in methodology are significant and can make an
impact in the outcome and interpretation of results (Nabavi
et al., 2014). Therefore, it will be important to compare carefully
the experimental conditions employed by different studies.
Nevertheless, it remains possible that two different, independent

TOOLBOX | FRET measurements using fluorescence lifetime imaging microscopy.

FRET is a non-radiative energy transfer mechanism between two fluorescent molecules. There are two main requirements for successful FRET. First the fluorescence
emission of the FRET donor must overlap with the FRET acceptor absorption spectrum; and second, these fluorescent molecules must be no more than ∼10 nm
apart from each other (Lakowicz, 2006). This spatial requirement of FRET is very sensitive; it can thus be used as a “molecular ruler” to assess protein structure
(Gustiananda et al., 2004) or to monitor subtle conformational changes (Dore et al., 2015).

FRET can be measured by acquiring a series of images in different combinations of excitation and emission channels or by photobleaching of the FRET acceptor.
However, these methods are prone to errors and are generally not well suited for measurements in living cells expressing fluorescent proteins (Selvin, 2000;
Yasuda, 2006; Piston and Kremers, 2007). Fluorescence lifetime is defined as the average time a molecule stays in its excited state before emitting a photon (A).
Because lifetime is an intrinsic property of fluorophores, it is independent of experimental conditions such as concentration, excitation intensity and photobleaching
(Lakowicz, 2006; Yasuda, 2006). Importantly, by adding an additional route for the donor fluorophore to return to ground state, the degree of FRET makes the
fluorescence lifetime of the donor proportionally shorter (A,B). To measure fluorescence lifetimes, the most common approach is time correlated single photon
counting (TCSPC; Becker et al., 2004) which calculates the time delay between the detection of fluorescence photons and laser excitation pulses (B). When TCSPC is
combined with laser scanning microscopy, it is possible to obtain fluorescence lifetimes, and hence detect changes in donor-acceptor distances, at every pixel of an
image (B,C).

FRET-FLIM. (A) Jablonski diagram of FRET donor and acceptor energy levels. After excitation by a 1-photon (blue arrow) or 2-photon (brown arrows) laser,
the FRET donor can return to ground state by emitting a photon (green arrow) or by transferring its energy to a nearby acceptor (dashed green arrows). (B) The
fluorescence lifetime of the FRET donor, which becomes shorter with increased proximity of the FRET acceptor, is calculated with the fluorescence decay curve.
(C) Time-correlated single photon counting (TCSPC) records fluorescence decay curves for each pixel of an image. By fitting these curves, the fluorescence lifetime
of the FRET donor can be assessed. The FLIM image is then color coded according to the FRET donor lifetime at each pixel.
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FIGURE 1 | Ion-flux independent long-term depression (LTD). (A) APV, but not 7-chloro-kynurenate (7CK), blocks LTD. LTD (1 Hz, black bar) was delivered to
the test pathway (black symbols), while the control pathway (red symbols) received no stimulus; the slice was incubated in APV (top) or 7CK (bottom) throughout the
experiment. Note that there was no change to the control or test pathway in APV, as expected, whereas the test pathway was significantly depressed after LTD
induction in 7CK; representative of N = 15, APV, p > 0.05 LTD; N = 15, 7CK, p < 0.01 LTD. Insets: superimposed traces obtained before and after LTD in the test
(black line) and control (red line) pathways. Scale bars 0.3 mV, 5 ms. Modified from Nabavi et al. (2013). (B) Chemical LTD induction (+NMDA) resulted in spines that
exhibit less Förster Resonance Energy Transfer (FRET; and higher GFP fluorescence lifetimes; ps = picoseconds) between the GFP- and mCherry-tagged GluN1
subunits (see Toolbox ), indicating movement of the NMDAR cytoplasmic domain. Modified from Dore et al. (2015). (C) A low frequency glutamate uncaging
protocol (LFU), similar to the 1 Hz electrical stimulation in (A), induced spine shrinkage both in vehicle or 7CK-incubated GFP-expressing neurons, indicating that
ion-flux through the NMDAR is not required for spine shrinkage. Modified from Stein et al. (2015).

forms of NMDAR-dependent LTD exist: one that requires
ion-flow through NMDARs and one that does not. Different
experimental conditions could selectively recruit either of these
two forms.

TRAFFICKING OF NMDAR IS REGULATED
BY SYNAPTIC ACTIVITY BUT NOT
ION-FLUX

In addition to its more recently described role in LTD, a
few older studies have indicated that ligand binding to the
NMDAR, in the absence of ion-flux, could control NMDAR
trafficking (Vissel et al., 2001; Barria and Malinow, 2002;
Nong et al., 2003). The Westbrook lab showed that even
with its pore blocked, ligand binding to the NMDAR drove
tyrosine dephosphorylation of GluN2A subunits, resulting
in NMDAR endocytosis and decreased NMDA currents.
Another group separately observed that an initial application

of glycine was sufficient to prime NMDARs for subsequent
use-dependent endocytosis, again leading to a decline in
NMDA currents (Nong et al., 2003). Moreover, synaptic
replacement of GluN2B- with GluN2A-containing NMDARs, an
important developmentally controlled process (Hestrin, 1992;
Monyer et al., 1994; Sheng et al., 1994; Stocca and Vicini,
1998; Tovar and Westbrook, 1999), required ligand binding
without ion flux (Barria and Malinow, 2002). Interestingly,
the replacement of synaptic GluN2B-containing NMDARs by
newly synthetized GluN2B-containing NMDARs did not require
ligand binding. It is important to note that these effects
on NMDAR trafficking required both agonist and co-agonist
binding to NMDARs as they were blocked by antagonists
to the glutamate binding site on GluN2 subunits or to the
glycine binding site on GluN1 subunits (Vissel et al., 2001;
Barria and Malinow, 2002; Nong et al., 2003); in contrast, LTD
only requires ligand binding to GluN2 subunits (Nabavi et al.,
2013).
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FIGURE 2 | Metabotropic NMDAR activity can induce synaptic dysfunction. (A) APP-CT100 overexpression depresses synaptic transmission without ion-flux.
Model figure for a dual whole-cell recording of an infected and a neighboring uninfected CA1 neuron (top left) and an example trace of evoked AMPA receptor
(AMPAR) currents of such a recording (top right). Bottom, results from paired-recordings performed in ACSF containing no drug (N = 41), Ro 25-6981 (N = 37) or
MK-801 (N = 25); ∗∗ indicates p < 0.001. Modified from Kessels et al. (2013). (B) Spine density is reduced in a transgenic mouse model of Alzheimer’s disease (AD),
APV blocks the effect but not memantine. Scale bar, 5 µm. Modified from Birnbaum et al. (2015). (C) Sustained NMDA application causes excito-toxic insults to CA1
neurons in the form of blebbing of dendrites (left panels). This effect is blocked by APV and CGP-78608 (middle panels) but not MK-801 (right panels). Scale bar,
25 µm. Modified from Weilinger et al. (2016).

METABOTROPIC NMDAR ACTIVITY CAN
INDUCE SYNAPTIC DYSFUNCTION

Recent results have suggested a role for metabotropic NMDAR
activity in amyloid-beta mediated synaptic dysfunction, which
may contribute to hippocampal deficits in Alzheimer’s disease
(AD) and precede neurological symptoms by a decade or
more (Terry et al., 1991; Reiman et al., 1996). A number
of studies using electrophysiology and imaging have reported
that amyloid-beta impairs LTP, depresses synaptic transmission
and induces synapse loss in various hippocampal preparations
(Chapman et al., 1999; Larson et al., 1999; Walsh et al., 2002;
Wang et al., 2002; Kamenetz et al., 2003; Snyder et al., 2005;
Hsieh et al., 2006; Shankar et al., 2007; Wei et al., 2010;
Birnbaum et al., 2015). The effect of intracellularly delivered
amyloid-beta is not clear, as one report indicated synaptic
depression (Ripoli et al., 2014) while another indicated synaptic
potentiation (Whitcomb et al., 2015). In many of these studies
the electrophysiological results could be corroborated using
imaging. For instance, Wei et al. (2010) used TPLSM to show
that GFP-filled dendritic spines close to axons or dendrites
overexpressing amyloid-beta displayed a smaller increase in
spine volume following a chemically-induced LTP protocol
as compared to more distant spines, suggesting that secreted
amyloid-beta impaired LTP. Hsieh et al. (2006) used TPLSM of
AMPARs tagged with the pH-sensitive GFP-variant SEP (Super-
Ecliptic-Phluorin) to measure surface AMPARs and found that
amyloid-beta reduced surface GluA1 and GluA2. Likewise,
immunostaining and imaging primary cultures treated with
amyloid-beta revealed a reduction in surface NMDARs (Snyder
et al., 2005) and AMPARs (Almeida et al., 2005; Alfonso et al.,
2014). The decrease in synaptic AMPAR and NMDAR currents
correlates, therefore, with a decrease in surface receptors as
determined with optical techniques. Finally, several groups have

shown using TPLSM or confocal microscopy that endogenously
expressed or exogenously applied amyloid-beta reduces spine
density in GFP-expressing neurons (Hsieh et al., 2006; Shrestha
et al., 2006; Calabrese et al., 2007; Shankar et al., 2007; Wei
et al., 2010; Zempel et al., 2010), which may explain the
electrophysiologically observed decreased frequency ofminiature
excitatory postsynaptic currents (Kamenetz et al., 2003; Hsieh
et al., 2006). Therefore, amyloid-beta induces synaptic insults
that can be directly observed through imaging.

A mechanism proposed to account for synaptic impairment
by amyloid-beta is enhanced ionotropic glutamate receptor
endocytosis. Indeed, there is evidence that inhibiting endocytic
signaling pathways or overexpressing mutant endocytic-resistant
receptors can ameliorate the reduction in AMPAR and/or
NMDAR currents (Snyder et al., 2005; Hsieh et al., 2006; Knafo
et al., 2016). Notably, Kessels et al. (2013) reported that despite
block of ion flux, not all NMDAR antagonists prevented amyloid-
beta-induced depression of AMPAR-mediated transmission.
The GluN2 antagonists (R)-CPP, Ro25-6981, and ifenprodil
afforded a complete block; whereas the GluN1 antagonist
7CK and the NMDAR pore blocker MK-801 had no effect
(Figure 2A; Kessels et al., 2013). Thus, the block of depression
correlated with actions on different NMDAR subunits rather
than block of ion-flux. In another model, amyloid-beta
oligomers exogenously applied to organotypic hippocampal
slices acutely depressed AMPAR-mediated transmission in
a manner that was dependent on synaptic stimulation and
NMDAR activation but not NMDAR ion-flux (Tamburri
et al., 2013). Both studies therefore suggest that amyloid-
beta activates a metabotropic NMDAR signaling pathway that
depresses synaptic transmission. The evidence that this pathway
could then be involved in eventual spine loss comes from
three other studies using imaging techniques. Two studies
(Shankar et al., 2007, 2008) showed using TPLSM that (R)-CPP
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FIGURE 3 | Model of NMDAR metabotropic functions. In baseline conditions, the NMDAR interacts with both protein-phosphatase 1 (PP1) and
calcium-calmodulin dependent protein kinase II (CaMKII) which is phosphorylated at Thr286. Upon ligand binding, movement in the NMDAR cytoplasmic domain
permits PP1 catalytic access to phospho-CaMKII-T286, this movement also inducing activation and phosphorylation of p38 MAPK. These signaling molecules (along
with others) will eventually lead to AMPAR removal. In the context of LTD, these events will produce spine shrinkage whereas in the case of sustained amyloid-beta
presence, spine elimination will occur.

prevented amyloid-beta-induced spine loss in GFP-expressing
organotypic slice neurons. Birnbaum et al. (2015) subsequently
demonstrated that the competitive GluN2 antagonist APV
also blocked spine loss in transgenic AD mice (as well as
in hippocampal slices incubated in amyloid-beta oligomers),
whilst MK-801, memantine, another NMDAR pore blocker,
and buffering postsynaptic calcium ions with BAPTA had
no effect (Figure 2B). That study (Birnbaum et al., 2015)
also showed an amyloid-beta-induced reduction in PSD-95
and synaptophysin levels that was blocked by APV but not
by MK-801 or memantine. Moreover, they demonstrated
that p38 MAPK phosphorylation was increased by amyloid-
beta in a NMDAR ion-flux independent manner and that
spine loss depended on p38 MAPK activity (Birnbaum et al.,
2015), supporting a link, previously examined (Hsieh et al.,
2006), between LTD and amyloid-beta-induced depression.
Taken together, these imaging results are in agreement with
electrophysiological experiments and support the hypothesis
that amyloid-beta toxicity depresses synaptic transmission
via metabotropic NMDAR signaling that results in eventual
spine loss.

The role of NMDARs in mediating excitotoxicity has been
extensively described (reviewed in Choi, 1992), and it has
been widely suggested that excessive Ca2+ influx through the

receptor is responsible for inducing cell death (Choi, 1995;
Tu et al., 2010). Interestingly, recent findings suggest that a
metabotropic NMDAR ‘‘signalsome’’—involving the NMDAR,
the pannexin-1 channel (Panx1) and src kinase—is capable
of inducing cellular dysfunction in response to excessive
NMDAR stimulation (Weilinger et al., 2016). TPLSM was
used to image fluorescently labeled CA1 neurons in acute
rat hippocampal slices treated with a high dose of NMDA.
This protocol induced blebbing in the dendrites of CA1
neurons as well as mitochondrial dysfunction, an effect that
was blocked by co-application of the GluN1 antagonist CGP-
78608 and APV, but not by MK-801, indicating that ligand
binding to the NMDAR was capable of damaging neuronal
morphology independently of ion flux through the receptor
(Figure 2C). Interestingly, Panx1 channels appear to be
located almost exclusively at the PSD (Zoidl et al., 2007),
which suggests that this metabotropic NMDAR ‘‘signalsome’’
is synaptic. Additional experiments demonstrated that ligand
binding, but not NMDAR ion flux, was necessary for
downstream activation of Panx1 (Thompson et al., 2006, 2008;
Weilinger et al., 2012). Metabotropic NMDAR activity did
not change the degree of interaction between GluN1 and
Panx1, but it did increase Src kinase binding to GluN1,
Src activation, as well as Src-dependent phosphorylation
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of Panx1. Peptides that either disrupted the GluN1-Src
interaction (Src48) or interfered with Panx1 phosphorylation
(Tat-Panx308) were neuroprotective in vitro, and injection of
Tat-Panx308 reduced brain lesion volume in an in vivo model
of stroke. Indeed, as ischemia in the brain is believed to drive
subsequent excitotoxicity, these results suggest that targeting
Src or Panx1 in a clinical setting could be therapeutically
effective.

CONCLUDING REMARKS

A number of studies have provided evidence that physiological
and pathological processes can be triggered by ligand binding
to the NMDAR, without requiring flow of ions through
its pore. It will be important to determine conditions that
control whether an ionotropic or metabotropic NMDAR

mechanism is engaged during LTD. Ion-flux independent LTD
appears to be mediated by a movement in the NMDAR
cytoplasmic domain that affects its interactions with at least
two signaling proteins, PP1 and CaMKII. Subsequent signaling,
with increased p38 MAPK phosphorylation likely, leads to
AMPAR removal, shrinkage of dendritic spines and depressed
synaptic transmission (Figure 3). Interestingly, it seems that
if the stimulus recruiting metabotropic NMDAR function is
sustained, as in the contexts of amyloid-beta overproduction
or excitotoxic conditions following ischemia, metabotropic
NMDAR activity can also lead to synaptic and neuronal
dysfunction.
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