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ABSTRACT OF THE DISSERTATION

Digitalization, Machine Learning Modeling and Control of an Experimental Electrochemical

Reactor

by

Berkay Citmaci

Doctor of Philosophy in Chemical Engineering

University of California, Los Angeles, 2024

Professor Panagiotis D. Christofides, Chair

Greenhouse gas emissions from industry and transportation contribute significantly to climate

change and its associated adverse impacts on the environment and economy. With the increase in

electricity supply from clean energy sources, electrochemical reduction of carbon dioxide (CO2)

has received increasing attention; however, a first-principles model for electrochemical CO2 re-

duction has not been fully developed because of the complexity of its reaction mechanism. At

this point, data driven methods and machine learning (ML) can be used to model the process.

At UCLA, we have constructed an experimental rotating cylinder electrode cell (RCE) setup to

develop a deeper understanding of the process, and design scale-up strategies. The experimental
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equipment is digitalized on a computer interface using Smart Manufacturing principles, legacy

sensors (such as Gas Chromatogram (GC)) are automated, and voluminous steady state and dy-

namic data sets are generated. Leveraging these datasets and data analytics, machine learning

and hybrid models are built using machine learning methods, such as Support Vector Machines

(SVR), and artificial neural networks (ANN) and recurrent neural networks (RNN), that are ca-

pable of capturing nonlinearities and time dependencies. These models are used to optimize the

most profitable setpoints and are used in single-input single-output (SISO) and multi-input multi-

output (MIMO) feedback control schemes using multiple proportional integral (PI) controllers and

model predictive control. This study proposes approaches for experimental implementation such

as incorporating delayed GC feedback into control loops, training dynamic ML models with dead

times, data variability and noise, and linearizing the RNN models using Koopman operators for

fast real-time optimization.

The electrochemical CO2 reduction process has potential to use other chemical processes as

CO2 source while sustainably producing other useful chemicals. In addition to the RCE setup, an

experimental electrically-heated steam methane reforming (SMR) setup for hydrogen production

from natural gas is digitalized, modeled, and controlled. A lumped parameter approach is used

for fast calculations, and an extended Luenberger observer is used to compensate for missing and

delayed sensor feedback. Finally, a model predictive controller using the estimation scheme is

experimentally implemented to control hydrogen flow rates by manipulating the current, showing

much faster response compared to PI control.
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Chapter 1

Introduction

1.1 Motivation

Global warming emerges as one of the most prominent crises that humanity is being exposed

in the recent decades. The increase of the average temperature of the earth is leading to climate

change, which threatens agricultural production, melting of polar ice caps, natural catastrophes,

and extreme heat waves. The main contributor of the global warming is the greenhouse gases,

mainly carbon dioxide (CO2). Since the First Industrial Revolution in the 18th century, the man-

ufacturing, transportation, and energy sectors have been generating tons of CO2 emissions. The

Paris Agreement [182] accepted in the United Nations Conference in 2015 suggests several key

measures to limit the temperature increase below 2 C◦ above pre-industrial levels and to pursue

efforts to limit the temperature increase even further to 1.5 C◦ until the end of 21st century. This

objective would not be reachable if the current manufacturing and transportation methods are sus-

tained without any efforts to limit their emissions. To address this challenge, there has been a

growing focus on sustainable and renewable technologies in research.
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As CO2 is the key gas component that causes the aforementioned detrimental effects, carbon

capture emerges as an alternative solution. One method for carbon utilization is CO2 reduction,

which is converting CO2 gas into other useful chemicals through catalytic chemical reactions [100].

However, traditional CO2 reduction methods require high energy input, which is conventionally

obtained through combustion of fossil fuels that results in CO2 generation. Thus, the conventional

CO2 reduction is not the most efficient way of capturing CO2. Here, electrochemical CO2 reduction

appears as a clean and sustainable alternative due to its need for electric potential rather than heat,

and its availability to work with renewable electricity. The electrochemical CO2 reduction process

can convert CO2 into many different organic chemicals and fuels, including ethylene, methane

(CH4), ethyl alcohol (C2H5OH), acetone (C3H6O), and n-propanol (C3H8O) when a copper catalyst

is used [73]. As electrochemical CO2 reduction is very favorable yet complicated process, this

process is predominantly limited to bench scale. There have been growing efforts to explain the

reaction mechanisms, such as the one proposed by [120]. However, the electrocatalytic reaction

pathways are very complicated, and at the time of this study, the first principle equations of the

CO2 reduction are not entirely available [73]. Thus, this brings about the opportunity of using

data-driven methods for modeling purposes.

As the amount of data has been increasing exponentially in the last decades with the special

focus on process digitalization, the availability of data-based models are revisited. The machine

learning (ML) methods emerged as an alternative for process representation using the collected

data.Among many options, neural networks appeared to be very powerful, particularly in captur-

ing nonlinear dependencies when sufficient quality data is provided. Various machine learning

methods were proven to be efficient in steady state and dynamic process behavior modeling, and
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even used in process controls [208]. These methods are also used to explain the physical and

chemical phenomena of the processes to converge faster to the first-principles information. At this

point, ML and neural networks appear to be efficient methods to represent the electrochemical CO2

reduction behavior based on experimental data.

In order to explore the CO2 reduction process in deeper detail and conduct research towards

the scale-up of the technology, an experimental setup was built including a rotating cylinder elec-

trode cell (RCE) to decouple the effects of reaction kinetics and mass transfer for CO2 reduction

on copper catalysts. This experimental setup is digitalized by connecting multiple sensors and

actuators to a common computer interface with the objective of generating voluminous datasets to

build ML models.

From a broader perspective, electrochemical CO2 reduction process requires CO2, which can

be obtained from power plants. However, it is possible to obtain alternative clean fuels like H2

while producing CO2 through well-known steam methane reforming (SMR) process, and CO2

can be reconverted by the electrochemical CO2 reduction reactors. Steam methane reforming is

a highly endothermic reaction which requires very high temperatures between 600-1000 ◦C. In

conventional SMR process, the heating is done through burning natural gas [35]. If the SMR

process could be heated with a sustainable energy source rather than fossil fuels, the use of CH4

and CO2 could be achieved much more efficiently. There have been research endeavors to make

SMR more sustainable, such as electrically-heated SMR [200] and proton-conducting membrane

reactor [109]. At UCLA, an SMR experimental setup was constructed to analyze these novel

technologies, and explore their usability in a cyclic process with electrochemical CO2 reduction.

Our exploration of improved SMR processes starts with the electrically-heated SMR setup. SMR
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reaction kinetics are well studied since 1989 [215], and has detailed kinetic models. Thus, this

process can be modeled by first principle knowledge rather than ML models. However, the nature

of complex catalytic reactions, mass and heat transfer phenomena and tubular reactor dynamics

make it challenging to build models that can generate fast results. Therefore, existing reaction

kinetics data are integrated into a lumped parameter model to efficiently and accurately simulate

the setup.

Depending on fluctuating demands for chemicals and energy consumption, these processes

can be optimized and made more efficient through effective process controls. Specifically, the

advanced controls schemes for both processes are very limited. Thus, proposing optimization

and control strategies for these setups holds significant operational values that can influence the

scaled-up production facilities in the future, while helping to understand the processes in detail.

The developed ML and first principle lumped models are used in advanced control schemes to

ensure operational smoothness at most optimized conditions. In the end, this endeavor is antici-

pated to significantly contribute to addressing global warming by effectively reducing fossil fuel

dependency through the fusion of machine learning and electrochemistry.

1.2 Background

The recent milestones in the electrochemical CO2 reduction research have been yielding

promising results towards the scalability of the technology. While some researchers are working

on the reaction mechanism for a deeper understanding [43, 91], there are other research endeavors

focusing on the catalysts. [47] has introduced a catalyst architecture to decouple electron, ion, and
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gas transport, resulting in reduced transfer boundary thickness and increase in cathodic energy ef-

ficiency on copper electrode. [98] modified the surface of electrocatalysts with organic compounds

to improve energy efficiency towards increasing the selectivity towards C2H4. The current research

also demonstrated methods to increase selectivity towards the other products, such as n-propanol

and acetic acid [191, 32]. Accompanying the technical breakthroughs, a techno-economic anal-

ysis [77] suggests that CO and formic acid are the sole profitable products from CO2 reduction,

however, CO2 reduction would become more profitable if high carbon alcohols, such as ethanol

and n-propanol, under the conditions of 300 mA/cm2 and 0.5 V overpotential at 70% Faradaic

efficiency, and a case where the electricity price in brought to 0.03 $/kWh by 2030. The analysis

takes into account that liquid products are easier to store and transport. [57, 56, 199] show that

the electricity prices are expected to decrease, specifically as the share of photovoltaics and wind

increase in the grid. However, the low selectivity of electrochemical reduction of CO2 in terms of

Faradaic efficiency remains to be a major challenge that requires a deeper understanding of the re-

action mechanismn [210]. As the possibility of operational electrochemical CO2 reduction plants

become more realistic, [146] offered a road map to build terawatt scale electrolyzers starting from

bench scale reactors.

Through the phase of developing a better understanding of the reaction mechanism, data

driven methods appear to be a powerful option. [105] modeled the product gas concentrations of

16 species coming from an experimental electrochemical reactor with a flat copper electrode using

artificial neural networks (ANN) and incorporated maximum likelihood estimation method into

the cost function of the ANN to account for the data variability. The model showed close corre-

spondence to the available empirical models, and can be operationally used to adjust the product
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selectivity in the experimental reactor. One other advantage might be using ML models to quickly

test proposed reaction mechanisms to accelerate the first-principle development phase. As it is very

important to understand the reaction mechanism and selectivity at the steady-state conditions, the

dynamics of the process must be well understood before moving to the larger scale productions.

For example, [101] improves selectivity through dynamically controlling the surface composition

through pulse electrolysis. Thus, with no prior work on implementing feedback control loops on

electrochemical CO2 reduction, there is a great opportunity to examine process dynamics and con-

trol to develop strategies for electrochemical CO2 reduction process. Besides that, an advanced

control system can maintain the electrochemical reactor to operate at maximum selectivity.

The bench scale electrochemical CO2 reduction setup is capable of producing large experi-

mental datasets to be used in data-driven models. Big datasets are proven to be handled more effi-

ciently if smart manufacturing principles are followed, as explained in [31, 30]. The digitalization

of the experimental setups can be achieved through LabVIEW, a programming language that is very

convenient for connecting sensors and actuators produced by National Instruments. LabVIEW has

been widely used for experimental test bed automation and control [9, 170], and it is becoming a

handy alternative also for electrochemical process digitalization [118, 178]. [190] proposed a data

pipeline to Smart Manufacturing Institute’s (CESMII) Innovation Platform (SMIP) through Lab-

VIEW, using compatible National Instruments (NI) data acquisition devices (NI-DAQ), Python and

Matlab script integration. This approach is expected to digitalize the legacy sensors, build smart

sensors using AI or state-of-art data processing methods, and establish secure and ready-for-use

data connections for data driven models. Hence, it has great potential to collect data faster and

record data securely under efficient monitoring. Thus, a collaboration between Smart Manufactur-
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ing and bench scale electrochemical test beds can enable the communication of various equipment

in the experimental setup and significantly boost modeling and control efforts, as mentioned in

[146].

With the surge in size of the datasets and improvements in computational power through the

last decades, the involvement of ML increased in the manufacturing industry. Following this, ML

applications started to span a wide spectrum of chemical processes. For example, unsupervised

learning methods, such as principal component analysis (PCA) and k-means clustering, are being

used in classifying anomalies in processes [158, 106]. On the other hand, supervised learning

methods appear to be a better option for process behavior modeling. [72] used support vector re-

gression to predict product compositions with respect to temperature in batch distillation. [124]

used tree-based and linear methods to predict salt passage and permeate flow rates in a reverse

osmosis membrane. However, as the complexity and nonlinearity of the process increase, more

complicated ML methods usually start to perform better as process behavior approximators in the

presence of ample data points. For the last three decades, neural networks (NN) have gained popu-

larity for being used to capture complicated data relations [69]. [50] developed a soft-sensor using a

feed-forward artificial neural network to provide real-time estimates of polyethylene terephthalate

(PET) viscosity, which is crucial for process control. In addition to ANNs, graph neural networks

(GNN) are proven to be very efficient in representing molecular structures and can be used in

material discovery [142]. However, these methods are usually not taking time dependencies into

account, thus might not be very powerful for modeling dynamic systems. At this point, recurrent

neural networks (RNN) are introduced for non-Markovian effects [158].

RNNs capture the time dependencies of a dynamic process within a time window, and Long-
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Short-Term-Memory (LSTM) architecture improves the RNN performance by solving vanishing

and exploding gradient problem in vanilla RNNs [65]. Especially, RNNs in process industries

have been extensively applied in advanced process controls, such as model predictive control

(MPC) [208]. A model predictive controller requires a process model to predict the future of a

process in a horizon, and optimizes the model input with respect to a cost function at each time

step for an improved process trajectory. The following examples also demonstrate MPC appli-

cations while solving dynamic process modeling challenges. Neural network applications can be

combined with available physical information for modeling complicated systems. [205] intro-

duced the co-teaching method, which trains the NN with both smooth and noisy data generated

from first-principle-based simulation for a better representation of the process. Physics informed

neural networks (PINN) can be used to model partial differential equation (PDE)-based systems

such as batch crystallization by incorporating the process equations into the cost function of neural

networks [203]. Also, available neural networks can be retrained with new data preserving the

inherent dynamics of the model to adapt to new conditions, which is called transfer learning [211].

Furthermore, [2] shows that RNN-based models can be combined with first-principles-based mod-

els to build hybrid models, and used along a state estimator, such as a Luenberger observer, for

implementing MPC control. However, most of the RNN-based MPC demonstrations are limited to

simulations since RNNs are nonlinear black box models and this inherently requires longer times

to solve optimization problems that makes it difficult to implement in real-time. Thus, as RNNs

would be a great candidate for dynamically modeling complicated electrochemical CO2 reduc-

tion process, the real-time implementation challenges should be addressed by proposing efficient

linearized optimization schemes.
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In addition to electrochemical CO2 reduction, modeling and control strategies should be de-

veloped for electrically-heated steam methane reformer if both setups are expected to work to-

gether in the future. SMR process is challenging to dynamically model since the tubular reactors

are modeled using PDEs against time, and heat, mass, and momentum transfer are also involved.

[201] investigated the transport properties of electrically-heated SMR. [200] suggests that the heat

gradients are more uniform in electrified SMR process, and if heated by renewable electricity, this

process has the potential to substantially reduce emissions. SMR reactions are thermal reactions,

and conventional SMR process have been well-studied for modeling. Even though the heating

source is different, the kinetics remain the same in electrified-heating. The reaction rate equations

were proposed by [215]. Using this mechanism, [94, 179] proposed a computational fluid dy-

namics (CFD)-based modeling strategy along with a computational PI control scheme, and [204]

extended this model to an MPC control. However, CFD models require long times to yield results,

and thus are not applicable to real-time control. Therefore, the available models can be simpli-

fied using lumped-parameter models to be solved in real-time. [110] explores the controllability

of lumped-parameter models. Using the smart manufacturing principles, steady state data can be

generated to fit parameters to a lumped-parameter model, which can eventually be used to perform

advanced control of the electrically-heated SMR setup.

1.3 Dissertation Objectives and Structure

This dissertation presents a data-driven and a lumped parameter first principles modeling

method to implement advanced process control for a rotating electrode cylinder cell and joule-
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heated steam methane reformer, which employs data analytics, neural network modeling, advanced

multi-input multi-output (MIMO) and predictive control, and experimental demonstration of the

proposed methods. The objectives of this dissertation are summarized as the following:

1. To digitalize experimental systems on a LabVIEW interface through connecting lab equip-

ment using Smart Manufacturing principles, and securely storing our data in Smart Manu-

facturing Innovation Platform.

2. To construct machine learning models that effectively capture the input-output dynamics of

an electrochemical rotating cylinder electrode cell for CO2 reduction. These models account

for the nonlinear dynamics and dead times to tackle related control challenges.

3. To present online linearization of RNN-based black box models in real-time for fast opti-

mization. The data transfer is made through cloud for efficient experimental implementation.

4. To build simplified models for computationally expensive SMR reactors to implement MPC

on an experimental setup, while accounting for missing experimental feedback by Luen-

berger observer-based estimations.

The chapters of this dissertation are organized as the following:

Chapter 2 presents solutions to the challenges arising in modeling, optimizing, and controlling

the electrochemical CO2 reduction process due to its complex reaction mechanism and the lack of

efficient concentration measurement sensors. Gas chromatography (GC), the most common mon-

itoring equipment, provides delayed measurements, and the process undergoes a selectivity shift,

posing challenges for conventional control methods. To address these issues, a machine learning-
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based modeling approach is developed that integrates support vector regression and first-principles

modeling to capture the gas-phase production rates and dynamic behavior of the experimental

electrochemical reactor, respectively. This model, along with limited GC measurements, predicts

the evolution of gas-phase ethylene (C2H4) concentration. A proportional-integral (PI) controller

manipulates the applied potential to regulate the gas-phase C2H4 concentration at energy-optimal

setpoint values calculated by a real-time process optimizer.

Chapter 3 discusses the transformative impact of the exponential growth in data over the past two

decades on various industries, including manufacturing. It elaborates on the challenges associated

with digitizing and utilizing data collected from advanced sensors and introduces the Clean En-

ergy Smart Manufacturing Innovation Institute (CESMII) and its Smart Manufacturing Innovation

Platform (SMIP). The SMIP aims to facilitate efficient data storage, accelerate machine learning

model building, and improve data visualization and insight extraction. A case study demonstrating

the application of the SMIP in operating an experimental electrochemical CO2 reduction reactor

at UCLA is presented, showcasing real-time sensor data transmission and automated data-based

modeling processes. The study utilizes Python scripts for automated data collection and transmis-

sion, and LabVIEW for controlling the reactor and monitoring data flow through a single interface.

Chapter 4 presents a methodology to develop a MIMO control scheme for the RCE reactor us-

ing techniques from artificial and recurrent neural network modeling, nonlinear optimization, and

process controller design. Two products, ethylene and carbon monoxide, are controlled by manipu-

lating applied potential and catalyst rotation speed. The study analyzes process dynamics, designs

a feedback control strategy, tunes controllers, and implements the multivariable control system

using experimental data through extracting transfer functions from the process data. The results
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demonstrate excellent closed-loop performance and regulation of outputs at different set-points,

including economically-optimal set-points.

Chapter 5 demonstrates the application of model predictive control using a neural network model

in an electrochemical reactor for CO2 reduction. A long short-term memory network (LSTM)

model is developed based on historical experimental data to capture the nonlinear input-output re-

lationship. The Koopman operator method is used to linearize the LSTM model, simplifying and

accelerating the optimization step in MPC to be solved in real-time. The performance of the LSTM

model, Koopman-based optimization, and MPC is evaluated through simulations and experiments,

demonstrating the ability to drive output states to desired setpoints in real-time. Additionally, a

transfer learning-based method is employed to update the LSTM model to handle process variabil-

ity.

Chapter 6 presents a lumped parameter approximation and algebraic equations for gas-phase vari-

ables, incorporates reaction parameters derived from experimental data. A first-order dynamic

model is employed to capture temperature changes with electric current variations. The resul-

tant dynamic process model is then utilized in a computational model predictive control scheme

to regulate the H2 production process under normal conditions and steam flowrate disturbances.

Compared to a classical proportional-integral controller, the proposed MPC scheme exhibits supe-

rior performance and robustness in closed-loop operation.

Chapter 7 presents catalyst synthesis, data collection, and thermal considerations for an electrically-

heated experimental steam methane reformer. Control strategies are developed for catalyst preser-

vation during temperature ramping using a PI controller. For advanced control strategies like model

predictive control, a process model predicts time-evolution based on sensor feedback. Using the

12



previously developed lumped-parameter model for SMR in Chapter 6, H2 production is aimed to

be controlled by adjusting current flowing through the reactor. However, the MPC requires con-

tinuous feedback from all variables, whereas our GC provides discrete measurements with long

sampling periods. Hence, the process model is integrated into an extended Luenberger observer

(ELO) using reactor temperature and GC data to estimate all MPC variables. The ELO-based MPC

system is experimentally implemented, demonstrating faster closed-loop response compared to the

PI controller using delayed GC feedback.
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Chapter 2

Machine Learning-Based Ethylene

Concentration Estimation, Real-Time

Optimization and Feedback Control of an

Experimental Electrochemical Reactor

2.1 Introduction

Over the last decade, a great deal of interest has been elicited around the idea of using

renewable-based electricity rather than fossil fuels as the energy source for large scale manufac-

turing of chemicals (e.g., [33]). Direct electrocatalytic transformation of carbon dioxide (CO2) to

fuels and chemicals can enable global scale renewable energy storage and close the anthropogenic

chemical carbon cycle. However, outside of well-established chloralkali, water electrolysis, and

aluminum refining processes, most electrified chemical manufacturing processes are limited to
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bench-scale demonstrations. This is particularly the case for processes that use gaseous reactants

and produce a complex mixture of multiple different products, such as the electrochemical reduc-

tion of CO2 (e.g., CO2 electrolyzers are currently limited to electrode areas of around 5 cm2 or

less) or the reduction of nitrogen to ammonia [74, 122]. One of the major challenges of industri-

ally implementing electrochemical reduction of CO2 is the absence of a well-understood reaction

mechanism [75].

To further investigate the fundamentals of electrochemical CO2 reduction, a gastight rotat-

ing cylinder electrode (RCE) cell was recently developed, which can decouple the effects of mass

transfer and reaction kinetics as well as promote the production of multiple valuable products [73].

This novel electrochemical reactor shown in Figure 2.1 has demonstrated that mass transport phe-

nomena and intrinsic reaction kinetics can independently affect the productivity and selectivity of

the reactor, which implies the potential to control the product distribution of the reactor by manipu-

lating certain inputs. The demonstration of control in production rates during CO2 electrochemical

reduction is rare, with only one example by [28] demonstrating that it is possible to control the

selectivity of CO by using light to illuminate the cathode in plasmonic catalyzed electrochemical

CO2 reduction reactions.

The development of chemical process models for control can be approached from two op-

posite directions, one using first-principles to build up a model and the other using a data-driven

approach that condenses the input-output relations in a black-box model. The use of machine learn-

ing (ML) models in the context of electrochemical reactors has received attention over the past ten

years due to their demonstrated ability to approximate universal linear/non-linear relations with lit-

tle a priori knowledge of the system [25]. ML has been used broadly, from efforts geared towards
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Figure 2.1: Components of the electrochemical reactor. (a) Electropolished atomically-flat poly-
crystalline copper cylinder electrode, (b) Schematics of gastight rotating cylinder electrode (RCE)
cell, and (c) Bench-scale electrochemical reactor setup with sensors, actuators, and automation
devices.

gaining understanding of the role of adsorbates in changing the catalytic properties of copper elec-

trodes to the discovery of CO2 electrocatalysts based on a large data set of electrolyzer literature.

For example, [202] used a four-layer neural network as well as other ML algorithms to investigate

the influence of different supplementary adsorbates on the performance of electrochemical CO2

reduction on copper surface, and reported tens of adsorbates that have a major impact among other

candidates. In another work, [108] tested various ML algorithms, such as bagging regressors, re-

gression trees, and gradient boosting, to predict the most feasible electrochemical CO2 reduction

catalyst material using an extensive database comprising academic and industrial reports.

Alternatively, classic ML algorithms usually require less training data than deep learning

techniques and are better suited for the analysis of electrochemical data sets acquired under more

controlled and better defined conditions of transport, such as those generated in the RCE cell [107].

Among ML algorithms, support vector machines (SVM) provide a complementary way to perform

data-driven modelling with lower probability of over fitting [172, 141]. Proposed by [184], support

vector regression (SVR), based on SVM, can be used to perform regression for static and dynamic
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models by defining a margin around a proposed hyperplane for data fitting and penalizing data

points beyond the margin. This method has shown strong performance in representing time-series

data and pattern recognition [8, 217, 18]. For example, [127] developed an SVR model to predict

the steady-state performance of a reverse osmosis desalination plant using 3990 steady-state data

points and further simulated its dynamic perturbations from steady-state operation. [163] demon-

strated the ability of SVR to model a dynamic Photo-Fenton process, a photochemical oxidation

reaction common in pollutant treatment, and the SVR model effectively predicted the production

of OH radicals with data from a pilot plant. [172] modeled NOX emissions from coal combustion

boilers based on observations of 73 hours of experiment using SVR and Artificial Neural Network

(ANN), which showed that SVR is a more robust option than ANN for this process.

Motivated by the above considerations, this work proposes an ML-based scheme to implement

real-time optimization (RTO) and feedback control in an experimental electrochemical reactor for

CO2 reduction. Specifically, an SVR model is developed on the basis of existing experimental

data to estimate the dynamic response of the reactor operation, and to account for inherent distur-

bances such as sensor uncertainties and catalyst degradation. Subsequently, the information from

the sensors and ML model is integrated and used by a Proportional-Integral (PI) controller that

manipulates the input of the reactor. In addition, a real-time optimizer (RTO) is developed to com-

pute the optimum setpoint for the reactor by integrating the steady-state prediction from a neural

network model and valid market information. The proposed control and optimization scheme is

demonstrated by a series of experiments that control ethylene production of the RCE reactor.

The rest of this chapter is organized as follows. In the section entitled “Preliminaries”, the

experimental reactor setup and catalyst deactivation are described. In the next section, entitled
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"Machine-Learning Modeling", the experimental method of extracting, formulating and building

the SVR model and related model improvements are discussed. In the following section entitled

"Real-Time Optimization", the methodology to calculate the most economically feasible setpoints

is discussed. In the section entitled "Feedback Control", the implementation of a PI controller

is integrated with an estimator for the reactor overhead ethylene concentration and real-time GC

measurements; then the performance of the model and the controller is evaluated.

2.2 Preliminaries

This section introduces the background of the experimental electrochemical reactor employed

in this work. Specifically, the experimental system and methodology are discussed and important

variables are explained. An overview of the catalyst deactivation is then used to explain the back-

ground of the control objective. All process equipment mentioned in this section, except nuclear

magnetic resonance (NMR), is connected to a Laboratory Virtual Instrument Engineering Work-

bench (LabVIEW) interface. The operational procedures required in the experiment, including

but not limited to real-time GC data processing, controller activation, and equipment actuation,

are fully automated by a computer program developed with Python and implemented through a

LabVIEW interface. Figure 2.1 shows UCLA’s RCE system along with the array of sensors and

actuators in the system.

The ML model is integrated into LabVIEW and the outputs of the ML model are calculated

on a per-second basis. The parameters of the feedback controllers are assigned a priori to take spe-

cific values for specific time intervals of operation. This includes closed-loop control experiments
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where the setpoint is changed between two time intervals. For gas product quantification, a Python

script was developed to automatically process the raw GC data, detect the gas product signals, and

calculate the corresponding gas phase concentrations utilizing a GC calibration file. This GC script

is then used to get real-time data to correct the ML model and improve the controller performance.

The process data is synchronized with an online database of the Smart Manufacturing Innovation

Platform (SMIP) provided by The Smart Manufacturing Institute (CESMII). SMIP was used for

data storage and monitoring and to facilitate data accessibility for all researchers when building

models on site.

2.2.1 Electrochemical Reactor Setup

We have recently described the construction of an RCE reactor setup [73] which can be used to

produce over 16 different gas and liquid products during the electrochemical reduction of CO2 on a

copper electrode. As shown in Figure 2.1, this electrochemical reactor setup consists of six major

components. These are: the reactor with its two chambers containing respectively the working

(cathode) and counter (anode) electrodes separated by an ion-exchange membrane that prevents

product cross-over between the two chambers, a potentiostat that regulates the potential applied to

the working electrode, a mass flow controller to adjust the mass flow rate of the feed gas (CO2),

a modulated speed rotator (MSR) to adjust the rotation speed of the electrode, a cooling/heating

block to control the temperature of the cathode compartment, and a computer. In addition to

these six major components, a gas chromatograph (GC) and a nuclear magnetic resonance (NMR)

spectrometer are utilized to quantify the chemical species in the gas and liquid-phase products,

respectively. In the work presented here, the GC has been automated for on-line gas product
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quantification.

During the experiment, inlet flow rate of feed gas is fixed to 20 mL · min-1 by the mass

flow controller and is bubbled directly through a 0.2 M KHCO3 electrolyte solution in the cathode

chamber at room temperature and 1 bar. Subsequently, CO2 is reduced to synthetic fuel and chem-

ical products which result from proton-electron transfer processes occurring on the surface of the

rotating cylinder electrode, which serves as the cathode and working electrode. In addition, the po-

tential applied to the working electrode is continuously measured against the reference electrode,

while the MSR modulates the rotation speed of the RCE through magnetic coupling and the reac-

tor temperature is controlled through a bath circulator that flows coolant at a specified temperature

through the cooling/heating block. Eventually, gas products leave the reactor headspace and travel

through polytetrafluoroethylene (PTFE) tubing to be quantified by the GC once every sampling

period. The liquid products accumulate in the electrolyte solution and are then quantified by NMR

after electrolysis [73]. Since the concentrations of the liquid products cannot be measured while

the reactor is operating (NMR sample preparation, analysis and quantification take long and are

infeasible to implement feedback control on this data), only the gas products are considered as the

outputs of the process for the proposed control scheme.

Remark 1 In addition to working as an actuator, the potentiostat also functions as a sensor that

measures and records the current density flowing between the working electrode and the counter

electrode in real-time. Based on this measurement, the potential on the surface of the electrode,

which is known to directly affect the electrochemical reaction, can be calculated with reference to
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the standard hydrogen electrode (SHE) by Eq. 2.1.

Esurface = Eapplied − i×R + E0 (2.1)

where Esurface is the surface potential, Eapplied is the applied potential measured against the reference

electrode, i is the current density (negative value for reductive currents), and R is the resistance

of the solution between the working electrode and the reference electrode measured using elec-

trochemical impedance spectroscopy (EIS) [73]. E0 represents the standard electrode potential of

the reference electrode (Ag / AgCl / 1 M KCl), so that Esurface is referenced against the standard

hydrogen electrode (V vs. SHE) after correction.

2.2.2 Identification and Quantification of the Process Output

Among all products generated by this electrochemical reactor, hydrogen (H2), carbon monox-

ide (CO), methane (CH4), and ethylene (C2H4) are in the gas phase and can be detected using gas

chromatography (GC). The relevant reactions for these products are shown below:

2CO2 + 8H2O + 12e− → C2H4 + 12OH− (2.2a)

CO2 + 6H2O + 8e− → CH4 + 8OH− (2.2b)

CO2 +H2O + 2e− → CO + 2OH− (2.2c)

2H2O + 2e− → H2 + 2OH− (2.2d)
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The measured production of gas products (C2H4, CH4, CO, and H2) by the GC is the target

component of the feedback control scheme, which is implemented by the following procedure.

Firstly, the temperature-programmed GC separates molecules injected onto the columns, which

have different elution times. Subsequently, separated molecules are detected using a thermal con-

ductivity detector (TCD) and a flame ionization detector (FID) in the GC system. In this study,

the temperature program runs for 14.33 minutes, after which the heated column oven requires 6

minutes of cooling time before the next injection. This means that the GC has a sampling period of

20.33 minutes. The delay in the GC analysis limits the possibilities for real-time control, but this

can be overcome to some extent through the development of a ML-based estimator which allows

for the calculation of real-time gas compositions in the cell overhead. This estimator is described

in Section 2.3.

Remark 2 Because of the strong correlation of the ethylene productivity with respect to the sur-

face potential and the electric current, it is chosen as the initial component of interest for modeling

and control. In addition, ethylene has numerous industrial applications and is the most produced

organic molecule worldwide, with a current installed production capacity of over 200 million met-

ric tons per year.

2.2.3 Catalyst Deactivation

Catalysts play a central role in electrochemical reactors. Our experimental process uses a

smooth, cylindrical, polycrystalline copper electrode shown in Figure 2.4a. Copper has previously

been shown to have the highest selectivity for C2 products, making it the catalyst of choice in CO2

electrolysis [84]. However, the copper catalyst continuously degrades as the reactions proceed,

22



and this causes a drift in steady-state, even when the input (typically applied potential which is the

driving force for electrochemical reactions) is held constant. The catalyst deactivation is attributed

to surface restructuring, blocking of sites by reactive carbon species, and absorption of impurities

from the electrolyte [121]. The deactivation is particularly fast on flat, non-porous catalysts such

as the one used here. Electrodes with a higher porosity have a higher density of active sites and

can be operated at lower overpotentials, so the deactivation processes appear to occur over longer

time periods [80].

The deactivation mechanism of copper under electrochemical CO2 reduction environments

is complicated, and different potential sources of deactivation have been pointed out over the last

decades. [67] showed that metal impurities, mainly Zn+2 and Fe+2, and trimethylamine existing in

a 0.5 M KHCO3 electrolyte accumulated on the copper electrode during testing, affecting product

selectivity and current densities. These authors recommended the utilization of reagents of the

highest purity or the use of pre-electrolysis using platinum black cathodes as a way to purify the

electrolyte solution and delay catalyst deactivation [67]. Another source of deactivation that has

been proposed is formation of graphitic carbon species from decomposition of reactive intermedi-

ates [34, 162, 212]. Such reaction intermediates could block catalytic sites and poison the electrode

surface. On the other hand, Kim et al. observed surface reconstruction of polycrystalline copper

to Cu(100) facet both in KOH [84] and KHCO3 [85] electrolytes under reductive potentials and

associated these surface restructuring to changes in product distribution. Despite the complexity

of the deactivation mechanism which can be attributed to various factors, anodic pulsing could

be used to mitigate catalyst deactivation and prevent changes in activity and selectivity of copper

under operation [162, 41].

23



Catalyst reactivation procedures such as anodic pulsing or potential sweeping could be pro-

grammed and integrated eventually into the control system of future CO2 electrolyzers. However,

catalyst oxidation procedures can also lead to excessive surface roughening, loss of electric con-

ductivity and catalyst dissolution and must be further investigated. In this work, we have introduced

an additional parameter of the cumulative integral of current to address the deactivation issue. As

a general trend, either the energy required for molecules to pass the activation energy barrier in-

creases or the number of active sites decreases as the catalyst continues to deactivate. One way

to compensate for the loss of activity is to increase the applied electric potential to ensure that a

similar number of reactant molecules can continue to be transformed despite the deactivation. This

is accomplished by interpreting general trends of deactivation and introducing the integral of cur-

rent parameter. Integration of the current passed in an electrolyzer is a simple, yet effective, way

to track the degree of use of a catalyst within an electrochemical system with broad applications

beyond CO2 electrolyzers and will be discussed in detail in Section 2.3.4.

Remark 3 A different catalyst morphology may considerably delay the deactivation. Specifically,

for electrochemical CO2 reduction reactions, another available catalyst morphology is copper

cubes that have pores on the electrode surface, allowing both internal and external mass transfer

to play a role [149]. However, this study is only focused on the reactions with flat copper and

compensation of the catalyst deactivation via introduction of the cumulative integral of current

parameter and feedback control. Future work will investigate control with the copper cube catalyst.
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2.3 Machine Learning Modeling

One of the main objectives of this research is to control the experimental electrochemical reac-

tor. In the absence of a first-principles model for the electrochemical system, a simple PI controller

could be implemented and tuned on the basis of direct measurement feedback without the use of

any model. However, this scenario exhibits many limitations in terms of control performance. To

construct a closed-loop control system, the frequency of feedback from GC measurements (20.33

minutes) would be inadequate to provide accurate and reliable control of the reactor. An effective

PI control in the presence of catalyst deactivation would benefit from feedback on a per-second

basis rather than once every 20.33 minutes from the GC. The use of a Fourier Transform Infrared

Spectrometer (FTIR), a device that can detect the concentration of gas products every second with

high reliability, was considered as an alternative method of measuring and providing feedback to

the control system [81]. However, because of the higher volume flow rate required for FTIR, the

product concentrations from the reactor would have been reduced by an order of magnitude. This

reduction in concentration would have placed the product concentrations near the limit of detec-

tion, making FTIR inadequate for the reactor used in this investigation. Due to this limitation,

building a dynamic machine-learning model is deemed to be a necessary step in controlling the

electrochemical system.

2.3.1 Data Collection and Pre-processing

The data used to develop the ML model is collected from open-loop experiments performed

by the following procedure. Mass flow controllers are arranged to maintain 20 mL ·min−1 of CO2
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gas flow to the reactor. Specifically, before each experiment, the resistance of the buffer solution is

measured, and the applied potential is adjusted to compensate for the measured solution resistance.

This is done automatically by the potentiostat during the experiment. A steady rotation speed is

set for the cylinder electrode so that the hydrodynamics are well-developed in the cell, and then

the applied potential (V vs. Ag/AgCl) is set to a desired value. Both rotation speed and applied

potential are kept constant throughout the experiment. The experiment takes approximately 80

minutes, and 4 GC measurements are taken during the experiment at 15, 35, 55 and 75 minute

mark. The corresponding real-time current and applied potential values are recorded simultane-

ously. It is known that concentration of the gases in the reactor overhead is not equilibrated by the

first GC injection, so this data point is ignored for the purposes of modeling reactor performance.

As a result, each experiment produces 3 data points of concentrations for each gas product. The

corresponding current densities and surface potentials for relevant GC runs are averaged in a time

frame to represent the gas equilibrium in the reactor overhead. It is assumed that the average resi-

dence time of this electrochemical reactor is around 5–8 minutes under conditions operating close

to steady-state. Therefore, the surface potential and current values are averaged in a 3-minute time

window, from 8 to 5 minutes prior to the GC injection, to best represent the current density and

surface potential corresponding to each GC result.

The experiments with GC measurements below the detection limit or with unusual increases

in the electrolyte resistance were marked as outliers. After these data points have been eliminated,

the results of 48 experiments are considered for modeling. The resulting database includes 144

data points of surface potential, current, rotation, and gas product concentrations.
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Remark 4 Using small-scale experimental data to develop an ML model raises additional unique

challenges in comparison to using simulation or well-structured industrial data, since it contains

more experimental uncertainty. The measured resistance of the KHCO3 solution can vary for each

trial depending on the preparation of stock solution, temperature, conductivity of the inner elec-

trical circuit, etc., although the values were kept as consistent as possible (7 ± 0.2 Ω). Similarly,

the electrodes are both mechanically and electrochemically polished prior to each experiment, but

even the standardized polishing process can lead to different catalyst activities at low overpoten-

tials. Furthermore, data measurements are limited by the detection range of the sensors, since the

production scale is small with this experimental setup. As a result, it is possible to obtain different

observations from the same input conditions. Thus, averages and standard deviations of some of

the data from open-loop experiments, presented in Table 2.1, are utilized in the ML modeling.
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Table 2.1: Variations in surface potential, current, and C2H4 concentrations in repeated open-loop
experiments at certain operating conditions.

Average

Potential
(V vs SHE)

Total Current Density
(mA/cm2)

C2H4 Concentration
(ppm)

-1.447 11.25 140.61
-1.426 9.6 150.71
-1.407 6.09 139.01
-1.365 3.87 47.81
-1.318 1.7 9.62
-1.262 1.19 1.28

(a) Averages of experimental inputs and outputs in various ranges.

Standard Deviation

Potential
(V vs SHE)

Total Current Density
(mA/cm2)

C2H4 Concentration
(ppm)

0.010 2.360 64.38
0.001 1.687 42.40
0.005 0.960 23.397
0.013 1.059 13.93
0.010 0.214 2.64
0.003 0.082 1.82

(b) Standard deviations of experimental inputs and outputs in various ranges.
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2.3.2 Model Selection and Evaluation

[105] have modeled the reactor setup for the estimation of the steady-state production rate

using an ANN. However, this ANN model only gives the average estimation of what the reac-

tor would produce throughout the 80-minute experiment and cannot be used for dynamic data

modelling. A very effective method of constructing a dynamic data driven model involves using

Recurrent Neural Networks (RNN) as this architecture accounts for the history of the process.

[208] examined in detail the use of RNNs in process control. One of the dynamic ML modeling

techniques is Long Term Short Term (LSTM) RNNs. LSTM networks have an underlying archi-

tecture that processes a time window and keeps the necessary information at specific time steps.

Therefore, the use of LSTM to store these dependencies is justified. However, neural network ar-

chitectures are very data-dependent, and 3 data points with 20-minute intervals per experiment is

insufficient to capture the general behavior of an 80-minute experiment. Another example is using

ML techniques for parameter-based modeling (such as reaction rate at specific temperatures) and

combining this ML model with first-principle time-dependent equations.

Based on the work of [105], the applied potential and rotation speed are two important inputs

for characterizing the reactor operation. However, these two inputs are held constant throughout

the experiment. To create a dynamic state estimator, the model must be trained with inputs that

vary during the experiment. Thus, the state estimator model should also incorporate other inputs,

such as the current and surface potential, which vary throughout the experiment with the catalyst

degradation.

The available data is separated into training and testing sets. 80 % of the data is destined
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for training and used to train various machine learning methods, including linear, ridge, lasso,

polynomial regressions, support vector regression, and gradient-boosted decision tree algorithms.

Five-fold cross-validation (CV) and mean square error (MSE) were used for model selection. The

MSE of the different models are plotted against each other in Figure 2.2.

Figure 2.2: Box plots for five cross-validation mean squared errors on a normalized scale for
multiple candidate ML models.

Among the tested regression methods, two of them had remarkably higher training and testing

performance, which were gradient boosting and support vector regression (SVR) with a polyno-

mial kernel. Since decision tree-based algorithms, such as gradient boosting, do not produce a

smooth output [53], they present challenges when combined with control. Boosting methods are

very successful at predicting the GC measurement points but can be very misleading for the areas

in-between two consecutive GC points. In contrast, SVR predictions are more realistic, as they
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yield predictions for the operating conditions between GC points that align closely with the ex-

pected behavior of the system. Thus, the polynomial kernel SVR is chosen because of its smooth,

continuous properties and ability to predict intermediate points more accurately.

Remark 5 It is important to note that the SVR model is trained only from GC measurements as

described in Section 2.3.1, so the SVR model cannot capture the gas concentration prior to the GC

measurement at 35 minutes. This requires the gas production to reach a pseudo steady-state such

that the production rate at the catalyst surface is equal to that of the gas products entering the GC.

In the beginning of the experiment, the electrolyte is not saturated with the product gases such as

hydrogen, ethylene, methane and carbon monoxide. As a result, the initial gases produced must

dissolve in the electrolyte until the electrolyte is saturated. Then, the gases begin to accumulate in

the reactor overhead and become detectable by the GC. Therefore, until equilibrium is reached, the

SVR predictions are different from the actual GC readings. After the time necessary for equilibrium

passes, the SVR predictions and GC measurements start to converge.

2.3.3 Support Vector Regression (SVR)

Support Vector Machine algorithms are similar to least-squares-based regression methods.

However, instead of minimizing the residuals, SVR aims to optimize the generalization error

bound; thus, it tries to come up with a generalized regression equation [8]. SVR assumes that

the support vectors have at most a deviation of ε from the proposed function, and ideally intends to

keep all data points within this margin. The SVR algorithm only penalizes points that are outside

the support vectors [8]. A visualization of non-linear regression parameters of SVR is shown in
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Figure 2.3.

Figure 2.3: The proposed hyperplane f(x) and the margins f(x) ± ε.

We note that ξ, ξ∗ are slack variables for opposite sides of the support vectors and represent

the distance between the outside points and the support vectors. For a linear SVR, the optimization

problem is as follows [8]:

min
w

1

2

∥∥w2
∥∥+ C

l∑
i=1

(ξi + ξ∗i )

st.


yi − ⟨w, x⟩ − b ≤ ε+ ξi

⟨w, x⟩+ b− yi ≤ ε+ ξi
∗

ξi, ξ
∗
i ≥ 0


(2.3)

where ⟨· , ·⟩ is the inner product, w is the weight matrix, C is a parameter that decides the tolerance

limit for divergences greater than ε, and l is the number of data points beyond the support vectors.

The first two optimization constraints represent the support vectors. Solving the above convex
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optimization problem yields the linear regression function. The same procedure can be applied

to a kernel function, such as a polynomial. The degree of the polynomial is selected prior to the

optimization.

The polynomial kernel k(xj, xk) can be defined as follows:

k(xj, xk) = (1 + xj
Txk)

n (2.4)

where xj and xk are instances of input vectors, xj
T is the transpose of xj , and n is the order of the

polynomial.

k(xj, xk) = ⟨φ(xj), φ(xk)⟩ (2.5)

where φ(x) is a non-linear kernel function and ⟨·, ·⟩ denotes the inner dot product between the

values. While our training data has 4 features, for simplicity, Eq. 2.6 below only illustrates 2

features with a 2nd degree polynomials for the two instances of the input vectors x1 and x2. Each

feature contains the current, ii, and surface potential, ei, data of two experiments as shown in the

following example:

x1 = [e1, i1] (2.6a)

x2 = [e2, i2] (2.6b)

φ(x1) = [1, e1, i1, e
2
1, i

2
1, e1i1] (2.6c)

φ(x2) = [1, e2, i2, e
2
2, i

2
2, e2i2] (2.6d)

k(x1, x2) = 1 + e1e2 + i1i2 + e21e
2
2 + i21i

2
2 + e1i1e2i2 (2.6e)
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where e1 and e2 are surface potentials, and i1 and i2 are the current values of input the vectors x1

and x2, respectively.

The objective function would then take the following form:

f(x) =
N∑
j=1

(α∗
j − αj)k(xj, x) + b (2.7)

where α∗
j and αj are the Lagrange multipliers of the optimization problem. The convex optimiza-

tion problem is solved to find the coefficients of the polynomial kernel [8].

2.3.4 Model Training and Feature Engineering

The Python package Scikit-Learn is used to fit the data to a support vector regression model.

Grid search is implemented to find the best hyperparameters, by training the proposed model with

all combinations of predefined sets of hyperparameters. The hyperparameters yielding the highest

cross validation performance are selected to fit the final model. After grid search, the data are fit to

a polynomial kernel of 5th order consisting of the surface potential, rotation speed and current as

input parameters and ethylene concentration as an output. Since this model has a relatively small

training set, feature engineering is applied to improve the model performance.

Figure 2.4 is useful for interpreting general trends in the data. Throughout the open-loop

experiments, although the manipulated input variables (e.g., applied potential and rotation speed)

are fixed, the ethylene concentration in the product is continuously decreasing. As shown in Figure

2.4b, the current density generally decreases over the duration of the experiments, and therefore,

it increases the surface potential according to the relationship described by Eq. 1 (since the sign
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in current and potential signifies the direction, increasing or decreasing remarks are made with

respect to absolute values). The general decreasing trend of current is due to catalyst deactivation,

which will be represented better in the model by the integral of the current as explained in the

following paragraphs. The model is first fit to the data set, and some preliminary fitting results are

presented in Figure 2.5.

Despite having a satisfactory approximation to the GC results and rational predictions in

between two consecutive GC points, the model fails to catch some behaviors in the current and

surface potential. In the experimental data, there exists a natural deviation in ethylene production

rates measured under the same operating conditions. Also, the SVR model predictions have a

strong correlation with the current input. However, mimicking the trend in the current could result

in missing some inherent behavior in ethylene concentration, particularly when the experiment

is run for longer than the 80 minutes used for the collection of the open-loop data used in the

initial SVR model training. This motivates the pursuit of an additional input that can represent the

catalyst degradation and account for the historical effect of the inputs throughout the experiment.

Since the catalyst deactivates continuously, the ethylene concentration is expected to decrease

monotonically over time under a constant applied potential and rotation as shown in Figure 2.5.

Thus, the new input must be increasing or decreasing monotonically and must be derived from the

available system parameters.

A parameter that is compatible with these prerequisites is the cumulative integral of the cur-

rent. The current is always negative, as defined by the convention, since a cathodic potential is

applied. Therefore, the cumulative area under the current is increasing at each time step even if

the current is decreasing in magnitude. Thus, a very high integrated value of the current hints
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Figure 2.4: The trends in ethylene concentrations with increasing current and surface potential,
illustrated with results from various experiments. Same colors show 3 GC results from the same
experiment. Ethylene concentrations are normalized between 0 and 1.
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Figure 2.5: Performance of the SVR model in open-loop experiments. The concentration and
surface potential plots do not start from time zero because those values are averaged over a 3
minute time window in open-loop experiments.

that the degradation has reached a very high level and the reaction is slowing down accordingly.

This is consistent with the experimental trend that experiments at higher potentials show a more

significant overall catalyst deactivation, because a higher applied potential leads to a larger flow

of current. Additionally, the historical effect of the current in the experiment is taken into account

through integration. The integral of the current can be defined as follows:

P (t) =

∫ t

0

iav(ζ)dζ (2.8)

where P (t) represents the integral of the current term, t is the time, and iav(t) is the averaged
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current values that the GC measurements are based on. The integral is calculated numerically

with the trapezoidal rule based on per-second current data. The impact that the integral of the

current parameter makes is shown on Figure 2.6. In the concentration plot of Figure 2.6, the large

fluctuation in SVR predictions between the second and third GC points is due to fluctuations in

the surface potential, but this is reduced to a more rational trend and the third GC point is captured

after the integral of the current is introduced.

Since the data set is relatively small for dynamic modelling, auxiliary performance boosting

methods are explored to increase the model accuracy. One of the beneficial methods is feature

engineering [63]. The input parameters can be augmented by applying some mathematical trans-

formations to the existing inputs. Some of the common feature engineering methods are poly-

nomial, logarithmic and reciprocal transformations [63]. Since first-principles models are in the

development phase, the mathematical forms of all parameters are not exactly known. For example,

in the case of a polynomial transformation, x2
1x2 might be a more efficient parameter than just x2,

where xi is an arbitrary input. Similarly, feeding the transformation log(x1) might be a better input

than x1 if there is a possible logarithmic correlation in the nature of the phenomenon. Feature

engineering can increase the number of inputs in the model, and this causes a trade-off between

computation time and accuracy. The performance of the feature engineered models is tested under

polynomial degrees 2, 3, and 4, logarithmic, and reciprocal transforms, in addition to regression

tree and lasso transformations. The mathematical backgrounds for decision tree and lasso can be

found in [117] and [126]. The results are presented in Table 2.2.

Feature engineering has the potency to improve the R2 of the model by 8% and reduce the

absolute error in the test set. The best-performing feature transformation is polynomial, and the
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Figure 2.6: Improvement of the predictions after adding the integral of the current parameter as
input. The concentration and surface potential plots do not start from time zero because those
values are averaged over a 3-minute time window in open-loop experiments.
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Table 2.2: Performance of the model using various feature engineering methods.

Feature Engineering Method R2 Mean Abs. Error

No Feature Engineering 0.842 13.24
Polynomial degree 2 0.894 10.39
Polynomial degree 3 0.922 11.31
Polynomial degree 4 0.924 10.31

Logaritmic + Reciprocal 0.853 14.59
Regression Tree 0.847 11.70

Lasso 0.841 13.24

R2 metric continues to improve as its degree increases. The best polynomial is the fourth de-

gree polynomial, but this transformation greatly increases the number of inputs. The third degree

polynomial also appears to have a good performance, and it achieves this performance with fewer

inputs. This is expected, as the third degree polynomial captures both the exponential increase in

partial current density as a function of the applied potential and the fact that ethylene production

becomes limited by mass transport at the highest overpotentials. Thus, a third degree polynomial

feature transformation was selected to retrain the model.

Training and testing performance of the improved SVR model, after including the integral of

the current as a new parameter and implementing the feature engineering, is shown in Figure 2.7.

The mean absolute error is 11.3 ppm and the R2 score is 0.92.

2.4 Real-Time Optimization

This section demonstrates a real-time optimization strategy for the electrochemical reactor.

Specifically, we first approximate the cost and revenue of the reactor at various setpoints (i.e., ethy-
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Figure 2.7: Testing and training performance of improved SVR model.

lene concentration). Subsequently, the optimization process is developed based on the economic

evaluation result of the reactor. Lastly, open source software IPOPT is introduced to perform the

real-time optimization for this work.

2.4.1 Setpoint Optimization

Setpoint optimization is critical for process operation; however, the location of the optimum

varies with different practical considerations. In this work, we develop a framework to decide the

optimum operating conditions for the electrochemical reactor automatically, by considering the

result from the economic evaluation based on the operational neural network model from [105].

Specifically, we approximate the energy consumption to maintain each ethylene concentration set-
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point at steady-state by using the following equations:

I =
m∑
i=1

PieiAF (2.9a)

Mi =
PiAVg

F0

(2.9b)

E = IV t (2.9c)

where Eq. 2.9a approximates the current density of the reactive surface by calculating the amount

of transferring electrons, which is proportional to the overall production rate of the reactor. A

is the area of the reactive surface, F is the Faraday constant, Vg is the standard molar volume

of gases, F0 is the feed flow rate of the CO2 gas and ei is the number of electrons transferred

to form a molecule of the ith product. The values of these parameters are listed in Table 2.3.

Additionally, Pi, i = 1, . . . ,m is the molar production rate of the ith product, which is predicted

by a statistical feed-forward neural network (FNN) model described in [105]. The FNN model is

developed to take the surface potential (V ) and rotation speed (r) of the electrode, which was fixed

at 100 rpm for the control experiments in this study, as inputs to predict the production rates for

all products. Figure 2.8 shows the comprehensive profile of the ethylene production rate predicted

by the FNN model, which implies a rotational relationship between the surface potential and the

ethylene production rate, and an inversely proportional relationship with respect to the proportional

speed. The reduction of ethylene production at higher rotations speeds was determined to be caused

by the decrease in the residence time of carbon monoxide at the electrode/electrolyte interface by

[73]. Furthermore, according to the balance-based equation for this reactor (Eq. 2.9b), a unique
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concentration (Mi) for each product can be found from the corresponding production rate Pi.

Therefore, the energy consumption (E) to operate the reactor at a specific setpoint of ethylene

concentration is calculated by adopting the equation of electric energy (Eq. 2.9c).

Table 2.3: Parameters of economic evaluation.

notations value unit

A 3 cm2

F 96485.3 C ·mol−1

Vg 22.4 L ·mol−1

F0 0.02 L ·min−1

V variable voltage
I variable amp
E variable watt
M variable ppm

We assume the electric energy consumption is the only type of cost to operate this reactor, and

we approximate the revenue of the reactor on the basis of the sale price and production rate of each

product. Therefore, the optimum ethylene concentration setpoint to operate the electrochemical

reactor can be determined by solving the following optimization problem:
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J = argmax
x̂∈D

R(x̂, V )− C(I, V ) (2.10a)

s.t. Fnn(V, r) ≈ x (2.10b)

C(V, I) = ce × E(V, I) (2.10c)

R(x̂, V ) =
m∑
i=1

ci × x̂i (2.10d)

r = 100 (2.10e)

− 1.5 ≤ V ≤ −1.27 (2.10f)
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Table 2.4: Chemical information of products.

Index Products Number of Transferred Electrons Chemical Formula
1 methane 8 CH4

2 ethylene 12 C2H4

3 methanol 6 CH3OH
4 ethanol 12 C2H5OH
5 acetate 8 CH3COO−

6 ethylene glycol 10 (CH2OH)2
7 glycolaldehyde 8 HOCH2CHO
8 acetaldehyde 10 CH3CHO
9 n-propanol 18 C3H7OH

10 allyl alcohol 16 C3H5OH
11 acetone 16 CH3COCH3

12 propionaldehyde 16 C2H5CHO
13 carbon monoxide 2 CO

where D in Rm is the bounded state space of the production rates, and the boundary of the space

D is determined from the training data set used to develop the FNN model [105]. The vector

x = [P1, P2, . . . , Pm] contains the actual steady-state production rate of each product during the

real-time reaction, and x̂ denotes the predicted production rates given by the FNN model. ce and ci,

(i = 1, . . . ,m) are the price of electricity and the sale price for the ith product listed in Table 2.4.

In this study, the rotation speed of the working electrode is set to be constant at 100 revo-

lutions per minute (rpm), and the surface potential is bounded from −1.5V to −1.27V vs SHE

shown in Eq. 2.10e and Eq. 2.10f. The FNN prediction is used in Eq. 2.10c and 2.10d to approxi-

mate the revenue and cost of operating this reactor, and the constraint shown in Eq. 2.10b ensures

the FNN prediction is accurate and reliable. It is noted that the bench-scale reactor used here is 8

to 10 orders of magnitude smaller in ethylene production rates compared to existing commercial
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ethylene plants. Thus, the setpoint optimization is an interesting conceptual experiment as it in-

cludes operating constraints, but it does not capture the complexity of future electrified large scale

production systems. This approach remains valuable as it is based on experimental data and should

be translatable to increasingly larger systems.

Open-source software for large-scale optimization problems, IPOPT, is utilized to address the

setpoint optimization problem. In this work, we use the forward finite difference method by adding

small steps ∆u on the optimized variables (i.e., potential and rotation speed), to approximate the

first-order derivatives of the optimization problems. Additionally, second-order derivatives are

approximated with the Quasi-Newton method to provide information for the calculation of search

directions [188]. The derivatives and constant parameters (e.g., products and electricity prices) are

provided to IPOPT to optimize the operating conditions in terms of surface potential and rotation

speed. Finally, the results are converted to the corresponding ethylene concentration setpoint (c)

by using Eqs. 2.10b and 2.11, where Fo and a are the gas inlet flow rate (0.2 L · min−1) and a

constant (1,000,000) for the unit conversion, as follows:

c =
aPiAVg

Fo

(2.11)

The optimization is performed for various electricity costs ranging from $0.023-$0.03 per

kWh to provide optimized results over this range [54]. As shown in Figure 2.9, subfigures 2.9a

and 2.9b demonstrate the approximate daily profit to operate the electrochemical reactor and the

ethylene concentration profile at a rotation speed of 100 rpm. In the plot, the optimal setpoint shifts

to a lower concentration of ethylene with increasing electricity price, implying that the optimizer
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is capable of making intelligent decisions to reduce the production rate as operating costs increase.

As a result, the optimum operating conditions for electricity price at 0.023 and 0.03 dollars per

kWh are utilized for dynamic control experiments to demonstrate the controller performance in a

cost changing scenario, such as the electricity Time-of-Use (TOU) rate plan in actual operation.

Remark 6 The model is based on FNN calculations built using a statistical ML model, which

generates averaged steady-state calculations taking catalyst deactivation into account. Since the

catalyst deactivation cannot be defined with first-principle models in this study, the representation

of deactivation is embedded into the FNN model with the statistical ML method. The FNN model

is trained based on open-loop experiments and 3 data points were taken with equal intervals of

20 minutes, which shows the concentration decrease due to the catalyst decay. These results are

averaged to give the pseudo steady-state concentration under a fixed applied potential and rotation

speed. This model is optimized in our study to find economically optimal setpoints while accounting

for the catalyst deactivation [105].

Remark 7 The catalyst needs to be regenerated once the selectivity shift happens. Catalyst regen-

eration is the only way to reverse the selectivity shift. However, this study does not explore catalyst

regeneration. A future process operation and control study for this reactor will be based on a more

stable catalyst, which does not exhibit severe deactivation.

2.5 Feedback Control

This section demonstrates the application of the experimental control schemes to the electro-

chemical reactor. Driven by the motivation mentioned in section 2.2.2, the control objective is to
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regulate the ethylene production to energy-optimal setpoint values by manipulating the input vari-

able. Therefore, a proportional-integral (PI) control algorithm is adopted to calculate the control

actions for this study, where the manipulated input is the potential applied to the working elec-

trode and the controlled output is the ethylene concentration measured from the reactor head-space

gas phase product. The PI control algorithm in discrete-time form is expressed by the following

formulas [113]:

e(tk) = ysp − y (2.12a)

up(tk) = KCe(tk) (2.12b)

uI(tk) = uI(tk − 1) +
KC

τi

(
e(tk) + e(tk − 1)

2

)
∆t (2.12c)

u(tk) = up(tk) + uI(tk) (2.12d)

where ysp is the desired setpoint and y is the estimate of the controlled variable at time tk. The

controller error e(tk) is defined as Eq. 2.12a. Eq. 2.12b and 2.12c demonstrated the controller

outputs from the proportional (up(tk)) and integral (uI(tk)) terms, respectively, where KC denotes

the controller gain, τI represents the integral time constant, and ∆t is the controller sampling time.

The final control action (u(tk)) calculated by the PI controller is shown as Eq. 2.12d, which is the

potential on the surface of the catalyst.

Specifically, the surface potential (Esurface) required to reach or maintain the desired setpoint

is computed by the PI controller, and then the corresponding applied potential (Eapplied) is back-
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calculated by the actuator based on Eq. 2.1, since the Esurface compensates for the Ohmic drop

from the electrolyte solution resistance. The surface potential is more relevant than the applied

potential (Eapplied) in describing the Tafel kinetics of electrochemical reactions involving electron

transfer. It is noted that the primary and secondary current distributions in the RCE geometry are

uniform, which is not the case for most existing CO2 electrolyzers using H-type or compression

cells. To further explain the control of the production rate, it is important to demonstrate how a

change in Eapplied affects the current and Esurface. Intuitively, increasing the potential applied to the

electrode can increase the potential on the reacting surface. However, the current density also has

a positive correlation with the applied potential, and it is competing with the potential distributed

to the reacting surface. Thus, the actuator needs to adjust the applied potential with respect to the

output of the PI controller and the real-time measurement of the current density.

Remark 8 The reactor may be controlled in real-time by manipulating two input variables: ap-

plied potential and rotation speed. The present study examines the control of a single gas phase

product concentration (ethylene) by using a single-loop feedback controller that manipulates the

applied potential. In addition to the applied potential, the rotation speed can be effectively used to

control the outlet concentration of another gas product. The CO concentration is a good candidate

as a second output given its strong dependence on rotation speed. Thus, multivariable control of

the electrochemical reactor is a feasible task and will be discussed in a future work.

On the other hand, the controller output should be bounded by the highest and lowest surface

potential values in the training set of the SVR model. The applied potential does not have a strict

upper bound due to the variable electrolyte resistance with ranged between 6.8 and 7.2 ohms and
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instant current, but the surface potential is strictly bounded by the Esurface range in the SVR training

data set. In order to stay within the model confidence, an instant conversion from surface potential

to applied potential is made during the control.

Due to the presence of a mixing volume in the gas phase of the reactor, it was previously

determined that the GC concentrations during open-loop experiments were actually representative

of the conditions in the reactor 5–8 minutes before the GC injection was taken, as discussed in

Section 2.3.1. Thus, current and potential values were averaged over this 3-minute window for

open-loop experiments used to train the SVR model. Because of the dynamics of the reactor, this

method provided the best means of accurately correlating the production rate of ethylene with the

conditions in the reactor. However, in the case of closed-loop experiments, the SVR model is used

to predict the instantaneous production rate in real time, and the gas phase ethylene concentration

model discussed in Section 2.5.1 accounts for the dynamic time delay in the response of the GC

to the instantaneous change on the catalyst surface under a fixed rotation speed at 100 RPM. Thus,

a sampling time of two seconds was used for averaging by the SVR during closed-loop control

to provide real-time estimates. The real-time production rates predicted by the SVR model were

then used as inputs for the gas-phase ethylene concentration model to control the reactor with a PI

controller.

2.5.1 Ethylene Concentration Estimator

As mentioned in Remark 5, the SVR model is constructed to represent the product concentra-

tion on the catalyst surface. However, this does not represent what is measured by the GC. To have

efficient control, it is necessary to estimate the gas-phase ethylene concentration in real time.
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It is experimentally known that the GC and reactor overhead need a certain amount of time

to reach equilibrium. This equilibrium volume is not exactly known and cannot be assumed to be

equal to the reactor overhead volume, since gas bubbles adhere to the inner walls of the reactor

and the surface of the rotating electrode depending on the rotation speed. To address this issue, the

GC and reactor overhead are approximated as a continuously stirred tank reactor (CSTR), and the

equilibrium volume and residence time are calculated using the first-principle CSTR equations, as

shown in Eq. 2.14. It is mentioned in the previous sections that rA(t) represent the reaction rate

and is calculated by the SVR model. The GC results are equalized to Eq. 2.14d, rA(t) is calculated

by the SVR model and the τ and V parameters are varied to find the best fit. τ and V are correlated

by the following equation:

V =
60× V̇ CO2 × τ

1000
(2.13)

where V is the equilibrium volume in L and V̇ CO2 is the volumetric flow of CO2 into the reactor in

mL ·min-1. Since CO2 flow rate is known to be 20 mL ·min-1, the fitting is made by varying only

the residence time τ for multiple reaction rate calculations and corresponding GC measurements.

This set of differential equations can be solved analytically to estimate the gas-phase ethylene

concentration and can be modelled as follows:
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dNA

dt
= FA0 − FA + rA(t)× s (2.14a)

FA0 = 0 (2.14b)

dCA

dt
= −1

τ
CA +

rA(t)× s

V
(2.14c)

CA(t) = e
−t
τ

∫ t

0

e
ζ
τ
r
′
A(ζ)

V
dζ + C0e

−t
τ (2.14d)

r
′

A(t) = rA(t)× s

[
mol

s

]
(2.14e)

where NA is the number of moles, FA is the molar flow rate, τ is the residence time, rA(t) is

SVR model calculation for instant reaction rate for ethylene production, s is the surface area of

the catalyst, V is the volume of the proposed reactor and C0 = 0 ppm. Several experimental

data fittings with varying residence times and volumes were tested to fit the data with the model

predictions. As a result, the suitable residence time and volume are selected to be 1800 seconds

and 0.6 liters, respectively, as shown in Figure 2.10. A CSTR model assumes perfect mixing;

however, this reactor is neither a CSTR nor perfectly mixed. In addition, the initially produced

gases dissolve into the electrolyte, so the liquid must be saturated before the gases diffuse into the

vapor phase at a constant rate. The reactor headspace concentration model cannot fully capture

those details, and thus it fails to capture the first GC point. However, it is seen experimentally that

an ideal CSTR can satisfactorily represent the reactor overhead for the remaining GC injections.

Remark 9 A higher order model, such as multiple CSTRs in series, can be used to model the

imperfect mixing better than a single CSTR. However, the development of a residence-time dis-
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Figure 2.10: Data fitting of gas phase ethylene concentration on experimental data.

tribution model for this reactor is beyond the scope of this first work. Furthermore, this makes it

mathematically more complex to introduce the sensor feedback data discussed in Section 2.5.3.

2.5.2 System Constraints

Experimental systems are inherently vulnerable to varying conditions. In this electrochemical

setup, the initial catalyst activity can vary each trial within some error range. That is, with the same

initial fixed potential, two experiments might give different product concentrations, as illustrated

by the average rates and standard deviations summarized in Table 2.1. Although the catalysts were

cleaned with the same procedure each time, the exact catalyst activity was not known prior to the

experiment.
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[68] proposed that methane and ethylene may share the same surface-bound CH2 interme-

diate, with the dimerization rates of these fragments determining selectivity. In our extended

feedback control experiments, after a certain surface potential threshold, it is seen that no mat-

ter how much potential is applied, there is no increase in the ethylene concentration, whereas the

methane concentration keeps increasing. To prevent a selectivity shift to methane, it is crucial that

the controller does not increase the surface potential to very high values (above 1.5 V vsSHE).

This non-linear feature of the electrochemical reactor makes this control problem different from

traditional reactors. A rule of thumb would suggest increasing the manipulated variable to the limit

to reach the setpoint faster. However, in this electrochemical reaction case, this action would only

deactivate the catalyst at such a rate that it would never reach the setpoint. Thus, the controller

parameters must be selected attentively, so that the setpoint is reached slowly without shifting the

reaction selectivity away from ethylene and towards methane. The anticipated selectivity shift is

seen to start from the -1.45 V surface potential. The experimental outcomes are illustrated and

discussed in Section 2.5.5.

The total concentration of carbon atoms going into methane or ethylene is seen to be constant

when multiple dynamic experiments are compared in terms of carbon conversion to hydrocarbon

gas products. The formula for this comparison is given in Eq. 2.15, and the experimental justifica-

tion is shown in Figure 2.11:

CC = CCH4 + 2× CC2H4 (2.15)

where Cc is the concentration of the relevant carbonaceous gas product. The ethylene concentration

is multiplied by 2 because one molecule of ethylene contains 2 carbon atoms. The repetition of
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Figure 2.11: Comparison of methane and ethylene production from several experiments. Each
color represents a different experiment where the setpoint for ethylene was increased to 2.7-fold at
the 75th minute after being kept steady for 48 minutes.

the experiments demonstrated a constant concentration of carbon atoms at each GC measurement,

regardless of the catalyst activity, when the surface potentials are constant before and after the

setpoints. Although some experiments have the same potential, rotation speed, and current, this

demonstrates that the difference in catalyst activity can dictate the ethylene concentration and

selectivity and bring support to Hori’s idea that methane and ethylene share a common surface-

bound intermediate [68].

2.5.3 Feedback Control with Delayed GC Measurements

In previous sections, the modeling challenges that arose from the nature of the experimental

data were emphasized. As a result of the uncertainty in experiments, the model is expected to give

results within the standard deviation of repeated open-loop experiments. Implementing the con-

trol solely based on the reactor overhead estimator is expected to give close estimations to the GC

results; however, this would exclude important measurement-feedback information that could be
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(a) Open-loop Diagram.

(b) Closed-loop Diagram with GC Correction.

Figure 2.12: Process control diagram for both open-loop process, and closed-loop control that
incorporates the SVR model and GC feedback in the loop.

used to improve the control. Utilizing feedback from the GC measurements is a way to account for

the experimental uncertainty, and this gives an opportunity for designing a complete closed-loop

control, wherein the real-time sensor measurements directly impact the calculations of the manipu-

lated inputs. Thus, the GC results obtained every 20 minutes are also used to improve the estimator.

The control diagrams of the open-loop configuration and model-based, GC-incorporated, closed-

loop configuration are shown in Figure 2.12.

Each component of the control system accomplishes the following: The PI controller node

in LabVIEW calculates the control signal based on the PI control algorithm. The input to the

control algorithm is the headspace ethylene concentration estimation (in ppm) and its output is

the calculated surface potential. The potentiostat is both a sensor and an actuator. It senses the

57



real-time current and can manipulate the applied potential. It changes the applied potential based

on the control signal sent by the PI controller. The reactions occur in the electrochemical reac-

tor. The electrodes and sensors are connected to the reactor. The applied potential sensed in the

reactor is converted to surface potential, the current values are measured, the rotation speed and

the calculated variable of cumulative integral of the current are fed to the SVR model for reac-

tion rate estimation, which is then used in first-principle calculations to estimate the headspace

gas-phase ethylene concentration. The gas products accumulate in the reactor overhead. After the

product gases equilibrate in the headspace, they travel to the GC sensor to be quantified in each

20 minutes. The quantification is processed automatically via an automated GC code and the con-

centration measurements (in ppm) are considered for feedback correction on the estimators. After

the GC feedback correction, the error is calculated and sent to the PI controller for a new control

signal.

In the closed-loop control scheme, the feedback data from the sensors is introduced to the

ethylene concentration estimator to realize real-time adoption of the process control curve. How-

ever, the GC provides the concentration measurement results with a 14.33 minutes delay from the

time of the reactor overhead sampling. Thus, a correction method was developed to estimate a

probable past trajectory for the process control curve. The proposed correction is activated once

the GC feedback data are received. The algorithm examines the past data and calculates the cu-

mulative correction changes in the previous 20.33 minutes of the predictions (the time between 2

consecutive GC injections) to better align the predicted gas concentration with the most recent GC

measurement. This correction affects both the SVR model and the gas-phase ethylene concentra-

tion estimation model. rA(t) term is the reaction rate with units mol · s−1. This correction scheme
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is divided into two parts. The first correction is between t = 0 and t = t2. The second correction

is for after the second injection. The important abbreviations are presented below.

• n: the number of injections.

• ti: ith injection start time, i = 1 . . . n.

• ti
end: ith injection end time.

• GCi: ith GC measurement result in ppm.

• G̃Ci : The GCi converted to mol · V −1.

• xi−1: The correction applied to the SVR model (in ppm) after tendi , which should have been

present during the previous injection time.

• x̃i−1 : The xi−1 converted to rate in mol · s−1 using Eq. 2.16.

• PC2H4(ti) : Prediction of the gas phase ethylene concentration at ti in mol · V −1.

• rA : Prediction of SVR model (in ppm) converted to mol · s−1 using Eq. 2.16.

• r
′
A,c : The cumulatively corrected SVR prediction converted to mol · s−1 using Eq. 2.16.

The equation for converting the concentration to rate is as follows:

rC2H4 =
Cppm

C2H4

106
× V̇ CO2

60× 106
× P

RT
(2.16)
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where rC2H4 is the production rate in mol · s−1, Cppm
C2H4

is the ethylene concentration in ppm, V̇ CO2

is the volumetric flow of CO2 into the reactor in mL · min-1, P is the pressure in Pa, R is the

universal gas constant equal to 8.314 J
mol·K , and T is the ambient temperature in K.

Given in Section 2.5.1, Eq. 2.14d shows the analytical solution for this reactor that is used to

explain the mathematical background of the GC feedback correction. When the linear correction of

the second GC injection x̃1 is applied to the prediction of the reaction rate, the analytical solution

takes the form shown in 2.17a and is equal to the result of the GC measurement. 2.17b, 2.17c,

2.17d are the solution steps for 2.17a. The corrections between t = 0 and t2 and the detailed

solution are calculated as follows to find the linear correction term x̃1:

G̃C2 = e
−t2
τ

∫ t2

0

e
ζ
τ

(
rA(ζ)

V
+

x̃1

V

)
dζ (2.17a)

G̃C2 = e
−t2
τ

∫ t2

0

e
ζ
τ
rA(ζ)

V
dζ + e

−t2
τ × x̃1

V
×
∫ t2

0

e
ζ
τ dζ (2.17b)

G̃C2 = PC2H4(t2) +
x̃1

V
× τ ×

(
1− e

−t2
τ

)
(2.17c)

x̃1 =
G̃C2 − PC2H4(t2)

τ ×
(
1− e

−t2
τ

) × V (2.17d)

where x̃1 is converted to concentration by rearranging the Eq. 2.16. The correction after t2 is
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calculated as follows:

G̃Ci = e
−ti
τ

∫ ti

0

e
ζ
τ rA,c(ζ)dζ (2.18a)

G̃Ci = e
−ti
τ

(∫ ti−1

0

e
ζ
τ
rA,c

’(ζ)

V
dζ +

∫ ti

ti−1

e
ζ
τ

(
rA,c

’(ζ)

V
+

x̃i−1

V

)
dζ

)
(2.18b)

G̃Ci =
e

−ti
τ

e
−ti−1

τ

G̃Ci−1 + e
−ti
τ

(∫ ti

ti−1

e
ζ
τ
rA,c

’(ζ)

V
dζ +

x̃i−1

V

∫ ti

ti−1

e
ζ
τ dζ

)
(2.18c)

x̃i−1 =

(
G̃Ci − e

(ti−1−ti)

τ G̃Ci−1 − e
−ti
τ T
)
× V

τ
(
1− e

(ti−1−ti)

τ

) (2.18d)

where T =
∫ ti
ti−1

e
ζ
τ
rA,c

’(ζ)
V

dζ is calculated numerically using the trapezoidal integration rule on

LabVIEW. We note that in Eq. 2.18a, the rA,c term accounts for all corrections. Eq. 2.18b divides

the calculations into two. The first integral term assumes that the previous correction was adjusted

with the linear correction so that the relevant prediction overlaps with the previous GC measure-

ment. The second integral term in Eq. 2.18b is structured to find the next correction that should

have been applied between t = ti-1 and t = ti.

It is important to note that this calculation assumes the equalities shown in Eq. 2.19 below:

PC2H4(t2) = e
−t2
τ

∫ t2

0

e
ζ
τ
rA(ζ)

V
dζ (2.19a)

G̃C2 = e
−t2
τ

∫ t2

0

e
ζ
τ
rA,c

’(ζ)

V
dζ (2.19b)

The difference between the two terms is the correction in rA.

The objective of the calculations so far is to calculate the SVR correction term x̃. Following

this, the correction made on the surface production rate should be cumulatively reflected in the
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headspace ethylene predictions. This requires a compensating factor for the ethylene production

on the basis of the previously assumed surface production difference. Since GC corrections begin

at tendi , the integral time interval is calculated between t = ti−1 and t = tendi . This requires

recalculation of PC2H4(t
end
i ) with the corresponding linear correction and would correspond to step

changes in the headspace ethylene concentration prediction curve at t = tendi . The application of

this correction to the reactor overhead ethylene prediction control curve and the relevant analytical

solution are shown in Eq. 2.20 below:

PC2H4(t
end
i ) = e

−tend
i
τ

∫ tend
i

0

e
ζ
τ

(
rA,c(ζ)

V

)
dζ (2.20a)

PC2H4(t
end
i ) = e

−tend
i
τ

(∫ tend
i−1

0

e
ζ
τ
rA,c

’(ζ)

V
dζ +

∫ tend
i

ti−1

e
ζ
τ
rA,c

’(ζ)

V
dζ +

x̃i−1

V

∫ tend
i

ti−1

e
ζ
τ dζ

)
(2.20b)

PC2H4(t
end
i ) = e

−tend
i
τ

(∫ tend
i

0

e
ζ
τ
rA,c

’(ζ)

V
dζ +

x̃i−1

V
× τ ×

(
e

tend
i
τ − e

ti−1
τ

))
(2.20c)

From Eq. 2.20c, it can be seen that the concentration correction that should be made to the

reactor headspace concentration estimator is proportional to x̃i−1

V
× τ ×

(
e

tend
i
τ − e

ti−1
τ

)
the term.

This is easy to implement when integrated in LabVIEW as it is added to the integration term of the

analytical solution in the real-time concentration calculations as shown in Eq. 2.20c.

The integral of time from t = 0 to t in the analytical solution of this headspace ethylene

concentration model accounts for the past of the reaction rate. With each feedback from the GC

measurement, to adjust the GC to instant production, it is assumed that the past of the experiment

can be accounted for more accurately. For time interval 0 ≤ t < tendi+1, the SVR is also adjusted

cumulatively as follows:
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rA,c
’ = rA(t) +

i∑
k=1

xk (2.21)

and an example of this for 0 ≤ t < tend5 is like the following:



0 ≤ t ≤ t2

t2 < t ≤ t3

t3 < t ≤ t4

t4 < t < tend5

rA,c
’ = rA(t) + x1

rA,c
’ = rA(t) + x1 + x2

rA,c
’ = rA(t) + x1 + x2 + x3

rA,c
’ = rA(t) + x1 + x2 + x3 + x4


Corrections begin at tendi and assume that this correction was applied between ti−1 and ti,

as shown in Figure 2.13. This methodology assumes a linear correction for a non-linear process.

Thus, the correction is most effective when Kc is not high and when the concentration change

between two consecutive GC measurements is not very large.

2.5.4 Simulation and Tuning

It is not practical to run experiments for several hours to determine the control parameters.

Instead, a reactor simulator is built to find the controller tuning parameters. The simulator uses the

data-driven SVR estimator, calculations of the first-principles modeling of the gas phase ethylene

concentration, and a data-based correlation between the surface potential and current shown in Eq.

2.22. Using the available data, the optimal values i0 and k are found from the data shown in Figure

2.14a using the following equations:

i = i0e
k×(ESurface) (2.22)
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(b) The surface production correction has the same timing. The cumulative correction calculated based on
GC feedback is seen when the two curves are compared, especially through the end of the experiment.

Figure 2.13: The cumulative corrections based on past data and its adjustment to real-time trajec-
tories.
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i = i0e
k×(EApplied−i×R+EAg/AgCl) (2.23)

The starting fixed potential and rotation speed are defined at -1.65 V and 100 RPMs respec-

tively, and the corresponding current is calculated by solving Eq. 2.23. Then, the PI controller code

calculates the necessary surface potential, and this value is fed to the SVR model. The current at

this surface potential is found using Eq. 2.22.

In addition to the current prediction at a specific surface reaction, an approximate relation for

the catalyst deactivation is extracted using the available open-loop experiments. Specifically, open-

loop experiments are conducted at a fixed surface potential, and catalyst deactivation manifests

itself as a reduction in current throughout the experiment. The rate of reduction in current in

open-loop experiments was found to be approximately linear with time at a given potential, and a

correlation between applied potential and the rate of current loss was approximated as shown in

Figure 2.14b by a power relation of the form:

di
dt

= 3.17× 10−9 |EApplied|10.82 (2.24)

It is important to note that the developed simulator does not perfectly represent the reactor.

Firstly, the activity of the catalyst is variable, and the simulator uses a model derived from the open-

loop experiments. Due to this, experimental proof is needed to show that the controller parameters

are suitable to compensate for the inherent decrease in the current. However, the simulator is

expected to produce a good estimate of the controller parameters, Kc and τ i. Second, the SVR

model does not properly represent the selectivity shift that occurs at high surface potentials because

it is not trained on experiments that are long enough for the selectivity shift to occur. As a result, the
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Figure 2.14: Regression based on averaged experimental data to find current-potential correlation
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controller has no knowledge whether the selectivity shift has occurred or not, and it assumes that

increasing the potential will increase the ethylene concentration. This issue should be considered

when selecting control parameters. Finally, the simulator does not use feedback data from the GC.

Thus, the feedback correction mechanism for the GC discussed in Section 2.5.3 cannot be used

during the simulation.

Before the simulator was built, an initial experiment was conducted using the control param-

eters, Kc = -2.45 ×10−5 and τ i = 40 seconds. However, it was seen that the catalyst deactivates

faster than the controller compensates for it. After the simulator was coded, the simulation and

the experimental trajectories were compared, and they are shown in Figure 2.15. The experimental

trajectory shown in Figure 2.15 is compatible with the GC results. Both the simulation and the

experiment show that this proportional controller gain is not strong enough to compensate for the

catalyst decay. As a result of more simulations, after the second setpoint change, a single pair of

controller parameters were found not to be appropriate to control the process. This is an indication

of the high non-linearity of the process and should be tackled by gain scheduling. As a result, two

different gains were used for two different setpoints considered in our experiments.

Multiple combinations of controller parameters were tested with the simulator. The desired

parameters should not drive the process output to the controller surface potential limits to avoid an

early selectivity shift to methane. Also, the controller parameters should not lead to a very sluggish

response where the catalyst deactivation overpowers the system before the setpoint is reached. The

desired parameters in the simulation should allow some overshoot, since in reality the expected

concentrations are lower. Figure 2.16 shows the controller simulation for two setpoints, 34 and 60

ppm, respectively. The control parameters are Kc1 = -0.00011025, Kc2 = -5.39 ×10−5 and τ i = 40
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Figure 2.15: Comparison of simulated and experimental data for the setpoint of 34 ppm.

seconds.

2.5.5 Closed-loop Performance of Setpoint Tracking

In an effective control system, the controller should be able to drive the system to a new

setpoint in case of a setpoint change. In a hypothetical scenario, the electricity price can change

(due to TOU pricing, etc.), and the controller must adapt to keep the most economical or energy

efficient production. In order to prove the efficacy of the estimator-based PI controller on this

setup, a setpoint change is introduced between two economically optimal points. The setpoints are

chosen to reflect a sufficiently high change in production over a reasonable period of time. Thus,

the PI controller is tested for setpoints of 34 and 60 ppm.
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Figure 2.16: The simulation that was used to find the control parameters that were used in the
closed-loop experiment.

In an open-loop setting, while the catalyst degradation decreases the number of available

catalyst sites, the activation energy reduction caused by the catalyst slowly subsides and molecules

need more energy to overcome the activation energy barrier. As a result, when the applied potential

is kept constant, the number of molecules that can pass the activation energy barrier decreases as

more reactive sites become unavailable. In a controlled experiment, the closed-loop potential is

driven to more negative values by the PI controller to keep the energy of the molecules high enough

to sustain production. The trends in current for the open-loop and closed-loop experiments are the

opposite. In the open-loop experiment, the decreasing current is an indication that the ethylene

concentration is decreasing as the catalyst deactivates over time. In the closed-loop experiment,
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the increase in the applied potential drives the current in the opposite direction with respect to the

open-loop current, indicating that the manipulated input compensates for catalyst degradation.

The experiment is run for 9 injections, and it is expected that the PI controller keeps the

concentration at each setpoint. The controller starts at the 27th minute, and the setpoint change is

introduced at the 76th minute, after obtaining 2 GC measurements. The experimental results are

presented in Figure 2.17. The process succeeds in driving the gas-phase ethylene concentration

to the first setpoint by the third injection. Then, after the second setpoint change, the controller

drives the output close to 60 ppm at about 52 ppm. This experiment was repeated several times,

with higher and lower feasible proportional controller gains, and with different catalysts. In each

of the experiments, the final concentration was recorded to be between 52-54 ppm. One of the

potential reasons that this system does not fully reach the higher setpoint is that the dynamics

of the system cause the process to approach the second setpoint after 2 hours. By this time, the

catalyst has largely deactivated. The surface potential needed to increase the concentration of

this system causes a selectivity shift. Figure 2.18 shows this selectivity shift to methane more

clearly. Especially, between injections 7 to 11, the methane concentration increases as the ethylene

concentration remains constant under increasing potentials and current. This is an experimental

justification that the energy given to the process was being used to produce more methane instead

of producing ethylene. Thus, if the system has not reached the setpoint by the time the selectivity

shifts to favor methane, it is not possible to increase the concentration of ethylene to the setpoint by

increasing the potential. It takes around the time of 3 GC measurements to reach the neighborhood

of a new setpoint. The results show that the controller can drive the system to the neighborhood of

the setpoints within the error margins of 10% to 12%.
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Remark 10 The setpoint change would not be possible without the integral of the current input.

The current and surface potential values at 100 RPM recorded through the end of the repetition ex-

periments were seen to yield much higher concentrations in the early GC measurements of related

open-loop experiments. However, the cumulative integral of the current brings the concentration

closer to the GC results by capturing appropriately the catalyst deactivation over time.
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Figure 2.17: Closed-loop experiment with setpoint changes.
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Figure 2.18: Ethylene and methane concentration comparison. The selectivity shift to methane can
be seen starting from the 7th injection.The surface potential and current continue to increase, while
the trend of ethylene concentration remains steady and methane production increases sharply.
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Chapter 3

Digitalization of an Experimental

Electrochemical Reactor via the Smart

Manufacturing Innovation Platform

3.1 Introduction

The 21st century has witnessed a rapid increase in the amount of data produced by many

industrial sectors, including chemicals manufacturing. The use of process data to improve pro-

cess operation via model-based systems and control engineering has initiated the Fourth Industrial

Revolution, which is described as Smart Manufacturing (SM) in the United States and Industry 4.0

in Europe (e.g., [24, 79, 216]). The embedding of digital technology into nearly all components

of a manufacturing process is generating a digital transformation that enhances decision-making,

increases energy efficiency, and improves productivity [153]. The digital transformation of a man-

ufacturing process includes the seamless integration of advanced sensors with data-based machine
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learning models, simulation technologies, advanced real-time optimization and control strategies,

and data-driven, decision-making tools with a real-time view of the factory and supply chain.

The abundance of data allows for the automation of processes and the development of intelligent

systems, which is crucial to eliminating human error, to facilitating data acquisition, and to acceler-

ating manufacturing research breakthroughs by combining operation and information technologies

under the scope of smart manufacturing. In a broader perspective, smart manufacturing is concen-

trated on the optimization of cyber-physical components by resolving challenges associated with

uncertainties including raw materials and supply chain.

Although smart manufacturing is beneficial for most industrial applications, realistic digital

transformation is difficult to integrate into most industrial applications due to its time-consuming

nature and the need for advanced operator training [129]. The growth of big data, catalyzed

by Internet of Things (IoT) technologies, has exposed challenges in the implementation of smart

manufacturing. Specifically, the ability to extract more meaningful relations and greater insights

involves working with the data in a more integrated fashion with methods for large, more complex

data sets. In recent years, machine learning algorithms have evolved to overcome some of these

aforementioned challenges, as they can identify hidden patterns or trends in big data sets that can

be used for better decision-making. Using real-time data directly from the operation increases the

effectiveness of the analyses, and positions for greater understanding from the beginning and not

at a later step in the analysis.

One of the main objectives of smart manufacturing is to establish relationships within large

data sets in an efficient and timely manner for operational modeling and troubleshooting. As

machine learning algorithms are becoming more popular, the spectrum of data-driven modeling
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options is expanding. Regression methods such as Artificial Neural Networks (ANN), Support

Vector Machines, and Gradient boosting have been successful in modeling process operational

data. With respect to recent work in the domain and other machine learning (ML) methods, [208]

explored the use of recurrent neural networks (RNNs) for modeling time series data in chemical

processes and demonstrated that RNNs can be effectively used in nonlinear control schemes such as

model predictive control (MPC). In conjunction with ML methods, several works have successfully

integrated ML algorithms into chemical engineering processes to develop new robust predictive

models for multiphase flows and reactors. [224] have summarized recent ML applications to

hydrodynamics, heat and mass transfer, and reactions in single-phase and multiphase flow systems.

Machine learning approaches have also found use in the realm of quantum calculations to predict

chemical properties and reactivity. For example, a deep neural network (DNN) was constructed

to estimate reaction rate parameters from an extensive partition function database [86]. The use

of transfer learning in a DNN for activation energy estimation was also demonstrated, starting

from a dataset generated from Density Functional Theory (DFT) calculations [51]. In addition

to the aforementioned works, the use of AI and ML reaches beyond process data modeling in

operational contexts. For instance, [55] developed a convolutional neural network model that is

used to detect effervescence in a multiphase flow through a high-speed camera that collects images

of fluid dynamics and counts the number of bubbles in each image. In another study, the pressure

drop of a cyclone separator was modeled with a hybrid generic algorithm radial basis function

neural network (GA-RBFNN) and then this model was optimized for the most optimal separation

parameters [40]. The aforementioned works highlight the importance of ML algorithms in modern-

day processes and the diverse ways in which these can be integrated into smart manufacturing
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practices.

Smart manufacturing applications can capture a complete process cycle. For example, [93]

developed a smart manufacturing approach for a distributed control sequence for a steam methane

reformer (SMR) that exploits a reduced-order model (ROM) based on large data sets extracted from

computational fluid dynamics (CFD) simulations, which is a time-consuming task. In this work,

an optimizer sets the most optimal set-points for fuel distribution in burners while a ROM was

updated automatically over time with new CFD simulations. Moreover, this framework benefits

from advanced sensors like infrared (IR) cameras for temperature distribution detection. Simi-

larly, [144] designed an industry 4.0 framework for metal alloy additive manufacturing, optimized

the production by employing micro-, meso- and part-scale finite element method (FEM) analysis

of manufactured parts, trained convolutional neural networks (CNN) for production monitoring

and defect detection, and offered a data transfer strategy between manufacturing machines, facto-

ries, and research labs to continuously develop additive recipes based on feedback. Cloud analytics

was used to store the voluminous data and automatically update the CNN model with new incom-

ing manufactured part pictures, proposing a strategy for the testing/training data set split for the

auto-CNN model update. In addition to those projects demonstrating the application of the Smart

Manufacturing paradigm, [89, 13] presented in detail how a common platform accelerates and fa-

cilitates their research for discrete part manufacturing systems by integrating a test-bed with the

Smart Manufacturing Platform.

Meanwhile, the general trend in energy research is transitioning toward renewable resources

from fossil fuels. One of the promising research areas in sustainable energy production and chemi-

cals manufacturing is electrochemistry. Electrochemical CO2 reduction is an attractive and emerg-
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ing process that can produce valuable chemicals such as ethylene, ethanol, acetaldehyde and syn-

gas. However, due to the complexity of the reaction mechanisms, industrial-scale first-principle

models of this process have not yet been developed. As a result, data-driven models appear as an at-

tractive alternative to represent this process and enable process optimization and control strategies

[114]. For this purpose, large data sets should be generated from experimental electrochemical

cells; a task that introduces significant data acquisition and data modeling challenges. Thus, in

the present work, Smart Manufacturing techniques have been used to accelerate this phase through

the direct connection of an experimental electrochemical reactor setup to the Smart Manufac-

turing Innovation Platform (SMIP) developed by the Clean Energy Smart Manufacturing Insti-

tute (CESMII), a U.S. government funded organization. The SMIP offers the necessary tools for

data transmission, configurable connectors to historians and Open Platform Communication (OPC)

servers, data storage, correlation extraction, and data contextualization. With automation and dig-

itization of experimental systems, the communication between different area experts is eased and

contextualized data along with controlled experiments is expected to contribute into scale-up ef-

forts of bench-scale electrochemical reactor systems.

For our electrochemical reactor, the smart manufacturing process starts with the objective of

demonstrating that the complex catalytic reaction can be controlled to optimize the conversion of

CO2 to Ethylene. There is a need to use the data to build a control model. Smart manufacturing

also carries the objective of building outlines or templates for the finished models to save time and

effort for recurring similar applications. The smart manufacturing process starts from the idea of

using data to create process operation models, but it also aims to create reusable outlines or tem-

plates called ’Profiles’ to save time and energy for the recurring similar applications. The other
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objective of smart manufacturing is to simplify the instrumentation and the connection, ingestion

and contextualization of the real time data from the reactor operation. This is especially difficult

for legacy equipment and instrumentation and when multiple vendor products are involved. As

the amount of data increases exponentially, the need for storage and easy access is becoming vi-

tal. Legacy manufacturing operations are not easily instrumented for digital data ingestion and as

a result continue to push data inconsistently in time and format, making it very difficult for the

data to be accessible by multiple area experts. In the last decade, many of the product vendors

created proprietary software tools for their equipment, which are often not compatible with each

other and/or difficult to interface with external software applications. Finally, legacy software ap-

plications themselves have tended to embed data for a particular function, essentially trapping it

for other uses. The incompatibility and proprietary nature of applications make it very difficult for

instrumentation equipment manufactured by different vendors to be used consistently to connect,

ingest and bring data together. This is the case for systems used in electrochemical reactors re-

search and development. It can be argued that the lack of a standard model or common platform

to exchange data has led to a limited opportunity in terms of exploiting available data modeling

options in the advancement of complex manufacturing systems. Cloud technologies offer a ser-

vice to store voluminous data and make them accessible anywhere and anytime, but various cloud

vendors still lock in data in respective platforms. For our electrochemical reactor research, there is

urgency in translating greener electrified chemicals and fuels manufacturing technologies from the

bench-scale to commercial scale in order to quickly decrease global carbon emissions. Thus, there

is a unique opportunity to leverage cloud technologies for shared computational resource usage

to significantly decrease the time needed for the analysis, optimization and scale-up of electro-
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chemical systems. As a last point, the availability of cloud technologies and their interface to the

physical operations opens additional cybersecurity vulnerabilities with integrating multiple cloud

products and/or ingesting data from multiple vendor instrumentation. The data transfer between a

cloud resource and manufacturing process equipment, sensor or machine or local processor must

be encrypted (HTTPS), safe, and the data stored on the cloud must be protected. To this end,

a smart manufacturing framework must address the necessary cyber-precautions to keep the user

data safe, with policies and user roles that clearly indicate who can read or modify the data.

This paper presents smart manufacturing components of how smart manufacturing has been

applied to the control of an electrochemical CO2 reduction reactor and its instrumentation with

the SMIP. The rest of this chapter is organized as follows. In the next section entitled “Smart

Manufacturing in Experimental Electrochemical Reactor Setup,” the experimental reactor setup

and the key Smart Manufacturing hardware and software setups are described. In the section, en-

titled “Advanced Sensors,” the real-time point sensor measures are described and the need for an

automated gas chromatography (GC) spectra processing algorithm is explained. In the section en-

titled “CESMII Smart Manufacturing Innovation Platform,” the SMIP involvement with examples

and a novel LabVIEW interface are presented. In the section entitled “Docker Container,” the ad-

vantages of the use and implementation of Docker containers are discussed. Finally, the iterative

evaluation process and resulting advantages of using ML and hybrid models are addressed in the

section entitled “Electrochemical Reactor Modeling Using SMIP”.
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3.2 Smart Manufacturing in Experimental Electrochemical Re-

actor Setup

Taking a smart manufacturing perspective on electrochemical research on CO2 reduction in

our experimental test bed is illustrated in Figure 3.1. The setup is fully automated, and the data

collected from the test bed are used to extract insight and build operational Machine Learning (ML)

models. Applied potential and current data are collected by a potentiostat, which is composed of

a sensor for measuring the electrical current and potential and an actuator for tuning the applied

potential.

Liquid product concentrations are measured using nuclear magnetic resonance (NMR) after

the experiment is completed, and the gas concentrations are measured online through gas chro-

matography (GC) in intervals of 20 minutes. It is notable that the injection and processing of the

GC system need to be automated to use the gas product analysis in real-time. Collected data are

processed to extract relationships between inputs (e.g., applied potential, electrode rotation speed,

and temperature) and outputs (gas production rates) for ML models. However, there are challenges

in building models from actual experimental data. For example, the limited amount of the GC data

produced per experiment limits the use of some ML modeling approaches for dynamic process

modeling, for example recurrent neural networks. These algorithms require large data sets to be

effectively trained in order to establish a robust predictive model. Moreover, the quick deactiva-

tion of atomically flat catalysts causes a shift in selectivity, resulting in the production of other

products than the desired ones. To overcome these issues, statistical ML methods maybe enhanced

with kinetic constants, which were calculated by [105], the cumulative integral of current, which
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was used to set a correlation between the current transfer and catalyst deactivation, and feature

engineering, which was used in Chapter 2 to increase the model performance. Finally, a feedback

control strategy is implemented to drive the process to a desired, energy-optimal setpoint. Our

experimental research setup is shown in Figure 3.2.

Figure 3.1: Data flow and automation strategy for the experimental setup. The tasks achieved in
our research are highlighted in orange.
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Figure 3.2: UCLA gas-tight RCE reactor setup.

Figure 3.3 shows the building blocks of smart manufacturing where the interactions between

the building blocks are addressed with SM Profiles. Below is a summary of our research findings in

mapping the different building blocks described by [31] of the smart manufacturing approach onto

our experimental electrochemical reactor setup. Details are presented in greater depth in Chapter

2 and [105].

Sensing is a fundamental building block of smart manufacturing. In our research, a potentio-

stat is the primary instrument used to sense and record the current and applied potential values in
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Figure 3.3: Smart manufacturing building blocks.

real-time every second. Although the raw data ingested from the sensors is fundamental for estab-

lishing big data, the data must be contextualized in order to be useful. Data contextualization is a

process that converts raw data into an interpretable form, which might include organizing the data

based on the units and relevant metainformation. An important example for this work is automat-

ing the GC code to mathematically processes the raw GC data, which yields gas concentrations

upon the comparison of the sensor’s responses against GC calibration files generated using stan-

dard gases of known concentrations. The raw GC data is simply a collection of electrical signals

that are then converted into compositions over the interval of running time (14 minutes). This data

is contextualized by eliminating irrelevant intervals and classifying this data as collusion intensity,

which becomes available to the automated GC code processing. Thus, the raw sensor data is now

meaningful to the operators and is processed to determine the correlations between the parame-

ters. As a result of the correlation analysis, for example, the cumulative integral of the current was
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identified as a metric to estimate catalyst degradation in Chapter 2. Thus, the current value was

integrated over time and contextualized as a representation of catalyst decay which can now be

used to plan catalyst regeneration procedures. In addition, the continuously changing experimental

inputs are used to build a dynamic model that includes nonlinear relations between surface poten-

tial and current as explained in Chapter 2. The surface potential is a calculated variable that uses

current, applied potential, and solution resistance values, which is a better representation of the

electrocatalytic driving force compared to the applied potential. The calculated surface potential is

recorded with appropriate units that is ready to be imported to the ML model.

Steady-state and dynamic machine learning models were used to generate new insights on

the reaction kinetics. Firstly, it was demonstrated in Chapter 2 that the ML models based on GC

data can be used to predict the reaction rates. This model was then inserted into a first-principles

gas-phased mass balance model to estimate the gas phase ethylene (C2H4) concentration. Then,

the ability to regulate the gas phase ethylene concentration by manipulating the applied potential

was explored with the availability of a dynamic model. Next, the fast-decaying catalyst activity

introduces additional nonlinearity and uncertainty into the process, which were addressed by mod-

ifying the feedback controller parameters in real-time in process similar to classical controller gain

scheduling. Moreover, the process goes through a selectivity shift from the desired ethylene prod-

uct to the undesired methane product at potentials that are more negative than a threshold potential.

This leads to a control strategy in which the target setpoint is approached slowly with a small pro-

portional controller gain, thus delaying the selectivity shift. Finally, a computational method was

developed to include GC sensor feedback data to correct the gas phase C2H4 estimation.

The insights extracted from the models together with the specific model predictions were
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combined with process optimization tools to maximize the process economics and energy savings.

The latter was accomplished by an operational steady-state neural network model, which was used

to determine the most profitable ethylene concentration setpoint. In order to locate this optimal

setpoint, a standard Interior Point Optimizer (IPOPT) tool was used along with electricity costs

and chemical sales prices. Finally, the feedback control of the electrochemical reactor was realized

using a hybrid (i.e., combined machine learning/first principles) model constructed with open-

loop data. A ML estimation-based feedback controller was used in Chapter 2 to control C2H4

concentrations by manipulating the applied potential.

Remark 11 The development of first-principles dynamic models for electrochemical reactors is

still in its infancy. Thus, there must be a dependence on data-based modeling for further process

exploration and scale-up, as our work has demonstrated. Moreover, it is important to emphasize

that working with experimental data has multiple challenges compared to using simulated data.

Connectivity problems, uncontrollable variations in experimental conditions, and shifts may cause

anomalies and excursions, and should be carefully handled at the data-based model building stage.

3.3 Advanced Sensors

As process sensors become cheaper and smarter (in the sense of measuring complex process

properties), advanced algorithms are needed to be used translate sensor primary measurement into

useful information about the process that can potentially be used for modeling and control pur-

poses. A thermocouple is a good example of a sensor frequently used in legacy engineering. The

voltage measured by a thermocouple is converted to a temperature unit through a basic algorithm
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with no data contextualization. On the other hand, smart sensors are heavily dependent on con-

textualized data. The richness of the data from the IR cameras mentioned in the work of [93]

was used to map the radial and axial temperature distributions of tubular reforming reactors. The

cameras were placed around and at the top of the furnace tubes; however, due to the sequence and

orientation of the cameras, some of the tubes were not fully visible to cameras. An algorithm was

developed to interpolate the temperature values in these areas and to convert the infrared wave-

lengths into temperature values, which was then used in burner fuel arrangements for a uniform

temperature distribution. A similar example of a smart sensor used in our research is the automated

GC processing algorithm.

Gas chromatography is an analytical technique that separates a sampled gas mixture into its

components that are then quantified. A gas chromatograph sensor contains a long thin column,

where the gases travel until they hit a detector. Separation occurs inside columns containing ma-

terials that serve as stationary phases while a carrier gas (mobile phase) transfers analytes toward

the detectors. Differences in retention times due to different affinities of analyte molecules to the

stationary phase allow the separation of gases. Eluted gas molecules are then sent to the detectors

where electrical signals are generated based on their respective detection mechanism. The impact

and the quantity of gas molecules on the detector are represented with peaks in height and breadth

in the GC analysis software. The signals produced from the detectors lead to peaks in the spec-

tra, and as the concentration of the gases increases, the corresponding peak area also increases.

The concentrations of each gas species analyzed can be quantified by comparing the area under

the peaks to that of a calibration file, which contains signals generated from a calibration using a

standard gas consisting of known concentrations of all the gases of interest. The ratio between the
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areas of a peak appearing during electrolysis and the calibration peak gives the concentration of

the produced gas when multiplied by the known calibration concentration.

The raw data coming from the GC or GC sensors generates peaks; however, without pro-

cessing the data with a baseline correction, it is not possible to obtain accurate results. Since the

area under the peak needs to be calculated via numerical integration, the peaks that do not have

baselines on the X axis yield misleading areas. Thus, the baselining is a vital part of the GC data

analysis. Most of the proprietary GC software programs create an automatic baseline. However,

in most cases, the baseline fails to bring the bases of each peak to the X axis since the algorithms

calculate a best fit accounting for the entire measurement sensor data rather than calculating indi-

vidual regions. It is required to manually select the bases of the peaks and arrange the sensor data

baseline accordingly. This process requires continuous monitoring of the GC peaks and prevents

its on-line use without monitoring. Thus, a GC measurement costs an ample amount of time and

energy for supervision.

Even though GC is the most commonly used gas separation and quantification technique, it is

susceptible to human errors. It is possible that the supervisor selects the peaks incorrectly, as the

peak legs are decided intuitively without a mathematical method. Moreover, the GC runs must be

started or scheduled manually, which slows down the experiment procedure in the long term.

Figure 3.4 illustrates the PeakSimple GC analysis software interface. One of the products of

interest here is ethylene and the peak is highlighted in yellow on Figure 3.4. The peak has bases

higher than the X axis and it is corrected manually by the supervisor. If the area calculations were

made without manual baselining, the underlying area would be much higher than the standard

expectations.
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Figure 3.4: Manually corrected C2H4 peak baseline. The black line is the raw data coming from the
detector, the blue line is the baseline, and the red circles are the peaks identified by the software.

3.3.1 Automated GC Code

Previously, Figure 3.4 shows that the quality of data coming from the GC detector is high;

however, in reality, most cases might not be as stable as the black line shown. For example, an

increase in column temperature and injection of water from a saturated gas can cause the baseline

to drift and the signal curve (black line) might be much higher or inclined than the X axis. This

type of raw GC sensor data is described in this article as noisy data, which will require manual

interventions to correct the baseline. To create an autonomous intelligent system, the GC code

needs to run reliably without human intervention and must be robust to implement corrections

to noisy data from the GC sensor. Accordingly, an autonomous GC algorithm is developed with

Python programming language that can automatically:

• Start a GC run at the desired times.

• Extract the raw GC data file in ASCII format.

• Baseline the raw GC data.

• Detect when the overall baseline is not accurate enough.
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• Calculate various baselines for each peak and recalculate the optimal baseline.

• Calculate the area from raw data if the optimal baseline still has bases above X axis.

• Calculate the areas from the calibration files and calculate measured concentrations using

calibration area.

• Send data to a database.

The plot generated by the automated GC code is displayed in Figure 3.5. The purple line is the raw

data coming from the GC sensor. Compared to the black line in Figure 3.4, the raw data in Figure

3.5 is much more inclined and higher. However, the automated GC code can overcome the burden

of stochastic data and calculate the area under the curves. The different colors around the peaks

represent more peak-specific techniques to improve accuracy, which will be discussed in detail in

the following subsection. Furthermore, the baselining problem can be seen in the raw data from

the software in Figure 3.6a, where it is correctly baselined with the automated GC code for the H2

peak.
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Figure 3.5: Automated GC peak and area calculation example.
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(a) Raw data that needs manual correction shown
on GC Software Interface

(b) Automated GC Results shows that data is automatically
processed to find accurate peaks

Figure 3.6: Automated GC and manually corrected raw data comparison from TCD channel hy-
drogen data.
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3.3.2 Automated GC Working Mechanism

There are four gas products coming from our electrochemical CO2 reduction reactor that must

be quantified by GC. The products are CH4, CO, C2H4, which are detected via a Flame Ionization

Detector (FID) equipped with a methanizer, and H2, which is detected via a Thermal Conductivity

Detector (TCD). There are two separate channels that are involved in the quantification of con-

centration and there is one plot generated for each. A comparison of plots of the TCD channel

raw data and how it is manually baselined against the processed automated GC results are shown

in Figure 3.6. TCD nondestructively senses changes in filament temperature and resistance due

to thermal conductivity difference between the analytes and the reference carrier gas, while FID

detects ions generated upon pyrolysis of organic analytes that can sensitively detect hydrocarbons,

CO and CO2, when equipped with a methanizer. Data generated from these detectors are contextu-

alized to represent the intensity of the signal when sent to the platform. The code is tuned based on

the gas quantification results of 43 open-loop experiments. This tuning process accounts for many

various extreme cases and creates a hierarchy for peak detection and integration.

Baselining is implemented based on the asymmetric least squares smoothing suggested by [39].

This method generates the optimal baseline by minimizing the following cost function:

S =
∑
i

wi (yi − zi)
2 + λ

∑
i

(
∆2zi

)2 (3.1)

where S is the regression cost function, yi is the signal that should be baselined, zi is the smooth

baseline, and ∆2z is equal to zi − 2zi−1 + zi−2. The first summation describes the performance of

the fit and the second summation describes the smoothness of the fit. Thus, wi is a factor related
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to the asymmetry and λ is related to smoothness. In our code, the asymmetry parameter is set

to a pre-determined value and λ is varied over a range to find the ideal baseline fit. When S is

minimized, the corresponding z is the baseline. This is a function of raw data and λ, which is a

factor that is observed to work well in the range of [104, 109] [39].

The pink baseline shown in Figure 3.5 is created based on fixed parameters. Various parameter

values for λ are tuned for the calibration peaks and the best performing lambda value is selected

as the default value for the pink baseline. However, it does not always give accurate results for our

peaks, especially when the sensor data is noisy. In this case, the code isolates the peak vicinity and

tries various λ values in these specific excluded regions and selects the baseline with bases closer

to zero. This methodology also contributes to the reusability of the code and ensures that the most

optimal baseline is selected for the peaks.

The peaks are found with a user-defined function, that checks elevations and declination in

the time-series peaks. The peak bases are selected mathematically “peak_prominences” function

through the Python library, Scipy. However, the expected peak base length value should be pro-

vided to the code for a more accurate peak/base selection. The peak location is provided by the

Python command. The algorithm starts extending a horizontal line to both sides of a peak until it

intersects the signal of higher peaks. Then, the lowest two signal values within the range of these

horizontal lines are the bases of the peak [159].

When the peak detection hierarchy is applied on the methane peak in Figure 3.7, the pink

baseline is replaced by the lime peak. The CH4 raw data in this graph is inclined, thus it is noisy

and might be confused for 2 peaks. The code first considers the red circle to be the pinnacle of the

peak; however, this is incorrect. The green marks on the X axis are the first predictions for the
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peak bases that correspond to high positive values on the pink line, thus the code understands that

this peak is questionable. The code adjusts the baseline to conform to the level of inclination of

the data using various baselines that conform to the level of inclination of the data. Ultimately, the

code determines an optimal peak that represents the actual peak for the CH4 component, which is

represented by the lime-colored peak. It is notable that all remaining peaks have an inherent peak

hierarchy despite the base code being the same. Thus, this code can be adapted for any peak for

any gas product if special cases are accurately identified in the peak detection hierarchy.

Figure 3.7: Methane peak corrected by a supervisor algorithm. The first found peak is shown with
the red circle, however, the corrected peak is shown in lime.

In Figure 3.5, the CO area is highlighted in yellow, which indicates that the code is able to

provide a more robust estimation by manipulating the raw data and is able to find the bases of

the raw data peak to calculate the peak area under the curve that is subtracted by the area under

the green line. This approach typically gives better results only for CO compared to the baseline-
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corrected area calculation. The correction peaks are shown in lime for CH4, yellow highlight for

CO, and blue for C2H4. It is especially difficult to correctly baseline the C2H4 peak, since it appears

on a line that overlaps with a CO2 peak, which is the reactant itself. Thus, in the majority of cases,

the correction algorithm calculates the C2H4 area.

3.4 The Role of the CESMII Smart Manufacturing Innovation

Platform (SMIP) in Electrochemical Operation Research

As the use of data is proven to increase the profitability and efficiency, more effort is put

into developing model-based software solutions. One interesting framework is the Parametric

Optimization and Control (PAROC) Platform developed by [130]. PAROC is a computational tool

for creating high-fidelity models for control and optimization strategies. [165] have built a platform

service that uses an optimization and compatibility engine that provides decision-making support

between the customer and suppliers based on the equipment of the supplier such as raw material

and energy consumption options. The use case scenario of this work supports the selection of

distribution for most compatible resources from discrete suppliers for a metal cutting process by

considering energy efficiency, machine geometrical compatibility, and precise number of metal

sheets thus optimizing the supplier data available on the platform.

The Smart Manufacturing platform is standard based infrasturcture for connection, ingestion

and contextualization of data to be used for building applications. The platform makes contextu-

alized data available for machines and process components, line operations and process and plant

operations between the chain starting from machines, process, and plant enterprise to the supply
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chain [38]. Thus, it is the infrastructure of information and operational technologies (IT and

OT) of a process that enables the implementation and collaboration of auxiliary smart applica-

tions. The use of terminology OT here comprises all the hardware and software that is used to

monitor and control process or events related to industrial equipment. Moreover, companies can

exchange data and use apps developed by others [38, 31]. In addition to accessibility of data and

applications from various sources, the SM Platforms also provide interoperability among different

vendor equipment through the use of SM Profile. For instance, SMIP is an integral part of the dig-

itization of the electrochemical reactor. The data collection, contextualization, and transmission

of the electrochemical reactor is conducted through a Laboratory Virtual Instrument Engineering

Workbench (LabVIEW) application running on an edge device that controls the operation of the

electrochemical reactor. There are three major components that make up an operational SMIP:

1. An edge device that can collect, contextualize, and transmit the data to the core services.

2. The platform core service that receives, stores and exposes data to the application developers

and services.

3. Integrated applications that can consume the data to build data-driven models or workflows

that can improve manufacturing operations.

The Hypertext Transfer Protocol Secure (HTTPS) transfer of reactor operational data to the

SMIP core services is performed through GraphQL in real time. GraphQL commands are similar to

the one used in Structured Query Languages (SQL) except that these commands are initiated over

a Hypertext Transfer Protocol (HTTP) connection with a web API. GraphQL can perform typical
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CRUD (Create, Read, Update, Delete) queries similar to a REST command operation except that

the program is constrained to the transmission of necessary data due to the limit of the network

bandwidth [60]. With the accessibility of various programs, [15] have conducted a social experi-

ment on participants to determine which program was more beneficial for their use when asked to

conduct several data transfer tasks. Ultimately, the majority of participants reported the GraphQL

to be superior to REST because of its user-friendly Application Programming Interface (API) to

query data. The back-end storage of the CESMII SMIP is provided by a PostgreSQL database.

The operational data that is stored on this database is archived using the timestamp at which the

data is transmitted. The data that requires no timestamp such as equipment model number and

serial number are stored as config data, which are stored as attributes inside the SM profile. The

attributes contain data name, data type (float, int, string, etc.) and data units (seconds, volts, amps,

etc.). SM Profiles are structured as data-in-context information that is specific to an equipment,

domain or platform. The idea is that all end users of the data from the same type of equipment can

expect to receive the same information model. In many ways, the SM Profile is an extension to the

Open Process Communications Unified Architecture (OPC UA) information model that specifies

the interoperability standards for structured data communication among producers and consumers

of data regardless of who manufactured that equipment. This guarantees interoperability between

data producers and consumers, regardless of the manufacturer of the equipment or the operating

system (OS) where the data is generated. Since GraphQL mutation commands can overwrite the

existing data on SMIP, a role-based authorization process is employed in determining which user

can update the data and which user can read the data through GraphQL query commands. SMIP

has an Integrated Development Environment (IDE) for Python, PHP, and SQL that can be used in
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developing a machine learning based data-driven model using the data that is already stored inside

the SMIP. Additionally, SMIP offers data visualization tools, such as a trend analyzer, to visualize

time series data or to compute data correlations. In addition to the GraphQL mutation, CESMII

SMIP also offers custom gateway connectors that facilitate the high-speed entering of data into

the SM Platform. Currently, operational databases and historians such as OSI PI and Wonderware

historian as well as live data sources such as OPC DA (Data Access) and OPC UA are supported.

The SMIP architecture used in this electrochemical reactor research is shown in Figure 3.8. SMIP

has standardized on GraphQL as the protocol API for entering the data. The SMIP has an extensive

library of SM profiles, which can be easily exported along with all previously set up features and

contextualization and can be accessed from an SM Marketplace. Finally, apps developed by the

other SMIP users can be accessed and combined for use in your manufacturing operation. Sev-

eral of these SMIP features used in this research were used to advantage in this research and are

discussed in the following sections.

Figure 3.8: SMIP architecture.
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Sensors collect data from the reactor through a LabVIEW interface. Sensor data is transmitted

each second to the SMIP securely through GraphQL commands. In GraphQL terminology, a query

that alters the data at the URL endpoint is called mutation. A mutation is a form of query where

GraphQL commands create, update or delete data. Use of a timestamp along with the data value

will make sure that data is not overwritten, as mutation commands are not reversible. The associ-

ated timestamp will also help users who want to query the data select only the data belonging to the

desired time intervals. GraphQL API commands may be issued in several programming languages

such as Python, JavaScript, Curl, etc. We have chosen Python script for the easy implementation

with LabVIEW interface through a LabVIEW code mentioned in detail in Section 3.4.2. The cur-

rent version of SMIP allows any authorized users to readily select and download the data using

the GraphQL query commands to their local compute environment to more easily evaluate differ-

ent modeling approaches as well as different data sets. Once a satisfactory modeling approach is

worked out locally, the model can be implemented directly within the SMIP. The platform provides

IDE in several languages such as PhP, Python to build the model. We used the Python IDE on the

platform because that is what we are using locally to develop our ML model. The default library al-

ready contains commonly used ML modeling tools, but it is also designed for users to contribute to

and build the tool base it contains to build ML models with new ML tools. The choice to download

the data to locally or to use the platform resource is entirely dependent on the network bandwidth

and computational resource. The computational resource power on the platform is very limited

and there are no co-processors such as GPU to accelerate model building. So, for initial modeling

purposes, using the local resource makes better sense for most users. The platform also provides

tools to monitor the real-time data flow through trend charts and process layout diagrams that show
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a hierarchical organization of reactor equipment and display the data values for each equipment

piece.

3.4.1 Reusable Profile for Electrochemical Reactors

Every day, engineers are building models to improve the efficiency of manufacturing, but the

size of the data and lack of commonly agreeable formats have become a major impedance in col-

laborating with other model builders. Before the implementation of SMIP, we are not aware of

any other common platform or medium where data producers and consumers can easily exchange

information in a common format. Through the use of SM Profiles described by [31] SMIP has ex-

posed a common information model for commonly used equipment that producers of data can use

to deliver the data to consumers to build data-driven models. The SM profile is available not only

for major equipment but also for the sensors, actuators or any device used in the operational tech-

nology. Currently, SMIP does not have all the SM Profiles, but projects like ours are contributing

new SM Profiles every day to SMIP to enrich its portfolio.

Figure 3.9: Hierarchical equipment profile interface on SMIP for electrochemical reactor.

Every piece of equipment in SMIP has its own Smart Manufacturing profile so that producers
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and consumers of the data have a clear understanding of the expected data structure and contents.

SM Profiles can be created on the SMIP itself or can be imported (crowdsourcing). A key objective

of the SM profiles is reusability for similar equipment and equipment types. Once a profile is built,

the manufacturers/researchers can use the previously built profiles to easily start data collection and

modeling. The SM profile also adopts many of the concepts from object oriented programming

with features such as inheritance and data abstraction.

The profile built on the SMIP for the Electrochemical Reduction Reactor is shown in Fig-

ure 3.9. The “CO2 Reduction Reactor” is the top level profile and the “Gas Chromatograph,”

“Potentiostat,” and “Modeling” are the subprofiles. Each operational data is sent to the SMIP and

stored in the corresponding attribute in the profile and is organized in a timestamped historically

contextualized format. Each attribute in a profile, for example, temperature from the sensor at a

certain point in time is stored in the appropriate data endpoints. Each attribute in a profile is as-

signed a tag ID number automatically to define the data storage location during its creation. Each

attribute also has the relevant datatype information (float, int, string, etc.) and the units (Amps,

inches, etc.). The tag ID and timestamp are the two required parameters to store or retrieve the his-

torized data from the SMIP. The modelers, who are the consumers of the data, can use GraphQL

queries to discover the equipment and all the associated tag ID of each attribute independently and

download only the desired time interval data from the SMIP.

When a new user wants to build a profile for an electrochemical CO2 reduction setup, the

user can take the one constructed by us as a basis. This would also bring the sub-equipment such

as the potentiostat, GC, and rotation unit. If the user is using a Fourier transform infrared spec-

troscopy (FTIR) sensor that can quantify high-volume gas products on a per-second basis, the GC
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sub-profile can be replaced by a FTIR sub-profile. All sub-equipment would include the features

created in this project, and new users can reuse the profile in general to start data transfer to the

platform without extra effort to define system components and data storage end points. The only

thing that will change will be the tag ID because a new tag ID will be generated for correspond-

ing attributes in the new equipment. When the proprietary data is removed from the hierarchical

equipment model, this equipment model becomes a profile. Additionally, this profile may include

an automated GC algorithm feature. It would be a time-consuming process for engineers to de-

velop an automated GC code from scratch and embed it into an experimental system operation

ready to be used in a process control scheme. Instead, SMIP renders this phase fast, reusable, and

user-friendly.

Another example of reusability is the infrared (IR) camera model used in [93], which was

mentioned in Section 3.3. When the steam methane reforming specific data of the plant is removed

from this IR camera model, the remaining model can be used in different contexts to measure tem-

perature distributions. Similarly, in our project, an automated gas chromatograph code, mentioned

in Section 3.3.1, was developed to quantify H2, CO, CH4, and C2H4 gases in ppm. However,

this code can be reused when, for example, specific C2H4 inputs are replaced with another gas in-

put, such as where peaks are expected to appear. Moreover, this code processes the ASCII format,

which can be replaced by another GC output file format. Similarly, the automated GC code triggers

PeakSimple software to start the GC run, which can be adjusted for other GC vendor software.

In addition to the reusability feature, SM Profiles offer easy real-time/offline monitoring of

the process data, process reports, and trend analyzer. One of the key parameters in the electro-

chemical reactor research is the real-time current. Figure 3.10 depicts the trend analyzer interface
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for real-time electric current. It is possible to change the data of different equipment or display

them on the same interface. In traditional manufacturing, all process equipment operates on their

vendor-specific software, and the user needs to switch between many different vendor-specific

software tools to see the real-time data. Moreover, it would not be possible to see the data com-

ing from different vendor sensors on the same plot. Smart manufacturing aims to eliminate this

interoperability issue by bringing vendor-dependent sensors together in a common medium, such

as SMIP.

Figure 3.10: Trend visualization tool on SMIP demonstrated on real-time current data.
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3.4.2 Data Flow

As information technologies are increasingly used in data-based services, the importance of

cloud-based systems has increased. The SMIP has been built on infrastructure cloud services and

uses the PostgreSQL database, which is currently hosted on the MS Azure cloud platform. SMIP’s

cloud-based database enables cybersecure data storage. It is easy to mutate (create, update, delete)

the data or query (read) the data in real-time using GraphQL commands. Sensor data are transferred

through GraphQL commands from the local machine (edge device) to the SMIP. Data is stored at

endpoints described as tags or attributes, while the equipment profiles were being generated. For

example, when the potentiostat sub-equipment was built in Figure 3.9 and attributes such as electric

current were created, a tag ID was assigned to this feature. Thus, any electric current data mutated

to PostgreSQL database can be reached and viewed using this tag. A timestamp is used to locate the

data in the database rather than sequential numbers. For real-time data transfer, timestamps reflect

the time of data collection. For this data mutation process, users need security tokens called Bearer

tokens, which can be obtained from the SMIP website. A Bearer token is a HTTPS authentication

and contains a long random string which can be understood by machines and gives authentication

to the user for data transfer. They are also short-lived and need to be renewed from time to time.

Many traditional databases require users to generate data containers or tables before starting

data collection. Moreover, these data containers need to be configured and connected to specified

servers. For example, in order to create a database, the creator of the database first needs to

compose a database schema that indicates how the elements make up the database, how they are

related to one another including all the tables and keys needed to store and retrieve the data. If
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those data tables are to be queried by an external application such as Python, an administrator must

make the relevant settings available. Although this approach has been shown to be useful in many

industrial applications, it requires domain specific knowledge. The use of SMIP simplifies this

process, as users only need to know the SMIP endpoint URL, and have the credentials to create

a Bearer token for secure transfer of the data and transmit the data into the previously created

attributes corresponding to the equipment. The consumer of the data also just needs to know

the SMIP endpoint URL and appropriate credentials for the creation of a Bearer token, and it

also uses GraphQL queries to download the data. Since data is stored at endpoints rather than in

tables locally, there is no need to spend time to separate the necessary columns from data tables.

Another advantage of the end-point data storage is that it is easy to store features that have different

sampling periods. For example, the electric current from the electrochemical reactor is recorded on

a per-second basis, while the GC measurements of different gases are recorded at every 20 minutes,

and all the data sent to the platform is contextualized. Therefore, there is no need to create separate

data storage tables for these features.

The importance of real-time data collection was emphasized in the previous sections. How-

ever, for a new user who has no knowledge of Python or GraphQL, there is going to be a learning

phase to move the generated data to SMIP’s database since this process is different from real-time

data mutation. To this end, we have developed a script and a Django-based web interface to select

the relevant columns from the data sheets and send them to the platform. The interface is shown

in Figure 3.11. This has been particularly useful in our project when we uploaded the previous

(legacy) experimental data obtained before the integration with the SMIP was pursued. This fea-

ture was planned to be easy, specifically for equipment operators who do not have programming
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expertise.

Figure 3.11: The interface of data upload tool. The user needs to enter SMIP credentials, path to
the spreadsheet file that will be uploaded to the platform, and columns/rows within the spreadsheet
to upload to the platform.

3.4.3 Process Equipment and Data Connectivity

In smart manufacturing, combining process equipment with a common digital interface is a

good starting point. This task can be achieved through the use of connectors. Most of the time,

sensors and local machines are written in different protocols. Connectors behave like translators,

enabling communication between sensors and machines, thus making sensor data available. The

SMIP offers a variety of connectors that would enable sensors to transfer data to the platform, such

as a programming environment that sends the data to the cloud. LabVIEW is a coding environ-

ment that is used for automating test beds for measurement and control. It has numerous drivers

that are compatible with commonly used experimental or industrial equipment. In addition, some

software development kits (SDK) have been developed to make novel and complex experimen-

tal equipment compatible with LabVIEW. Moreover, LabVIEW can communicate with external

programming scripts, such as those written in Python or Matlab. Thus, LabVIEW appears as an
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attractive alternative for experimentalists for data collection, process automation and control.

In our project, a Metrohm Autolab Model 302N is connected to LabVIEW through the Au-

tolab Software Development Kit 1.10 [7]. Without the SDK, the potentiostat runs on the vendor

software Autolab NOVA. The experimental actions called procedures are predefined in NOVA and

the experiment runs accordingly. Also, since it is very difficult for a feedback controller to change

the input parameters in real-time, thus, using the SDK enables experimental researchers to go be-

yond vendor-specific software. However, the gas chromatograph does not have a driver available

in LabVIEW. To overcome this issue, an automated Python script was written to externally trigger

the GC measurements at predefined times by opening the PeakSimple software and initiating the

run. When the GC run is finished, the Python code sends the generated raw data to SMIP to be

processed and quantified. Then, the produced results are queried by the LabVIEW interface. The

LabVIEW interface also shows a plot of the processed GC data and the relevant peaks.

The rotation unit also does not have drivers installed in LabVIEW, and it is connected by

a Compact Reconfigurable Input Output (CompactRIO) system, a National Instruments product

that enables engineers to connect input/output modules without drivers. Even though the rotation

speed is kept constant throughout the experiments, CompactRio can adjust the rotation speed in

real time. Finally, the mass-flow controllers (MFCs) are connected to the LabVIEW interface via a

VISA node, a function that enables pinhead cables to send commands specified in the user manuals

of the device. Thus, MFCs can be set to a specific flowrate at the beginning of the experiment. A

portion of the LabVIEW interface is shown in Figure 3.12.

The LabVIEW interface can control and acquire real-time data from the potentiostat and

the gas chromatograph, and it can communicate with the platform for real-time mutation and

107



Figure 3.12: LabVIEW interface and representative real-time data plots.

query through GraphQL. LabVIEW has a feedback control feature which is used for the control of

the gas-phase ethylene product concentration by manipulating the applied potential. A real-time

change of applied potential is made by the potentiostat based on the feedback value calculated

by a proportional-integral (PI) feedback controller (other control methods can also be used in this

framework) on LabVIEW. In order to send data to the platform, a LabVIEW script is developed,

as shown in Figure 3.13.

The script on the right side is written in json format and is sent to https://uc.cesmii.

net/graphql for query. The json script needs the timestamp, value, tag, start, and end times.

Time-stamps are obtained on LabVIEW in real time (the middle functions convert the time-stamps
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Figure 3.13: Data query script on LabVIEW.

to the required string format), where the values are obtained from sensors and the tags are prede-

fined depending on the profiles mentioned in Section 3.4.1. The start time can be the same as the

timestamp so that this process is established in real-time and does not intersect with previous data.

The end time is defined in a distant feature to prevent a timing conflict. HTTP client nodes are

used from the Data Communication - Protocols section in the LabVIEW functions palette. This

is similar to the Python ’“Requests” library. A bearer token, generated by the SMIP, is entered on

the LabVIEW interface for authorization before the experiment starts. The open handle function

defines the SMIP username and password. This script sends data to the SMIP on a per second

basis.

3.5 Virtualization

Up to this point, the major functions that the SMIP provides to integrate advanced computing

and data science technologies into industrial process modeling and control systems were demon-
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strated. However, there are two limitations of using the SMIP in daily process operation. Firstly,

at this point, the SMIP cannot provide enough free computational power that can perform very ex-

pensive computing tasks (e.g., training ML models and/or solving complicated optimization prob-

lems, particularly the ones arising in the context of real-time model predictive control) to the users.

Therefore, users will need to download tools from the SMIP and run them on their local computer

or in a third-party cloud computing service, such as Amazon Web Services (AWS). Second, the

client software to access the SMIP is in development, so users need good programming skills to

interact with the SMIP. This section introduces the application of Docker technology to bypass

these limitations. Using the Docker to communicate with the SMIP as a new type of computer

virtualization method can be applied to simplify programming tasks in daily research, especially

for setting up virtual working environments and programs management.

3.5.1 Docker Overview

Docker is an open source application for computer virtualization at operating system (OS)

level, which is proposed as a lightweight alternative of the traditional virtual machine technol-

ogy. The Docker application is composed by four main components: Docker Client and Server,

Docker Images, Docker Registries, and Docker Containers [136]. When using Docker, users give

command lines to the Docker Client, which then converts those commands into a request form

and sends it to the Docker Server. The Docker Server can be understood as the background script

that is running behind the screen. Usually, the Docker Client and Server are installed on the same

machine, but they can also be installed separately.

Images and containers are the basis of Docker virtualization. Specifically, a Docker image is
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a read-only file that contains OS (e.g., Ubuntu for Linux-based application), libraries (e.g., Tensor-

Flow, Numpy, Pandas for machine learning programs) and tools (e.g., Jupyter Notebook), which

can be shared by different containers. Containers can be understood as writable layers built on

top of images so that users can make changes and run applications on containers, such as devel-

oping a new program or generating data by running applications built in the images. In short, by

using Docker, users can create and run isolated applications with various virtual OS on the same

machine.

3.5.2 Docker-SMIP Synchronization

We consider Docker as the appropriate method to interact with the SMIP, because it can build

images from the base OS, which is analogous to setting up a new computer that provides a po-

tential to design any suitable function if it is programmed properly. On the other hand, Docker

images are lightweight files, which can be easily packed and delivered to other users by standard

uploading and downloading processes. Therefore, the developed tools can be packed as Docker

images and provided on the SMIP. Then, users can download those images and use them on their

local machines provided they have enough computational power. In addition to that, users can

also modify the tools and programs with respect to specific task requirements and save the updated

Docker images on the SMIP for their own version management. Moreover, Docker containers can

be mounted to the local machine with the official command lines, which allows efficient commu-

nication between the host and the container. This workflow is illustrated in Figure 3.14.

In this work, we build two docker images to enhance the interaction with SMIP. Specifically,

we build an interface for the data upload script to simplify the upload process and an optimizer to
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Figure 3.14: Docker-SMIP synchronization.

solve an optimization problem by using a machine learning neural network model that we devel-

oped using process experimental data. These tools can be found on the SMIP. The building and

sharing of the Docker image can be achieved by running Docker command lines with the com-

mand line interpreter (e.g., CMD for windows and terminal for Mac) of the local computer. The

development of Docker image usually starts from getting a baseline image that contains only the

OS from the official server. This can be done by directly pulling the whole image or running a

docker file.

After obtaining the baseline image, by running it, a Docker container with only the OS will

be built automatically and then users can develop any functions from scratch in a fashion similar

to setting up a new computer. We used the baseline image with Linux OS to build both tools

because the Linux system provides the highest level of authorization to the users compared to

other commercial OS such as Windows. However, Linux OS does not provide a developed user
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interface like Windows OS. It will be an additional task for the developers to build a user interface

that can interact with the host machine. For instance, we use the Jupyter notebook interface for

the optimizer and build an HTML page (shown as Figure 3.11) to drive the upload script via the

Python Django website framework. Furthermore, we make a program for the containers to run the

interface on certain network port when they are turned on. Subsequently, by mounting the pre-

defined network ports to the host machine, these website-based interfaces can be run through any

browser on the host machine. Finally, we connect the built containers to images and upload them

to the SMIP for sharing.

Remark 12 The optimizer is developed based on the IPOPT, which is an open-source software

package for nonlinear optimization provided by the COIN-OR Foundation [186, 187, 185]. A

python library, pyipopt, developed by Eric Xu is used to connect python scripts to IPOPT. Instruc-

tion for installing IPOPT and PyIPOPT can be found on the official website of IPOPT and Eric’s

Github page (https://github.com/xuy/pyipopt), respectively.

Remark 13 The data upload interface is built using the Python Django website framework. Specif-

ically, HTML works as the front-end of a website to collect information from the user and return

the collected information for further analysis processes. For this tool, the HTML is requesting the

path to access the data list from the user, and then the path will be passed to the aforementioned

data upload script to upload the data. In this way, users do not need to access and modify the

data upload script directly, which makes the data upload process easier for users without extensive

coding experience.

Remark 14 In addition to creating tools for the SMIP, Docker can be used for other management
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tasks. For example, code and program dependencies can be packed by a researcher into Docker

images, which can then be used to reproduce their working environment effectively. Besides that,

Docker images can be easily shared between team members and can be used for version manage-

ment.

3.6 Electrochemical Reactor Modeling Using SMIP

Dynamic models, whether first principles-based or data-based, are central to process control

applications. First principle models are useful in providing process insights and describing process

behavior [216]. However, there are many cases where the first principle models are not available or

require high computational power. If enough data is available, data-driven models appear as a fea-

sible alternative. Data-driven models typically do not generalize as well as first principle models to

operational regimes outside of the training data set. If there is available first-principles knowledge

of the process, a hybrid model can be built by inserting a data-driven model into a first principle

model equation. One early example of this approach can be found in [37]. In this work, the prod-

uct size distribution of a polymer process was modeled. However, even though there are available

first-principles size distribution models, inherent complexities of particle processes might render

the use of first-principles insufficient. Thus, a data-based partial least squares model was used

to model the unknown process components and this model was used along with a first-principles

model for real-time control. Our research embraces a similar approach for electrochemical reac-

tion rate modeling. The electrochemical reduction of CO2 on a flat copper catalyst is subject to

production rate variations due to the unpredictable nature of the inherent initial catalyst activity
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and the deactivation of the catalyst. Also, an exact first-principles model of these reactions is not

available. Thus, the reaction rates were modeled with a polynomial kernel support vector regres-

sion model based on the available GC data. In Chapter 2, this reaction rate model was inserted

into a first-principles dynamic gas-phase species concentration model for a better representation

of the gas phase product concentrations for real-time control. Since this process captures some

catalyst-related uncertainties, steady state modeling of this process utilized most likelihood esti-

mation methods to build an artificial neural network (ANN) for production rate estimation based

on the available experimental data and the experimental data standard deviations. Based on this

model, the most energy-efficient set-points were calculated with IPOPT for real-time control in

Chapter 2 and [105]. The ease of data transmission and handling that the SMIP provides aided

significantly our data-based modeling and optimization efforts.
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Chapter 4

Machine Learning-Based Ethylene and

Carbon Monoxide Estimation, Real-Time

Optimization, and Multivariable Feedback

Control of an Experimental Electrochemical

Reactor

4.1 Introduction

The percentage of renewable energy in the electricity grid has increased as decarbonization

efforts have gained momentum against the detrimental effects of global warming. With current

advances and the increasing popularity of sustainability, falling cost and increasing availability of

renewable electricity generation, electrochemical methods have become an attractive alternative

for transforming CO2 gas into organic chemicals and synthetic fuels [33]. However, the overall
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reaction mechanisms of this transformation have not been fully understood and limited efforts

have been made to build dynamic models to understand and control this electrochemical process.

Moreover, the applications of CO2 reduction (CO2R) have not gone beyond the bench scale (e.g.,

[73]). The major bottleneck of the industrial implementation of electrochemical CO2 reduction

technology is the deconvolution of intrinsic kinetics from mass, heat, and charge transport effects,

which has prevented the development of accurate reaction mechanisms [75]. To further explore

the fundamentals of electrochemical CO2 reduction, a gastight rotating cylinder electrode (RCE)

cell was recently developed, which can decouple the effects of mass transfer from surface reaction

kinetics [73]. This novel electrochemical reactor shown in Figure 4.1 has demonstrated that mass

transport phenomena and intrinsic reaction kinetics can independently affect the productivity and

selectivity of electrochemical CO2R, which implies the potential to control the product distribution

of the reaction by manipulating multiple inputs. To understand the hydrodynamics effects on the

very thin (µm scale) catalyst surface boundary layer, which is ultimately crucial, [147] simulated

the gastight RCE reactor using computational fluid dynamics (CFD) software. Even though there

are such endeavors to capture the mechanism of CO2R in RCE cells in detail, there is no dynamic

model available yet.

In the absence of steady state or dynamic process models such as first principles-based models

that rely on known physical relations, it is possible to build models using data-driven approaches,

such as gray box or black box models that give an output for a corresponding input without expos-

ing correlations. The involvement of machine learning (ML) models in electrolyzers has attracted

attention over the last decade due to their capability to approximate nonlinearities with no prior

physical information of the system [25]. The use of ML in electrochemistry has recently received
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Figure 4.1: UCLA gastight RCE reactor setup.

attention and has been used in predicting the next generation of catalysts without earmarking major

budgets and time for experiments with different material combinations. For instance, [176] used

a neural network trained with X-ray absorption fine structure spectroscopy data to reproduce the

rate and time based structural changes of the catalyst under CO2 reduction. In another work, [21]

built a catalyst database using density functional theory (DTF) simulations and used these data to

build an extreme gradient boosting (XGBoost) regression model to predict the change in Gibbs

free energies in CO adsorption to find the most feasible CO2 reduction electrocatalyst among more

than 1000 combinations of metals and nonmetals. However, there have been limited efforts to dy-

namically model the electrochemical reactions and advanced ML methods such as recurrent neural
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networks (RNN) should be used in the electrolyzer context to capture time-dependent process re-

lations.

The use of RNNs has been becoming widely common as they are very promising for leverag-

ing the process data for various applications [70]. RNNs have been used successfully in modeling

various processes, and they can be very efficient in modeling the dynamic behavior of electrochem-

ical reactions. The ability of RNNs to learn time dependencies makes this approach an alternative

to first-principle models, as they can capture the trends in data emerging from the behavior of the

process with respect to variation in inputs. This enables RNNs to be used in process control tasks;

especially highly nonlinear aspects can be learned due to the nonlinear activation functions in the

hidden layers of the neural network structure [206]. This would also be extremely valuable to

control a process that does not have a dynamic first-principle model. [22] is one of the early exam-

ples of using neural networks before RNN architectures such as long short-term memory (LSTM)

became widely popular to model dynamic processes with long and variable dead times. The study

successfully models a pH neutralization process and uses internal recurrent neural networks (IRN)

with variable dead times, which feed back the calculation from the hidden node as an input, behav-

ing like a one time step delay. [175] modeled the dynamic behavior of a batch methyl methacrylate

(MMA) polymerization reactor with a hybrid stack of RNN models. Using this model, an effective

feedback control scheme was implemented to regulate the temperature, and in turn, key process

variables like monomer conversion. In general, ML models that can represent transient behav-

ior can be used for process control system design and implementation. In this direction, [143]

summarized how to incorporate various ML models into a model predictive controller (MPC). For

example, [207] introduced Monte-Carlo dropout method to the LSTM training case to improve

119



the modeling performance. In addition to that, the co-teaching method was employed to include

ideal first-principles model data in the training for a better performance. Then, these RNN models

were incorporated into an MPC to simulate the control performance of a CSTR. [82] used RNNs

to create a multi-input multi-output (MIMO) control scheme for a test bed furnace temperatures in

which the weights of the RNN model are adopted as the operation proceeds. This neuro-controller

was shown to be successful in setpoint tracking and against disturbances. With the advancements

in sensor technologies and tools to digitalize experimental systems, feedback control with ML

models can be implemented in a smarter manner.

Our previous work on the CO2 reduction process incorporates smart manufacturing techniques

into the experimental field to fully automate and digitalize the setup to leverage the potential for vo-

luminous data production from multiple sensors to accelerate the experimental procedures and con-

tribute to the scale-up efforts. Specifically, Chapter 3 summarized the efforts to connect UCLA’s

experimental RCE reactor to the Clean Energy Smart Manufacturing Institute’s (CESMII) Smart

Manufacturing Innovation Platform (SMIP) to securely store, organize and contextualize data gen-

erated during the experiments as well as meta information of the setup components. SMIP can

also be used as a deployment environment for data-driven models and control, to monitor real-time

data, and to extract correlations between experimental parameters. In addition to that, Chapter 3

elaborates on the RCE’s sensors and how these are upgraded to smart sensors using the available

data. One example is the automated gas chromatogram (GC) code, which fully automates a man-

ual procedure by imitating the steps followed by the experiment supervisor. Consequently, the

experimental setup becomes more compact and efficient.

There are previous data modeling and control efforts for the RCE setup with a different cat-
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alyst electrode, which are used as a base for this work. [105] explains in detail how statistical

feedforward neural network (FNN) architectures can be used to model the steady state operation

points given the initial experimental input parameters. This model is trained with a database of

open-loop steady state experiments conducted over the past years, accounting for the experimental

uncertainties. This work also presents a method to reciprocally use empirical first-principal models

with the developed ML models to improve the experimentally extracted correlations. Finally, in

Chapter 2, we used support vector regression (SVR) to model real-time reaction rates for ethylene

and inserted the SVR model into dynamic mass balance equations to implement a feedback con-

trol scheme at economically optimized setpoints. The SVR model constructed in this work also

accounts for a fast catalyst decay and uses delayed feedback concentrations from the GC to update

the model. Thus, this work has been the first successful single-input single-output (SISO) control

instance of the complex electrochemical CO2 reduction process using ML methods.

Motivated by the above considerations, this work proposes an ML-based scheme to implement

real-time optimization (RTO) and multivariable feedback control in an experimental electrochemi-

cal reactor for CO2 reduction. Specifically, two RNN models are developed on the basis of existing

experimental data to estimate the dynamic response of the reactor operation. Subsequently, the in-

formation from the sensors and RNN models are integrated and used by two Proportional-Integral

(PI) controllers that manipulate two inputs, applied voltage and electrode rotation speed, to the

electrochemical cell, constructing a MIMO control scheme. In addition, an operational steady state

model and an RTO are developed to calculate the economically optimum setpoints for the ethylene

and carbon monoxide production rates by integrating market information. The proposed control

and optimization scheme is demonstrated by a series of experiments that control the production of
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ethylene and carbon monoxide from the RCE cell.

We believe the demonstration of a MIMO feedback control and RTO using this bench-scale

reactor will be critical for the realization and operation of an industrial-scale CO2 electrolyzer

for the following reasons. First, moving forward from SISO to MIMO control and generalizing

the approach to account for different combinations of inputs and outputs is essential for reactions

involving multiple products such as the CO2R. In addition, due to the non-selective nature of the

reaction, there is a limit to solving this problem solely through the development of catalysts or

the design of single-unit reactors, and efforts should be made to integrate multiple processes. Such

process integration approaches include not only the connection of upstream/downstream separation

or conversion processes, but also the design of a multi-stage electrolyzer sequence [139]. Real-

time feedback control of a single-unit reactor demonstrated in this work acts as a building block

for constructing a process control network where its communication with neighboring units is

extremely important. Finally, the implementation of RTO which optimizes the overall process but

can be applied to the actuation of individual control units is critical, considering how tightly the

control of a single-unit reactor is tied to other processes and the electric grid infrastructure.

The rest of this chapter is organized as follows. In the section entitled “Preliminaries”, the ex-

perimental reactor setup and database generation for ML model training are described. In the next

section, entitled “Modeling and Optimization of the Experimental Electrochemical Process”, the

construction of a steady model using FNNs and the real-time optimization of this model are dis-

cussed. In the following section entitled “Dynamic Modeling of the Experimental Electrochemical

Process”, the methodology for enhancing our dataset to train a dynamic RNN model is elucidated.

The section entitled “MIMO Control Architecture and Controller Tuning” elaborates on the imple-
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mentation of the two PI controllers, their integration with the RNN models and the tuning of the

controllers. Finally, the performances of the models and the controllers are evaluated.

4.2 Preliminaries

This section presents the details of the experimental setup used in this work. All of the experi-

mental devices apart from nuclear magnetic resonance (NMR) are digitized via Laboratory Virtual

Instrument Engineering Workbench (LabVIEW) software. The experimental process employs a

code for processing GC signals, controllers and actuators, and it is fully automated with Python

scripts that are integrated into a LabVIEW interface, in addition to the ML models that predict

the concentrations at each second. Figure 4.1 shows the experimental RCE reactor at UCLA. The

specific feedback controller parameters are determined in advance. The control system implemen-

tations include closed-loop experiments with arbitrary starting concentrations, which are driven to

the setpoints. The process data flow is connected to the database of SMIP provided by CESMII.

4.2.1 Process Overview

Electrochemical CO2 reduction on copper is a complex process. There are 17 chemicals

produced, and their reaction pathways are complicated because processes of different time scales,

including mass and charge transfer, adsorption and desorption, and surface reaction, are convoluted

involving multiple reaction intermediates. Mass transport characteristics of an electrochemical

system affect the transfer of reactant to the catalyst surface as well as the removal of intermediates

and products away from the surface. The relative time scales of different processes in the overall

123



reaction can be realized and controlled systematically in our RCE reactor [73]. Among various

products generated from this electrochemical reactor from CO2R on polycrystalline Cu, hydrogen

(H2), carbon monoxide (CO), methane (CH4), and ethylene (C2H4) are in the gas phase and can be

detected using GC. The relevant reactions for these products are shown below:

2CO2 + 8H2O + 12e− → C2H4 + 12OH− (4.1a)

CO2 +H2O + 2e− → CO + 2OH− (4.1b)

CO2 + 6H2O + 8e− → CH4 + 8OH− (4.1c)

2H2O + 2e− → H2 + 2OH− (4.1d)

In Chapter 2 and [105], we used electropolished atomically-flat polycrystalline copper cylin-

der electrodes as CO2R catalyst. The smooth nature of the exposed electrode surface caused a fast

catalyst deactivation throughout the experiments, and various modeling and control approaches

were applied to handle this challenge. In this study, we use the same experimental setup with

nanoporous copper cylinder electrodes. Nanoporous structure directly synthesized on Cu cylinders

increases the roughness of the surface with higher electrochemically active surface area (ECSA)

inside the pores [149] and is more resistive to catalyst deactivation. Inside the pores, internal pore

diffusion is the dominant mode of mass transport where all species have a long residence time and

the electrochemical environment (e.g., concentration, pH, and electrical potential) becomes highly

localized. The high ECSA as well as the longer residence time of intermediates due to internal pore
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diffusion shift the selectivity towards producing more multicarbon (C2+) products. To account for

this change in selectivity, new modeling and control approaches are applied in this work.

4.2.2 Experimental Setup

The RCE system consists of two electrode chambers divided by an anion-exchange mem-

brane, a mass flow controller (MFC), a potentiostat, a temperature control block, and a modulated

speed rotator (MSR). During the experiment, pure CO2 gas is fed at a fixed mass flowrate at 20

mL ·min-1 into both the cathode chamber, where nanoporous Cu cylindrical electrode is rotating

in 0.2 M KHCO3 electrolyte solution, and the anode (Pt foil) chamber. CO2 and H2O molecules

are transformed into 12 liquid-phase and 5 gas-phase (H2, CO, CH4, C2H4, and C2H6) products.

Hydrodynamics and convective mass transport can be regulated systemically through the control

of electrode rotation speed actuated by the MSR. Furthermore, the potentiostat can set the applied

potential on the working electrode, and measurements are taken using Ag/AgCl as a reference

electrode. Thus, the reaction kinetics and diffusion effects can be deconvoluted by running experi-

ments at multiple applied potential and electrode rotation speeds. Finally, the electrochemical cell

is hermetic so that gas phase products can be quantified by a gas chromatogram (GC) in real time.

An automated GC code is written for triggering injections, peak detection, baselining, and calcu-

lation of the areas under the peaks to quantify the gas phase concentrations in ppm using available

calibration data, as explained in Chapter 3. One GC injection takes 14.3 minutes to complete, and

is followed by 6 minutes of cool down before the following GC injection. Thus, when a GC mea-

surement is obtained, it is delayed and is related to the reactor overhead gas concentrations from

14.3 minutes ago. Liquid phase products accumulate in the electrolyte solution and are measured
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by NMR at the end of the experiment.

In this work, the main output of the reactor is the production rates, denoted by rC2H4 | CO for

C2H4 and CO. The GC measures the concentrations in ppm and these concentrations are converted

to production rates via the following equation.

rC2H4 | CO =
Cppm

C2H4 | CO

106
× V̇ CO2

60× 106
× P

RT
(4.2)

where Cppm
C2H4 | CO is the concentration of C2H4 or CO measured by the GC in ppm, V̇ CO2 is the

CO2 inlet flowrate in mL · min−1 at standard temperature and pressure (STP), P is the standard

pressure at 1 atm, R is the universal gas constant and T is the standard temperature at 0 ◦C. The

GC takes a fixed volume of gas (for example, 1 mL) at atmospheric pressure. Since all the terms

except the concentration on the right hand side of Eq. 4.2 are constants, the production rates are

proportional to the concentration in ppm.

This experimental setup is automated and digitalized as explained in detail in Chapter 3.

Before the digitalization and automation efforts started, there were already accumulated open-loop

steady state experimental data obtained under different input parameters, which were also sent to

the SMIP. These open-loop steady state experiments were conducted under a fixed applied potential

(V vs Ag/AgCl) and catalyst rotation speed (RPM) and the setup was operated until the system

reached a steady state. During the experiments, the gas phase concentrations are measured via GC

at 15th, 35th, 55th, and 75th minute, and the resulting current (A) and a calculated variable surface

potential (V vs SHE) is sensed and recorded each second. The surface potential is the remaining

potential across the surface of the catalyst electrode after accounting for the Ohmic drop in the

126



electrolyte due to solution resistance and it is the more relevant type of potential parameter as it

affects the charge transfer on the surface of the catalyst electrode. The surface potential (V vs

SHE) is calculated as follows:

Esurface = Eapplied − i×R + E0 (4.3)

where Esurface is the surface potential, Eapplied is the applied potential measured against the reference

electrode, i is the electrical current, and R is the solution resistance between the working electrode

and the reference electrode measured by electrochemical impedance spectroscopy (EIS) [73]. E0

is the standard reduction potential of the reference electrode used (Ag/AgCl/1 M KCl), so Eq.

4.3 removes the potential drop across the solution due to the resistance to ion transport in these

systems.

Remark 15 Experimental conditions may cause uncertainty, therefore experimental data model-

ing brings some unique challenges compared to well-structured data, such as data generated by

simulations or obtained from industrial facilities. In the RCE setup, despite the electrolyte resis-

tance being kept as steady as possible (6.2 ± 0.2 Ω), the resistance values are measured a priori,

and may vary for each experiment based on stock solution preparation, environmental tempera-

ture, connectivity of inner electrical circuit, etc. Also, the differences in roughness factors that

emerge from doing cyclic voltammetry during the preparation of the porous electrode may affect

the catalyst activity, especially at lower overpotentials. Consequently, it is possible to observe dif-

ferent product concentrations at the same input conditions. Therefore, the averages and standard

deviations from the steady state open-loop experimental data are shown in Table 4.1 and are used
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in the ML model construction. Also, a plot is shown in Figure 4.3 for three experiments conducted

at 100 RPM and in the close vicinity of -1.317 V vs SHE that have nearly overlapping current flows

but produce C2H4 concentrations within a standard deviation of 43.4 ppm.

The existing experimental data were collected under various applied potentials at the electrode

rotation speed of 100 and 800 RPMs as shown in Table 4.1. Also, an empirical correlation for

estimating the current value at a specific surface potential and electrode rotation speed is developed

using the steady state experiments and is as follows:

i = i0Ω
0.203ekEsurface (4.4)

where i0 and k are constants and Ω is the rotation speed. In order to find i0 and k, Eq. 4.4 is

linearized into the following form.

ln
i

Ω0.203
= kEsurface + ln(i0) (4.5)

Average values of the experimentally measured current and surface potential and rotation speeds

are linearly fitted into Eq. 4.5 to find the constants. The distribution of the fitted data is shown in

Figure 4.2. The following open- and closed-loop experiments, and data shifts can be explained,

and this experimental system can be simulated using this empirical correlation.
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Table 4.1: Averages and variations in surface potential, current, and C2H4 and CO concentrations
in repeated open-loop experiments under different operating conditions.

Rotation Speed Potential (V vs SHE) Current (A) C2H4 (ppm) CO (ppm)

100 RPM

-1.31 -0.0296 376 157
-1.28 -0.0201 217 159
-1.23 -0.0131 67 211
-1.20 -0.0086 30 255

800 RPM

-1.30 -0.0359 363 505
-1.27 -0.0267 216 500
-1.24 -0.0173 86 488
-1.20 -0.0129 25 483

(a) Averages of experimental inputs and outputs in various ranges.

Rotation Speed Potential (V vs SHE) Current (A) C2H4 (ppm) CO (ppm)

100 RPM

0.0029 0.0029 35 14
0.0047 0.0032 96 21
0.0041 0.0002 43 42
0.0015 0.0002 11 8

800 RPM

0.0128 0.0030 76 65
0.0019 0.0010 49 56
0.0060 0.0010 31 22

0.00199 0.0010 9 16

(b) Standard deviations of experimental inputs and outputs in various ranges.
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Figure 4.2: Empirical correlation of normalized current versus surface potential at two different
electrode rotation speeds (100 RPM and 800 RPM). The dashed line represents the reduced loga-
rithmic correlation with respect to surface potential.
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Figure 4.3: Comparison of 3 experimental C2H4 concentrations from open-loop steady state exper-
iments conducted at nearly identical surface potentials (bottom plot) and 100 RPM. The top plot
shows experimental GC results with fitted curves calculated by polynomial regression.
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4.2.3 Open-Loop Step Change Experiments

The modeling objectives of this study are C2H4 and CO concentrations; therefore, it is im-

portant to mention the trend with respect to the changes in one of the parameters while keeping

the other one constant, where the parameters are the applied potential and the rotation speed of

the catalyst. C2H4 has a very strong correlation with the surface potential and as the applied/or

surface potential increases, C2H4 increases strongly. On the other hand, CO concentrations have

a very strong correlation with the rotation speed, so that increasing the rotation speed results in

increasing CO concentrations. These effects can be seen from our steady state machine learning

model discussed in the following section and the cross effects will be discussed in detail.

In order to control the experimental setup, dynamic data must be generated in addition to the

steady state data. Following the steady state experiments, various applied potential and rotation

speed step change experiments were conducted separately. The timing of the GC injections is the

same as the previous open-loop steady state experiments, and it started at the 15th minute with a

sampling period of 20.3 minutes. Based on the steady state experiments, it takes a maximum of 5

GC injections (around 80 minutes) to reach the new steady state and stay there. However, to see the

shorter-term effects, there are a few experiments in which the step change is applied at 3 injections

time. One example of a step change experiment is starting the experiment under a fixed applied

potential and an initial rotation (e.g., at 100 RPM) and changing the rotation speed to 200 RPM

after 5 GC injections and then changing it to 800 RPM until the new steady state is reached. Then,

the reverse procedure is applied such that the rotation speed is first reduced to 200 RPM from 800

RPM and then to 100 RPM. A similar procedure is applied for the surface potential, in which the
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applied potential is manipulated to adjust the surface potential to the desired value. The surface

potential values are increased/decreased, and the changes in gas phase concentrations are recorded.

One instance of rotation speed step change experiments under a constant applied potential for CO

concentration is shown in Figure 4.4. It is important to note that changing the rotation also affects

the current passed between electrodes and thus affects the surface potential. Consequently, when

the rotation speed is changed in an open-loop step change experiment, the surface potential does

not remain constant and is subject to small changes. However, this effect is relatively small.
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Figure 4.4: Probable experimental trajectory of CO concentration using polynomial fit curves for
open-loop rotation speed step change experiments while keeping the applied potential constant.

4.3 Modeling and Optimization of the Experimental Electro-

chemical Process

4.3.1 FNN Modeling for Steady State Setpoints

After selecting the controlled outputs and manipulated inputs, a process model needs to be

developed to capture the input-output relationship and used for the design and tuning of the control
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system. Ideally, a mathematical model with an explicit form (e.g., first-principles model) is the

best modeling option because of its explainability and reliability. However, in this work, it is

challenging to develop such a model due to the complexity of the reaction mechanisms and the lack

of full understanding of the electrochemical reactions. As summarized in [120], there are several

articles proposing respective unique explanations of the reaction mechanisms for this reaction.

Therefore, there is not a single solid conclusion of the reaction chemistry that can be used to

develop a first-principles model.

To address this challenge, a data-driven model is developed. Specifically, a feed-forward

neural network (FNN) is trained based on the experimental data collected from the steady state

experiments discussed in Section 4.2.3. There are seventeen products coming out from the elec-

trochemical reactor. The FNN model uses two inputs (i.e., surface potential and catalyst rotation

speed) to predict the production rate of sixteen product species. Hydroxyacetone production rates

are not included in the modeling phase, since its production rates are either 0 or very low (under

2 ppm). The inputs are normalized with a standard scaling factor. The FNN model has a hidden

layer with 64 neurons activated by a ReLu function. The Softplus function, f(x) = ln(ex + 1),

is selected as the activation function of the output layer to ensure non-negative prediction since

the reactor did not consume any of the product such that the output of our FNN model can not

be negative. Additionally, the Softplus function predicts the output with a smoother curve which

aligns the physical expectation better than other candidate activation functions, such as ReLu and

Sigmoid. The mean squared error (MSE) function is utilized as a cost function to train the FNN

model as explained in [105].

Although an FNN model has the potential to provide a universal approximation to any nonlin-
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ear relation [155] and has demonstrated reliable performance in addressing chemical engineering

and process control tasks [92, 115], it nominally treats each training data point equally, and there-

fore, it can lead to relationships that are affected by data points that have significant experimental

variability. To account for this issue, we calculated the coefficient of variance for each data point,

based on their respective mean and variance, and used it as the weight of the specific data point in

the training process to account for data uncertainty [105]. Specifically, the loss function used to

train the weighted-FNN model can be expressed as follows:

Loss =
1

d

1

m

d∑
i=1

m∑
j=1

1

v2i,j
|yi,j − ŷi,j|2 (4.6)

where d is the number of training data points, m is the number of output states, yi,j is the ith

reference data point for the jth product, and ŷi,j is the predicted production rate for the jth product

under the ith input combination. vi,j is the coefficient of variance of the ith data point for the jth

product, which can normalize the variability of each data point and provide unbiased weight for

products having production rates in different magnitudes. With the weighted loss function, the

FNN model is granted more tolerance for prediction error to prevent the model from overfitting the

data uncertainty when a training data point has a higher variance. The visualization of the FNN

model can be seen in Figure 4.5.

Remark 16 Although the production rate of the liquid phase product cannot be measured in real-

time during the experiment, it can be calculated based on the result of the NMR after the experiment

is complete. Therefore the steady state neural network model can predict the production rate of the

liquid-phase product but cannot be implemented in real-time with the dynamic model.

135



 (+54)

1

34 56789101112

2

1314151617181920 2122232425262728

Surface PotentialSurface Potential Rotation SpeedRotation Speed
Hy

dr
og

en
Hy

dr
og

en COCO

Fo
rm

at
e

Fo
rm

at
e

M
et

ha
ne

M
et

ha
ne

Et
hy

el
en

e

Et
hy

el
en

e

Et
ha

no
l

Et
ha

no
l

Pr
op

an
ol

Pr
op

an
ol

Al
ly

l A
lc

oh
ol

Al
ly

l A
lc

oh
ol

M
et

ha
no

l

M
et

ha
no

l

Ac
et

at
e

Ac
et

at
e

Et
hy

le
ne

 G
ly

co
l

Et
hy

le
ne

 G
ly

co
l

Gl
yc

oa
ld

eh
yd

e

Gl
yc

oa
ld

eh
yd

e

Ac
et

on
e

Ac
et

on
e

Ac
et

al
de

hy
de

Ac
et

al
de

hy
de

Pr
op

io
na

ld
eh

yd
e

Pr
op

io
na

ld
eh

yd
e

Et
ha

ne
Et

ha
ne

Figure 4.5: FNN architecture based on weighted data mapping two inputs (i.e., surface potential
and rotation speed) represented in green circles to the production rates of sixteen products (outputs)
represented in red circles through a densely connected hidden layer represented in blue circles.
Only 10 of the 64 nodes are shown in the figure as blue circles. The model includes 54 more
hidden nodes, in the same hidden layer.

Twelve averaged experimental data points representing surface potentials, rotation speeds and

corresponding 16 product output concentrations from 36 steady state experiments were used for

training and testing of the model. Nine of the experiments are earmarked for training and 2 were

used for testing. There are 4 experimental points for each 100 RPM and 800 RPM experiments,

2 experimental points for the 400 RPM experiments, and one experimental point for 200 and 600

RPM experiments, each. The model is trained for 3000 epochs based on a mean squared error (mse)

loss function. The mse values are 0.0055 and 0.0063 for training and testing. The results for gas

phase products are shown in Figure 4.6. Ethane is not included in the plots since its concentration

does not go higher than 3 ppm under our operation range and thus it is very low. The hydrogen

concentrations in Figure 4.6 (a) show a linearly increasing trend with increasing surface potential.

The rotation speed has a small increasing effect on the concentrations. Methane concentrations

shown in Figure 4.6 (b) are exponentially increasing with increasing surface potentials at higher

136



−1.32 −1.30 −1.28 −1.26 −1.24 −1.22 −1.20 −1.18
Surface Po en ial (V vs SHE)

0

500

1000

1500

2000

2500

3000

3500
Co

nc
en

 ra
 io

n 
(p

pm
)

100 RPM
200 RPM
400 RPM
600 RPM
800 RPM

(a) H2 concentration versus surface potential
and rotation speeds.

−1.32 −1.30 −1.28 −1.26 −1.24 −1.22 −1.20 −1.18
Surface Potential (V vs SHE)

0

20

40

60

80

100

120

140

Co
nc

en
tra

tio
n 

(p
pm

)

100 RPM
200 RPM
400 RPM
600 RPM
800 RPM

(b) CH4 concentration versus surface
potential and rotation speed.

−1.32 −1.30 −1.28 −1.26 −1.24 −1.22 −1.20 −1.18
Surface Po en ial (V vs SHE)

0

100

200

300

400

500

Co
nc

en
 ra

 io
n 

(p
pm

)

100 RPM
200 RPM
400 RPM
600 RPM
800 RPM

(c) CO concentration versus surface
potential and rotation speed.
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(d) C2H4 concentration versus surface
potential and rotation speed.

Figure 4.6: FNN predictions for gas-phase products under various input conditions, where (a), (b),
and (d) demonstrate that the production rates of H2, CH4, and C2H4 are weakly correlated to the
rotation speed, and (c) demonstrates that the production rate of CO has stronger correlation with
the rotation speed. The solid dots represent the experimental data averaged over three repetition
experiments at corresponding input conditions and support the predicted curves calculated from
the FNN model.

overpotentials, and the effect of rotation speed is more significant at higher overpotentials. CO

concentrations shown in Figure 4.6 (c) show a very strong proportional correlation with rotation

speed. However, at lower rotation speeds, an increase in surface potential results in a decrease

in CO concentrations. At higher rotation speeds, the CO concentrations are affected very weakly

by the surface potentials. Finally, the ethylene concentrations shown in Figure 4.6 (d) exhibit

exponentially increasing trends with increasing surface potential. The effect of rotation speed on
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the ethylene concentrations is small, and the direction depends on the specific rotation speeds.

4.3.2 Real-Time Optimization

The developed FNN model based on weighted data can predict the reactor performance by

mapping combinations of control actions with the production rates of each species produced by

the reactor. The next step is to apply this information to our multi-variable control scheme. Specif-

ically, the prediction from the FNN model is used to solve an optimization problem computing

the optimum setpoint for the multivariable control system. The optimization problem is designed

to maximize the economic benefit of operating the reactor. To simplify the optimization problem

for this study, electricity consumption is assumed to be the only operational cost for our reactor

and the revenue of the operation is the total value of the generated product calculated based on

the prediction of the FNN model. Thus, the optimum setpoint is where the reactor profit is maxi-

mized. The mathematical expression of this optimization problem is given below and a third-party

software IPOPT [188] is utilized to solve this optimization problem. Specifically, the optimization

problem has the form:
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J = argmax
x̂∈D

R(x̂, Esurface)− C(I, Esurface) (4.7a)

s.t. Fnn(Esurface,Ω) = x̂ (4.7b)

C(Esurface, I) = ce × I × Esurface (4.7c)

R(x̂, Esurface) =
m∑
j=1

cj × x̂j (4.7d)

100RPM ≤ Ω ≤ 800RPM (4.7e)

− 1.3V vsSHE ≤ Esurface ≤ −1.19V vsSHE (4.7f)

In the above equations, functions C(Esurface,Ω) and R(Esurface,Ω) calculate the cost and

revenue of operating the reactor, where Esurface, Ω, I , ci, and ce stand for the surface potential,

the rotation speed of the catalyst in the unit of rotations per minute (RPM), current (A), the market

price of the jth product, and the electricity price respectively. x̂ is the prediction from the FNN

model containing production rates for m = 16 product species. When solving for the optimum

setpoint, the initial guess for control actions (e.g., Esurface and Ω) is first made by the users and

provided to the optimization problem among the product and electricity prices. Subsequently, the

IPOPT will alter the control actions, which leads to a change in the energy consumption and the

production rates predicted by the FNN model, to maximize the profit of the reactor. Once the

optimum control actions are found, the corresponding production rate of C2H4 and CO, given by

the FNN model, will be sent as the setpoint for the multivariable control system. As an example,

we assumed that the electricity price is the only varying price parameter, and by picking a value
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of 0.066 $/kWh, the most economically feasible setpoints are found to be 112 ppm for C2H4

and 490 ppm for CO. For the second case scenario, a 40% price decrease for H2 and C1 products

(e.g., CO) and a 60% price increase in C2 products (e.g., C2H4 or C2H5OH) are assumed. The

optimization problems are solved and setpoints are calculated to be 283 and 350 ppm for C2H4 and

CO respectively. Finally, one pair of setpoints is selected to show that selectivity can be adjusted

at any desired value such as 1:1. Thus, setpoints corresponding to 1:1 ratio are calculated to be at

200 ppm and this value is selected to be the final setpoint. This optimization design assumes that

all the products are sold at market values. However, the extra costs like the separation of gas and

liquid products must be included in a real case scenario.

4.4 Dynamic Modeling of the Experimental Electrochemical

Process

In order to implement multivariable control of this experimental process, there are two dy-

namic models needed: one for C2H4 and another one for CO. The concentration of the gas prod-

ucts in the headspace of the RCE cell can be approximated as a mixing volume where the gases

produced on the catalyst mix and are carried over by the CO2 gas flow, as shown in Chapter 2. This

approach can be improved by modeling only the dynamic reactor data, which will involve all the

inherent reactor dynamics without being derived by mass balances built for other similar reactor

types (e.g., CSTR). Due to the absence of first principle dynamic equations of the RCE reactor for

electrochemical CO2 reduction, data-driven models can be built to model process dynamics.
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4.4.1 Automatic Data Fitting to GC Measurements

The experimental concentration data from the GC are few and discrete; therefore, it is chal-

lenging to apply the deep-learning method (e.g., neural network modeling) to the raw experimental

data. To tackle this, the GC results are combined using polynomial best fits to approximate a prob-

able experimental trajectory, which significantly increases the number of data points, and enables

building a recurrent neural network model.

In order to connect the respective GC points, 3rd order polynomials are used for 3 data points.

From the experimental side, three GC measurements represent 40 minutes of the experimental time

span. For each 3 respective GC measurements, 2 polynomial curves are fitted. For example, the

first polynomial fit is between 2nd, 3rd, and 4th GC measurements. The second polynomial curve

fitting is between 3rd, 4th, and 5th GC measurements. However, with this method, there are two

polynomial trajectories for the interval between each respective GC point. The most convenient

polynomial fit between these two trajectories can be chosen intuitively. To automate this procedure,

an algorithm is used to select the lower trajectory for an increasing concentration of more than 5%

and the upper trajectory for a decreasing concentration of more than 5%. This assumes that the

aforementioned increase or decrease is in an exponential trend. If the concentrations that decrease

or increase are less than 5%, then opposite trajectories are selected, implying that the experimental

trajectory evolved into a logarithmic change phase. Due to the combination of different polynomial

fits with this method, the trajectory obtained might not be smooth. To resolve this issue, a Savitsky-

Golan filter with a time window of 500 seconds is applied, and the obtained trajectory is adjusted to

the correct timing to compensate for the time dislocation due to the filter window length. Figure 4.7
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demonstrated an example of using the proposed method to enhance the experimental data from one

experiment. In this example, sixteen data points, represented in red circles, are collected using the

GC during over five hours of experiment. This raw data provides very limited information to train

a neural network model. After the data fitting, the available concentration estimations increased to

18000, for this one experiment, which is shown as the black curve in Figure 4.4.

Remark 17 This data fitting is not claimed to be the actual experimental trajectory or the best

data interpolation method. Changing the order of polynomials or the number of fitting data points

in the intermediate trajectory may result in different interpolated trajectories. Other functions

(e.g., linear interpolation, sigmoid function, etc.) can be considered as additional candidates for

this fitting method.
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Figure 4.7: Visualization of auto data fitting algorithm for change in CO concentration in an open-
loop step rotation speed change experiment. The best-fitted trajectory is demonstrated as the black
solid curve in Figure 4.4 generated by the second step of the algorithm that automatically picked
the best fit from the candidate trajectories between every two points and smoothed the overall
trajectory with Savitzky–Golay filter.
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4.4.2 Recurrent Neural Networks and LSTMs

RNN models are proven to be effective in capturing trends from time series data, and thus,

are used in this work to model the dynamic behaviors of the electrochemical reactor for feedback

control purposes. The increased amount of probable trajectory time series data is used to train this

RNN model. Specifically, the RNN model can learn the time series from a defined time window

and the correlations between the respective data points [208]. The RNN architecture is depicted in

Figure 4.8 (a). Input parameter vectors in time series are fed into the RNN and each time series

vector is subject to recurrent calculations in the hidden layers. RNNs learn the time dependencies

and provide results to the output layer, which is usually a fully connected dense layer to better map

the hidden states into meaningful time series outputs.

One of the most powerful RNN architectures for time series is the Long-Short-Term-Memory

(LSTM) model. LSTMs are different from simple RNNs due to their resistance to exploding/vanishing

gradients exhibited in other neural network models thanks to the forget, input and output gates in

each recurrent unit [208]. Each gate and the LSTM recurrent unit are shown in Figure 4.8 (b).

Here, cell state is used to transfer useful information and past relations from the previous recurrent

units to the next recurrent units, and thus, it can be considered as the memory of this sequence

[218]. Cell state is able to keep all the information from the initial time step recurrent unit until

the final time step recurrent unit. The more relevant relationships are kept in long-term memory,

whereas the less relevant information is removed at each time step. On the other side, there is the

hidden state used to keep the output from each recurrent unit and transfer it to the following LSTM

layer. These hidden-state outputs are formulated in a way that ultimately needs to be fed into a
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dense layer outside the LSTM, as mentioned in the previous paragraph. At each recurrent LSTM

unit, the previous hidden state vector is combined with the new time step input vector and fed into

the gates.

Additionally, there are three gates in an LSTM layer: forget, input, and output gates. Each

gate contains trainable sigmoid activated neural networks, as shown in 4.8 (b). The combined

vector of previous hidden state and new input vector is fed to the forget gate. Due to the sigmoid

activation function, the output is between 0-1. If the forget gate yields 0, then the previous cell

state will be forgotten. Conversely, if the output is close to 1, the previous information from the

cell state is retained between the forget and input gates. Next, there is the input gate, which also

has a sigmoid activated trainable neural network that decides to what degree the new input vector

should be remembered. The output of the input gate is pointwise multiplied with the Tanh activated

neural network outputs which is trained to learn the effect of the new input vector for the current

time step output. Tanh activation function yields results between [-1,1], a negative value signifies

that the new input vector might have a decreasing effect. The input gate yield is added pointwise

to the cell state value. Finally, the output gate, again, filters the previous hidden state and input

vector with a sigmoid activated neural network and this output is pointwise multiplied by the Tanh

activated neural network output of the hidden state. This gives the time step output in the hidden
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state [218]. The LSTM structure can be represented mathematically as follows:

i(k) =σ(ωx
i x(k) + ωh

i h(k − 1) + bi) (4.8a)

f(k) =σ(ωx
fx(k) + ωh

fh(k − 1) + bf ) (4.8b)

c(k) =f(k)c(k − 1) + i(k)tanh(ωx
c x(k) + ωh

c h(k − 1) + bc) (4.8c)

o(k) =σ(ωx
ox(k) + ωh

oh(k − 1) + bo) (4.8d)

h(k) =o(k)tanh(c(k)) (4.8e)

x̂(k) =ωyh(k) + by (4.8f)

where k is the time step, i is the output from the input gate, h is the hidden state, c is the cell state,

f is the forget gate, and o is the output gate. Furthermore, wh,x is the weight matrix to the hidden

state vector h and input vector x, bi, bf , bc, bo, by represents biases and the subscript y indicates

relationship to the output [206].
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(a) Rolled and unrolled RNN architecture visualization.

(b) LSTM layer diagram.

Figure 4.8: Overall structure of recurrent neural network (RNN) and long short-term memory
(LSTM) network unit. The LSTM unit fits into the empty circles of the recurrent layer in the top
plot.
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4.4.3 LSTM based RNN Model Architecture

Two LSTM models are trained using the data calculated through the polynomial best fits

between GC measurements. The inputs for the first LSTM model are surface potential, rotation

speed, and current, and the output is C2H4 production rate converted to ppm using Eq. 4.2. For the

second LSTM, the inputs are surface potential and rotation speed, and the output is CO production

rate in ppm. Based on the experimental observations, this process has dead times of 600 to 1500

seconds for step changes on different input parameters. It can be seen in Figure 4.7 that it takes

around 1 injection for the rotation speed change to show its effect on concentration. Also, it

was seen from the experimental data that it might take more than 1500 seconds after the dead

time for the process output to reach the new steady state. Consequently, the pastime window is

very important for the dynamic behavior of the process and this time window should be around

one hour. From this point, the models are trained with various time windows. The best model

performances are obtained for 3600 seconds of time window for C2H4 and 3800 seconds for CO.

If one time window consists of 3600×3 (3 is the number of inputs parameters for the C2H4

estimator) data points, the model would be too big, computationally expensive, and perform poorly

due to high number of training parameters. In addition to that, the predictions would be very noisy.

Thus, the time window can be discretized in a way that still represents the last one hour without

violating the correlations between consecutive data points. For example, the last one hour can

be represented with data points at each 100 seconds. As a result, the (3600×3) time window is

reduced to the (36×3) time window without losing relevant information. The same approach is

applicable for reducing the model size for the CO estimator, which would have (3800×2) input
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parameters for a per second base estimation and has (38×2) input parameters after 100 seconds of

discretization. The model will make a prediction every 100 seconds. Also, the model is trained to

predict the next 800 and 600 seconds of the production rates for C2H4 and CO respectively, with

100 seconds of discretization, having the output shape (8×1) and (6×1) in each LSTM. This way,

LSTM is seen to learn the delay behavior better compared to an output shape of (1×1). Finally,

both models are built with 200 hidden nodes in one hidden recurrent layer. It was seen that the

prediction accuracy decreases if we decrease the number of hidden nodes. Also, the computation

time increases and erroneous nonlinear trends are predicted by the model if we increase the number

of hidden nodes.

Furthermore, regularization methods, such as recurrent dropout and L2 kernel regularizer,

are performed to increase the generalization performance of the models to unseen data. Specifi-

cally, the following regularization methods are tuned to the best performance at 30% for recurrent

dropout and 0.08 L2 kernel regularization. Increasing or decreasing those tuned parameters may

lead to divergent predictions. The recurrent layer is connected to a dense layer of 8 nodes for C2H4

and 6 nodes for CO, which correlates the information from the recurrent node with the production

rate values. A sigmoid function is used in the dense (FNN) output node to limit the predictions

by the highest and lowest values in our training set. Multiple experiments from constant applied

potential and rotation and two long step change experiments were selected for the test set. The

remaining experiments were used to train the models. The predictions of the LSTM models are

evaluated with an unseen testing set, and one set of the testing examples is demonstrated in Figure

4.9.
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(a) C2H4 concentration prediction model with surface potential (V vs SHE), rotation speed, and
current as inputs for a time window of 3600 seconds.
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(b) CO concentration prediction model with surface potential (V vs SHE) and rotation speed as
inputs for a time window of 3800 seconds. This experiment was conducted under constant applied
potential and the change in surface potential is due to the change in current caused by the electrode

rotation speed variation.

Figure 4.9: C2H4 and CO RNN predictions for open-loop experiments from the testing set.
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Remark 18 Electrochemical CO2 reduction in RCE cell is seen to have long process delays of

more than 1000 seconds. The models take around 1 hour time window to model those delays.

However, 3600 seconds of time window is a very long sequence. Thus, training those models only

with open-loop experiments might cause poorer performance in a closed-loop context. These mod-

els perform very successfully when only one of the manipulated input parameters varies sharply

while the other one is constant. On the other hand, when two manipulated input variables vary at

the same time gradually, the large time window of the LSTMs might not catch the dynamic trends

as necessary. In order to enhance the LSTMs trained with the open-loop experiments, two pre-

liminary controlled experiment were conducted, using the initial RNN models trained only with

open-loop experiments. The dynamic data obtained from this experiment are used to train both

estimators, which also leveraged the models to improve themselves to adapt their weights to the

dynamic changes of the feedback control context.

The models need 3600 and 3800 input data points to make predictions for C2H4 and CO,

respectively. Thus, the first prediction is obtained at the 3600th second for the C2H4 estimator and

at the 3800th second for the CO model. The RNN architecture could have been built in such a

way that the concentration output from the previous time step is fed to the LSTM model to guess

the next time step concentration. This approach could have been useful to model the experiment

starting from the beginning of the experiment rather than 3600th second. However, before each

experiment, pre-experiment measurements are performed including EIS to measure the solution

resistance and cyclic voltammetry (CV) to check catalytic activity which already generates some

products while cycling through a potential window. Thus, depending on the time span after this CV
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procedure, the development of gas products in the early stage may vary. This can be seen from the

brown experimental curve (Experiment 3) in Figure 4.3, in which there was a longer waiting time

between pre-experiment measurements and the actual open-loop experiment compared to the other

two experiments. This caused the delayed development of gas concentration trajectory at the early

stage with a slower accumulation of gas products in the reactor headspace. Thus, feeding back the

previous time step concentration estimation to the LSTM model causes confusion for the training

set. As a result, the LSTM estimators wait about an hour until the system reaches equilibrium and

are not affected by previous experimental development.

Remark 19 Initially, both of the estimators were trained with three inputs: Surface potential (V

vs SHE), electrode rotation speed, and current. The current is a significant indicator for the C2H4

concentration and it is very important to include the current for training. However, the CO con-

centration is more dependent on the rotation speed and the surface potential. When the models

were trained with open-loop step-change experiments, it was seen that the LSTM model for CO

has a stronger correlation with current rather than surface potential. On the other hand, increas-

ing current under a fixed applied potential decreases the surface potential, as can be seen from Eq.

4.3. Conversely, if the applied potential is not constant, the surface potential will increase with

increasing applied potential. Thus, increasing the rotation speed will have an increasing effect on

the CO concentration, whereas it will also increase the current and decrease the surface poten-

tial. Consequently, the LSTM model trained with open-loop experiments will learn that increasing

current means increasing CO. This provides a great training accuracy in the testing set perfor-

mance of open-loop experiments. However, the model should also learn the competition between
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the surface potential and the rotation speed for dynamic experiments. When this model was tested,

it was found that the model yields incorrect trends when the ethylene concentration is increased

by adding more surface potential (thus increased current) and the rotation is decreased. From the

known correlations and GC results, the CO concentrations should have decreased, whereas the es-

timator predicted increasing concentrations due to increasing current. After seeing this deficiency

with the dynamic model prediction based on model involving three inputs, the CO estimator was

retrained using two inputs, surface potential and rotation speed, and the aforementioned problem

was resolved. A diagram that explains how the model training and verification were carried out

using both open-loop and closed-loop experiments is shown in Figure 4.10.
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Figure 4.10: Procedure to optimize the LSTM model using open- and closed-loop experiments.

The C2H4 and CO estimators are trained with 83393 and 112789 data points obtained through

probable experimental trajectories. The difference between the training test sizes is due to using

different experiments for training both models. Also, the CO model is trained with 2 preliminary

dynamic controlled experiments whereas the C2H4 model is trained with only one. The training

and testing mean absolute error performances are 0.62 ppm and 3.15 ppm for C2H4 model and

0.63 ppm and 11.1 ppm for CO. This indicates that the models fit to the training data quite well,

but it generalizes to the new data satisfactorily well within the experimental standard deviations.

4.4.4 Regularization Effects on Experimental Data Modeling

In 2014, [169] proposed the dropout method that randomly eliminates a percentage of hidden

units during the training to eliminate/alleviate the overfitting effects in neural networks. When

a unit is randomly excluded for an epoch, it prevents the rest of the neurons from excessively

co-adapting. The dropout method is also used in our neural network architecture between the

LSTM output and dense output layers. The addition of dropout in between these two layers has

shown considerable overfitting mitigation. Specifically, the recurrent dropout in our model trained
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with Tensorflow/Keras uses the approach proposed by [160] and handles the connection between

pointwise multiplication and pointwise summation in the input gate shown in Figure 4.8 (b).

Although dropout is a very strong regularizer, adding other regularization methods to our

model training can further improve the generalization performance of the model. L1 and L2 regu-

larizers can be used as a part of the model training loss function. L1 regularizer is used to keep the

specified model parameter close to 0 whereas L2 regularizer is used to prevent the model parameter

from having too high values [26]. The regularizers can be applied on model weights, biases or to

the output. In our model training, an L2 kernel regularizer is used on the weights. The L2 kernel

regularizer in the loss function is shown in Eq. 4.9.

Ĵ(w;X, y) = J(w;X, y) +
1

2
λwTw (4.9)

where Ĵ is the modified loss function, J is the loss function (e.g., mean squared error), w is

the weight matrix that will be optimized, λ is the user-defined L2 regularization parameter that

determines the intensity of the regularization.

Figure 4.11 illustrates the enhancement in the model predictions with the addition of L2 regu-

larization and dropout. The experiment shown here is used to test run the LabVIEW script with the

experimental setup under a closed-loop trial. The slateblue curve is the fitted data with the method

mentioned in Section 4.4.1 and the model predictions are supposed to converge to this curve. Or-

ange prediction is the model trained without any regularization method and it can be seen that

the predictions have large deviations from the fitted curve. Then, a slight L2 regularization with

the λ=0.04 is shown with the dashed blue curve. Between the 7500th and 10000th seconds, there
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is a slight improvement; however, the latter stages of the experiment still have significant error

margins on the order of 300 ppm. Then, the L2 regularization value is increased to λ=0.08 (dash-

dotted blue curve), and even though the noise in the predictions decreases and the trends are better

represented, the model overshoots the probable experimental trajectory. Then, the regularization

value was increased to a relatively high value at λ=0.15 (dotted blue curve), and this resulted in

a drift and increased noise in predictions at the later stages of the experiment. This demonstrates

that the low and high values of L2 regularization parameter λ do not improve the model, whereas

a suitable fine-tuned λ value boosts the model performance. Finally, the best model with λ=0.08 is

further improved with an appropriate percentage of recurrent dropout (red curve) and the dynamic

trends are captured as well as the error predictions are greatly reduced. Thus, it is shown that the

application of proper regularization parameters significantly augments the model generalization to

unseen data. The regularization values presented in this section also generalize well to the other

experimental operations (open- and closed-loop experiments).

Remark 20 The test case in Figure 4.11 is a closed-loop experiment in which both surface poten-

tial and rotation are manipulated. Thus, this case is harder to generalize than open-loop experi-

ments for the dynamic behavior.
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Figure 4.11: The effect of regularization in improving the model predictions. Multiple parameters
for L2 regularization are compared to the addition of recurrent dropout and no regularization case.
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4.4.5 Implementation of the LSTM Model in Real-Time Operation

The estimators are built to give a prediction each 100 seconds. However, for efficient control,

we are expecting a per-second model feedback. Also, if the models were able to yield a per-

second prediction, which would require a much larger model than a time window of 36/or 38 data

points every 100 seconds, it would be computationally expensive for the LabVIEW program and

might cause a time shift for 1 second intervals since there are many calculations being made at

the same time and more data being kept in the memory. Therefore, to tackle this problem, a linear

regression extrapolation approach is used to estimate 99 time steps between two consecutive LSTM

predictions. In this approach, the recent LSTM prediction and the previous one are kept in memory

and fitted to a line via linear regression for the previous 100 points. For the next 99 seconds, this

linear regression formula is used to extrapolate between 101th to 199th following predictions. With

this method, there is a very small loss of accuracy, but a gain of interconnecting points estimation

and computational efficiency. Since the 100-second interval is quite small in the development time

of the experimental trajectory, the linear nature of this guess does not disturb the modeling of the

setup. With this approach, long time window processes can be modeled more accurately using

smaller models for many time steps without losing important information.

4.5 MIMO Control Architecture and Controller Tuning

This study aims for the multivariable feedback control using two PI controllers for C2H4 and

CO concentration by manipulating applied potential and rotation speed.
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4.5.1 Using Data for Process Parameter Extraction

The first-order plus time delay (FOPTD) model, as shown in Eq. 4.10 is used to extract the

process parameters for the transfer function. Various open-loop experiments were conducted by

applying separate step changes to applied potential and rotation speed. After applying the step

change, the changes in C2H4 and CO concentrations are fitted to a sigmoid function and normalized

between 0-1 for easy comparison between various step changes. From those plots, a tangent line

from the inflection point is drawn to intersect the X axis. The intersection value on the X axis is

defined as the dead time, indicated by θ, and the time required to reach 63% of the final steady

state is defined as τ . These parameters are used to extract the FOPTD model shown in Eq. 4.10,

where K is the steady state gain and s in the Laplace domain variable of the form:

G(s) =
−Ke−θs

τs+ 1
(4.10)

However, electrochemical CO2 reduction is a highly nonlinear process; therefore, one FOPTD

model will not be sufficient to model the entire operating range. Thus, various FOPTD models

should be extracted for different surface potential and rotation speed ranges. Our open-loop exper-

iment range might not include an instance of a change between the limits of the designated ranges;

thus, we should check general correlations for the dead time and τ for different step changes. If

there is a general correlation for the time parameters, it is possible to extract steady state gains from

the FNN model. The graphs presented in Figure 4.12 are used to display the dynamic responses of

C2H4 ((a),(b)) and CO ((c),(d)) under various rotation speeds and rotation speed changes.

Figure 4.12 (a) clearly shows that the concentration change exhibits the same dynamic behav-
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ior under applied potential step regulations and constant rotation, which means that we can assume

the same dead time and τ for the tuning process. After analyzing the second plot, it was seen that

similar dead times and τ values are obtained for rotation speeds less than 200 RPM. These values

are used in the FOPTD model for C2H4. A similar procedure is followed for the extraction of the

CO FOPTD model parameters.
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(a) C2H4 concentration evolution for potential
change under constant rotation speed.
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(b) C2H4 concentration evolution for rotation
speed change under constant applied potential.
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(c) CO concentration evolution for applied
potential change under constant rotation speed.
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(d) CO concentration evolution for rotation speed
change under constant applied potential.

Figure 4.12: The evolution of C2H4 and CO concentrations for step changes in the input parame-
ters, fitted to a sigmoid function and normalized between 0-1.

Figure 4.12 shows the dynamic concentration evolutions for C2H4 and CO under a step change

in one input parameter (applied potential or rotation speed) while keeping the other input parameter
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(a) Extracted dead time values for various
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experiments for fitted C2H4 dynamic data
depicted in Figure 4.12 (b).
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Figure 4.13: Process dead time (θ) and time constant (τ ) distribution extracted from experimental
data for dynamic changes.

constant. For example, in Figure 4.12 (a), the normalized dynamic data fittings for applied potential

change under a constant rotation speed overlap with each other for each experiment, and they have

the same dead time. In Figure 4.12 (b) and (d), the dynamic data for the change in C2H4 and

CO concentrations with respect to a variation in electrode rotation speed under a constant applied

potential is demonstrated. For C2H4, it was seen that for the rotation speed changes under 200

RPM, the dead times are around the same value, and this is shown in Figure 4.13. For CO, the

variation in τ values for different rotation speed changes are illustrated in Figure 4.13 (b). For

each step change experiment, θ and τ values are extracted from the data and they are averaged for

a more generalized results. These values will be used to extract FOPTD models for operational

regions. The extracted θ and τ values can be seen in the multivariable control array shown below

in Eq. 4.11.

As the time constants and delays for the FOPTD model are obtained, there is now a need to
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obtain steady state gains. Electrochemical CO2 reduction process is inherently highly nonlinear,

as can be seen in Figure 4.6. This can also be seen from the exponential increase in operational

steady states in C2H4 concentrations with increasing surface potentials shown in Figure 4.6 (d) and

different behaviors of CO concentrations at different rotation speeds in Figure 4.6 (c). Thus, we

divide the operation range into 9 regions as the following:

• Potential ranges = (-1.19, -1.26V), (-1.26, -1.30 V), (-1.30, -1.32 V);

• Rotation ranges = (100-200 RPM), (200-400 RPM), (400-800 RPM).

The multivariable control array and relative gain array shown below have the following structure.

100 : 200RPM 200 : 400RPM 400 : 800RPM

−1.19 : −1.26 V vs SHE
. . . . . . . . .

−1.26 : −1.30 V vs SHE
. . . . . . . . .

−1.30 : −1.32 V vs SHE
. . . . . . . . .

These ranges are expected to satisfactorily linearize the process. The steady state gains are calcu-

lated from the FNN model. Using the FOPTD models and different operating windows, we can

obtain the multivariable control arrays such as shown below in Eq. 4.11 for the [-1.19, -1.26 V]

and [100, 200 RPM] region.

 CC2H4(s)

CCO(s)

 =

−1427e−1113s

952s+1
0.030e−1557s

1395+1

919e−1409s

952s+1
0.64e−1234s

540+1


 Esurf (s)

Ω(s)

 (4.11)

This array is represented in the Laplace domain, and four distinct FOPTD models are used to

represent the dynamic process behavior. The first element of the FOPTD matrix in the first row
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represents the influence of Esurface and the second element in the same row represents the dynamic

effects of rotation change on the C2H4 concentration. The second row represents the same impact

on CO concentration for the respective inputs. The transfer function matrices in different regions

are given below:



−1427e−1113s

952s+1
0.030e−1557s

1395+1

919e−671s

1409+1
0.64e−1234s

540+1


−1576e−1113s

952s+1
0.14e−1557s

1395+1

708e−671s

1409+1
0.59e−1234s

540+1


−1532e−1113s

952s+1
0.21e−1557s

1395+1

−407e−671s

1409+1
0.23e−1234s

540+1


−3985e−1113s

952s+1
0.039e−1557s

1395+1

808e−671s

1409+1
0.49e−1234s

540+1


−4413e−1113s

952s+1
0.13e−1557s

1395+1

945e−671s

1409+1
0.72e−1234s

540+1


−5158e−1113s

952s+1
0.13e−1557s

1395+1

1171e−671s

1409+1
0.29e−1234s

540+1


−5445e−1113s

952s+1
0.016e−1557s

1395+1

403e−671s

1409+1
0.50e−1234s

540+1


−5088e−1113s

952s+1
0.0029e−1557s

1395+1

857e−671s

1409+1
0.65e−1234s

540+1


−4780e−1113s

952s+1
0.019e−1557s

1395+1

832e−671s

1409+1
0.35e−1234s

540+1




4.5.2 Relative Gain Array

There are two general approaches for the MIMO control system design of the RCE reactor

based on the manipulated inputs and controlled output relationships: employing two proportional-

integral (PI) controllers or a model predictive controller (MPC). If there are specific input-output

couplings that are strong (i.e., multivariable interactions are relatively weak), then it is appropriate

to use two PI controllers. In the opposite case, where multivariable interactions are strong, an MPC

should be used to regulate the process accounting explicitly for these interactions. To evaluate the

strength of the multivariable interactions, a relative gain array (RGA) approach is used. In this

work, from the experimental results, we have observed that the electrode rotation speed has a

strong effect on the CO concentration, while the surface potential has a very strong effect on the
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C2H4 concentration. RGA is used to quantify these impacts and is calculated as follows [10]:

Λ =

 k11k22
k11k22−k12k21

−k12k21
k11k22−k12k21

−k21k12
k11k22−k12k21

k11k22
k11k22−k12k21

 =

λ11 λ12

λ21 λ22


where kij , i = 1, 2 and j = 1, 2, are the steady state gains in the matrix transfer function models;

for example, referring to Eq. 4.11, k11 = −1427, k12 = −0.030, k21 = −919 and k22 = −0.64.

The RGA only needs the steady state gains. If the diagonals of RGA are close to 1, then it means

that the surface potential can be used to control the C2H4 production and the rotation speed can be

used to control the production of CO using two single-loop proportional-integral controllers. The

RGAs of the different regions are presented below:



 0.9704 0.0296

0.0296 0.9704


 0.9706 0.0294

0.0294 0.9706


 1.0181 −0.018

−0.018 1.018


 0.9444 0.0556

0.0556 0.9444


 0.9610 0.0390

0.0390 0.9610


 0.9977 0.0023

0.0023 0.9977


 0.9693 0.0307

0.0307 0.9693


 0.9669 0.0331

0.0331 0.9669


 0.9908 0.0092

0.0092 0.9908





Since the RGA diagonal elements for each region have values very close to 1, we can infer

that two PI controllers are sufficient to control this process, where one of the PI controllers will

manipulate the applied potential to control C2H4 while the other PI controller will manipulate the
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rotation speed to control CO production rate. These RGA conclusions hold true for a broad set

of steady state values of the inputs in the operating region of interest; this analysis was carried

out in [19] for a similar experimental reactor setup and will not be repeated here. Overall, it is

noteworthy that the RGA results based on our lab-scale experimental reactor provide a quantitative

basis for the strength of these interactions in a scaled-up reactor based on the design employed in

our current process.

4.5.3 Controller Tuning

Two PI controllers are used for the feedback control of the experimental RCE reactor. Since

the FOPTD transfer function array is obtained, the controller tuning parameters can be calculated

for both PI controllers using the Cohen-Coon technique. Specifically, the FOPTD models are ini-

tially used to extract 9 pairs of controller parameters with the Cohen-Coon tuning method. The

details of Cohen-Coon tuning method can be found in [58]. However, employing 9 pairs of con-

troller parameters might be complicated, thus, proportional gain values that are in the vicinity of

each other are averaged to reduce the number of controller parameters. After having the prelimi-

nary proportional gains and integral time constants, MATLAB is used to simulate a setpoint change

to fine-tune the proportional gains taking the Cohen-Coon estimations as starting points. The fine-

tuned control parameters are presented in Table 4.2 and the simulation results for different regions

are presented in Figure 4.14. The integral time constants (τi) from Cohen-Coon are 1250 and 1000

seconds, respectively.

However, there is a unit matrix decoupler defined in the MATLAB tuning procedure, mean-

ing that the simulator does not take the cross-coupling effects into account (e.g., rotation effects
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(a) -1.19 to -1.26 V vs SHE
and 100-200 RPM.

(b) -1.19 to -1.26 V vs SHE
and 200-400 RPM.

(c) -1.19 to -1.26 V vs SHE
and 400-800 RPM.

(d) -1.26 to -1.30 V vs SHE
and 100-200 RPM.

(e) -1.26 to -1.30 V vs SHE
and 200-400 RPM.

(f) -1.26 to -1.30 V vs SHE
and 400-800 RPM.

(g) -1.30 to -1.32 V vs SHE
and 100-200 RPM.

(h) -1.30 to -1.32 V vs SHE
and 200-400 RPM.

(i) -1.30 to -1.32 V vs SHE
and 400-800 RPM.

Figure 4.14: MATLAB-based tuning of the PI controllers using a decoupler.

on C2H4 concentration). At some specific operation ranges, the cross-coupling effects might af-

fect the performance of the closed-loop system. For example, as discussed in Section 4.3.1, the

effect of surface potential change affects the CO concentration at lower rotation speeds. When

the MATLAB-tuned parameters are tested in the experimental setup, it was seen that both of the

parameters have huge fluctuations around the steady state setpoints. This means the controller

proportional gains are not tuned to handle the cross-parameter effects, and they should be further
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improved.

It is very time-consuming and costly to fine-tune the controllers on the experimental setup

by trial and error, especially when multiple pairs of control parameters are involved. To address

this problem, the dynamic RNN models trained for C2H4 and CO dynamic evolution modeling are

used as the digital model of the experimental reactor to investigate the controller performance under

numerous pairs of controller parameters in different regions. To enable this simulation, the instance

current is required as the input for the estimation of C2H4. Thus, the correlation presented in Eq.

4.4 is used to approximate the current at a specific surface potential. However, this case is idealized

compared to the real system because the current magnitude is largely affected by the resistance of

the electrolyte solution and experimental conditions might also affect the concentration outputs.

Two PI controllers are added to the simulation. The first controller manipulates the surface

potential to control C2H4 production rates while the second controller manipulates the rotation

speed to regulate the CO concentration in the reactor overhead. It was seen that if both controllers

are tuned with values in the vicinity of MATLAB-tuned proportional gains, both of the setpoints

suffer from big fluctuations due to cross-coupling effects, and it would take a very long time for

both fluctuations to subside. Thus, the case that worked best and fastest to reach the steady state

is having one of the controllers with a high proportional gain and the other controller with a low

proportional gain. Specifically, the C2H4 controller is selected to be the more aggressive one while

the CO controller is adjusted to drive the process to the setpoint slowly. Therefore, the MIMO

control scheme aims to drive the C2H4 concentration to the setpoint quickly; and after it is reached,

the second PI controller drives the CO to the setpoint slowly. While C2H4 is going to the setpoint,

CO could even go in the opposite direction with respect to its setpoint because big changes in the
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Table 4.2: Controller gains (Kp) resulting from MATLAB-based tuning.

RPM
100 - 200 200 - 400 400 - 800

-1.19 : -1.26 -0.00038
-1.26 : -1.30V vs SHE
-1.30 : -1.32

-0.000126

(a) Applied potential controller.

RPM
100 - 200 200 - 400 400 - 800

-1.19 : -1.26
-1.26 : -1.30V vs SHE
-1.30 : -1.32

0.69 1.4

(b) Rotation speed controller.

surface potential could negatively affect CO, especially at low rotation speeds. However, once the

surface potential is stabilized at the new setpoint, the rotation speed is adjusted slowly, while the

small cross rotation effects on C2H4 are compensated by the aggressive potential controller. A

control case simulation scenario with the new control parameters is shown in Figure 4.15. The

final proportional gains obtained from this simulation are presented in Table 4.3.
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Table 4.3: Final controller gains (Kp) resulting from closed-loop system simulation.

RPM
100 - 200 200 - 400 400 - 800

-1.19 : -1.26 -0.00042
-1.26 : -1.30V vs SHE
-1.30 : -1.32

-0.00025

(a) Applied potential controller.

RPM
100 - 200 200 - 400 400 - 800

-1.19 : -1.26
-1.26 : -1.30V vs SHE
-1.30 : -1.32

0.25 0.35

(b) Rotation speed controller.
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Figure 4.15: Closed-loop simulation using the dynamic RNN models and the empirical surface
potential-current correlation used to determine the final PI controller parameters.
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4.5.4 Estimator Design Using GC Measurements

In Section 4.2.2, the standard deviation in the experimental results is discussed under nearly-

identical surface potential and rotation speed for relatively short duration experiments of less than

2 hours. The experimental conditions mentioned in Remark 15 also affect the variability in the

experimental performance observed for individual experiments. Therefore, the LSTM models built

using the experimental training data are expected to give a prediction that is compatible with the

averaged experimental output and within the standard deviations, however, this prediction still

needs to be improved for feedback control purposes. To accomplish this fine-tuning of the control

of the reactor, the GC sensor feedback is incorporated into the prediction model and the control

scheme.

In Chapter 2, we offered an approach to introduce the GC measurements incurring a 14.3 min-

utes delay into the concentration estimation and feedback control scheme. However, that approach

took advantage of a hybrid model and mass balance equations, calculated the error in machine

learning-based reaction rate estimation and corrected the estimator predictions accounting for the

possible corrections in pastime instants of the experiment. That approach is not applicable here

due to LSTMs being black box models. Instead, taking advantage of the ability of RNNs to learn

time series and trends in complex data series, we can scale the RNN predictions with respect to

the recent GC measurement and adopt our RNN model to the real experimental trajectory without

violating the trends. This is a suitable solution built on the understanding that the catalyst activity

may vary from experiment to experiment, while the fundamental mechanism for the transforma-

tion of CO2 on the copper electrodes is unchanged. The RNN model predicts the concentrations
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within a standard deviation, and captures the dynamic timing (e.g., dead time and τ ) satisfactorily

well. Thus, scaling the model does not affect the dynamic trends. To scale the RNN outputs, the

prediction from 14.3 minutes ago is kept in the control loop, and it is compared to the GC mea-

surement when the injection is completed. As soon as the GC results are obtained, the GC result

is proportioned to the RNN prediction from 14.3 minutes ago and a scaling factor α is obtained.

Then, the current RNN predictions are multiplied by the scaling factor until a new scaling function

is obtained. This is described as follows:

αi =
GCi

F 0
RNN(t− 14.3min)

(4.12a)

FRNN(t) = αi × F 0
RNN(t) (4.12b)

where i is the number of GC injections, GCi is the ith GC injection, F 0
RNN is the prediction of the

unscaled RNN model and FRNN is the prediction of the scaled RNN model.

This GC feedback correction is not applied after each injection. Applying a scaling factor

during a big setpoint change might interfere with the model dynamics, thus we scale the RNN

predictions when the consecutive GC variation is small (e.g., at steady state). When the difference

between the GC measurement and RNN prediction is substantial, the scaling factor is applied when

the concentrations are near a steady state, the model predictions and GC measurements are scaled

to be coherent, and the system is driven to the setpoint after the scaling. This correction is applied if

the consecutive GC measurements are within 8% or 10 ppm vicinity of each other. The application

of the scaling factor is automated on the LabVIEW interface. The final control diagram of the

process is shown in Figure 4.16.
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Figure 4.16: Closed-loop system structure using multi-input multi-output control system with ML
estimators.

4.6 Closed-loop Experimental Results and Discussion

Three scenarios are considered for the demonstration of MIMO control in this study. The first

scenario aims to drive the process to the most profitable setpoint under the base case, which has a

selectivity of 1:4 for the C2H4:CO concentration ratio. The second scenario drives the selectivity

ratio to 1:1 to show the flexibility of the control system by increasing the C2H4:CO ratio by 4-

fold. This versatility could be advantageous considering a potential integration of a downstream

process such as the copolymerization of ethylene and carbon monoxide, where the ratio of the two

monomers impacts the structural and thermophysical characteristics of the synthesized polyketone

[16, 167]. The third scenario simulates a case based on sensitivity analysis in which the prices

of C2 and C2+ products increase by 60% while other chemical prices decrease by 40%. The third

scenario drives the C2H4:CO concentration ratio to 4:5 which is very close to the 1:1 ratio and thus

serves to challenge the accuracy of the control system for close but different concentration ratios
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over a broad range of concentrations. The three scenarios demonstrate the ability of controllers to

implement large increases and decreases in selectivity ratios, as well as precise control of product

concentrations. In each experiment, the closed-loop controller is activated at 4500th second and the

same control parameters are used for all scenarios. Each case starts from the same initial applied

potential and electrode rotation speed of -1.67 V vs Ag/AgCl and 300 RPM, usually yielding a

surface potential of around -1.27 V vs SHE. This initial point is chosen to have both the rotation

and potential values close to the region where the controller parameters change to observe the

effects of changes in controller gains.

4.6.1 Experimental Results

Setpoints for C2H4 and CO under the first scenario are calculated from the real-time opti-

mizer to be 112 and 490 ppm. The experimental results for the first case scenario are shown in

Figure 4.17. It is noteworthy to compare these experimental results to those obtained in the sim-

ulated closed-loop experiments shown in Figure 4.15 that utilized identical setpoints. Due to the

control strategy mentioned in Section 4.5.3, the controller first drives C2H4 to the setpoint while

the electrode rotation speed increases gradually, which slowly drives CO to its setpoint. As shown

previously in Figure 4.15, this strategy can effectively compensate for the rotation-driven deviation

in C2H4 concentrations. In this case, to decrease the ethylene concentration, the applied potential

is decreased. This also has the effect of increasing slightly the CO concentration at low rotation

speeds (see Figure 4.6 (c)). Thus, cross-coupling effects on the input-output relationship in this

specific setpoint are helpful in achieving the control objective. The initial increase in CO is mostly

due to the decrease in surface potential. In this region, until the rotation reaches 400 RPM, the ef-
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fect of rotation speed is kept minimal with the CO controller using a small proportional gain. Once

the ethylene concentration reaches its setpoint, the rotation speed is increased more aggressively

to eventually drive the CO concentration to its setpoint.

The experimental trajectory in Figure 4.17 is very similar to the simulated result in Figure

4.15. The main two differences are that in the simulation, the setpoints are reached earlier than in

the actual experiment and the estimation of a setpoint overshoot for the CO concentration, which

is not observed in the experiment. These differences are naturally due to the fact that experimental

observations are different from model prediction and feedback corrections, and highlight the im-

portance of coupling simulations with experiments. The simulation also assumes that the current

is well-described by Eq. 4.4. However, experimentally, the current might deviate from this corre-

lation extracted from open-loop experiments for catalysts operated over relatively short durations,

causing slightly different product concentrations. Likewise, when a scaling factor is applied as a

part of the feedback correction, the error between the model prediction and the setpoint change

must be recalculated and results in some delays which do not exist in the simulation and could

have an effect on the experimental observations. The pure model predictions might be very close

to the setpoint, which would reduce the actuation. However, when the scaling factor is applied,

the model receives feedback when the predictions were off (e.g., at 10 ppm) and the controller

drives the corresponding input at higher values to reach the setpoint. Thus, this causes a delay in

the setpoint tracking, which can also explain the timing difference between the experiment and the

simulation. It is noted that these timing differences are still minor, and the system is still driven to

the desired multiple setpoints in a short period of time of just a few hours.

The objective of the second scenario is to adjust the selectivity ratio to 1:1 for a concentration
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of 200 ppm for each product. The experimental results for this scenario are shown in Figure 4.18.

Here, the initial ethylene concentration is closer to 200 ppm, and it requires only a small increase

in applied potential to reach the setpoint. On the other hand, CO starts from a relatively high con-

centration compared to the setpoint at 200 ppm. The initial surface potential activates the higher

Kp and the controller starts increasing the surface potential further. At the same time, the error

between CO concentration and its setpoint is high, thus the electrode rotation speed continuously

decreases resulting in a monotonic decrease in the CO concentration. As the rotation speed fur-

ther decreases below 200 RPM, the potential effects become more important for CO. When C2H4

reaches its setpoint and the controller starts to decrease the surface potential, the decrease in CO

concentration loses momentum as the potential effects kick in, increasing the production of CO. To

account for this, the MIMO controller reduces the rotation speed more strongly after around 13000

seconds to overcome the effects of fluctuating surface potential until both setpoints are eventually

reached after around 20000 seconds of the start of the experiment.

In the third scenario, the system is driven to a selectivity ratio of around 4:5 as shown in Fig-

ure 4.19, where the setpoints for C2H4 and CO concentrations are 283 and 350 ppm, respectively.

In this experiment, the initial CO concentration is already close to its setpoint, whereas the C2H4

concentration is less than half that of its setpoint. Here, the C2H4 controller steadily increases the

surface potential to decrease the error between the setpoint and the estimator model predictions.

Although the CO controller slowly increases the rotation speed to raise the CO concentration, the

strong increase in surface potential decreases the CO concentration. Because this surface potential

increase occurs while the rotation speed is still at relatively slow rates, the surface potential effect

is influential on the CO concentration. The fast increase of the surface potential causes a small
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overshoot in the C2H4 concentration but this is then corrected by slowly decreasing the applied po-

tential and driving C2H4 slowly to its setpoint. After this task is achieved, the rotation is increased

to drive CO to its desired setpoint.

In all 3 experiments, different setpoints are reached for both C2H4 and CO, thus experimen-

tally demonstrating that the developed control scheme is efficient. It must not be lost in the techni-

cal description of this chapter the fact that this is the first time that this level of control is achieved

for multiple products in a CO2 electrochemical RCE reactor. The MIMO controller demonstrated

here delivers on the promise of RNN-based modeling frameworks for the control of advanced reac-

tors driven purely by electricity. This should motivate further integration of RNN-based modeling

in the research and development of electrified chemical and fuels manufacturing technologies.
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Figure 4.17: Closed-loop experimental results for the economically optimal setpoints for which
the C2H4:CO selectivity ratio is 1:4.
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Figure 4.18: Closed-loop experimental results for the C2H4:CO selectivity ratio of 1:1 which re-
sults in a higher selectivity towards ethylene compared to the economically optimal case.
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Figure 4.19: Closed-loop experimental results corresponding to setpoints with C2H4:CO selectivity
ratio of 4:5.
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4.6.2 Experimental Errors in Closed-loop Experiments and Outlook

Each closed-loop experiment started from the same initial conditions of applied potential and

rotation and yielded 189, 172 and 132 ppm for C2H4 and 346, 328 and 335 ppm for CO after

reaching the first steady state at around 5000 seconds from the start of the experiment. This high-

lights the experimental difference in each of the catalysts freshly prepared, and demonstrates the

need for a feedback corrector to adjust the model predictions to the GC points for each individual

experiment.

Furthermore, there are shifts in current. For example, if the system generates less current in a

new experiment at the same surface potential compared to the base case steady state experiments, it

is very probable to obtain less ethylene. These dynamics are captured by the RNN model as many

case scenarios are fed to the model during the training. One of the reasons for this current shift

might be the lack of Ohmic drop compensation feature on the LabVIEW interface. As mentioned

in Remark 15, the electrolyte solution is measured in the beginning of the experiment. However,

the resistance of the electrolyte solution might increase or decrease as the experiment proceeds, and

the surface potential calculations are affected by these resistance shifts. It would be necessary to

program into the potentiostat controller an algorithm that, without changing the applied potential,

performs electrochemical impedance spectroscopy or a current interrupt analysis during a few

seconds to measure the evolving solution resistance. This can be the focus of future works as we

expand the MIMO controller to account for more operation variables and products.
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Chapter 5

Machine Learning-Based Predictive Control

Using On-line Model Linearization:

Application to an Experimental

Electrochemical Reactor

5.1 Introduction

In today’s chemical manufacturing industry, fossil fuels serve as the primary energy source

for the chemical industry, leading to significant energy consumption and greenhouse gas emissions

[14]. Alternatively, there has been increasing interest in electrochemical reactions, such as con-

verting carbon dioxide (CO2) into carbon-based fuels and chemicals with electricity, as a means

to mitigate CO2 emissions. This approach holds the potential for leveraging electricity generated

from renewable resources as an energy source for large-scale chemical manufacturing, furthermore
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contributing to global-scale renewable energy storage and closing the anthropogenic carbon cy-

cle [33]. Although electrochemical conversion of waste CO2 is very promising, several challenges

hinder the widespread adoption of electrochemical reactors on an industrial scale. Perhaps most

importantly, the conversion of CO2 through electrochemistry requires significant energy consump-

tion [171]. Researchers have focused on improving energy efficiency in electrochemistry through

the development of more efficient and selective catalysts through nanostructuring, doping of tran-

sition metals, utilization of single-atom catalysts, etc. [120, 99, 83] as well as the design of devices

to reduce the overall cell potential and address parasitic carbonation problems [213, 222, 140]. On

the other hand, discussions on process scale-up have been limited so far [146]. We have identified

another critical challenge in scaling up electrolyzers to be the absence of advanced process control

schemes for electrochemical reactors due to the complex and nonlinear nature of electrochemical

processes. Since the realization of an economically viable electrochemical process will require

optimization in process integration and cascade reactor train [138, 125, 42], the development of a

control scheme to regulate individual electrochemical reactor units is necessary.

To address this issue, Chapter 2 proposed a feedback control scheme using proportional-

integral (PI) controllers utilizing a support vector regression-based (SVR) hybrid model as a state

estimator. This approach enabled real-time state estimation for a PI controller and, subsequently,

implementation of single-input single-output (SISO) control in a gastight rotating cylinder elec-

trode (RCE) cell. Building on this work, Chapter 4 introduced a recurrent neural network (RNN)

model as an improved state estimator, surpassing the performance of the SVR model. This RNN

model captured relationships between process variables and gas product concentration and allowed

for the implementation of multi-input-multi output (MIMO) control using PI control techniques for
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the same RCE reactor. Alongside the classical control strategies, model predictive control (MPC)

methods have emerged as vital components in industrial process control design [135, 97]. MPC

offers the advantage of computing optimal control actions by anticipating future output states,

making it a powerful tool for multivariable control while considering process constraints and non-

linearities, for example, [66].

Although the specific application of MPC in electrochemical reactors is limited, MPC has

been widely used in various research areas, including chemical reactors, battery management, and

self-driving cars. For instance, [145] provided a comprehensive discussion on implementing MPC

for a crude oil distillation unit in the petroleum industry. Furthermore, [20] explored MPC design

for a multivariable distillation column, demonstrating superior performance compared to PI-based

control through MATLAB simulations using the Wood and Berry Model. MPC has also been

applied to develop a battery management system, which is similar to the application of an elec-

trochemical reactor in the sense that both tasks involve manipulating electrochemical reactions,

even though the battery management system focuses on storing and releasing electricity instead

of generating products using electrical potential. For example, [132] proposed a nonlinear MPC

design based on the electrochemical models capturing the internal phenomena of the battery to

solve the charge unbalancing problem in lithium-ion cells connected in series. These applications

have demonstrated the ability of MPC to control systems with electrochemical reactions. Con-

sidering the advantages of MPC over classic control strategies (e.g., PI control) with respect to

explicitly handling actuator and state constraints, multivariable interactions and nonlinearities, it

is potentially practical and valuable to leverage the application of MPC to control electrochemical

reactors.
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Implementing MPC in electrochemical reactions poses two major challenges that need to be

overcome: model accuracy and computational expense. The accuracy of the model prediction is

crucial for the performance of MPC. Ideally, a first-principles-based model that accurately cap-

tures the underlying phenomena in the electrocatalytic system would be optimal. However, such

models are often unavailable for practical cases. To this end, in our research, we focus on a data-

driven approach to model the process system. Data-driven modeling offers a systematic approach

that can be applied to any process system if sufficient data quantity and quality are ensured. One

of the significant examples of data-driven modeling is machine learning (ML), which is a class

of techniques that can be generally applied to various systems without the need for formulating

specific physical patterns discovered in experiments [36]. Classical ML methods, including SVR,

linear regression, Gaussian process regression, and decision trees, have been widely utilized for

modeling tasks [209, 166, 11, 64, 221]. Additionally, deep learning methods, employing neural

network (NN) structures, have demonstrated superior performance in capturing nonlinear and com-

plex systems compared to classical ML methods. As a result, NN modeling has drawn significant

attention and has been applied in recent research works [123, 161]. Considering the nonlinearity

and complexity of the electrochemical reactor and to facilitate the modeling process, a NN method

is utilized to model the system, which has been demonstrated to be an effective technique for this

specific reactor in Chapter 4.

While the use of nonlinear data-driven models in MPC has shown promising performance in

various research studies, implementing MPC with a nonlinear model generally involves solving

a non-convex optimization problem. This complexity often results in high computational costs

and unstable gradient concerns. [214] demonstrated in their work that using RNN models in
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MPC can be highly accurate yet intractable to solve in real-time, motivating the exploration of

linearization approaches to improve the computational efficiency of MPC. Several techniques have

been proposed for linearizing nonlinear models, such as Taylor series, piecewise linearization,

etc. [156, 102, 96]. Specifically, the Koopman operator method is developed to be a data-driven

approach that can be applied to any nonlinear model [90, 134, 4]. [214] showed the Koopman

operator method is a type of linearization approach that can have better performance than the

classical Taylor series method, particularly when linearizing over a larger domain. Furthermore,

the application of MPC using a linearized model has been studied in-depth in the chemical engi-

neering domain [e.g., 112, 76]. These results have highlighted the potential of employing MPC

with on-line linearized models in practical control applications. By leveraging efficient lineariza-

tion techniques, NN-based MPC can potentially be applied to control the electrochemical reactor

effectively.

Motivated by the above considerations, this study aims to develop an advanced process con-

trol scheme using MPC with suitable process models for an electrochemical CO2 reduction reactor.

Specifically, a neural network model is initially constructed using reactor data to capture the non-

linear complex input-output relation of the reactor, followed by on-line linearization of the NN

model using the Koopman operator method to reduce the computational cost of MPC. The control

design is applied experimentally to the electrochemical reactor. This chapter is organized into the

following sections: Section 5.2 introduces the background information of this study, including the

mathematical notation used in this chapter, the overall design of the process, and the equipment

setup. Section 5.3 elaborates on the technical details for the design and development of a NN

model. Section 5.4 discusses the Koopman operator method and the procedure of using it to lin-
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earize the NN model in real-time. Finally, Section 5.5 reports the results of this study including

simulation, open- and closed-loop experiments.

5.2 Preliminaries

5.2.1 Notation

For a matrix M, the notation M−1 is used to represent the inverse of the matrix M and M†

denotes the pseudoinverse of matrix M. x, x̂, and u are the controlled outputs of the process control

system (i.e., the productivity of the reactor for the targeting species), the prediction of the process

output given by the process model (i.e., the NN model), and the inputs (control actions) calculated

by the process control system (i.e., applied potential, rotation speed, and current), respectively.

5.2.2 Process Overview

The overall objective of our process is to electrochemically reduce CO2 into valuable chem-

ical products and fuels. A copper electrode is used in this process because it is the only known

single-element catalyst that can reduce CO2 into C2+ hydrocarbons and alcohol products, which

are energy-dense and valuable, with a considerable production rate [131]. However, the process

of electrochemical CO2 reduction on copper is intricate, which results in the production of 17

different chemicals through a series of complex reaction pathways [120]. Among multiple factors

contributing to the complex reaction mechanisms, mass transport and reaction kinetics play critical

roles. Specifically, the transport phenomena in the diffusion boundary layer are directly related to

the residence time of the reactant CO2 and intermediates near the catalyst surface as well as the
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adsorption on and desorption of the catalyst, which determine the selectivity of final products. On

the other hand, the reaction kinetics on the catalyst surface is related to the number of electrons

transferred to the surface, which can be manipulated by the applied potential. Therefore, we aim

to control the selectivity of electrochemical CO2 reduction by controlling the aforementioned two

input factors, potential and electrode rotation speed. Applying real-time control to any process

requires on-line measurements of the process outputs. In this work, the productivity of four gas-

phase products (i.e., hydrogen (H2), carbon monoxide (CO), methane (CH4), and ethylene (C2H4))

can be monitored in real-time using a gas chromatograph (GC). The overall reaction formulas

producing these four products are summarized as follows:

2CO2 + 8H2O+ 12 e− −−→ C2H4 + 12OH− (5.1a)

CO2 +H2O+ 2 e− −−→ CO+ 2OH− (5.1b)

CO2 + 6H2O+ 8 e− −−→ CH4 + 8OH− (5.1c)

2H2O+ 2 e− −−→ H2 + 2OH− (5.1d)

Finally, the production rates of CO and C2H4 are chosen to be the control outputs to be

regulated by the process control system. These two outputs are influenced differently by the input

variables; specifically, the production rate of CO is highly correlated to the rotation speed, and the

production rate of C2H4 is strongly influenced by the applied potential, as discussed in Chapter 4.
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5.2.3 Electrochemical Reactor Setup

The gastight RCE cell was designed to examine how mass transport and reactions kinetics

affect the electrochemical reduction of CO2 while ensuring a gastight environment for the real-

time detection of gas products [73]. As shown in Figure 5.1, the experimental reactor consists

of two reaction chambers separated by an anion-exchange membrane preventing the crossover of

products. The cathode is the working electrode in the cylindrical geometry carrying out the CO2

reduction reaction, while the Pt foil anode works as the counter electrode. Before each experiment,

polycrystalline Cu RCE was mechanically and electrochemically polished following the procedure

described in [73] followed by roughening of the surface via electrochemical redox cycling in the

presence of chloride ions [149]. The preparation for this catalyst is the same as in Chapter 4. Both

the working and the counter electrodes are immersed in 0.2 M potassium bicarbonate electrolyte

solutions. During the experiment, the CO2 gas is directly bubbled into the electrolyte in both cham-

bers with a fixed volumetric flow rate of 20 mL/min. Subsequently, the dissolved CO2 molecules

are transported to the reacting surface on the cathode to be reduced to various products. The po-

tentiostat manipulates the potential applied to the working electrode against a reference Ag/AgCl

electrode and records the electrical current passed between the working and the counter electrode.

The control of the mass transport properties in the reactor is made possible by magnetically cou-

pling the shaft where the RCE is mounted to another magnet connected to the modulated speed

rotator (MSR) outside the reactor.
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Figure 5.1: The experimental setup of the gastight rotating cylinder electrode (RCE) cell.

5.2.4 Model Predictive Control

MPC is an advanced control strategy used in various industrial processes. It involves utilizing

a dynamic mathematical model of the system to predict its future state or output behavior and op-

timize control actions by iteratively solving an optimization problem over a defined time horizon.

Specifically, MPC determines the optimal control actions to minimize a specified cost function

while satisfying system constraints. The design of the MPC in this work can be mathematically
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defined as the following optimization problem:

J = min
u∈S(∆)

∫ tk+Nh

tk

L(x̂(t), u(t)) dt (5.2a)

s.t. x̂(t) = Fnn(x(t), u(t)) (5.2b)

L(x̂(t), u(t)) = (x̂(t)− xr)
⊤Q(x̂(t)− xr) + (u(t)− ur)

⊤R(u(t)− ur) (5.2c)

u(t) ∈ U, ∀ t ∈ [tk, tk+Nh
) (5.2d)

x̂(tk) = x(tk) (5.2e)

|u(tk)− u(tk−1)| ≤ uc (5.2f)

where x and u in Rm are the output states and control actions (calculated by the model predictive

control system), respectively. The set U represents the control action space that defines the upper

and lower bounds of the m control actions applied to the reactor. The absolute difference between

the control actions to be applied in the next control period from the instance time u(tk) and control

action applied in the current control period u(tk−1) is bounded by the vector uc containing absolute

boundaries for m control actions (in this particular case, m = 2 as we have two manipulated inputs

and dimension of u(tk) is 2). Furthermore, xr and ur are the reference values for the output states

and control actions. Q and R represent the weight parameters (both are positive definite matrices)

of the penalty terms for the output states and control actions, respectively, in the quadratic cost

function L(x, u). Therefore, by minimizing the cost function L with an appropriate manipulated

input trajectory, the reactor can be driven to the desired setpoint given by xr by applying the first

calculated control action u(tk) at each sampling time, and then repeating this process in the next

sampling time. Finally, Fnn is the NN model, Nh is the prediction horizon, and the set S(∆)
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comprises of piecewise constant functions having a period of ∆.

In this work, the outputs of the process to be regulated by the model predictive control system,

x, are the production rates of CO, C2H4, and H2. Specifically, we are aiming to get the produc-

tivity of CO and C2H4 to a certain setpoint while minimizing the productivity of the side product

hydrogen from the competing hydrogen evolution reaction.

5.3 Neural Network Modeling

To account for the complexity of the electrochemical reaction mechanism and fill in the lack

of a first-principles model, a neural network (NN) model is developed to capture the dynamic

response of the output states under various input conditions. Subsequently, the trained NN model

is utilized as the process model of the MPC to estimate the output states over a certain time horizon

known as the prediction horizon Nh. This section describes the design and development of the NN

model for this purpose.

5.3.1 Data Collection

The data set used to develop the NN model is similar to the one reported in Chapter 4, and

three types of experiments (i.e., open-loop steady input, step changes, and closed-loop experi-

ments) are performed to collect the data. Specifically, constant inputs (applied potential and cat-

alyst rotation speed) are applied to generate some portion of the training set data, which provides

information about the expectation of the steady state output values under certain input conditions

in addition to the dynamic trends while reaching respective steady states. In the second type of
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experiment, step-change inputs of random amplitudes are applied, but the input actions remain in

a predefined range throughout the experiment. Finally, the closed-loop experimental results from

Chapter 4 are included in the data set. Although the controller type used in Chapter 4 is differ-

ent from the one in this work, the underlying physico-chemical phenomena are the same. Thus,

including those results can help the model to capture the dynamic behavior of the system more

efficiently.

The GC is used to monitor the outlet concentrations of the gas products in real-time during

data collection. Specifically, the GC takes a gas sample injection and quantifies the production rates

of the four gas-phase products every 1300 seconds during the experiment. Analyzing the injected

gas sample takes 15 minutes, and the GC needs to cool down for 400 seconds before taking the

next injection. Therefore, only four data points can be collected from a one-hour duration of the

experiment. As a result, there are a total of about 200 GC measurements collected at the end

of data generation experiments for the training, which is not enough to train a neural network

model. To address this problem, a 3rd-order polynomial regression based on three consecutive

GC measurements is applied to determine a probable output data trajectory between every GC

measurement using the inputs measured every second. More details about this data enhancement

process are reported in Chapter 4.

5.3.2 Long Short-term Memory Networks

Among many ML methods that can be used to capture nonlinear processes, the RNN family

has been proven to be an effective modeling strategy for time-series forecasting tasks. Recently,

RNN models have become popular in the research area of process modeling and control and have
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been applied in many academic and industrial works [59, 208]. The long short-term memory

network (LSTM) is one of the well-developed NN models that belongs to the RNN family. It

shares the major design of architecture with other types of RNN models that have information

flowing in two directions to capture the time-dependent relationship within the training data [143].

Furthermore, the LSTM model has its special “gates design” to store the historical information and

determine how to use it to predict the output [65].

The architecture of the LSTM model used in this work is shown in Figure 5.2. The model is

developed to predict the output state at the next consecutive sampling time using p historical state

predictions and control actions. Therefore, there are only three outputs given by the model, which

represent production rates of CO, C2H4, and H2 (in ppm) at the p + 1 time step. Specifically, the

LSTM layer maps the time-sequence input containing the historical state prediction and control

actions to 180 hidden states. Subsequently, a dropout layer with a 30% dropout rate of the hidden

states is inserted to prevent overfitting, and the remaining hidden states are densely connected to

the output nodes.

Remark 21 The number of hidden states and percentage rate of dropout are included in the hyper-

parameters of the LSTM model. Therefore, their value can be found following the general hyper-

parameter tuning process. Specifically, in this work, we performed a random search to locate those

values. More precise methods to perform the hyperparameter tuning include cross-validation and

grid search. More details about hyperparameter tuning can be found in [44].

Remark 22 In the area of machine learning, preventing the model from overfitting the data is

an important task. Overfitting refers to the situation where the NN model can perform well with
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the training data set but fails to maintain good performance for data outside the training set.

Several factors contribute to this problem, and a critical one is when the NN model has too many

weight parameters, which can result in allowing the model to memorize the training data instead

of extracting underlying trends from it. One method to reduce overfitting is the regularization [49],

with the dropout method used in this work being one example of a regularization method [189,

169].

LSTM Cell LSTM Cell LSTM Cell. . . 

x0 ; u0 x1 ; u1 xp ; up

. . . Hidden States

LSTM Layer

Input Layer

Output Layer
:Dropout

Figure 5.2: The architecture of the LSTM model used in this work that processes the input sequence
with a LSTM layer and yields the prediction for the output states at the next time step (i.e., 100
secs later from the instantaneous point in time).

5.3.3 Model Training

Based on prior knowledge of the experimental reactor, the input sequence of the LSTM model

is designed to contain one hour (3600 seconds) of historical information. However, if the data is
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formatted on a per-second basis, each sequence in the data set will contain 3600 elements, which

results in unnecessarily high computational costs in both time and space consumption. Therefore,

the time step of the data sequence is designed to be on a per-hundred seconds basis to reduce the

length of the input sequence to 36 elements. The time space in the input sequence is preserved in

the output sequence, and since the output sequence only contains 1 time step, the overall function

of the LSTM model is to use the one-hour historical information up to the instant to predict the

output states at 100 seconds later in the future (i.e., the output sequence has a shape of (1,3), where

3 is the number of output species).

This sliding window algorithm was employed to create a training dataset from a collection

of 35 experiments. Specifically, a window of one hour was used as the input for the training data,

and the output of the LSTM was determined to be the production rates of the target species at 100

seconds after the final time step of the input sequence. The window was systematically slid by

a stride of 100 seconds, and the first 1000 (seconds of) measurements in each experiment were

skipped to enhance the reliability of the training data. Therefore, the input of the LSTM model

has a shape of (36, 6), where 6 denotes the input features (i.e., surface potential, rotation speed,

current, and previous states of production rates for C2H4, CO, H2) measured at the respective time

step. The sliding window algorithm is applied to 18 experimental data sets to generate the data

sequence to develop the LSTM model. When developing an NN model for time-series forecasting

problems, it is crucial to ensure that the validation data retains a certain level of independence from

the training data to avoid potential information leakage. To address this concern, we randomly

allocated results from 5 out of the total 18 experiments as the testing set, while the remaining

experiments were assigned to the training set. This training set is further divided into two parts
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before the model training for ratio validation purpose, using the train-test ratio of 70:30. Finally,

the Scikit-learn Minmax Scaler was utilized to normalize the data.

In this study, the LSTM model was trained using the TensorFlow API. The model was op-

timized with the NADAM optimizer. As the data did not provide dense coverage of the overall

operating conditions, it was crucial to maintain generalization and prevent overfitting. Therefore,

we applied L2 regularization to the LSTM layer with a factor of 0.07 and performed 30% recur-

rent dropout within the LSTM cells. The mean squared error was selected to be the cost function

to evaluate the model performance. The LSTM model underwent training for 45 epochs, with

a batch size of 32. Additionally, a callback function was utilized to capture the best-performing

weights based on minimization of the validation loss throughout the training process. As a result,

the training and validation loss of the trained LSTM model were found to be 0.0028 and 0.00456,

respectively.

Remark 23 The length of the input sequence (i.e., 3600 seconds) was found based on the combi-

nation of experimental observations and hyperparameter tuning. Specifically, from the experiment,

we found that the dead time of the process can vary up to 2000 secs, which meant, to capture the

delay of the reactor, the length of the input sequence should be at least 2000 secs. Starting from

there, we tuned the length of the input sequence and found that, with the length of 3600 secs, the

LSTM model can capture well the dynamics of the process. Notably, increasing the length of the

input sequence will result in higher computational cost, and since the length of the input sequence

can be considered as a part of the hyperparameter tuning, the cross-validation method was used

in this step.

196



5.3.4 Model Performance

The trained model demonstrates significantly low training and validation losses, indicating

its successful training. To further assess the model’s performance, a comparison is made between

the model’s predictions, based on input data recorded from a validation experiment, and the cor-

responding output state measurements. Figure 5.3 is an example of such a comparison, with solid

curves representing the predictions made by the LSTM model and dashed curves representing

the measured trends during the experiment. The close alignment between the curves depicted in

Figure 5.3 highlights the model’s adequate prediction capabilities.
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Figure 5.3: LSTM predictions of C2H4, CO, and H2 concentrations compared to the reference data
in the testing set. Inputs (surface potential and electrode rotation speed) used for the prediction are
shown at the bottom.
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Once the model demonstrated its proficiency in predicting the dynamic behavior of the output

state, we proceeded to evaluate its ability to accurately capture the reactor’s steady state perfor-

mance. The electrochemical reactor is an inherently stable process in the operating region of

interest, meaning that regardless of the initial output state conditions, the application of the same

constant control actions throughout a period of time should lead to the convergence of the outlet

species concentrations to the same steady state every time. The prediction results of the LSTM

model for an open-loop experiment are shown in Figure 5.4. It can be observed that, regardless

of the starting point of the trend, the predictions consistently converge to the same steady state for

all three output states under a fixed control action. However, due to the stochastic nature of the

electrochemical reaction and other experimental uncertainties, there exists a variance in the steady

state. Therefore, the steady state given by the LSTM is ideally the average of the steady state

values obtained if the experiment is repeated with the same fixed control inputs.
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Figure 5.4: Open-loop simulation using the trained LSTM model with consistent fixed inputs from
various initial states. The predicted trends for different initial states are represented in different
colors.
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5.4 Koopman Operator-based Linearization of RNN Model

The motivation behind the exploration of a method to linearize the neural network model for

utilization in MPC arises from the fact that NN-based MPC involves solving a constrained opti-

mization problem with a highly nonlinear NN model. Consequently, this optimization problem

becomes a challenging nonlinear optimization task, which remains a topic of considerable math-

ematical exploration without a definitive approach for effective resolution. As a result, solving

the nonlinear optimization problem within a reasonable time frame (certainly, within the process

sampling time for real-time control purposes) might not be possible, which renders this type of

nonlinear MPC application impractical for many industrial processes. On the other hand, the de-

velopment of an MPC framework with a linearized system is a well-established approach. By

approximating the NN model with a linear system on-line and at each sampling time, an MPC can

be formulated as a quadratic programming problem, which lends itself to efficient solution tech-

niques. This implies that if we can effectively approximate the NN model with a linear system,

the NN model-based MPC can be solved quickly and efficiently, and applied to real-world appli-

cations. This section presents the systematic process utilized in this project, drawing inspiration

from the work of [214], to linearize the RNN-based process model and integrate it into an MPC.

5.4.1 Koopman Operator Theory

[214] presented a method to linearize an RNN model based on the principles of the Koopman

operator theory. The Koopman operator theory, initially proposed by Bernard Koopman in the

19th century [87, 88], plays an important role in analyzing, modeling, and controlling nonlinear
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processes. The core concept of the Koopman operator theory involves mapping inputs of a nonlin-

ear function into a higher-dimensional feature space, thereby obtaining a linear approximation of

the nonlinear system [87]. In other words, the Koopman operator can linearize an arbitrary finite-

dimensional nonlinear system at the cost of expanding its dimensionality up to infinity. Notably,

this concept is also similar to the idea of feature engineering, in the machine learning terminol-

ogy, which serves as a fundamental aspect in various ML models such as support vector machines

(SVM) [27].

The Koopman operator can be defined mathematically with the following equations:

xk+1 = f(xk) (5.3a)

Kg(xk)
∆
= g(f(xk)) = g(xk+1) (5.3b)

where Eq. 5.3a is the discrete representation of a nonlinear dynamical system, and the function

f captures the output state evolution of the system from an arbitrary time step k. Eq. 5.3b is the

definition of the Koopman operator K, where g(·) are a set of scalar functions named observables.

From Eq. 5.3b, it can be easily proven that K is a linear operator, which allows finding the eigen

decomposition of K and rewriting the evolution of the nonlinear system as a linear combination

based on the eigen decomposition of K as follows:

Kϕj(x) = λjϕj(x), j = 1, 2, . . . ,∞ (5.4a)

Kg(xk) =
∞∑
j=1

λjϕj(xk)vj (5.4b)

202



where λj , ϕj , vj are known as the eigenvalues, the eigenfunctions, and the mode of the Koopman

operator K.

The discussion about Koopman operator theory so far has been centered around an autonomous

system with time-varying inputs. However, to allow using this method in a dynamic control system

requires extending the Koopman theory to be able to handle a non-autonomous system including

time-varying control inputs. In [134], a generative Koopman with inputs and control (KIC) method

was proposed to generalize the application of Koopman operator theory to non-autonomous sys-

tems. Specifically, the KIC method defined a new representation of the Koopman operator as

follows:

xk+1 = f(xk, uk) (5.5a)

Kg(xk, uk)
∆
= g(f(xk, uk), uk+1) = g(xk+1, uk+1) (5.5b)

where uk is the input applied at the kth time step, and Eq. 5.5a is the discrete representation of any

nonlinear system accepting external inputs. There are other works proposing different formulations

for Koopman operator with inputs [e.g., 90], and the core ideas shared around those methods

involve augmenting the states x and the inputs u into the same matrix and use it to form the

observables instead of just the states, which all allow linearizing the nonlinear system using the

method applied to an autonomous system.

Remark 24 The method of constructing the observables g is an essential research area of Koop-

man operator theory, and there are significant efforts on this subject, such as using a nonlinear

function to augment the state measurements [151, 198, 17, 134]. In this work, we define the ob-

servables to be the output states of the system, such that g(x) = x.
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Remark 25 The Koopman operator can also be applied to a dynamic system with continuous

representation. However, the focus of our mathematical analysis and investigation in this work

is centered on the discrete representation, as the LSTM model can be considered as a discrete

approximation of the underlying nonlinear dynamic system. Therefore, applying the Koopman

operator to a discrete nonlinear dynamic system fits better to the application of the Koopman

operator to the LSTM model.

5.4.2 Dynamic Mode Decomposition

Although the Koopman operator method suggests linearizing a nonlinear system into an

infinite-dimensional linear system, it is practical to work with a finite dimension that is high

enough to achieve the desired accuracy. Considering this, the Dynamic Mode Decomposition

(DMD) method, first proposed in [157], is an effective method to provide a finite-dimensional ap-

proximation of the Koopman operator. Specifically, the DMD method is a data-driven method that

requires obtaining measurements to start with. We define Ok = g(xk) to be the observation of a

nonlinear system and O+
k = Ok+1 to be the observation one time-step after Ok. By performing

experiments or simulations with the nonlinear system, time-sequence data can be collected for the

observations and yield:

O = [O0, O1, . . . , Ons ], O+ = [O+
0 , O

+
1 , . . . , O

+
ns
] (5.6)

where ns is the total number of samples. Notably, the notation O1 is not necessarily the next time

step of O0. Subsequently, the DMD of the nonlinear system based on the measurements can be
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found as the eigen decomposition of the linear mapping matrix A that forms the equation,

O+ = AO (5.7)

The analytical solution of Eq. 5.7 yields the matrix A as A = O+O†. Finally, the eigenvalues

and eigenvectors of A are the approximation of the eigenvalues and the mode of the Koopman

operator, respectively.

For a nonlinear system with inputs, the Dynamic Mode Decomposition with control (DMDc)

method was proposed in [133], which includes the measurements of the control actions Ou =

[u0, u1, . . . , uns ] to compute the linear mapping matrix G = O+

O

Ou


†

defined for the DMDc

method. Similarly, the singular value decomposition of G can provide a finite approximation

of KIC. Eventually, an arbitrary non-autonomous nonlinear system defined as Eq. 5.5a can be

linearized with the DMDc method into the following system:

G = [A B] (5.8a)

xk+1 = Axk +Buk (5.8b)

yk = Cxk +Duk (5.8c)

Furthermore, the process of computing the matrix G involves solving a linear least-squares prob-

lem, which can be solved more effectively in practice with the regression method rather than find-

ing the analytical solution [90]. Therefore, the extended dynamic mode decomposition (EDMD)

method proposed in [198] introduced a regression procedure to approximate the Koopman opera-
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tor.

5.4.3 Linearization of LSTM model and Performance Evaluation

The Koopman operator theory and EDMD method are utilized to linearize the LSTM model

because they are data-driven and independent of the form of the nonlinear model [5, 214]. The

first step of implementing these methods is to collect time sequence trajectories of the LSTM

model. Following the procedure of [134, 214], at the kth time step, we first define the vectors

y = [x̂k+1, x̂k+2, . . . , x̂k+Nt ]
⊤, x̂ = [x̂k, x̂k+1, . . . , x̂k+Nt−1]

⊤, and u = [uk, uk+1, . . . , uk+Nt−1]
⊤,

where Nt is the distance between the farthest time step contained in the linearization samples and

the kth time step. Notably, the historical information that is used by the LSTM model to make

predictions up to the kth time step is available at the time tk. Thus, the prediction x̂k+1 can be

computed using the LSTM model. Furthermore, by adding the new prediction and the next control

action uk+1 while removing the first element of the LSTM input, the vector y can be obtained by

iteratively running the LSTM model.

In this work, we applied a constraint on how much the input actions can be changed from one

sampling time to the next, which is mathematically defined by the following equations:

uk = [vk, rk, ck] (5.9a)

ck = C(vk, rk) (5.9b)

ud
∆
= [vk+1 − vk, rk+1 − rk] (5.9c)

|ud| ≤ uc = [vb, rb] (5.9d)
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where vi, ri, ci are the surface potential, rotation speed, and the current value given by the reactor

at the ith sampling time. The surface potential and rotation speed are the control actions that can

be manipulated during the experiment, and the current varies as a consequence of these control

actions. vb and rb are positive numbers referring to the maximum absolute step changes allowed

per time step for the potential and rotation speed and are equal to 0.01 V and 30 RPM, respectively.

The data to linearize the LSTM model is generated with respect to the constraints of Eq. 5.9.

Specifically, we first determined the number (Ns) and the length (Nt) of the time-sequence data.

Then, we randomly generate Nt control actions starting from the same initial control action u0

that obey the constraints of Eq. 5.9 and run the LSTM model to generate one time sequence of

“measurements” of y. This process is repeated Ns times to obtain Ns sequences. [180] pointed

out that, due to the reduction of the problem into a linear regression formulation, the data set used

to perform the DMD-based method does not need to retain the sequential order of the data points

(i.e., the rows of the data matrices can be shuffled such that, for example, the last row of the target

vector y, x̂k+Nt can instead be moved to be the first row, as long as the last rows of x̂ and u, x̂k+Nt−1

and uk+Nt−1 are also moved to be their first rows, respectively). Therefore, the data matrices y, x,

and u with a shape of (Ns×Nt) can be reshaped into three vectors containing (Ns×Nt) elements

(also note ns = Ns ×Nt), as long as the triplets of xi, ui, and yi remains the same. With this data

structure, the linear least-square regression problem to find G can be easily solved by using the

Scikit-learn linear regression function without fitting the intercept. The pseudocode to implement

the linearization of LSTM in our work is represented in algorithm 1.

The prediction given by the linearized model was compared with the original LSTM predic-

tion. Specifically, the initial inputs to activate the LSTM model are randomly cropped from existing
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Algorithm 1 Procedure of linearizing the LSTM model.
Input: vb ≥ 0, rb ≥ 0, NN ▷ NN : the initial inputs of LSTM with shape (1, 36, 6)
Input: xtrain , ytrain ▷ Define empty arrays to store linearization samples

1: for i← 1 to Ns do
2: NNi ← NN ▷ Initialize the LSTM input by making a deepcopy of NN
3: for t← 1 to Nt do
4: vi ← NNi[0,−2, 0] + rand(−vb, vb) ▷ rand(l, h): randomly pick number between l

and h
5: ri ← NNi[0,−2, 1] + rand(−rb, rb)
6: ci ← C(vi, ri) ▷ C(·): eq. 5.9b
7: NNi[0,−1, : 3] = [vi, ri, ci]
8: x̂i,t = LSTM(NNi) ▷ LSTM(·): LSTM prediction with shape (3)
9: xtrain.append(NNi[0,−1, :])

10: ytrain.append(x̂i,t)
11: NNi[0, : −1, :]← NNi[0, 1 :, :]
12: NNi[0,−1, 3 :]← x̂i,t

13: end for
14: end for
15: [A,B]← LG(xtrain, ytrain) ▷ LG(·): Sickit-learn linear regression

experimental results and provided to algorithm 1 to generate a linearized model. Subsequently, the

linearized model was utilized to make predictions over a time span based on a sequence of control

actions randomly picked within the step change constraint and compared to the prediction given

by the original LSTM model using the same control sequence. The comparison is shown in Fig-

ure 5.5, where the prediction given by the original LSTM model over a time span of 800 secs is

represented in the blue solid curve, while the prediction given by the linearized model is denoted

in the red dashed curve. The predictions given by the two models are close to each other, which

supports that the linearized model can approximate the LSTM model adequately.
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Figure 5.5: Comparison between the linearized model prediction (dashed curve) and the original
LSTM model prediction (solid curve) over a sampling period.
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Remark 26 Notably, for this work, the current flowing at a fixed applied potential depends on the

electrolyte solution resistance due to the Ohmic loss. The solution resistance between the working

and the reference electrode is determined from the electrochemical impedance spectroscopy (EIS)

and is around 6.5 ± 0.3 Ω in the RCE cell setup when using 0.2 M potassium bicarbonate elec-

trolyte. Although the value is practically constant, there are slight variances from experiment to

experiment and during the experiment, while it is measured only before and after the experiments,

as discussed in Chapter 4. Therefore, the measured current value will not be the same with the

same control action, and thus, provide additional information for our LSTM model to learn the

electrochemical reactor system better. The current value is measured and recorded during the ex-

periment, and those measurements are used to train the LSTM model. However, when collecting

samples for the Koopman-based linearization of the LSTM model, the value of the current needs to

be approximated with the correlation between ck and the control actions denoted as transformation

C in Eq. 5.9b. In simulations, this value was approximated using the average resistance obtained

from various experiments. For the closed-loop experiments, the resistance value was measured

right before starting the experiment and used to anticipate the current value in the prediction hori-

zon.

5.5 Closed-Loop Experiments

The details of implementing the linearized NN-based MPC for the electrochemical reactor

are presented in this section. As a quick recap, referring to Eq. 5.2, the main objective of the

MPC in this work is to drive the productivity of C2H4 and CO to their specific setpoints while
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suppressing the productivity of H2. The setpoints for C2H4 and CO are selected to be 147 ppm

and 478 ppm, respectively, such that xr = [147, 478, 0]. Furthermore, by replacing the LSTM

model used in Eq. 5.2d with the linearized model, the overall optimization problem within the

MPC becomes a quadratic programming problem, which is convex and can be solved efficiently.

In the closed-loop experiment, the MPC is operated in a sample-and-hold manner, which means it

will give the optimum control action over a certain control period (i.e., 100 seconds in this work),

and the control action will be held fixed during the control period. The overall workflow of the

MPC is demonstrated in Figure 5.6. Specifically, the LSTM model worked as the state estimator

throughout the experiment. When entering a new sampling time, algorithm 1 was used to compute

the linearization of the LSTM model for the specific time-instant, which was then used to find

the MPC control action by solving a QP problem. The Gurobi optimizer was used to solve the

optimization problem in this work.

Reactor

LSTM
history Entering new 

control 
period

Linearization MPC
(Gurobi)

utut

Yes [A, B]

𝒙ෝ

No

Figure 5.6: The overall workflow of the MPC in this work. The LSTM model is used as a state
estimator when the MPC is not activated. Once entering a new sampling time, the MPC is activated
and computes the control action for the reactor with the linearization of the LSTM model.
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5.5.1 Implementation of the MPC in the Experimental Setup

The LSTM model (without linearization) worked as the state estimator in the closed-loop

experiments by predicting the instantaneous reactor productivity. When the processing of a new

GC measurement is finished, the LSTM model has to reinitialize its prediction, which means that

it uses the state measurements in the input of LSTM instead of the state prediction given by the

LSTM in the previous iteration. This reinitialization is expected to prevent the accumulation of

prediction errors. Specifically, the output states are estimated through 3rd-order polynomials based

on the 3 consecutive GC measurements up to the newest measurement and used as the input of

the LSTM model to predict the output state at 100 seconds after the newest GC injection made.

Note that the GC measurement has a delay of 15 minutes because it takes 15 minutes to separate

and analyze the sample taken from the injection. Therefore, through the reinitialization, the LSTM

predicted the output state 15 minutes ago again, and needs to run iteratively using the reinitialized

prediction to correct all the predictions for the previous 15 minutes. Furthermore, since this 3rd-

order polynomial’s approximation can only be activated once every 21 minutes, it can not be used

as the process model or state estimator that requires to be able to give prediction every 100 seconds.

But once the 3rd-order polynomial approximation is activated, it can estimate the output states for

the last 1 hr effectively and accurately.

The LabVIEW software was utilized to digitalize the electrochemical reactor in this work.

LabVIEW is a graphical programming language that allows a user to develop a user interface to

monitor the system and develop control systems to implement the control actions in the working

equipment. Although LabVIEW also allows users to develop simple programs (e.g., PI controller),
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it is technically challenging to implement the aforementioned workflow that involves using the

NN model, linearization, and optimization in LabVIEW. Therefore, a data pipeline was developed

to allow information to flow between a Python script operating the workflow and the LabVIEW

controlling the operating equipment.

The options for pipeline design include reading the data from a real-time updated csv file or

data transfer through a database. Since opening a real-time updated csv file to read data might

disturb the process of writing data, this option is not optimal. On the other hand, sending data

from LabVIEW to a database is an easy task that is already combined into our automation scheme

using the Clean Energy Smart Manufacturing Innovation Institute’s (CESMII) Smart Manufactur-

ing Innovation Platform (SMIP) as discussed in Chapter 3. Specifically, the SMIP can work as

a database to store and organize our data at defined endpoints for each piece of equipment, and

the use of start and end dates for query and mutation of SMIP’s data transfer protocol, GraphQL,

makes it a perfect candidate for data transfer application. In short, this data flow is designed to

use LabVIEW as the edge device performing process control and monitor tasks, SMIP as a cloud

database for data management, and a high-performance computer running Python interpreters as a

back-end server. The data transfer protocol is shown in Figure 5.7.

When performing an experiment, constant physical properties, such as solution resistance,

open circuit potential, etc., are measured before the electrolysis and sent to the SMIP at the be-

ginning of the experiment. Process data collected through LabVIEW, such as applied potential,

surface potential, rotation speed, and current, are mutated to the SMIP every 2 seconds. The re-

actor was put to run in open-loop for the first 7000 seconds of the experiment because, at the

beginning state of the experiment, the rector does not reach the equilibrium giving higher variance
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Figure 5.7: Data flow between the experimental setup and local Python script through SMIP for
MPC calculations.

in its productivity. Thus, data collected at this stage is expected to have a different distribution

from the rest of the experiment and is excluded from the LSTM training. Control actions applied

to the reactor at this stage are fixed to be −1.22 V for potential and 300 RPM for rotation speed.

After letting the reactor run in open-loop for the first 6298 seconds, the MPC will be activated,

and the Python script queries the last one hour of process data every 100 seconds to form the

initial input for the LSTM model. Subsequently, the LSTM was linearized to compute the first

control action, while the original LSTM model estimations along with input values are mutated to

SMIP. LabVIEW script also queries those values from the SMIP to feed the new input values to

the potentiostat and modulated speed rotator to implement the new applied potential and rotation

speed. From then on, the experiment was run in closed-loop.
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5.5.2 Closed-loop Experiments

The result of the closed-loop experiment is summarized in Figure 5.8, where the dots are

the GC measurements collected in the experiment and the dashed curves are the approximated

output states with probable experimental trajectory method employing 3rd-order polynomials. The

productivity evolution of C2H4 and CO2 is shown in the top figure, and their setpoints, which are

147 and 478 ppm, respectively, are denoted with the dotted straight lines. A reference control

action ur = [−1.28 V, 600 RPM], stated in Eq. 5.2c, was used in the MPC objective function to

achieve better control performance. The reference control action ur was found using the trained

LSTM model. As discussed above, the LSTM model is stable, such that it can be used to find the

theoretical control actions that can give the targeted steady state. The weight matrix was chosen to

be Q = diag(0.01, 0.01, 1× 10−6) and R = diag(1× 104, 1.0/1200). The weight parameters were

tuned based on the simulation and experiment results.

The design of the weight matrices considered scaling their importance on the cost function.

For example, when designing the matrix Q, the first two parameters are the weight of C2H4 and

CO2, respectively, which are equally important in our control scheme. The value 0.01 in the Q

matrix was used to prevent the cost value from becoming too big. On the other hand, the cost

for the H2 is much less than the other two weights because driving the outputs to the setpoint

is the first priority for the control system. Reducing the productivity of the side product H2 can

maximize the energy efficiency of our reactor. However, it is physically impossible to eliminate the

H2 production, which means if the weight parameter for the H2 is too high, the MPC will allow the

two target states to be away from the setpoint as the trade-off to reach the optimum defined by the
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MPC objective function. Drawn from the understanding of the reactor, we considered the reactor

operated energy efficiently if the productivity of H2 was kept below 4000 ppm. Since the states

are squared in the objective function, using 1× 10−6 will give a cost equal to 16 if the productivity

of H2 is at 4000 ppm, which will dominate the MPC with the outputs approaching the setpoints,

and thus, the productivity of H2 was not included in the objective function. The weight matrix

R was calculated to balance the speed of the convergence of the states to the steady state and the

magnitude of the control actions.

The prediction horizon of the MPC (Nh) is 8 times steps (i.e., 800 seconds in the future), and

the length of the time sequence, Nt, collected for linearization is designed to be equal to Nh+2. The

number of linearization samples, Ns, is taken to be 30. Theoretically, linear regression can be more

accurate with increasing amounts of data. On the other hand, increasing Nt and Ns also requires

more time to collect the sample, which makes the linearization more computationally expensive.

Notably, the sampling step can be processed in parallel, which means the computational time is

independent of the size of Ns if there are sufficient amounts of parallel processors. However, since

the processing of the time sequence is iterative, the computation time for linearization is bounded

by the size of Nt. In this work, the maximum allowable step changes in u reduces the required

number of sequences in our linearization sample. In our implementation, 30 sequences collected

with the Monte Carlo method turned out to be sufficient for the linearization task. With this choice,

the MPC successfully drives the outputs to the setpoint while maintaining the H2 production rate

below 4000 ppm.
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Figure 5.8: Output responses and control actions in the closed-loop experiment controlled by the
MPC using the linearization of the LSTM model.
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5.5.3 Model Retrain

The MPC design in this work created a feedback loop by using real-time measurements to

re-initiate the LSTM model with measurement feedback and improve closed-loop system robust-

ness. However, a correction algorithm that uses the feedback information to improve the LSTM

model was not implemented, which means the control scheme demonstrated in this work is based

on the assumption that the LSTM model can capture the real process accurately and that the pro-

cess behavior does not change significantly. However, in real-world applications, the system is

very likely to perform differently from the model prediction due to the variance of the application.

The reported control scheme in this work should be able to handle this slight variance, as long as

the variance is not significant enough to have the steady state shifting on a very different condi-

tion. However, sometimes the process may have very different behavior than the data collected to

develop the neural network model. This problem is usually called the data (process) shift problem

(for example, due to catalyst activity variation as a new catalyst is introduced every certain number

of experiments), and more actions need to be taken to account for the data shift problem in model

update.

To this end, we introduced a model retrain procedure based on the transfer learning concept

to update the process model efficiently when the data shift problem is detected. To imitate this data

shift problem in our reactor, we changed the polycrystalline Cu RCE to a new one and followed the

same procedure to synthesize nanopores, but the resulting performance was different. Specifically,

the new catalyst was more active and had a selectivity toward the C2H4 production. Various exper-

iments were conducted with the new catalyst, which gave the result that with the control action at
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−1.28 V and 600 RPM, the output for C2H4 increased to about 200 ppm but remained unchanged

for CO.

Subsequently, the LSTM model was retrained based on the data collected from the new exper-

iments. Of course, the new data set is smaller in size compared to the original data set. Therefore,

if we just train a new model after including the new data into the original data set, the newly

trained LSTM is very likely to count heavily on the old data set and represent less of the perfor-

mance of the new catalyst. To account for this, we used the idea of transfer learning, which is a

scheme to fine-tune a pre-trained model to make it fit better to a new data set. Since the underlying

physico-chemical phenomena do not change with the catalyst change, the available LSTM is a

good pre-trained model that captures the critical dynamic relations from the previous training.

Specifically, the training of all layers in the pre-trained LSTM model except the output layer

was frozen with the assumption that the ground truth physical relationship is captured in the LSTM

layer. Subsequently, the model is trained with only the new experimental results. The model is

trained with 10 epochs because it is common in transfer learning to train the model with a small

number of epochs to prevent it from overfitting the new data, especially when the size of the new

data set is small. Eventually, the retrained model preserved a stable behavior and predicted the new

ur to be −1.26 V and 650 RPM. This result matches our expectation for the new catalyst since

the C2H4 productivity is more correlated to the applied potential while CO productivity is more

correlated to the rotation speed. Based on the experiment observation, the new ur should decrease

the potential to reduce the productivity of C2H4 to better approach the setpoint. However, reducing

the potential will also reduce the productivity of CO even if it is more correlated to rotation speed.

The rotation speed then needs to be increased slightly to compensate for the loss in CO productivity.
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Thus, we concluded that the transfer learning-based retrain process calibrates the LSTM model

in the correct direction and moved on to using it to perform closed-loop MPC experiments of

controlling the reactor with the new catalyst. The result of the closed-loop experiment is shown

in Figure 5.9 which demonstrates that the MPC with the retrained model can stabilize the reactor

outputs to the desired setpoints.
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Figure 5.9: Output responses and control actions with new catalyst controlled by the MPC using
the retrained model.
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Remark 27 In addition to the retraining method that corrects the model off-line, on-line correc-

tion may be implemented to improve the MPC performance using real-time measurements. For

example, the extended Kalman filter method can be a good candidate to be considered for this

task. To implement this method, the Kalman correction factor should be added to the LSTM model

for real-time estimation. Furthermore, since the Koopman method can be applied to any nonlinear

model, the overall workflow of the model linearization and MPC implementation does not need to

be changed to include the Kalman filter correction. Developing this correction step for an MPC of

an electrochemical reactor is one of our future objectives.

Remark 28 The retraining correction requires collecting new data from the process, which may

introduce a certain delay to update the MPC. Consider the case where the data shift problem is

just detected, and the collected data is not enough to retrain the process model, the MPC should be

deactivated and switched to a backup controller (e.g., classical proportional integral controller) to

ensure that the process operates safely.
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Chapter 6

Model Predictive Control of an

Electrically-Heated Steam Methane

Reformer

6.1 Introduction

Hydrogen (H2) plays a fundamental role in the decarbonization and electrification of vari-

ous industrial applications as a versatile and clean energy carrier [137, 174]. It serves as a building

block for the synthesis of ammonia (NH3), methanol (CH3OH), fertilizers and petrochemicals [52].

Industries are increasingly using H2 as a fuel source for power generation, reducing greenhouse gas

emissions, and promoting environmentally friendly practices. Hydrogen-powered vehicles, such as

fuel cell electric vehicles, are emerging as an alternative to the battery-based electric vehicles in the

transportation sector [173]. Industries like steel manufacturing utilize hydrogen in the reduction

of iron ore, a process that offers a cleaner alternative to conventional methods, decreasing carbon
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emissions. This makes hydrogen an essential element in the pursuit of more sustainable metal

production [103]. Furthermore, the refining industry employs hydrogen extensively for desulfur-

ization and hydrocracking processes [23]. These applications enhance the quality of fossil fuels

and ensure compliance with environmental standards, which showcases the significance of H2 in

refining operations.

The industrial sector employs various methods to produce hydrogen, each tailored to specific

needs and environmental considerations. Water electrolysis, is a clean and increasingly popular but

energy intensive method that uses electricity to split water into hydrogen and oxygen. The rise of

green hydrogen emphasizes the value of electrolysis powered by renewable energy sources, which

also minimizes carbon emissions [183]. Thermochemical water splitting is also an emerging al-

ternative that leverages high temperatures and chemical processes to release hydrogen from water

or hydrogen-rich compounds [152]. The most widespread method for the production of hydrogen,

however, is steam reforming, where a hydrocarbon or coal undergoes a chemical reaction with

steam to generate hydrogen and carbon dioxide as schematically shown in Figure 6.1(a) [119].

Natural gas steam reforming gives the highest yield of H2 among hydrocarbons and coal. Methane

is the molecule with the highest H:C molar ratio and the highest theoretical H2 yield. The yields

achieved in industrial hydrogen production are quite different from the maximum possible theoret-

ical yields (Figure 6.1(b)). This, however, is not due to a low degree of conversion but it is due to

the fact that the large amount of energy needed to produce hydrogen is usually supplied by the raw

material itself. Burning of natural gas to provide heat to the strongly endothermic steam reforming

reaction, generates excess CO2.

Among the different methods for industrial H2 production, the most common is steam methane
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reforming (SMR), accounting for 48% of the total current hydrogen production [181]. Projections

indicate that SMR will still be the most widespread H2 production technique in 2050 [181], partic-

ularly due to natural gas availability and the challenges with scaling up electrolyzer manufacturing

to global scales [71]. As industries prioritize sustainability, advancements in these production

methods, coupled with innovations, are central in shaping a greener and more efficient future for

hydrogen production within the industrial sector.

A sustainable enhancement to steam methane reforming involves substituting fossil fuel com-

bustion with electricity to supply the necessary heat for the chemical reactions [200]. The use of re-

newable, carbon-free electricity to generate heat in an electric resistance-heated reformer promises

to i) displace natural gas combustion as a source of heat, ii) deliver more compact, economic and

efficient units for competitive H2 manufacture, and iii) increase H2 yields per ton of natural gas

while reducing its CO2 emission intensity (Figure 6.1(b)) [128].

In an electrically heated SMR process, two electrodes are connected to the top and bottom

of the tubular reactor with a washcoated catalyst, and an electric current is applied, resulting in a

flow of electrons to generate heat. This flow of electrons results in a more uniform distribution

of temperature in the radial direction, as shown in Figure 6.1(a). In addition to electrically heated

SMR, a novel method is introduced in [109] that leverages electric current for membrane separation

of H2. This process occurs within a proton-conducting membrane reactor, wherein the generated

H2 is extracted through a flow of electrons across a proton-permeable membrane. The real-time

removal of H2 changes the reaction thermodynamics to shift the equilibrium reactions towards

more production of H2 [109]. This increases the hydrocarbon conversion to 99%, which is around

74-85% using conventional methods [119]. At UCLA, we have constructed an experimental setup
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for both electrically heated SMR and proton-conducting membrane reforming processes to further

examine the reaction dynamics, and to develop modeling and control strategies while comparing

these two technologies directly.

Figure 6.1: (a) Schematic comparison of conventional fired steam methane reforming and electri-
cally heated steam methane reforming. (b) Comparison of hydrogen production from hydrocarbons
and coal for conventional fired and electric resistance-heated steam reformers.

Model predictive control (MPC) plays a significant role in enhancing the efficiency and oper-

ability of industrial chemical processes, and could play a significant role in enhancing the efficiency

and operability of steam methane reforming processes, particularly those connected to future elec-

tricity grids with high penetration of renewables. In SMR, where complex chemical reactions

and heat transfer dynamics are tightly coupled, MPC will serve as a powerful tool for optimizing

system performance. By using real-time measurements and predictive models, MPC can dynam-

ically adjust operating parameters such as temperature, pressure, and inlet flow rates, to ensure

optimal hydrogen production and minimize energy consumption. Although a great deal of work

has been carried in the modeling and control of traditional fired SMR systems, significant knowl-

edge gaps remain in the electrification of SMR reactors. For example, a computational study was
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conducted by [204] using a robust CFD model for proposing an MPC for a traditional fired SMR

process, and the results were compared to a PI controller. In [219], a computationally efficient

closed-loop system with a gain-scheduled MPC was introduced for a steam methane reformer, us-

ing a first-principle model for a fired reforming tube reactor to represent process dynamics. The

gain-scheduled MPC, considering critical parameters such as outlet methane concentration and

temperature, demonstrated adaptive operation, outperforming a PID controller and offering energy

savings of 3-5% [219]. This not only improved the overall process efficiency but also enabled

better responses to disturbances and variations in operating conditions. The importance of MPC in

SMR lies in its ability to increase yield and reduce energy costs, thereby contributing to the sustain-

ability and economic viability of hydrogen production through steam methane reforming. It can

be envisioned that MPC has an even bigger role to play in the implementation of future electrified

SMR systems. In electrified systems, in addition to temperature, pressures, and flow rates, there is

a need for the dynamic optimization of currents and voltages while ensuring the process operation

to be within a safe operating regime. In this work, we present our preliminary efforts towards

the construction, digitalization, modeling and control of an electrified steam methane reforming

reactor.

6.2 Preliminaries

6.2.1 Nomenclature

Definitions of variables used in the modeling of the reactor:

• Ai: Pre-exponential factor for adsorption constant Ki of gas species i [Pa−1 for i = CH4, H2, CO
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and unitless for i = H2O]

• Aj: Pre-exponential factor for rate coefficient ki for reaction j [mol ·Pa0.5 · (kg− cat · s)−1

for j = 1 (SMR reaction), mol · (Pa · kg − cat · s)−1 for j = 2 (WGS reaction)]

• Ci: Concentration of species i [mol ·m−3]

• Cpi: Specific heat capacity of gas species i [J · (mol ·K)−1]

• Ej: Activation energy for reaction j [J ·mol−1]

• F : Total molar flow of gases [mol · s−1]

• Fi: Molar flow of gas species i [mol · s−1]

• Ki: Adsorption constant of gas species i [Pa−1 for i = CH4, H2, CO and unitless for i =

H2O]

• Kj: Equilibrium constant for reaction j [Pa2 for j = 1 (SMR reaction), unitless for j =2

(WGS reaction)]

• kj: Reaction rate constant of reaction j [mol ·Pa0.5 ·(kg−cat·s)−1 for j = 1 (SMR reaction),

mol · (Pa · kg − cat · s)−1 for j = 2 (WGS reaction)]

• Pi: Partial pressure of gas species i [Pa]

• q: Outlet volumetric flowrate [m3 · s−1]

• qi: Outlet volumetric flowrate of gas species i [m3 · s−1]
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• rj: Rate of reaction for reaction j [mol · (kg · s)−1]

• R: Universal gas constant [J · (mol ·K)−1]

• R̄: Alloy tube resistance [Ohm]

• T : Reactor temperature [K]

• Tpi: Temperature of inlet gas species i [K]

• Ts: Temperature of the surroundings [K]

• UA: Overall heat transfer coefficient times the heat transfer area [J · (s ·K)−1]

• V : Reactor volume [m3]

• W : Catalyst weight [kg]

• ∆Hrj : Heat of reaction j [J ·mol−1]

• ṁpi: Mass flow rate of gas species i [kg · s−1]

• ρi: Density of the gas species i in the reactor [kg ·m−3]

6.2.2 Process Overview

The overall goal of the joule-heating steam methane reforming process is to convert methane

to produce emissions-free hydrogen gas in an electrically heated steam methane reformer. Instead

of utilizing a conventional fossil fuel-based heating source, electrical heating is used in our work
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to heat up the reactor by applying an electric current directly through the reactor tube. In our ex-

perimental setup, methane, steam, and argon gases are flown into the reactor tube under certain

temperature and pressure to react and produce hydrogen gas. The overall reaction can be demon-

strated by the two independent reactions,

Steam reforming : CH4 + H2O ⇌ 3H2 + CO, ∆H298 = 206.1kJ ·mol−1 (6.1a)

Water gas shift : CO + H2O ⇌ CO2 + H2, ∆H298 = −41.15kJ ·mol−1 (6.1b)

The first reaction (Eq. 6.1a) is the reforming reaction which converts methane and water to carbon

monoxide and hydrogen. The second reaction (Eq. 6.1b) is the water-gas shift reaction, which

converts carbon monoxide and water to carbon dioxide and hydrogen gas. The overall reaction is

endothermic due to the combination of a strongly endothermic reforming reaction and a slightly

exothermic water-gas shift reaction. In general, the intrinsic reaction kinetics and mass transport

phenomena occurring in the reactor need to be considered when determining the reactor dynamics.

In this work, we focus more on the reaction kinetics since the internal and external diffusion resis-

tances of catalyst particles does not appear in the intrinsic reaction rates. Considering the reaction

kinetics, the rate determining step is the activation of methane, since it has a stable structure that

demands higher energy to break the C-H bond. [192, 193, 194, 195, 196, 197]. In order to catalyze

the activation of methane in our experiment, a highly active Ni-based catalyst is used. Further-

more, the experiment is also performed under a high temperature to overcome the energy barrier

and increase the reaction rates.

The electrical heating provides a radially near-uniform heat supply with a very small temper-

230



ature gradient that helps to prevent carbon formation by keeping the gas temperature close to the

equilibrium temperature [200]. Also, the temperature gradient between the inner and outer wall

of the reactor is very small in contrast to burner-heated reactors, which helps to reduce the ther-

mal stress and extends reactor lifetime [200]. This also means that the thermal gradient across the

washcoated catalyst is very small, which improves the catalyst utilization. [200] also suggests that

electrically heated SMR reactors can reach the same conversion as industrial burner-heated tubular

reformers, but with a reactor volume up to 100 times smaller.

The reactions shown in Eq. 6.1 are complex reactions, as they are parallel in H2O and series

in CO. Furthermore, all the reactants and products are in gas phase. As a result, modeling the

reaction kinetics for this system is inherently challenging since, due to the presence of complex

reactions, the conversion cannot be used for modeling. In our simulations, the concentrations of

hydrogen, methane, water vapor, carbon dioxide, carbon monoxide, and argon are the outputs that

depend on the current flowing thorough the reactor, and the current is manipulated to adjust the

temperature of the reactor. Prior to the experiment, pure H2 at high temperature is flown through

the tubular reactor to activate the nickel catalyst. Following the H2 flow, Ar is flown to remove

the excess hydrogen remaining in the system before CH4 and steam are flown. The experimental

process flow diagram is shown in Figure 6.2.

We built an experimental steam methane reforming setup at UCLA, whose details are pre-

sented in [148]. A similar setup was built by [200] and a series of experiments were conducted to

understand the concentration and temperature distribution better inside the reactor. In our work,

we initially focus on the development of a nonlinear first-principles-based model that incorporates

kinetic rate parameters extracted from experimental data obtained from our experimental reactor.
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Figure 6.2: Process flow diagram for experimental joule-heating steam methane reforming process.

This model is subsequently used in the present work for the development and evaluation via numer-

ical simulations of a model predictive controller. Eventually, we aim to experimentally implement

the model predictive controller to control the joule-heated SMR reactor. Our longer term goal is to

use these models as a starting point to build controllers for the more complex process of SMR in a

proton membrane reactor setup (where hydrogen production via SMR and hydrogen removal via a

proton membrane occur in the same unit) in our laboratory.
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6.3 Digitalization of the Experimental Setup

6.3.1 Overview

An experimental setup is built at UCLA for two steam methane reforming reactors. This

experimental setup renders it possible to conduct experiments with a proton membrane reactor and

a joule heating steam methane reformer. Both reactors have the same inlet gas streams and the

outlets are quantified using a gas chromatogram. The inlet flow gases can be directed to either of

the processes by arranging the valve configuration. This study focuses on electrically heated steam

methane reforming. The majority of the lab equipment for both processes are common. The main

difference between both processes is the source of applied potential. The proton membrane reactor

uses a potentiostat (Metrohm 302N) to adjust the current flowing through the reactor for separation

of hydrogen through a BaZr0.8-x-yCexYyO3-σ (BCZY) membrane, while the joule-heating setup uses

a power supply to flow current to heat up the reactor, replacing fossil fuel-based heating [146]. The

experimental setup at UCLA is shown in Figure 6.3.

Both setups are digitalized through a connection to a common Laboratory Virtual Instrument

Engineering Workbench (LabVIEW) interface. Through LabVIEW, it is possible to manipulate

actuators and read data from the sensors in real time. The previous experience with LabVIEW

for the electrochemical CO2 reduction reactor discussed in Chapter 3 considerably accelerated the

building of the new interface. It is possible to collect data and perform real-time control with the

experimental steam methane reforming setups through LabVIEW.

233



Figure 6.3: Experimental setup for steam methane reforming processes at UCLA.

6.3.2 Sensors and Actuators

The experimental setup involves constant change of parameters such as temperature, pressure,

current, etc. In order to measure these changes, multiple sensors, including thermocouples (Omega

K-type) and pressure transducers (Omega PX359 - 1KAI), were installed. There are three thermo-

couples in the system. The first is placed in the middle of the wall on the joule-heated tubular

reactor. The second is placed on the inside the steam box. The third one is placed on the wall of

the gas flow pipe that is right before the inlet to the reactor.

There is one pressure transducer used for the joule-heated steam methane reforming process,

which measures the pressure of the flow system. This pressure can be adjusted and kept constant

through back pressure regulators (Equilibar) attached to the system. The aforementioned ther-
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mocouples, pressure transducers, and back pressure regulators are digitalized through a National

Instruments Compact Rio. A Compact Rio is a reconfigurable, industrial grade data collection

system that can work with LabVIEW.

The gas flowrates are set through MKS mass flow controllers (MFC) controlled by MKS 946

Vacuum system controller. It is possible to set flowrates for 5 gases, and the unit is standard cubic

centimeters per minute (sccm). The MFCs are also connected to the LabVIEW interface and their

setpoint can be changed in real time.

The SMR system is equipped with two steam generators that supply steady inlet streams of

water vapor to the joule heating and proton membrane reactors. Each steam box houses a bubbler

encased within fiberglass thermal insulation. Using a K-type thermocouple, an Arcon temperature

actuator, and electrical heating tape, a bubbler is set to a desired steam-to-carbon (s/c) ratio via

temperature control. At a specific water temperature, the Antoine equation provides the vapor

pressure of steam in the bubbler which is effectively the partial pressure of steam in the inlet gas

mixture. The temperature sensor and Arcon actuator amount to PI control over the thermodynamic

equilibrium of the inlet gas mixture and liquid water phase in each of the bubblers.

The tubular reactor is the main component of the joule-heated SMR setup. The tubular reactor

is shown in Figure 6.4. The reactor tube (Goodfellow Corporation: 72.8% Fe, 22% Cr, 5% Al,

0.1% Y, and %0.1 Zr alloy) has a length of 500 mm, an outer diameter of 6 mm, an inner diameter

of 5.4 mm, and is wrapped in a fiberglass based insulation layer to prevent heat losses (not shown

in Figure 6.4) [148, 146]. In addition to this layer, there is an insulation furnace (Applied Test

Systems, 321C-75-8-12) around the reactor tube. The furnace has a ceramic foam material as

an extra layer of insulation. The furnace is used to provide thermal insulation only for these
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experiments and was not used to provide heat. Power cables from the power supply are connected

to each end of the reactor tube. Using the power supply a potential is applied across the axial

direction of the reactor driving a current through the metal tube. In this configuration, heat is

uniformly generated along the length of the tube by the passage of electrons through the resistive

metal reactor tube. The power supply shown in Figure 6.5. A Chroma programmable DC power

supply (62012P-40-120) is the main actuator in the experimental setup. It is connected to the

LabVIEW interface through a driver provided by the manufacturer. It is possible to set the applied

potential through the power cords. It is also possible to set a current setpoint, and the power supply

will accordingly adjust the applied potential to obtain the given current setpoint. To control the

joule-heating SMR setup, the power supply can adjust the current flowing through the reactor to

provide the heat necessary for the reactions.

Fabrication of the washcoated reactor tubes (procedure with which catalyst is deposited on the

tube walls) began with pretreatment of the FeCr Alloy tube followed by application of the coating

in a multi-step process. Pretreatment was conducted by running a gentle flow of air through the

tube while being heat treated at 950 ◦C for 10 hours. The purpose of the pretreatment was to form

a uniform oxide layer on the surface of the tube for the washcoat to adhere to. All high temperature

changes including pretreat and calcination used a ramp rate of 1.4 ◦C to prevent crack formation

in the washcoat or oxide layer. After pretreatment, Zr powder was mixed with 20 mL of deionized

water whose pH was adjusted to 10 by adding a drop of 25% aqueous ammonium hydroxide. The

solution was mixed with a magnetic stir bar at 300 rpm for 30 minutes, followed by bath sonication

for 20 minutes. Immediately after sonication, the slurry was inserted into the tube using a pipet

until the tube was filled. The tube was oriented vertically and plugged at the bottom with a nipple
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Figure 6.4: Reactor tube and insulation furnace.

designed to slowly release the liquid upon applying a slight pressure inside the tube. Once filled,

a syringe pump was attached to the top of the tube with a Swagelok fitting. The syringe pump

forced a controlled 20 ml · min−1 flowrate of air into the top of the tube, forcing the slurry to

drain through the nipple at a steady rate. A total of 50 ml of air was forced through the tube in

this way to ensure all excess slurry was drained. Coated tubes were dried at 110 ◦C for 1 hour

before calcination at 500 ◦C for 1 hour. Multiple layers were added to achieve the desired loading
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Figure 6.5: Power supply connected to the tubular reactor for electrical heating.

by repeating the process just described. Catalyst addition was done by wet impregnation of the

washcoat using a solution of 10 g of nickel nitrate hexahydrate dissolved in 15 ml of deionized

water. Similar to how the washcoat was applied, the impregnation solution was added to the tube

and allowed to set for at least 1 minute to allow the solution to fill the pores in the washcoat. The

solution was drained, and air was gently blown through the tube to remove excess solution. After

air drying for 1 hour, the tube was dried at 110 ◦C for 1 hour followed by calcination at 500 ◦C for

1 hour. By this technique, a stable washcoat was obtained with a total washcoat loading of 39.8

mg.

An Agilent Technologies 7890B gas chromatogram is used to measure the gas phase products

in real-time. A thermal conductivity detector (TCD) is used to quantify each gas product. The

product gases first go through a condenser to separate water vapor from the remaining gas products.

After condensing the steam, H2, CO2, CO, and unreacted CH4 flows into the GC. It takes 15

minutes for each gas sample analysis. Then, it takes 3 minutes to cool down the GC for a new

injection. Thus, the GC can take one gas sample every 18 minutes.
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In our setup, the GC measurements are initiated automatically using an external Python code.

The main algorithm behind automated GC analysis is described in Chapter 3. After each GC run

is finalized, the results are automatically processed by calculating the areas underneath each gas

species peak and comparing it to previously calibrated peaks for each gas. An example of GC

peaks is shown in Figure 6.6.

Remark 29 The calculation of the concentrations from the GC analysis are 15 minutes delayed.

This situation is a challenge for dynamic processes. However, the present work only uses steady

state experiments to evaluate the reaction kinetics parameters.
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Figure 6.6: Gas chromatogram peaks for quantifying the gas phase products.
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6.3.3 Smart Manufacturing Innovation Platform Connection

The LabVIEW interface is connected to Smart Manufacturing Institute’s (CESMII) Innova-

tion platform (SMIP). All the data generated from the setup is sent to the platform securely through

the query language GraphQL [61]. The profile for the SMR system is shown in Figure 6.7. It is

organized and hierarchical; all the attributes are defined under the equipment and each attribute has

endpoints to store relevant data.

SMIP will also be used to implement a model predictive controller scheme in the future.

Chapter 5 demonstrated the use of SMIP in real time control by transferring data between the lab

computer operating LabVIEW and another computer with solver licenses. Thus, SMIP is planned

to play a key role in implementing the MPC designed in this chapter on the experimental setup.
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Figure 6.7: The SMR system profile on SMIP.
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6.4 First-Principles Modeling

The SMR system is challenging to model due to the complex nature of the SMR reactions,

all species being in gas phase, transfer phenomena in the reactor, and spatio-temporal variations in

the tubular reactor giving rise to partial differential equations. Due to these challenges, the tubular

reactor is generally modeled with CFD simulations, which are computationally expensive and not

practical to use for real-time predictive control [116, 94]. [95] modeled the SMR process as a

burner-heated 1-dimensional fixed-bed tubular reactor surrounded by a large-scale furnace using

first-principles equations and industrial data for online deployment of the model. The radiative heat

transfer was modeled using temperature from various locations on the tube in conjunction with the

Hottel zone method. As the scale of the process setup gets larger, the effects of the transport

phenomena becomes more important. In this work, we propose a simplified modeling approach

that can be used for a small scale experimental reactor and can be implemented in real-time for

predictive control. To this end, the modeling options for approximating the tubular reactor as a

continuously stirred tank reactor (CSTR) are explored.

The first-principles model is based on the mole balance of each species in a CSTR. However,

compared to a liquid phase CSTR, the gas phase CSTR is harder to model using first-principles

because the volumetric flow rate changes with reactions due to the gas phase stoichiometry change

after reactions. The reactor is operated at 1 bar and between 600–1000◦C. Due to low pressure

and high temperature conditions, the ideal gas law is assumed to hold. As a result, in the reactor,

PV = nRT must hold at all times, where P is the pressure, and n is the total number of moles.

Also, since the experimental setup is a flow system, Pq = FRT must also hold for the flow
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calculations, where q is the volumetric flowrate and F is the molar flowrate.

Eq. 6.2 demonstrates the equations used for the calculation of the reaction rates. The kinetic

parameters and mechanism are taken from [215] and [1]. Each species has an adsorption coefficient

that is a function of temperature. The reaction rates are written in terms of partial pressures due to

them occurring in the gas phase.

r1,SMR =
k1
P 2.5
H2

·
PCH4 · PH2O −

P 3
H2

·PCO

K1

(DEN)2
(6.2a)

r2,WGS =
k2
PH2

·
PCO · PH2O −

PH2
·PCO2

K2

(DEN)2
(6.2b)

DEN = 1 +KCO · PCO +KH2 · PH2 +KCH4 · PCH4 +KH2O ·
PH2O

PH2

(6.2c)

kj = Aj · exp
(
− Ej

R · T

)
, j = 1, 2 (6.2d)

Ki = Ai · exp
(
−∆Hi

R · T

)
, i = CH4, H2O,CO,H2 (6.2e)

In order to model the reactor as a lumped parameter system, it is necessary to write the mass

balance equations for each gas. This generates 6 nonlinear ordinary differential equations, as

shown in Eq. 6.3. Additionally, since the reaction rates are functions of temperature, it is necessary

to have an energy balance, which will be discussed in Sec. 6.5.2.
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dCCH4

dt
=

1

VR

(FCH4,0 − r1 ·W − q · CCH4) (6.3a)

dCH2O

dt
=

1

VR

(FH2O,0 − (r1 + r2) ·W − q · CH2O) (6.3b)

dCCO

dt
=

1

VR

((r1 − r2) ·W − q · CCO) (6.3c)

dCH2

dt
=

1

VR

(FH2,0 + (3 · r1 + r2) ·W − q · CH2) (6.3d)

dCCO2

dt
=

1

VR

(r2 ·W − q · CCO2) (6.3e)

dCAr

dt
=

1

VR

(FAr,0 − q · CAr) (6.3f)

where Fi,0 is the inlet molar flowrate of species i.

Remark 30 In the experiment, a relatively short, in terms of axial length, reactor and good ther-

mal insulation are used. Therefore, a lumped parameter system behavior is assumed when the

first-principles model is derived, which means there is no spatial variation in temperature and

concentration inside the reactor taken into account in the model development. Furthermore, the

reaction is expected to consume more heat in the inlet section of the tubular reactor [200], indi-

cating that most of the conversion occurs near the reactor inlet and, for the remainder of the tube,

the temperature and concentration profiles do not vary significantly in the axial direction, thereby

justifying further the use of a lumped parameter modeling approach.
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6.4.1 Constant Pressure and Temperature Case

The constant pressure and temperature case is considered as a starting point. In this case, the

total concentration in the reactor, CT , is constant according to the ideal gas law,

CT = CCH4 + CH2O + CCO + CH2 + CCO2 + CAr =
P

RT
(6.4)

Due to the species being in gas phase, the outlet volumetric flowrate, q, is a function of temperature

and cannot be assumed constant for all temperatures. Since q appears as a new variable, one new

equation should be introduced, which is Eq. 6.4. This equation originates from the ideal gas

law since CT = F/q, where F is the total outlet molar flow rate, and indicates that the total gas

concentration in the reactor is a function of only temperature and pressure. As a result, the total

concentration inside the reactor does not change under constant temperature and pressure, and its

differential with respect to time can be set to zero as follows:

dCT

dt
=

dCCH4

dt
+

dCH2O

dt
+

dCCO

dt
+

dCH2

dt
+

dCCO2

dt
+

dCAr

dt
= 0 (6.5)

where the differentiation of the total concentration term is written as the summation of concen-

tration differentials with respect to time for each of the 6 gas species, which are already written

explicitly in Eq. 6.3. Substituting the individual species’ mass balances into Eq. 6.5, we obtain the

relation,

dCT

dt
=

1

VR

(FCH4,0 + FH2O,0 + FH2,0 + FAr,0 + 2r1W − qCT ) (6.6)
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whose right-hand side can be equated to zero to yield

FT0 + 2r1W = q
P

RT
(6.7)

from which the final expression for the outlet volumetric flow rate can be obtained as

q =
FT0 + 2r1W

P
RT

(6.8)

This equation shows that the outlet flowrate is a function of the reforming reaction rate. After

replacing all occurrences of q in Eq. 6.3 by Eq. 6.8, the system of differential equations for constant

temperature can be solved with numerical integration and then compared via experimental results.

In the experimental setup, the constant temperature and pressure conditions can be achieved by

controlling the power supply to regulate temperature through current and using pressure regulators.

6.4.2 Variable Temperature Case

The SMR reactor can be heated by electricity. Specifically, the current across the reactor can

be manipulated to heat the reactor tube, which will change the temperature of the reactor. A higher

temperature can produce a higher amount of hydrogen and increase methane conversion. Hence,

it is necessary to derive the dynamic model of the case with variations in temperature. However,

in this case, the total concentration changes according to the change in temperature. Therefore,

the expression of the volumetric flow rate also changes and now depends on the derivative of the

temperature with respect to time. The derivation of the expression for the outlet volumetric flow

rate is done for the temperature-varying case using the same steps as Eq. 6.4–6.8 and shown in Eq.
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6.9.

dCT

dt
= − 1

T 2
· P
R
· dT
dt

(6.9a)

dCT

dt
=

1

VR

· (FT,0 + 2 · r1 ·W − q · CT ) (6.9b)

dT

dt
= T 2 · R

P
· 1

VR

·
(
q · P

R · T
− FT0 + 2 · r1 ·W

)
(6.9c)

q =
FT0 + 2 · r1 ·W

P
RT

+
VR

T
· dT
dt

(6.9d)

6.4.3 Steady State Simulation and comparison with experimental results

The steady state simulation results at different temperatures are shown in Figure 6.9. When

the temperature is below approximately 600 ◦C, the volumetric flows for hydrogen and methane

going out of the reactor remain constant, which means there is nearly no reaction. When the

temperature is higher than 600 ◦C, the hydrogen volumetric flow rate starts to increase, and the

methane volumetric flow rate starts to decrease. The reason behind this phenomenon is that the

reaction rate increases with the increment of temperature.
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Figure 6.8: Open loop dynamic evolution based on first-principles equations under constant tem-
perature (800 ◦C) and constant pressure (1 bar).
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Remark 31 In the constant temperature and pressure case, the time to reach the steady state is

below 10 seconds, indicating extremely fast dynamics.

6.5 Model Parameter Estimation Using Experimental Data

6.5.1 Reaction Kinetics Estimation

Steam methane reforming reaction mechanisms are taken from [215]. However, the catalyst

used in [215] is different from the catalyst used in our experimental study. As a result, the reaction

parameters presented in [215] are not expected to be the same as those in our experiments. The

preparation of the catalyst will also impact the distribution of the active sites and the reaction

kinetics. Thus, the first step towards modeling the system is to estimate the parameter values in

our specific setup.

As discussed in Section 6.4, this experimental setup is modeled as a continuous stirred tank

reactor (CSTR; lumped parameter modeling). Using the concentrations at steady state, the lumped

parameter model is compared to the experimental observations for gases. The activation energies

presented in [215] for reforming and water gas shift reactions were re-calculated to align closely

with our experimental concentrations. The comparison between the experimental data and the

model calculations after adjusting the activation energy of the reforming reaction is shown on Fig-

ure 6.9. An optimization problem was established to minimize the difference between calculated

pre-exponential factors and activation energies, and the experimental observations. After solving

the optimization problem, the pre-exponential factors and activation energies for the reforming re-

action are taken to be 4.22 · 1016 mol ·Pa0.5 · (kg− cat · s)−1 and 384.5 kJ/mol respectively, and
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for the water gas reaction are taken to be 4.22 · 107 mol · Pa · (kg − cat · s)−1 and 128.9 kJ/mol,

respectively.

Remark 32 Due to the nonlinearity of the optimization problem, different solvers may find differ-

ent solutions corresponding to different local optima. In our case, the best fit that gives the closest

alignment with the experimental data among various Python library SciPy solvers is taken to

be the final estimate of the parameters. Following this methodology, the least-squares sequential

quadratic programming method was used as the final optimization solver.

Remark 33 [200] suggests that the temperature difference between the inlet region and the outlet

region of the reactor may reach up to 300 ◦C. Our approach approximates the tubular reactor

as a lumped parameter system and does not account for the spatial temperature gradient. This

approach will be improved by modeling with multiple lumped parameter models in series that will

use the temperature values from multiple thermocouple sensors attached to the tubular reactor.

The reaction kinetic parameters will be calculated accordingly.
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Figure 6.9: Comparison of lumped parameter model steady-state with experimental observations.
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6.5.2 Temperature Dependence with Respect to Time

As described in Section 6.4.2, the system of differential equations needs to include one equa-

tion for the energy balance. This energy balance can be approximated as follows:

dT

dt
=

I2R̄ +
∑

i ṁpiCpi(Tpi − T )−WrSMR∆HSMR(T )−WrWGS∆HWGS(T ) + UA(Ts − T )∑
i ρiCpiV

(6.10)

The detailed energy balance of Eq. 6.10 is a modified version of the energy balance presented in

[45], adapted for electrically heated steam methane reforming. The heat input is replaced by I2R̄,

which is the power supplied by the flow of electrons. This equation requires further experiments

to estimate the value for the heat transfer coefficient (U ), as well as the coefficients for radiant

and convective heat losses to the environment. As the lack of knowledge of these parameters in

Eq. 6.10 renders it unusable in practice until further experimental data is available, the temperature

change with respect to time is instead approximated using the available experimental data by fitting

the data of current and temperature vs time to a first-order dynamic model. The derivation of such

a first-order model is shown in Eq. 6.11, starting from the Laplace domain and its transition to

time domain.

T ′(s)

I ′(s)
=

K

τs+ 1
(6.11a)

T ′(s) =
K

τs+ 1
· I ′(s) (6.11b)

T ′(t) = I ′(t) ·K · (1− e−t/τ ) (6.11c)
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T ′(s) and I ′(s) are the deviation form notations for temperature and current, respectively, while K

and τ are the process gain and time constant, respectively. If the K and τ values can be extracted

from the experimental setup by fitting the temperature dynamics following a step change in the

current, the time-derivative of the temperature can be written as

dT

dt
= −T − Tss

τ
+K · I − Iss

τ
(6.12)

where Tss and Iss are the initial steady-state values. Eq. 6.12 is simpler and, in this work, is used

in lieu of Eq. 6.10. With this approach, the reaction heat generation, power supply efficiency, and

heat transfer coefficients are accounted for in the dynamic behavior approximation via K and τ . In

order to estimate the values of K and τ , it is necessary to apply a step change in current and record

the dynamic behavior of the temperature. Thus, when the current was at 32 A, and the system was

at steady state, the current was reduced to 0 A while the system was active, and the corresponding

data shown in Figure 6.10 was collected. In addition to this, steady state temperature values are

recorded at various currents, and the data is shown in Figure 6.11.

The data shown in Eq. 6.10 is fitted to a first-order model of the form of Eq. 6.11c to get the

process gain (K) and process time constant (τ ) values, which were calculated to be 14.54 K/A and

284 seconds, respectively. The first-order model fit and experimental variation of the temperature

with respect to the step change in current are compared in Figure 6.12.

Remark 34 The step change in current is aimed to be large to capture a broader range of tem-

perature change. However, to avoid harming the catalyst morphology, the change is made in the

cooling direction since rapid, large increases in the temperature are detrimental to the catalyst.
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Figure 6.10: Dynamic change in temperature with respect to a step change in current.

Remark 35 Figure 6.11 demonstrates that the relation between steady-state current and temper-

ature is a second order polynomial and mildly nonlinear. The approach mentioned in this section

is for first-order linear processes. Thus, this approach can be improved with an incorporation of

other first-order models for higher temperature ranges or can be replaced by a data-driven model,

such as a recurrent neural network. This would also account for the reaction dynamics at higher

temperature regimes.

Remark 36 The first-order model will be valid for a specific inlet flow of CH4. The amount of

CH4 in the inlet is pivotal for the reaction kinetics. Thus, the first-order model parameters should
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Figure 6.11: Temperature values against current setpoints at steady state.

be calculated for various CH4 inlet conditions for a more comprehensive model.
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Figure 6.12: Comparison of first order dynamic model with experimental observations.

255



6.6 Feedback Control

Our work aims to build a feedback control architecture for the experimental SMR setup that

is robust to disturbances. It is possible to decide the best controlling strategies by accounting for

the limitations of the process, since first-principles and data-driven dynamic temperature variation

models are available to simulate the experimental behavior. For this purpose, a PI control scheme

is compared to a model predictive controller. In the following simulations, the pressure is assumed

to be constant at 1 bar, while the temperature is varied to regulate the reaction rates to drive the H2

production. The implementation of the constant pressure in the experimental setup in future work

will be realized by using a back pressure regulator.

6.6.1 Tuning of a Proportional Integral Controller and Model Predictive

Controller

PI controllers are based on feedback sensor data and do not require a process model. However,

the parameters of the PI controller must be tuned. The PI control equations are as follows:

u = KC ·
[
(ysp − y)− 1

τI
·
∫ t

0

(ysp − y) dt

]
(6.13a)

u = I − Is (6.13b)

ysp = CH2, sp − CH2,s (6.13c)

y = CH2 − CH2,s (6.13d)

0A ≤ I ≤ 70A (6.13e)
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The actions of the PI controller are limited to be below 70 A of current, since currents higher than

70 A will be detrimental to the catalyst and cause coking.

The model predictive controller takes the form of the following optimization problem:

J = min
u

∫ tk+Nh

tk

L(x̂(t), u(t)) dt (6.14a)

s.t. x̂(t) = ODE(x(t), u(t)) (6.14b)

L(x̂(t), u(t)) = A(x̂(t)− xsp)
2 +B(u(t)− usp)

2 (6.14c)

t ∈ [tk, tk+Nh
) (6.14d)

|u(tk)− u(tk−1)| ≤ 0.1 (6.14e)

0A < u(t) < 70A (6.14f)

where L(x̂(t), u(t)) is a cost function to be minimized, ODE is the nonlinear dynamic process

model derived in Sec. 6.4, x̂(t) is the state prediction over the horizon using the ODE model, A

and B are tunable weight parameters, and xsp and usp are the setpoints for the H2 concentration and

current, respectively. Similar to the PI controller, the optimization problem is aimed to produce

outputs within the bounds of 0 and 70 A. However, since an MPC is inclined to drive the process

very fast and hit the input bounds very early for a quick response, an additional constraint is placed

that bounds consecutive current changes to a maximum of 0.1 A per second. This is also important

for the catalyst morphology, since a slow increase in current will not harm it.

The MPC will try to minimize the quadratic cost function over a horizon of 10 seconds. The

estimated current setpoint value (usp) is calculated by using the steady-state equations, which are

obtained by equalizing the mass balance equations shown in Eq. 6.3 to 0. Here, the hydrogen
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concentration setpoint is fixed, and the other gas concentrations and temperature are calculated

using the process operating conditions. The current value corresponding to the calculated tem-

perature is estimated from the correlation shown on Figure 6.11. The weight parameters A and

B for the quadratic cost function are taken to be 100 and 0.01, respectively. The MPC problem

will be solved in real time in the future work on the experimental setup, thus requiring the MPC

problem to be solvable within the sampling period. To ensure this, the MPC optimization problem

will be solved every second using a sequential quadratic programming (SQP) solver, which is a

computationally-efficient solver [12].

All closed-loop simulations start from the same steady state that is described in Figure 6.8

under constant temperature at 800 ◦C at 40 A and constant pressure at 1 bar. After it reaches

the steady state, it will remain there until the control action starts at the 100th second. The initial

H2 steady-state concentration will be 1 mol/m3, and the controller is expected to drive the H2

concentration to 4.5 mol/m3. This number is 3 times the initial steady-state concentration and is a

sufficiently large change to show that the controller is successful.

The MPC simulation results are shown in Figure 6.13. After the setpoint change is introduced

at the 100th second, the controller starts to increase the temperature at 0.1 A per second to quickly

drive the process towards the setpoint. Around 300 seconds, the controller reaches its peak value at

60 A, and it can be seen that the process is very close to the setpoint. After this point, the controller

starts to reduce the current slowly to finalize the process evolution to the setpoint, and the process

settles at a steady state after around 600 seconds, where the temperature and current reach their

respective steady states of 890 ◦C and 46 A. The MPC is solved quickly, drives the process output

to the desired setpoint without offset, and all the input constraints are respected.
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Remark 37 The reaction reaches the initial steady state under 10 seconds. However, even with

an MPC, it takes more than 220 seconds to reach a new steady state. The reason for this is that

the temperature increase caused by the power supply has slower dynamic evolution compared to

reaction dynamics.
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Figure 6.13: Closed-loop response under MPC is fast and without offset while input constraints
are respected.
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In order to verify that the proposed MPC scheme is highly effective, it is compared with a

PI controller. The PI controller is tuned to have no overshoot or oscillations. The parameters for

the PI controller are taken to be Kc = 0.12, and τi = 20. The comparison between the proposed PI

controller and MPC is presented in Figure 6.14. Both controllers succeed in driving the process

to the setpoint. It takes around 1300 seconds for the PI controller, while this duration was around

220 seconds for the MPC. The effectiveness of the MPC is due to the initial increase in the current

input. Thus, the MPC is proven to be fast and efficient.

0 500 1000 1500

40

50

60
 MPC
 PI

C
ur

re
nt

 (A
)

Time (s)

0 500 1000 1500

0

1

2

3

4

5

 MPC
 PI
 SP

H
2 C

on
ce

nt
ra

tio
n

(m
ol

m
-3

)

Figure 6.14: Closed-loop response under MPC is superior to the one under PI control.

260



6.6.2 Disturbance Rejection

In order to prove further effectiveness of the proposed MPC, it is necessary to demonstrate

a robust performance against disturbances. One of the possible disturbances in the experimental

setup is the steam flowrate. As explained in Sec. 6.3, there is a temperature control box that reg-

ulates the temperature of the bubblers. If the control box provides more heat, the steam flowrate

going into the SMR reactor increases. Under normal circumstances, the steam-to-carbon ratio is

arranged to flow 33 sccm of water vapor into the reactor. In case of a malfunction in the tempera-

ture control box, the amount of steam sent to the reactor might increase. In the presence of such a

disturbance, the behavior of both the PI controller and MPC are examined.

The MPC performance against a 10% increase in steam feed flowrate is shown in Figure 6.15.

Compared to Figure 6.13, it can be seen that the initial water steady state concentration is higher.

Similar to the disturbance-free case, the controller gradually increases the current and then slowly

decreases it to the setpoint value as the concentration of H2 gets closer to the setpoint. However,

in the +10% disturbance case, it is seen that the current is increased up to 61.93 A, which is also

higher than the maximum current for the no-disturbance run. To quantify the differences in the

dynamic responses with and without the disturbance in the steam box, we calculate the production

of H2 in terms of (standard) volumetric flow rate at the end of the run. For the case without

disturbance, shown in Figure 6.13, the final volumetric flow rate is 32.85 sccm, corresponding to

a temperature of 893.38◦C and concentration of 4.5 mol/m3. Under the disturbance, if the same

temperature of 893.38◦C is maintained, the higher water vapor content in the inlet causes the

steady-state concentration of H2 to be reduced to 4.2 mol/m3, yielding a reduced H2 production
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rate of 31.57 sccm. However, under the MPC, using a higher peak current of 61.93 A, the final

steady-state temperature is now adjusted to 913.56◦C to compensate for the excess water vapor in

the feed. As a result, the hydrogen concentration once again reaches its setpoint of 4.5 mol/m3, and

the H2 production increases to 35.59 sccm. This may be due to the extra water vapor in the feed

stream decreasing the partial pressure of CH4 and, consequently, the rate of the reforming reaction

as per Eq. 6.2a. Thus, in order to reach the same level of H2 production as the disturbance-free

case, the controller needs to increase the heat provided to the system to boost the reaction rate of

the reforming reaction.
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Figure 6.15: Closed-loop response of the MPC under +10% disturbance in vapor feed flow rate.
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The behavior of the PI controller is demonstrated in Figure 6.16 against the 10% increase in

the steam flowrate case. The same PI controller parameters are used as in Figure 6.14. Although

the PI controller manages to drive the process to the setpoint, it takes longer than the MPC. The

increase of steam flowrate requires more heat input, thus increasing the time to reach the setpoint

from 1300 seconds to 1900 seconds. On the other hand, the time required for the MPC to drive

the process to the setpoint under the disturbance had increased from 220 seconds to 370 seconds,

showing that MPC is faster than the PI controller, and robust, in the disturbance case.
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Figure 6.16: Closed-loop response of the PI controller under +10% disturbance in vapor feed flow
rate.
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Chapter 7

Feedback Control of an Experimental

Electrically-Heated Steam Methane

Reformer

7.1 Introduction

Steam methane reforming (SMR) is an industrial process that converts methane and steam

into hydrogen and carbon dioxide through the chemical reactions shown below:

Steam methane reforming : CH4 + H2O ⇌ 3H2 + CO, ∆H298 = 206.1 kJ ·mol−1 (7.1a)

Water gas shift : CO + H2O ⇌ CO2 + H2, ∆H298 = −41.15 kJ ·mol−1 (7.1b)

The highly endothermic reforming reaction and the slightly exothermic water gas shift reaction

occur in series and parallel. Traditionally, these reactions take place in a packed-bed reactor placed

in a fired furnace that burns fossil fuels. About thirty years ago, [168] introduced the idea of an
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electrically-heated SMR. Recently, [200] conducted a detailed experimental and modeling study to

investigate the process and its potential to replace the conventional furnace heating with electrical

heating, and reported that electrical heating leads to lower reactor volumes, causes less waste-heat,

and reduces CO2 emissions if renewable electricity is used. Also, a Joule-heating energy source

provides radially uniform heat distribution, causing the gas mixture to be at close-to-equilibrium

conditions through a washcoated catalyst. The resistance-heated SMR process is further expected

to reduce carbon formation, thus increasing the carbon conversion to hydrogen. The adoption

of a Joule-heating process has also a potential to reduce global CO2 emissions [200]. While the

transition to a resistance-heated SMR process is still in its infancy, the current bench scale efforts

can offer strategies and explorations to ease the adoption process.

With respect to previous work on this topic, [201] experimentally examined process dynamics

including the effect of the heating rate on the start-up phase of the reactor, cyclic heating, and

carbon formation at transient and steady-state conditions. [3] focused on improving coil geometry

and magnetic field frequency of an induction-heating setup and showed that thermal efficiency can

be improved up to 12% compared to their initial bench scale coil geometry. In [223], a Rh/Al2O3

catalyst coated with silicon carbide (SiC) layer was washcoated across the reactor tube. The SiC

layer increased the resistance for heating, and experimental results were reported to reach full

conversion of methane. To explore further use of ohmic heating in reforming processes, [46]

moved to a pilot plant phase to test a process that uses biogas to produce syngas.

In addition to endeavors that improve SMR reactor heat flux, process design, and catalysts,

one key component that can optimize the electrified SMR process is efficient feedback control to

optimize the speed of transition to different setpoints. The SMR reaction, especially in a fired-
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heater where the temperature gradients vary significantly in both axial and radial directions, is

very complicated and thus very difficult to model. The reactions occur in a tubular reactor, and

considering the variation in heat, mass, and momentum transfer coupled with reaction kinetics and

temperature- or pressure-dependent variables like volumetric flowrates, such modeling requires

solving partial differential equation (PDE) models. Consequently, commercial PDE solvers (e.g.,

COMSOL, Ansys Fluent) are widely used to model the SMR process. Specifically, [204] simulated

the reforming process in a furnace using a detailed computational fluid dynamics (CFD) model,

linearized the model using the simulation data, and solved a quadratic programming problem to

implement a model predictive control (MPC) scheme to the CFD model. More recently, [177]

built an Aspen Dynamic model to generate process data and carried out state-space identification

to employ an MPC scheme in a computational study. However, efforts to experimentally implement

and evaluate efficient real-time SMR process control are limited. In particular, and to the best of

our knowledge, the advanced control of a Joule-heated SMR system with a washcoated catalyst

has not been studied.

Chapter 2, Chapter 4, and Chapter 5 have demonstrated successful single-input single-output,

multi-input multi-output, and predictive control of experimental electrochemical reactors. Further-

more, Chapter 3 presented how experimental setups can be digitalized using appropriate software

and tools. Utilizing our experience in digitalization, modeling, and control, in Chapter 6, we pro-

posed a lumped parameter modeling approach that can be rapidly optimized in real-time. For this

lumped parameter model, mass and energy balance equations were derived for varying parame-

ters, and in a detailed computational study, this model was used in an MPC to demonstrate that

the H2 concentration can be effectively driven to the desired H2 setpoint. However, this compu-
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tational work did not account for the experimental challenges, such as unmeasured variables like

the molar or volumetric flowrates of steam. Thus, in a recent work [29], we developed a model

predictive control method accounting for the issues encountered in the experimental setup, and in

the present work, the MPC scheme proposed in [29] and Chapter 6 is implemented experimentally.

Specifically, an extended Luenberger observer (ELO) is used to account for the missing feedback

parameters and the ELO-based MPC closed-loop performance is compared to the one of a PI con-

trol system.

7.2 Preliminaries

7.2.1 Nomenclature

Definitions of variables used in the modeling of the reactor:

• Aj: Pre-exponential factor for adsorption constant Kj of gas species j [mol · (m2 · s)−1]

• Ai: Pre-exponential factor for rate coefficient ki for reaction i [mol · Pa0.5 · (kg− cat · s)−1

for i = 1 (SMR reaction), mol · Pa · (kg − cat · s)−1 for i = 2 (WGS reaction)]

• Ci: Concentration of species i [mol ·m−3]

• Cpi: Specific heat capacity of gas species i [J · (mol ·K)−1]

• F : Total molar flow of gases [mol · s−1]

• Fi: Total molar flow of gases of gas species i [mol · s−1]

• Kj: Adsorption constant of gas species j [m3 ·mol−1]
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• ki: Reaction rate constant of reaction j [mol ·Pa0.5 ·(kg−cat ·s)−1 for i = 1 (SMR reaction),

mol · Pa · (kg − cat · s)−1 for i = 2 (WGS reaction)]

• Pi: Partial pressure of gas species i [Pa]

• q: Outlet volumetric flowrate [m3 · s−1]

• qi: Outlet volumetric flowrate of gas species i [m3 · s−1]

• ri: Rate of reaction for reaction i [mol · (m3 · s)−1]

• R: Universal gas constant [J · (mol ·K)−1]

• R̄: Cell resistance [Ω]

• T : Reactor temperature [K]

• Tpi: Temperature of inlet gas species i [K]

• Ts: Temperature of the surroundings [K]

• UA: Overall heat transfer coefficient times the heat transfer area [J · (s ·K)−1]

• V : Reactor volume [m3]

• Q: Power [W ]

• W : Catalyst weight [kg]

• ∆Hr: Heat of reaction [J ·mol−1]

• ∆Hri: Heat of reaction i [J ·mol−1]
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• ṁpi: Mass flow rate of gas species i [kg · s−1]

• ρi: Density of the gas species i in the reactor [kg ·m−3]

7.2.2 Experimental System and Digitalization

At UCLA, we have established an experimental steam methane reforming setup to investi-

gate the efficiencies of various promising and novel hydrogen production methods. Transforming

conventional-heating reformers into Joule-heating reformers is relatively straightforward, only re-

quiring a modification in the heating source, and this work begins an investigation into the efficien-

cies, modeling, and control strategies of these electrically-heated experimental reforming systems.

In order to minimize axial pressure drop, a Ni/ZrO2 washcoat was deposited on the inner wall of

the tubular reactor. The experimental and digitalization overview of the reactor are shown in Figure

7.1.

Figure 7.1: Process flow diagram for experimental Joule-heating steam methane reforming process.

The experimental setup involves monitoring various parameters such as temperature, pres-
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sure, and current. Multiple sensors including thermocouples and pressure transducers are utilized

for measurement. All sensors and actuators are connected to a Laboratory Virtual Instrument En-

gineering Workbench (LabVIEW) interface, a graphical coding platform that is very convenient

for connecting data acquisition and actuation systems. LabVIEW has built-in drivers for various

process equipment components, and many companies develop external drivers that can be incorpo-

rated into LabVIEW for digitalizing their own equipment. Three thermocouples (Omega K-type)

are positioned throughout the system: one on the bottom of the exterior reactor wall (13.5 cm from

the reactor outlet), the second one on the top of the exterior reactor wall (34.5 cm from the reac-

tor outlet), and the third on the upstream gas flow pipe that is heated to 150 ◦C to prevent steam

condensation. A single pressure transducer (Omega PX359 - 1KAI) measures reactor pressure and

may be maintained at a constant value using a back pressure regulator (Equilibar). Thermocouples,

back pressure regulators, and pressure transducers are digitized through a National Instruments

Compact Rio, an industrial grade, reconfigurable data acquisition system. The experimental setup

is shown in Figure 7.2.

In addition to the sensors and actuators in connection to the Compact Rio, a Chroma pro-

grammable DC power supply connects to LabVIEW as well. The reactor-power supply setup

controls the current supplied to the reactor and measures the corresponding potential in a closed-

loop configuration. The power supply is connected to the LabVIEW interface through external

Chroma drivers. The energy given to the experimental setup is shown in Eq. 7.2a below, where Q

is the rate of heat supply and the average resistance value (R̄) can be found as the ratio of potential,

270



Figure 7.2: Picture of the experimental setup.

E, to current values, I using the entire time series data, as shown in Eq. 7.2b below:

Q = I2R̄ (7.2a)

R̄ =
E

I
(7.2b)

The tubular reactor is the central component of the Joule-heated SMR setup. Constructed with a

72.8% Fe, 22% Cr, 5% Al, 0.1% Y, and %0.1 Zr alloy procured from Goodfellow Corp., it features

dimensions of 500 mm length, 6 mm outer diameter, and 5.4 mm inner diameter, as discussed in

Chapter 6. The reactor tube is enveloped by fiberglass-based insulation to minimize heat losses,

while an additional insulation furnace, equipped with ceramic foam material, provides further heat

retention. In this study, the joule-heated system sits inside an Ascon Technologic R38S electric
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furnace that can be used to provide heat similar to a conventional fired SMR process, but that is

turned off in all the joule-heating experiments presented here, unless otherwise indicated.

Gas phase products are analyzed in real-time using an Agilent Technologies 7890B gas chro-

matograph equipped with a thermal conductivity detector (TCD). The gas mixture undergoes con-

densation to remove water vapor before entering the GC, where components including H2, CO2,

CO, and unreacted CH4 are quantified. Each analysis cycle lasts 15 minutes, followed by a 3-

minute cool-down period. Consequently, the GC can process one gas sample every 18 minutes.

Automated GC analysis is triggered by an external Python code, with results automatically pro-

cessed post-measurement to determine peak areas and compare them to calibrated values for each

gas species. The signal processing algorithm used is discussed in detail in Chapter 3. The gas

chromatograph does not directly measure concentration or molar flowrate, rather it measures the

molar percentage of the gases in the injection volume. This is based on the initial calibration of the

GC, where various known molar ratios of gases were sent to the GC, and corresponding peak areas

were recorded. After multiple gas mixtures were calibrated, the peak areas and corresponding per-

centages were fitted to power functions, which are used in real-time for quantifying the gas phase

products. The sum of all percentages must be equal to 100% for an accurate gas quantification.

The inlet flowrates provided to the system are adjusted by a mass flow-meter (MKS). The

flow-meter unit is standard cubic centimeters per minute (sccm). Trace amounts of Ar gas is

flown through the system during each experiment to track molar flowrate changes in the outlet gas

mixture. Argon is a noble, inert gas that does not react with other gases during the SMR process.

As a result, the inlet molar Ar flowrate will be equal to outlet molar Ar flowrate, except for the

very brief period of reactor startup.
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The mass flow-meter is calibrated before each experiment. A specific flowrate input for each

inlet gas (e.g., CH4, H2, Ar) that will be used for the experiment is entered on the flow-meter input

panel and the corresponding GC injection output (in %) is recorded. First, the percentage of Ar

that comes from the automated GC code is accepted to be the Ar basis. The sum of inlet gases (in

sccm) shown on the mass flow controller is accepted to be the flow basis (flowbasis), and this is a

constant value throughout the experiment for a constant inlet flowrate experiment. With each GC

measurement, the Ar basis is divided by the Ar percentage in the injection volume to estimate the

flow factor (flowfactor). In each GC measurement, the Ar peak area (and thus percentage) might

change, however, since the molar flowrate of Ar will not change, Eq. 7.3 below can be used to

estimate the molar flowrate of each species:

Fi[sccm] =
GCi[%]

100
× flowbasis[sccm]× flowfactor, i = CH4, CO,H2, CO2, Ar (7.3)

The flow factor is accounting for the change in the entire molar flowrate compared to the initial

total flowrate by adjusting the molar fraction of the constant flowrate of Ar in the injection volume.

The conversion for molar flowrate from mol/s to sccm is shown in Eq. 7.4 below:

F

[
cm3

min

]
= 1000

[
cm3

L

]
× 22.4

[
L

mol

]
× F

[
mol

s

]
× 60

[ s

min

]
(7.4)

The SMR system is equipped with two steam boxes that can supply steady inlet streams of

water vapor to the electrically heated tubular reactor; however, only one unit is needed for the

investigated setup. Each steam box houses a bubbler encased within fiberglass thermal insulation.

Using a K-type thermocouple, an Arcon temperature actuator, and electrical heating tape, the bub-
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bler is set to a desired steam-to-carbon (s/c) ratio via temperature control. The Antoine equation,

shown in Eq. 7.5 below, estimates the vapor pressure of steam in the bubbler at a specific water

temperature. The temperature sensor and Arcon actuator amount to PI control over the thermody-

namic equilibrium of the inlet gas mixture and liquid water phase in the steam box. The Antoine

equation is of the form,

log10(P ) = A− B

T + C
(7.5)

where the temperature (T ) is in ◦C, and pressure is in bar. The corresponding A, B, and C values

are 8.14, 1810.9 [◦C], 244.5 [◦C] for temperatures above 100 ◦C [150].

All the sensors and actuators mentioned are connected to a LabVIEW interface shown in

Figure 7.3. The LabVIEW interface gets real-time data from the experimental setup, such as

pressure, temperatures, potential, current, standard volumetric flowrates, gas concentrations, and

can send signals to experimental equipment to modify parameters such as current setpoint, the

system back pressure, standard volumetric flowrates and steam box temperature setpoint. The

Compact Rio is run through a Field Programmable Gate Array (FPGA) script written in LabVIEW

and the signals read through a 32-bit LabVIEW script. A Compact Rio cannot run with 64-bit

LabVIEW, and a 32-bit LabVIEW cannot run Python scripts through a Python node. As a result,

we run a 32-bit script to acquire data from the FPGA script connected to the Compact Rio and

record the data to a text file each second. Simultaneously, the main script reads the text file to

transfer the sensor data so that a Python script embedded into the LabVIEW interface can process

the data. The built-in PI control function is used for all the PI-based control demonstrations in this

research. For a model predictive control scheme, a code written in Python is incorporated into the
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LabVIEW interface.

Figure 7.3: LabVIEW interface that connects sensors and actuators to the computer.

In Chapter 6, we have proposed a modeling approach and computationally demonstrated that

this modeling approach can be used in a model predictive controller to operate the SMR system in

an optimized way. In the present study, the modeling and control approaches are demonstrated to

be experimentally effective. Still, there remains experimental challenges that prevent the applica-

tion of the unmodified computational approach presented in Chapter 6. Firstly, the gas products

coming out of the reactor need to be cooled down to be processed by the GC. Water must also

be removed from the GC feed, since the peaks associated with water overlap with Ar and H2 in

the gas products signal. To this end, the outlet stream is exposed to a condenser that is cooled
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with a cold water stream and brings the gas mixture temperature to room temperature. This means

that the unreacted steam in the tubular reactor is condensed and is not quantified by the GC. Any

first-principle based model would need the steam flowrate to initialize the model or correct the

model with respect to sensor measurements. Thus, in an experimental implementation, we need to

account for the missing steam flowrate. Another difficulty is that the volumetric flowrate is needed

to convert molar flowrates into concentrations through Eq. 7.6 for reaction rate calculations. The

volumetric flowrate can be measured by flow sensors, such as a bubble meter; however, the exper-

imental flow-meters do not operate at temperatures higher than 100 ◦C, and the outlet temperature

of the SMR setup is expected to vary between 500 and 900 ◦C.

Ci =
Fi

q
(7.6)

A final challenge is that the GC measurements are delayed by 18 minutes (15 minutes for gas

separation, elution, quantification, and peak processing, and an additional 3 minutes for cooling

of the GC). This makes it difficult to correct the model in real time and requires a solution to

incorporate past measurements into the real-time modeling scheme. All of the aforementioned

complications required a creative methodology, discussed in the following sections, to successfully

implement model predictive control.
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7.3 Catalyst Synthesis

7.3.1 FeCrAl Tubing Pretreatment

All procedures for the Ni/ZrO2 synthesis process and washcoat application were adopted from

[148]. Prior to the application of the ZrO2 support and Ni catalyst, a Goodfellow FeCrAlloy ©

tube was washed with acetone and rinsed with deionized water to remove any debris or other

contaminants. The tube was heated to 950 ◦C in the furnace at a ramp rate of 1.4 ◦C/min where

it was kept at the setpoint for 10 hours to calcinate the tube in air before being cooled to 30 ◦C

at the previously mentioned ramp rate. During the heating process, slow dry air flowed through

the system. The oxidation of FeCrAl reformer tubing is known to produce an adhesion-enhancing

alumina layer on the inner and outer wall surface above 900 ◦C [62]. The color change caused by

the oxidation process was evident on the outer wall of the tubing in Figure 7.4.

Figure 7.4: FeCrAl alloy tube after first oxidation procedure at 950 ◦C for 10 hours.

7.3.2 Washcoat Slurry Preparation and Application

With repect to the washcoat slurry preparation, 15 ml of deionized water (Milli-Q IQ7000,

Milliporesigma) was added to a 50 mL beaker housing a magnetic stir bar. The pH of the water
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was adjusted between 9-10 with ammonium hydroxide, (25 % NH3, 99.99 % metal basis, liquid,

Alfaesar) added dropwise. The pH-adjusted DI water was used to prepare a 21 wt % solution

of zirconium (IV) oxide (powder, 5 um, 99 % trace metals basis, Sigma Aldrich). The magnetic

stirrer (FisherbrandTM Ultra Thin Magnetic Stirrer) was set at 500 rpm and 4g of ZrO2 powder was

added to the beaker and allowed to stir for 30 minutes. After stirring, the slurry was sonicated in a

Tuttnauer Clean and Simple Ulrasonic 60 kHz sonicator for 20 minutes.

The tube was removed from the furnace and mounted vertically using clamps. A tee valve

was installed at the top of the tube and a drain nipple was secured at the tube’s bottom. The slurry

was then poured down the inside of the tube and allowed to drain. After the slurry application, a

PTFE tube was secured to the top of the tee and air was flown with a syringe pump at a rate of 1

ml/min for an hour. The tube was then inserted into the furnace and heated to 100 ◦C at a ramp

rate of 1.4◦C/min. The tube was heated at this temperature for 1 hour, then the temperature was

ramped up to 500 ◦C (1.4 ◦C/min) and the tube was calcinated for 1 hour. The temperature was

ramped down to 30 ◦C at the same ramp rate. Five washcoats were prepared following the steps

mentioned above. A final layer of the ZrO2 support was added to the tube by leaving the slurry

inside the tube for 10 hours before drainage, followed by air drying and calcination. The slurry

setup and washcoat tubes are shown in Figures 7.5 and 7.6.
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Figure 7.5: Slurry application setup.

Figure 7.6: Wet ZrO2 washcoat monolith at the end of FeCrAlloy reformer tube prior to calcination
and Ni catalyst embedment.
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7.3.3 Catalyst Preparation

After calcination of the fifth ZrO2 monolith, a 40 wt % nickel (II) nitrate hexahydrate (99.999%

trace metals basis, Sigma Aldrich) was prepared and stirred in a 25 mL deionized aqueous solution

for 5 minutes at 400 rpm. The solution was dropped into the vertical FeCrAl alloy tube via pipette

and was allowed to sit for 1 minute before being drained, dropwise, into a 100 mL beaker. Once

the first nickel monolith was applied, the tube was air-dried for 30 minutes before undergoing cal-

cination at 110◦C for 1 hour, then at 500 ◦C for 1 hour (1.4 ◦C/min). A second nickel monolith

was added to the reactor tube and remained in the tube for 12 hours. Following the draining of

any residual nickel nitrate, calcination was performed once more with the previous procedure. The

estimated loading of Ni on ZrO2 is 50-80 mg.

7.3.4 Catalyst Reduction

A proper reduction technique was developed to initialize the catalytic activity of Ni/ZrO2

before each experiment. For reforming, reduction of the Ni surface sites with high temperature H2

reverts any metal oxides into their original metallic forms, thereby regenerating the catalyst. For

this reason, the reduction procedure was performed 12 hours prior to every steady-state, PI-control,

and MPC experiment.

An ATS cylindrical heating element, coupled with a PI temperature controller, served as the

heating element for the reduction procedure. The first step of the procedure increased the temper-

ature of the reactor tube to 110 ◦C (at a rate of 5 ◦C/min). After 1 hour at 110◦C, the PI controller

ramped up the reactor temperature to 850◦C (at a rate of 5 ◦C/min) where it remained for 4 hours.
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Subsequent cooling to 20◦C occurred at the previous ramp rates. Constant flows of N2 and H2

(96 sccm and 64 sccm, respectively) were maintained throughout the temperature schedule. After

reduction, and prior to the start of any experiment, the catalyst was preserved with low-flowing N2

and H2 (30 sccm and 17.7 sccm, respectively).

7.4 Feedback Control for Experimental Data Collection

The experimental SMR system requires a controlled increase of the temperature to prevent

harming the catalyst. At the same time, it offers an opportunity for controlling gas phase concen-

trations with a PI controller, since the GC measurements are needed to generate data that can be

used for model development.

7.4.1 Temperature Control for Data Collection

As discussed in Chapter 6, the temperature increase should be limited to 6 ◦C/min to prevent

catalyst degradation. If the reformer temperature rapidly increases or decreases, a change in the

crystal structure of the catalytic monolith may occur by sintering and bring about changes to the

Ni/ZrO2 surface and bulk morphologies. The suggested constraint is around 6 ◦C/min and the

temperature ramping trend should be linear. Since the temperature and current relationship is not

linear (explained in detail in Section 7.6), a constant increment in current would cause more than 6

◦C/min at the higher temperature range. Thus, PI control can manipulate the power supply current

to increase/decrease the reformer temperature in gradual increments.

An additional constraint is used to limit the gain of the current-controller in order to generate
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a linear increase in the reformer temperature when approaching the temperature setpoints. If the

current-controller is too aggressive, a 6 ◦C/min temperature setpoint increase may result in a

significant initial jump in current, and 60-80% of the final setpoint value is achieved in the first few

seconds of controller action. In this case, the controller continues to slowly decrease the current

over the next few minutes to remain at the temperature setpoint. Even though the average ramp rate

may be within the ◦C/min constraint, the release of large amounts of electrons during the initial

time steps of controller action leads to a sharp increase in the temperature derivative, violating

the temperature rate of change constraint, and possibly inhibiting Ni surface sites by promoting

sintering processes. Thus, to keep the temperature derivative constant at 6 ◦C/min, the current

should not change more than 2 A in one time-step. As it is explained in Section 7.6.2, 1 A increase

in the current can lead to an increase of up to 39 ◦C (if a final steady-state is reached). However,

the way that the controller works is that it first causes a sharp increase in the current within 1 to

2 A, after which the current gradually decreases to preserve a linear change in temperature. This

behavior is illustrated in Figure 7.7.

7.4.2 Steady-state Data Collection

Following the tuning of a controller to linearly increase the reactor temperature, experimen-

tal data at specified temperatures were collected to determine the SMR reaction kinetics and to

quantify radial heat transfer. A range of thermal conditions were designated as steady-state set-

points. The temperature was slowly increased to those temperatures and multiple GC injections

were made at a steady-state temperature, and subsequently, the PI controller drove the process to

the new temperature target. To limit the deactivation of Ni/ZrO2 catalyst, the PI controller was used
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Figure 7.7: Linear temperature increase under control and corresponding current manipulation.

to drive the outlet temperature of the reactor from 550 to 800 ◦C in increments of 50 ◦C gradually

over a certain time window. The corresponding current ranges between 23 A to 34 A depending

on the heat transfer coefficient. However, Figure 7.8 demonstrates that, after the controller drives

the reactor temperature to a new setpoint temperature, the current is gradually decreased to keep

the temperature at the setpoint. This would suggest that the system is not at a thermal equilibrium

as long as the current keeps decreasing. The main reason for this is the fiberglass insulation that

surrounds the tubular reactor. The heat conduction from the surface of the reactor to the fiberglass

is very slow since fiberglass has a very low heat conduction coefficient. As a result, the increase

on the fiberglass surface temperature is not as fast as the temperature increase on the reactor outer

wall. When the reactor wall is driven to a steady-state temperature, the insulation is at a lower

temperature due to slow heat conduction. As the controller keeps the reactor wall temperature

constant, the fiberglass slowly continues increasing in temperature, resulting in lower heat loses as

time progresses. Hence, the controller reduces the current input to the reactor to keep it at a steady
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temperature. This is an indication that the heat transfer coefficient for the heat lost to the surround-

ings is not constant. Also, a large temperature difference in excess of 50 ◦C was seen between the

reformer’s inlet and outlet after the start of the endothermic SMR reactions that consume heat at

the inlet section.
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Figure 7.8: Steady-state data collection with a Joule-heated energy source for experimental param-
eter calculations. Temperatures range from 650 ◦C to 800 ◦C for the outlet thermocouple. Each
steady-state condition was maintained for 110 minutes.

A feed mixture of CH4, H2O, H2, and Ar (39.47/119.5/17.7/6.47 sccm) was sent to the reac-

tor at 1 atm for all steady-state and dynamic control experiments. Each steady-state temperature

was maintained for 110 minutes, giving ample time for kinetic equilibrium to occur and for the

minimization of thermal gradients in the reactor insulation. The high temperature data collection
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experiment is shown in Figure 7.8. Six flowrate samples from the GC were averaged at each

temperature to determine the steady-state effluent flowrates. When the outlet temperature of the

reformer tube was 500 ◦C, the conversion of methane was 7%, compared to 99% at 800 ◦C. Above

650 ◦C, the reverse WGS reaction is favored, leading to greater CO selectivity over CO2. Figure

7.9 confirms this activity and the maximum selectivity towards CO2 production occurs at 650 ◦C

when the ratio of CO2:CO is 1.31 (Figure 7.10b). The average hydrogen production rate at 800

◦C was 149.6 sccm, and the average absolute errors between the computational model of Chapter

6 and laboratory results in Figure 7.9 were 1.59, 3.43, 1.45, and 2.47 sccm for CH4, H2, CO, and

CO2, respectively. Most of the variability in H2 measurements occurred at the 650 ◦C and 700

◦C steady-states. The high error is attributed to increasing catalyst deactivation coupled with axial

and radial thermal gradients introduced by catalytic inhibition. Experimental errors in the GC total

mixture percentage also peaked around the 650 ◦C and 700 ◦C steady-states, leading to additional

variability in the measurements of all gas species at these temperatures. The GC total mixture

percentage should equal 100% for a perfectly calibrated system. In practice, it is found that the

total mixture percentage is somewhere between 101 – 105%.

The thermodynamic efficiencies for steady-state conversion of CH4 at 650, 700, 750, and 800

◦C outlet temperatures are given in Table 7.1. CH4 is initially an energy carrier and the efficiency

of transforming CH4 into H2 is an essential metric for the overall SMR process. Heats of reaction

for steam methane reforming were calculated using the heat capacities (CP) for all reactants and

products of the first SMR reaction. Similarly, the enthalpy required to heat the inlet gases to the

average reformer temperature was calculated by integrating their respective CP values over the

temperature differential between the laboratory conditions and the inside of the reformer. The

285



400 500 600 700 800
Temperature (°C)

0

20

40

60

80

100

120

140

160

Vo
lu

m
et

ri
c 

Fl
ow

 R
at

e 
(s

cc
m

)

CH4 MODEL
CH4 EXP
H2 MODEL
H2 EXP
CO MODEL
CO EXP
CO2 MODEL
CO2 EXP

Figure 7.9: Steady-state experimental data and model predictions over the 400 ◦C to 800 ◦C
temperature range. For the experimental dataset, average steady-state temperatures are reported.
Error bars represent the standard deviations of volumetric flowrates.

efficiency calculation is given by the following equation:

eff =
∆HT, SMR × (CH4, Molar flowrate In − CH4, Molar flowrate Out) + ∆H Inlet Gasses

Average Power Input
× 100% (7.7)

where the thermodynamic efficiency of CH4 conversion is equal to the ratio of the heat of reaction

for the first SMR reaction at a given steady-state temperature times the molar flowrate of converted

CH4 plus the energy requirement to heat the inlet gasses to the steady-state temperature over the

average power input. An optimal thermodynamic efficiency of 10.69% was achieved for the elec-
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Table 7.1: Thermodynamic reaction efficiency for steady-state CH4 conversion rates.

Average Reformer Temperature (◦C)
632 681 730 776

∆H T, SMR (kJ/mol) 232.46 235.5 239.01 242.81
CH4 Conversion Energy Requirement (Watts) 4.79 5.98 6.82 7.09

∆H for Inlet Gases (Watts) 2.74 2.96 3.21 3.43
Average Power Input (Watts) 84.51 86.58 93.81 103.39

CH4 Thermodynamic Reaction Efficiency (%) 8.91 10.33 10.69 10.18

trified SMR system at the 730 ◦C steady-state condition. This corresponds to an outlet temperature

of 750 ◦C, an average CH4 conversion of 94.1%, and a CO2:CO ratio of 0.396. The 681 and 776

◦C steady-states generated efficiencies over 10% as well, signifying the relative optimality of the

700 to 800 ◦C outlet temperature range.

The experimental electrified SMR system includes an ATS split-tube electric furnace. To con-

firm the proper workings of the Joule-heated reformer, the electric furnace was used as a standard

for comparison. The heating profile of the electric furnace is axially parabolic, with the center of

the furnace holding the peak temperature set by the Watlow PI controller using an Omega K-type

heavy-duty thermocouple for temperature sensing. As a result, the heat profile was at a minimum at

the inlet and outlet of the reformer. Except for the ATS specification limits of 1100 W , 115 V , and

9.6 A, the real-time power output of the electric furnace was not known during steady-state data

collection. In spite of this, it was expected that the steady-state CH4 conversion and CO2:CO selec-

tivity should be comparable to the Joule-heated energy source given that the average temperatures

of the two heating elements were within 20 ◦C. The CH4 conversion for both heating elements

was 100% at 800 ◦C and 94% at 750 ◦C, indicating identical catalytic performance at the upper

operational limits of the reformer. At 650 and 700 ◦C, the electric furnace converted 5% and 3%

287



more CH4 than the Joule-heated furnace which was within the range of experimental error (Figure

7.10a). Thus, the Joule-heated reformer adequately supplied energy to the outer reactor shell in

the form of heat. Additionally, the CO2:CO selectivity for the heating elements was comparable

for all steady-state measurements (Figure 7.10b), except for 650 ◦C which produced selectivities

of 1.35 and 1.04 for the Joule-heating system and the electric furnace system, respectively. A dif-

ference in shape of the heating profiles of the heating elements may have caused the deviation in

CO2 products between the two experiments. It is also possible that catalyst deactivation may have

influenced the SMR reaction rates during the electric furnace experiment.
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Figure 7.10: Steady-state data collection from two energy sources: Joule-heated setup and electric
furnace setup.
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7.5 Modeling

7.5.1 Lumped Parameter Model

Real-time MPC of the SMR system requires a model that can be solved sufficiently fast in

real-time on the order of seconds. SMR reactions occur in a tubular flow reactor, which would

require solving partial differential equations (PDEs) to account for spatio-temporal evolution of

variables such as species concentrations and temperature. Solving PDEs require commercial CFD

software (e.g., Ansys Fluent, Comsol, etc.) and the solution time may be on the order of hours

to days depending on the model detail. Thus, building an MPC based on a CFD model is not

appropriate for real-time control purposes. In order to efficiently solve the mass and energy bal-

ance equations in real-time, the flow reactor is approximated as a continuously stirred tank reactor

(CSTR) modeled by a lumped parameter ordinary differential equation (ODE) system, which is

much faster to solve with methods like Runge-Kutta or Explicit/Implicit Euler. This brings a trade-

off between the accuracy of the ODE model solution and numerical simulation speed. A lumped

parameter approach sacrifices some accuracy in the resulting model as it does not account for spa-

tial variations of the process state variables but it enables real-time solution calculations with a

sufficient accuracy. Below, the lumped parameter model equations are given; the derivation of the

lumped model can be found in Chapter 6.

The reaction mechanisms of SMR on Nickel-based catalyst were investigated by [215], from
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which the reaction rate equations were as follows:

r1,SMR =
k1
P 2.5
H2

·
PCH4 · PH2O −

P 3
H2

·PCO

K1

(DEN)2
(7.8a)

r2,WGS =
k2
PH2

·
PCO · PH2O −

PH2
·PCO2

K2

(DEN)2
(7.8b)

DEN = 1 +KCO · PCO +KH2 · PH2 +KCH4 · PCH4 +KH2O ·
PH2O

PH2

(7.8c)

kj = Aj · exp
(
− Ej

R · T

)
, j = 1, 2 (7.8d)

Ki = Ai · exp
(
−∆Hi

R · T

)
, i = CH4, H2O,CO,H2 (7.8e)

and the mass balances for our electrified SMR system are as follows:

dCCH4

dt
=

1

VR

(FCH4,0 − r1 ·W − q · CCH4) (7.9a)

dCH2O

dt
=

1

VR

(FH2O,0 − (r1 + r2) ·W − q · CH2O) (7.9b)

dCCO

dt
=

1

VR

((r1 − r2) ·W − q · CCO) (7.9c)

dCH2

dt
=

1

VR

(FH2,0 + (3 · r1 + r2) ·W − q · CH2) (7.9d)

dCCO2

dt
=

1

VR

(r2 ·W − q · CCO2) (7.9e)

dCAr

dt
=

1

VR

(FAr,0 − q · CAr) (7.9f)

The solution of the above equations require to express the molar flowrate (Fi) in terms of concen-

tration (Ci) and volumetric flowrate (q). Specifically, the volumetric flowrate will vary based on

temperature as in Eq. 7.10 below:

q =
FT0 + 2 · r1 ·W

P
RT

+
VR

T
· dT
dt

(7.10)
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7.5.2 Model Initialization

Molar and volumetric flowrates for steam are not measured via measurement sensors. Still,

using the available flow equations, the following equations can be solved simultaneously with a

good initial guess for the steam molar flowrate:

0 = q − FRT

P
(7.11a)

0 = q − FT0 + 2 · r1 ·W
P
RT

− VR

T
· dT
dt

(7.11b)

where F is the total flow rate, Eq. 7.11a is the ideal gas law and Eq. 7.11b is the expression of

the volumetric flowrate. The first reaction rate (r1) is a function of gas species partial pressures,

including steam, which is shown in Eq. 7.8a. Eq. 7.12 below can be utilized to calculate the partial

pressure of each species required in the rate equation:

Pi =
Fi

FT

P (7.12)

where Fi and Pi are molar flowrate and partial pressure of each gas species, respectively. These

equations can be used to initialize the ODE solver of the process dynamic model at a steady-state.

The molar flowrates are obtained from the GC-based calculations, while temperature values are

measured by the two thermocouples. Once the system reaches steady-state, the total volumetric

flowrate (q) and the steam flowrate (FH2O) are calculated, and the ODE solver is initialized to
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calculate the rest of the process variables.

7.5.3 Parameter Estimation using Experimental Data

Our previous computational study in Chapter 6 suggested an approach for using a lumped

parameter model in a model predictive controller that does not use the thermodynamic energy

balance for temperature estimation, rather it uses a data-driven first-order dynamical model that

relates the applied current to the reactor temperature. However, due to the nonlinear nature of heat

transfer in steam methane reforming, first-order linear dynamic models can only capture the reactor

temperature behavior within the region where the linear model is valid. To create a more accurate

model over the entire operational temperature range, a comprehensive energy balance is used in

the present work. Using a lumped parameter assumption, the energy balance takes the following

form:

dT

dt
=

I2R̄ +
∑

i ṁpiCpi(Tpi − T )−WrSMR∆HSMR(T )−WrWGS∆HWGS(T ) + UA(Ts − T )∑
i ρiCpiV

(7.13)

where the I2R̄ term represents the heat given to the system by the power supply and can be read

from the sensors. The reaction enthalpies at specific temperatures can be calculated mathematically

using the Shomate equation [164] which accounts for the heat capacity and formation enthalpies

at standard state (298 K, 1 atm). The reactor is cooled by the surrounding ambient temperature,

which is accounted for in the UA(Ts − T ) term. Thus, the only unknown in the energy balance

is the UA term, which is the overall heat transfer coefficient times the heat transfer area. In a

perfectly insulated system, the U term would be zero and the system would not lose any heat to
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the surroundings. In that case, there must be a cooling stream, such as a jacket, around the reactor

to reduce the reactor temperature when necessary. Furthermore, experimental systems are not

ideal systems, and despite the use of an insulation layer in our reactor, there are heat losses to the

surroundings. The UA term can be estimated by fitting experimental temperature data to the mass

and energy balances, Eq. 7.9 and Eq. 7.13, respectively. To fit the data, steady-state operating data,

such as the experimental data shown in Figure 7.8, can be used directly without de-noising. Figure

7.8 illustrates the conditions for four steady-states at 650 ◦C, 700 ◦C, 750 ◦C, and 800 ◦C. Thus,

this data is fitted to nonlinear mass and energy steady-state balances to estimate the UA value [29].

As a result of the data fitting procedure explained in [29], the UA term is estimated to be 0.116

J · (s ·K)−1. Finally, in our previous work [29], we demonstrated the fitting of the experimental

data to the reaction kinetics equation described by [215] to estimate the pre-exponential factor and

activation energy, and the results showed very close correspondence.

7.5.4 Model Evaluation

The model predictive controller will use the lumped model described in Section 7.5.1. This

model assumes that the mixing is perfect and the temperature and concentration profiles are uni-

form everywhere in the reactor. Note, in a tubular reactor, the reactions occur in the axial direction

and neither the temperature nor the concentrations are uniform. The gas mixture starts reacting in

the inlet section of the reactor where the highest heat consumption occurs due to the endothermic

SMR reaction. This causes a significant temperature drop at the inlet section of the reactor which

is evident when analyzing thermocouple values over the axial length of the reactor. The maximum

temperature difference over this length is around 100 ◦C. This brings about the question of which
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temperature to use in the lumped model. One effective approach is taking a weighted average of

top and bottom thermocouples to be the lumped model temperature.

To find meaningful weights for averaging the reactor temperature, available data from flowrate

feedback control were used. In this instance, various weights were used to find the best match-

ing outlet flowrate and temperature prediction. Since the heat transfer coefficient term (UA) was

known, providing the experimentally recorded current values to the energy balance equation (Eq.

7.13) was sufficient to estimate the reactor temperature. The estimated temperature was subse-

quently compared to the weighted average of experimentally recorded inlet and outlet thermocou-

ple values.

To compare the model predictions with recorded thermocouple temperatures and GC con-

centrations, the numerical ODE solver that integrates the mass and energy balances (Eq. 7.9, Eq.

7.13) is provided with an initial condition. However, the gas chromatogram provides only molar

flowrates of CH4, H2, CO, CO2, and Ar. Steam concentration is not measured in the reactor ef-

fluent, as steam is condensed before the GC feed. As a consequence, initializing the ODE solver

requires estimates for the outlet steam molar and volumetric flowrates. The two equations shown

in Eq. 7.11 were solved simultaneously for a given steady-state to get an estimate of outlet steam

molar and volumetric flowrates. Once FH2O and q values are estimated, the solver can be initial-

ized.

In each experiment, multiple GC injections are taken at each steady-state (5-6 injections per

steady-state temperature). If the experiment performs flowrate control, the controller is initial-

ized after multiple GC injections at the outlet section temperature of 550 ◦C steady-state. To find

the top and bottom thermocouple weights, the model is initialized at the steady-states and inte-
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grated with respect to the recorded experimental current values. After trying many combinations

of weights for the top and bottom thermocouples, the optimal weights are estimated to be 60% of

the top thermocouple value and 40% of the bottom thermocouple value. This also corresponds to

the vicinity of the experimental steady-state H2 flowrate value at the weighted temperature. The

overall temperature of the reactor for model calculations is based on these weights. Since the ma-

jority of CH4 conversion occurs at the inlet section of the reactor, giving more weight to the top

thermocouple provides a better representation of the reactor heat profile when compared to taking

the arithmetic mean of the two thermocouple values. The model predictions with the respective

weights are shown in Figure 7.9, for one of the feedback control experiments later explained in

Section 7.6.1. This model takes only recorded experimental current as an input, calculates tem-

perature values, gives continuous predictions of the gas specie concentrations. The predictions are

compared to discrete GC measurements in Figure 7.11.

Remark 38 The UA term must be calculated with respect to the weighted average temperature.

Thus, each weight tested with the experimental data must calculate a unique UA value. The data

fitting of UA term shown in Section 7.5.2 is calculated for the weights obtained in this section.

Carbon Formation Effect

In any SMR system, a common disturbance process is the formation of carbon (coke) on

the catalyst throughout the reactor. A carbon layer is formed on the catalyst and blocks available

surface sites, decreasing the catalytic performance [111]. The side reactions that take place in Eq.
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Figure 7.11: Model predictions for outlet CH4 and H2 molar flowrates when experimental current
is provided.

7.14 cause coke formation.

CH4 ⇌ 2H2 + C, ∆H298 = 75 kJ ·mol−1 (7.14a)

2CO ⇌ CO2 + C, ∆H298 = −172 kJ ·mol−1 (7.14b)

This initially formed carbon, Cα, is very active and some carbon atoms are transformed to Cβ .

For Cβ , atoms may be vaporized and the remaining portion can diffuse within the catalyst. This

diffusion can make the carbon nucleate and precipitate at the back of the catalyst, causing the

catalyst to lift, triggering fragmentation of nickel crystallite [220]. Coke formation is therefore

detrimental to the catalyst and hard to avoid. When the carbon atoms are counted in the inlet stream

(from CH4) and outlet stream (from CO, CO2, and unreacted CH4). Figure 7.12 demonstrates the
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difference for the steady-state data collection experiment in Figure 7.8.
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Figure 7.12: Average carbon balance and GC errors for the steady-state data collection experiments
shown in Figure 7.11.

The carbon deposition effect can be reduced using methods like the gasification of the carbon

layer to refresh the catalyst. As a part of the SMR system experimental procedure, H2 and steam

are used to gasify the carbon layer on the reactor catalyst for 5 minutes at the beginning and end

of each experiment. However, coke formation may have caused deviations in modeling results

due to carbon losses in the carbon mass balance for experimental data. Also, this phenomenon is

very challenging to quantitatively model, and furthermore, it is difficult to eliminate coke while

the SMR process is already running. [48] and [6] worked towards measuring the rate of carbon

formation and proposed the rate equations shown in Eq. 7.14, which were developed under certain
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assumptions. For example, [48] assumed the decomposition of CO (Eq. 7.14b) to carbon was

dominant. However, both our steady-state and dynamic data do not support this assumption. If the

coke formation is mainly caused by CO according to Eq. 7.14b, CO2 flowrate estimation from the

model should be smaller. However, CO2 has larger estimated flowrate values when compared to

the experimental data shown in Fig 7.13, implying that this assumption may not be valid for our

process.
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Figure 7.13: Model predictions for CO and CO2 when experimental current is provided. The CO2

flowrate estimations demonstrate some deviation from the experimental results, which might be
due to coke formation at higher temperatures.

7.6 Feedback Control of Hydrogen Molar Flowrate

7.6.1 Experimental PI Control

In order to evaluate the efficiency of a model predictive controller in terms of speed of re-

sponse, a control study with only sensor feedback is first conducted. In this control scheme, the

controlled variable is the outlet H2 flowrate and the manipulated variable is the current. As the

SMR is an overall endothermic process, the equilibrium constant will increase as temperature in-

creases, and the process will produce more H2. The temperature controller drives the process from

room temperature to the first steady-state at 550 ◦C in the bottom temperature, which corresponds
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to 500 ◦C in terms of the weighted average temperature. Then, the H2 flowrate controller takes

over and drives the process to the 120 sccm setpoint decided in [29]. Theoretically, it requires

102.3 sccm of H2 produced from the reaction (given that 17.7 sccm of H2 is in the inlet flow rate

to the reactor). According to the stoichiometric ratio of CH4 and H2 in Eq. 7.8, the minimum CH4

consumption is 25.575 sccm if 4 moles of H2 is produced from 1 mole of CH4 (64.8 % conver-

sion), and maximum is 34.1 (86.4 % conversion) sccm if 3 moles of H2 is produced from 1 mole of

CH4 (excluding WGS reaction), respectively. However, it is important to note that this theoretical

conversion range is calculated without considering the coke formation.

The inlet flowrates of CH4, H2O, H2, and Ar remained unchanged from the steady-state ex-

periments to maintain a gas hourly space velocity (GHSV) of 1000. Finally, after the setpoint is

reached and GC injections are taken for at least 324 minutes, the temperature controller takes over

the process once more upon re-initialization in order to decrease the reactor temperature to ambient

conditions. The GC data points are delayed by 15 minutes and updated every 18 minutes. Thus,

the state seen by the controller is constant at the GC output for 18 minutes. However, the integral

term in the controller keeps integrating the error, causing a continuous increase in the controller’s

current output being sent to the power supply on a per second basis. The controller was tuned in

[29] using a computational process model. The final parameters found from this simulation were

K = 0.0012 A/sccm, and τI = 79 s and have been adopted by the concentration PI controller.

The results from the first PI control experiment are shown in Figure 7.14. The control behavior is

very consistent with the proposed control strategy in [29]. The controller drives the process to its

120 sccm setpoint without violating the current ramp rate and keeps the process at said setpoint

with only slight fluctuations around the target hydrogen production value. The H2 flowrate control
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Figure 7.14: First experiment under PI control based on GC feedback only.

experiment is repeated three times to show that this PI control scheme can drive the process at the

desired setpoint. The second experiment (Figure 7.15) confirms the ability of the PI controller to

drive the process to the desired setpoint.

Figure 7.17 demonstrates the error between the three PI control experiments and the closed-

loop model under PI control prediction. This is an indication that the model would perform fairly

well. The slight dynamic mismatch between 0 and 200 minutes might be due to the lumped param-

eter modeling. However, the mismatch at steady conditions between 300 and 400 minutes after the

control starts might also indicate some other phenomena, especially for the third PI experiment.

While interpreting the result, it is crucial to note that the reverse water gas shift reaction is
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Figure 7.15: Second experiment under PI control based on GC feedback only.

favored around the setpoint. WGS reaction is slightly exothermic, and as the temperature increases

the equilibrium shifts toward producing more CO and less CO2 and H2. Thus, at this point, the

H2 production is mainly maintained by the reforming reactions. At lower temperatures, 1 mole of

methane produces roughly 4 moles of H2, and as the reverse WGS takes over, 1 mole of methane

produces 3 moles of H2. However, as the temperature increases, the reforming reactions become

faster and still produce more H2 compared to lower temperatures. This phenomenon can be seen

in Figure 7.9. Around 650 ◦C, the CO2 flowrate is decreasing while the CO flowrate is increasing.

Also, after 650 ◦C, the slope of the H2 flowrate production decreases as temperature increases.

Thus, in the PI experiments, the setpoint of 120 sccm is usually at a transition area for WGS and
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Figure 7.16: Third experiment under PI control based on GC feedback only.

reverse WGS. Hence, after this point, the controller increases the reactor temperature to produce

more H2, converting more methane.

It is also very important to keep in mind that the scatter plots for each gas specie demonstrates

when the GC measurement was taken and not when this measurement value was received by the

controller. Thus, the controller keeps driving the process based on the previous GC result, and the

integral term integrates the previous error. If the GC measurement is very close to the setpoint,

the controller tends to keep constant. However, as mentioned in Section 7.4.2, the constant current

increases the temperature due to delayed heating of the fiberglass. Thus, while the controller thinks

that the process is at steady-state, the gradual heating of the fiberglass is causing a temperature
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Figure 7.17: Absolute error of H2 (sccm) production with respect to simulated closed-loop re-
sponse under PI control.

increase in the reactor, thus a surge in the H2 concentration, even though the current seems to be

constant. Moreover, the controller can start decreasing the current only after the GC measurement

is obtained, meaning that the current was used for further increase of the H2 concentration when it

should have decreased. One clear example of this is the H2 flowrate increase in Fig 7.16 at 420th

and 450th minutes. To compensate for this increase, the controller quickly decreases the current,

and this delayed control brings the process to a state before the reverse water gas shift reaction is

favored. The further increase of the current triggers the reverse water gas shift and slows down

the H2 increase. This can be seen from the CO2 concentration trend change at 265th minute, where

the reverse WGS is triggered for the first time, and the 420th minute when the WGS reaction trend

changes one more time.

The third experiment (Figure 7.16) shows more variation as quantified in Table 7.2 in H2 mo-
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Table 7.2: Avg. absolute errors for hydrogen production (sccm) under PI control for different time
intervals (min).

Time (min)
Exp. 1 Exp. 2 Exp. 3

Avg. Err. (sccm) St. Dev. Avg. Err. (sccm) St. Dev. Avg. Err. (sccm) St. Dev.
0-99 31.29 11.67 36.57 15.57 41.96 14.14

100-199 5.99 6.02 9.59 6.14 11.31 7.52
200-299 4.25 2.07 4.62 2.78 10.29 12.19
300-399 2.18 0.79 2.54 2.39 11.64 3.48

lar flowrate around the setpoint. When CH4 conversion is checked in Figure 7.18, the H2 flowrate

is below the setpoint, and yet, methane conversion approaches 100%. At this point, side reactions

such as carbon formation (which is explained in Section 7.5.4) or catalyst deactivation might be

happening in addition to reverse WGS shift reaction becoming more dominant. However, the PI

controller still boosts the current to bring the H2 concentration to the target value. These phenom-

ena are not as severe in the first two PI control experiments, mainly because of the experimental

conditions. The lumped parameter steady-state model suggests that the process settles at 120 sccm

H2 production rate around 650 ◦C (temperature weighted average). However, depending on the

experimental variability of parameters (e.g., catalyst activity, coke formation, etc.), the steady-

state temperature and reverse WGS triggering varies. The first PI control settles at the steady-state

around 630 ◦C, and these temperatures are 715 ◦C and 695 ◦C for the second and third PI control

experiments, respectively.

The difference between the inlet carbon flowrate (coming from CH4) and the outlet GC mea-

surements’ carbon flowrate (coming from CO, CO2, and unreacted CH4) is shown in Figure 7.19

with respect to time and temperature. Overall, an increase in reactor temperature causes a greater

consumption of methane, and increases coke formation. At similar high temperatures, the third

PI control experiment produced slightly higher amounts of carbon, which might indicate that the
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Figure 7.18: CH4 conversion for the 3 PI control experiments.

catalyst was more deactivated compared to the first two experiments. Instead of producing more

H2, the catalyst favors more carbon formation. Hence, a higher conversion does not mean higher

H2 production, since methane might be consumed for coke production.

The temperature increment is targeted to be kept under 6 ◦C per minute to preserve the catalyst

activity. Thus, the PI controller was tuned to keep the catalyst under this constraint at all times.

Figure 7.20 displays the change in temperature each minute during the control experiments. The

temperature change each minute is around 2.5 ◦C. A more aggressive controller gain could have

been used for the PI for a faster response. However, even with the current parameters, the PI

controller causes an oscillation in each experiment. Thus, a higher Kc value would lead to higher-

amplitude oscillations which is undesired. Furthermore, these oscillations would become more

severe as the deactivation and coke formation effects become more significant.

The PI control experiments demonstrate that a PI controller with delayed measurements re-
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Figure 7.19: Difference between the inlet and outlet carbon atom flowrates.
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Figure 7.20: Change in the reactor outlet temperature over time for all PI experiments.

quires between 120 to 200 minutes to drive the process to the setpoint. Section 7.6 below focuses

on the improvements on the response time using an estimation-based model predictive controller.
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7.6.2 Model Predictive Control

The reaction kinetics are very fast for SMR reactions. The computational work done by [29]

demonstrates that the process is expected to settle at a steady-state within 1 second at 1000 GHSV.

Thus, even for a slight temperature change, the time required for reaching a steady-state is very

short. However, the allowed current increase rate prevents controllers from going to higher target

temperatures to reach the desired production rates faster than the ramp rate limits. PI controllers

might not provide the most optimal current input to the power supply at each time step. Instead,

an MPC would ensure that the most optimal input value is calculated at each time step without

violating the constraints. Thus, we examine the behavior of an MPC to make sure that this process

is driven to the desired H2 production rate in the most efficient way possible. The model estimation

and optimization are computationally inexpensive, such that all the calculations can be made on

LabVIEW in one second. However, the LabVIEW script runs many calculations in one loop.

Consequently, if a model solution calculation takes more than one second, there are delays on

the code execution. To prevent these time delays in computing the control actions, the MPC is

designed to make one calculation every 5 seconds.

The most important constraint given to the MPC is the 6 ◦C/min temperature change rate.

This constraint is therefore embedded into the MPC optimization problem. To do this, the be-

havior of the temperature against current was examined experimentally. Using the process model

explained in the previous section, a current against expected temperature graph is generated and

fitted to a 2nd order polynomial. The resulting polynomial is T (I) = 0.7I2+2.64I+290.7 with an

R2 value of 0.99, and the data fit is shown in Figure 7.21a. The MPC operates between 700-1100
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K, and thus, when zoomed into this operational region, it is possible to check if a linear constraint

can be given. The data points in this region were fit to a linear function via regression, and the

resulting function was found to be T (I) = 39.4I−186.2, which is illustrated in Figure 7.21b. The

data points show close alignment with the linear model. Thus, within this operation region, it is

safe to assume that a 1 A increase in current causes a 39.4 ◦C increase in temperature. Since the

MPC is designed to make a calculation every 5 seconds, the maximum allowed increase in current

corresponds to 0.13 A to satisfy the 6 ◦C/min temperature rate of change constraint used in the

MPC optimization problem.
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Figure 7.21: Current and temperature relation fitted for MPC current constraints.

Extended Luenberger Observer

In the MPC architecture, the model predictions are updated with feedback obtained from real-

time process measurement data. However, the measurement sensors do not yield volumetric and

steam molar flowrates. In this type of a feedback control problem, methods like Kalman Filter [78]

or Luenberger observer [104] help to combine the process model and sensor feedback values to
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obtain an estimate of the state of a system. Specifically, an extended Luenberger observer can be

developed for a dynamic system of the form:

ẋ = f(x, u) (7.15a)

y = h(x) (7.15b)

where x is the state vector, u is the control input vector, f(x, u) is a nonlinear vector function, y

is the measurement vector, and h(x) is the transformation vector function that transfers the state

value to the measurable physical information. Specifically, the extended Luenberger observer has

the following form:

˙̂x = f(x̂, u) +KELO(y − h(x̂)) (7.16)

where x̂ is the estimated state vector, y is the measured output, and KELO is the observer gain

matrix designed to ensure the convergence of the estimated states x̂ to the true states x.

In the implementation of the ELO to the experimental setup, the model predictions are cor-

rected by adding the difference between estimated values and sensor values, all multiplied by a

tuned gain value. In our work, tests on model predictions were performed to see if the model’s pre-

dictions could be updated using only temperature values (sampled each second) and H2 flowrate

values from a GC analysis (sampled every 18 minutes). In this way, the missing values are esti-

mated from the model and the correction terms bring all the estimations closer to their real values.

The ELO state estimates are subsequently sent to the MPC to optimize the current input for the

next sampling time (5 seconds). It is also important to note that the process model in MPC is not
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corrected by an estimation error term as future measurements are not available; rather, the ELO

is used to calculate the process state variables needed to initialize the process model used in the

MPC. The detailed derivation of the equations for ELO using the process model and the observer

gain matrix is presented in [29]. The experimentally tuned gain matrix (KELO) used in this work

is as follows:

KELO =

−0.01 0.05 −0.1 0.7 0.01 0.04 100

0.8 −0.60 0.2 2 0.005 0 0

 (7.17)

where the first row corresponds to the correction tuning values for the difference in temperature

and its effect on each of the species and the temperature. Each column shows the tuned values that

influence CH4, H2O, CO, H2, CO, Ar and temperature. The difference in H2 does not affect the

temperature ODE, since the first row of KELO mainly accounts for the temperature correction. The

second row represents the correction that is implemented for the difference between H2 production

estimation and GC value that corresponds to 15 minutes prior. This 15-minute delay causes jumps

in the ELO predictions. Also, since the H2 values correspond to those from 15 minutes before, the

ELO gain matrix should not have large gain to correct for the gas species at the current time step.

Finally, since the H2 concentration is controlled and the only sensor feedback for H2 is obtained

from the GC, the ELO output for H2 is tuned to be very close to the last GC measurement. Using
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the ELO, the MPC optimization problem implemented on our experimental setup is of the form:

J = min
I

∫ tk+Nh

tk

L(x̄(t), I(t)) dt (7.18a)

s.t. ˙̄x(t) = ODE(x̄(t), I(t)), x̄(tk) = x̂(tk) (7.18b)

F̄H2(t) = h(x̄(t)) (7.18c)

L(x̄(t), I(t)) = A(F̄H2(t)− FH2,sp)
2 +B(I(t)− Isp)

2 (7.18d)

t ∈ [tk, tk+2) (7.18e)

|I(tk)− I(tk−1)| ≤ 0.013 (7.18f)

0 A < I < 40 A (7.18g)

where the allowed current change is limited to 0.013 A per 5 seconds, the current range is bounded

between 0 and 40 A, Nh = 2 is the prediction horizon length, h(x̄(t)) is the transformation needed

to calculate the hydrogen outlet flow rate from the dynamic model states, the process model is the

ODE solver and the optimized cost function is the weighted summation of quadratic errors between

the H2 molar flowrate and the current state estimated by the model, and the current value and the

steady-state current estimation at the desired setpoint. The A and B values in Eq. 7.18d are taken

to be 1 and 0.01, respectively. The constraint on the rate of change of the current is imposed so that

the temperature in the reactor does not change so fast that the catalyst activity is compromised.

Remark 39 The sensor feedback for other gas outlet flowrates could be incorporated in the ELO

to improve the accuracy of the predictions. However, this would require tuning of more parameters

in the gain matrix and was not needed in the present experimental implementation due to the
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achieved closed-loop performance.

Adjustments to Experimental Conditions

We calculated in the beginning of Sec. 7.6.2 that the maximum amount of current increase is

0.013 A from the energy balance equation. However, the experimental setup is vulnerable to phe-

nomena that can cause discrepancies between the model and experimental outputs, such as carbon

formation, catalyst deactivation, change in catalyst activity, and delayed heating of insulation layer.

Thus, in the experimental setup, the same H2 production rate can be reached at slightly different

temperatures. As a result, if the process control system relies entirely on the model, it may end

up not reaching the setpoint experimentally even though the model calculates that the process is

at steady-state. In order to handle this type of situation, an integral term was added to the MPC

output to help the controller drive the process output to the setpoint. Considering that the integral

term will further increase the MPC output current, the maximum allowed current increment in the

MPC formulation was limited to a lesser amount than 0.013. In this case, the current input at each

time step was calculated using the following equation:

I(t̂) = Iinitial +
t̂∑

t=t0

∆IMPC +
1

τI

∫ t̂

t0

e(t) dt (7.19)

where t̂ is the current time step, Iinitial is the current recorded when the MPC starts, IMPC is the

current calculated by the MPC only, and e(t) is the error term between the setpoint and the ELO

H2 output. In this case, a τI value is selected, and the maximum amount of the current increment

provided by the MPC is limited to 0.008 A, which would modify the constraint in Eq. 7.18f. The
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integral error term is integrated with respect to the ELO output at each time step. The τI value

is chosen to be 434086 s, which is very high, to make sure that the impact of the integral term

is small. The main reason for this is that the ELO is tuned such that the H2 estimation is very

close to the previous GC measurement. Hence, until the GC is updated, the H2 prediction does

not increase, causing a significant accumulation of error. Also, it is not desirable for the integral

term to take a huge step and violate the current increase constraint. Finally, it is important to point

out that an alternative to the addition of an integral term in the MPC control action would be to

adopt an offset-free MPC scheme. In the present case, the impact of the integral term is really

small (owing to the choice of the gain parameter of this term) and only has an effect as the process

output approaches the steady-state; please see the experimental results in the next subsection.

In Section 7.4.2, it was discussed that the insulation layer undergoes a delayed increase in

temperature change. This implies that the heat from the reactor wall is conducted through the

insulation layer, and then heat is dissipated to the surroundings at 25 ◦C through convective heat

transfer. In the energy balance equation (Eq. 7.13), the heat loss is represented with the UA(Ts−T )

term, which only accounts for the convection, and is a linear expression. Since the nonlinear con-

duction heat transfer across the insulation layer is not represented here, it should be represented

by a different method for accurate MPC calculations. In order to do that, the heat transfer coef-

ficient times the surface area term in the process model is recalculated every 500 seconds using

the recorded reactor temperature data. This helps to lump convection and conduction into the en-

ergy equation and improve MPC predictions. To update the UA term, temperature derivatives are

calculated from data history using a centered finite-difference method. Following this, the corre-

sponding temperatures, currents, potentials and ELO predictions are evaluated. These parameters
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are used to minimize the distance between the experimental heat differential and Eq. 7.13 to find

the most optimal UA term through an SQP (sequential quadratic programming) solver. As the

UA term changes, the Isp term in the MPC formulation (Eq. 7.18d) that corresponds to the set-

point temperature changes as well. Thus, when the UA is recalculated, the procedure mentioned

in Section 7.6.2 is repeated with the new UA value used in the process model to update the current

setpoint.

Experimental data that the sensors are collecting are very noisy compared to simulation data.

For example, the resistance changes often during the experiment, due to oxidation of the current

collectors. The temperature signals obtained from the setup are not smooth due to environmental

factors and sensor noise. In order to mitigate the effects of the noise, a Savitzky-Golay filter was

applied with a polynomial order of 2 and window length of 40 seconds on current, temperature,

and resistance values. Savitzky-Golay filter fits a second order polynomial to the last 40 seconds

of data and uses the fitted polynomial data coefficients to estimate weights for smoothing the data

[154]. The process model takes data points on a per-second basis, and the noise from the sensors

causes noisy predictions. In addition to that, the ELO correction term might cause an amplification

of the noise that would be reflected to the output predictions. Thus, de-noising the aforementioned

signals will cause less fluctuating predictions in the subsequent gas flowrate estimations.

Experimental Implementation of MPC

The experimental real-time implementation of the proposed MPC control scheme is con-

ducted with the same initial condition and setpoint as the PI control experiments for a fair compar-

ison. We carried out two experiments under MPC using the same operating conditions and MPC
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tuning parameters. The MPC sampling time is 5 seconds in the experimental implementation and

the MPC was always solved within this time constraint. The first MPC experimental result is pre-

sented in Figure 7.22 and the second one is presented in Figure 7.23. From these two figures, it can

be seen that the MPC successfully drives the process to the setpoint in both experiments, estab-

lishing the reproducibility of this experimental MPC implementation. Furthermore, it can be seen

that it takes around 4 GC measurements for the output to reach the setpoint, which corresponds

to around 72 minutes of process operation time, which is a significantly shorter approach to the

setpoint than all the PI control experiments. Upon regulation at the setpoint, the GC results exhibit

less variability around the setpoint compared to the output under PI control. With respect to the

behavior of the control system, the current values calculated by the MPC change smoothly with

time, leading to a smooth change of the temperature evolution in the reactor. Finally, we note that

the chattering in the power signal is due to the noisy behavior of the voltage and current measure-

ment of the heating system and it is best to view the power consumption in terms of a sufficiently

long moving average that would yield the average value over time. We decided to present the in-

stantaneous power consumption in the plots, as it is the primary data, and one can easily determine

the average power from these results.
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Figure 7.22: First closed-loop experiment under MPC.
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Figure 7.23: Second closed-loop experiment under MPC.
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Chapter 8

Conclusions

This dissertation discussed the application of machine learning, and lumped parameter mod-

eling and advanced control strategies for an experimental electrochemical reactor and an experi-

mental electrically-heated steam methane reformer. Prior to experimental implementation of the

models and controllers, the experimental setups are digitalized using smart manufacturing guide-

lines on a LabVIEW interface. After the digitalization, an SVR-based hybrid model was used to

control C2H4 concentration with one PI-controller controlling surface potential despite the catalyst

deactivation and selectivity shift above a certain surface potential. Following this work, a MIMO

control scheme is proposed to control C2H4 and CO concentrations using two PI controllers con-

trolling surface potential and catalyst rotation speed using an LSTM-based process model that

behaved like a soft sensor to generate frequent concentration feedback. Then, the 2 PI MIMO

scheme is improved to an MPC control with improvement in the LSTM model. For real-time

implementation, the MPC model is linearized in real-time using a Koopman Operator, enabling a
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quadratic programming optimization. Predictive control shows a control time 3 times faster than 2

PI controllers. After the electrochemical CO2 reduction process control proposals were finalized,

the electrically-heated SMR process was modeled with a lumped-parameter model using a deriva-

tion for variable temperature change. An MPC scheme was proposed, however, the experimental

implementation posed challenges regarding the missing feedback of volumetric flow rates and wa-

ter concentration from the GC. This issue was overcome by introducing an extended Luenberger

observer to combine the lumped-parameter model with available GC and temperature sensor values

for a perfect control of the Hydrogen concentration by manipulating temperature through electrical

current.

Chapter 2 presented the implementation of support vector regression in an electrochemical

reactor to represent process variables and concentration relationships and proposed an approach

to combine the output of the SVR model-based gas-phase C2H4 concentration estimator with GC

measurements to control the concentration of ethylene in the reactor. As the electrochemical CO2

reduction and the reaction pathways are not fully known, current first-principal approximations

are inadequate to set up an efficient control scheme. Furthermore, catalyst deactivation in the

reactor was an inherent disturbance that increased process variability. To address this issue, the

SVR model was built to model the experimental concentration and catalyst deactivation over an

extensive window of operating conditions and was combined with first-principles modeling to

predict the gas-phase ethylene concentration. The integral of the current was introduced as an input

to contribute to the representation of the degradation of the catalyst, and the overall accuracy of the

model was increased with feature engineering. In addition, the GC measurements were introduced

to the controller to achieve a fully-closed-loop control scheme. Lastly, the economically-optimized
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energy-efficient setpoints were calculated, and the controller was shown to be successful, as it

could drive the process in the neighborhood of two energy-optimal set-points.

The approach shown in this report for the automation of the UCLA electrochemical reactor

could be broadly applicable. For simpler electrochemical reactions involving a single reaction

pathway, there is no challenge in selectivity and such systems require only the collection of electri-

cal current data which is generated every second from the potentiostat. When the system produces

more than one product, other analytical tools to quantify products should be implemented and au-

tomated. In chapter 2, we have demonstrated the online data processing of GC that automatically

quantifies gases, which could be readily translated to other electrochemical reactions involving gas

products. This approach could be expanded to other analytical and spectroscopic tools such as

high-performance liquid chromatography (HPLC), ultraviolet-visible (UV-Vis) spectroscopy, and

FTIR. Although the overall implementation process would be similar, it is important to note the

intrinsic differences of analytical sensors. Understanding the intrinsic nature (e.g., detection limit,

sampling, and response times) of sensors as detailed in this work will be the key to successfully

apply the developed automation and control approach to other electrochemical reactor systems.

Chapter 3 demonstrated the digitization of the UCLA experimental electrochemical reactor

using the Smart Manufacturing Innovation Platform and discussed the role of smart manufactur-

ing and how it can accelerate sustainable energy research. Smart manufacturing fundamentals

and concepts were explained and relevant examples from our previous works were given. The

data-dependent nature of the analysis and modeling of the experimental electrochemical reactor

(in order to overcome the lack of fundamental process understanding) was emphasized, and the

development and incorporation of automated sensors were discussed in detail. In particular, the
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principles for automating the gas chromatography sensor for real-time experiment automatic op-

eration and feedback control were elucidated. In addition, the chapter explained the SMIP ar-

chitecture and its capabilities including connectivity, data transfer, and use of Docker containers.

These features offered by the SMIP considerably accelerate data acquisition and analysis, as well

as machine learning modeling efforts, while keeping the proprietary data safe. The overall ap-

proach implemented on the UCLA electrochemical reactor is applicable to other experimental and

industrial reactors, as well as other unit operation processes. Once the sensor, actuator and reactor

profiles are developed, the automation, connectivity, and contextualization can be adopted by other

experimental groups working on other processes with minimal training and effort.

Chapter 4 presented the development and implementation of a recurrent neural network-

based modeling framework on an experimental electrochemical reactor. The RNN-based mod-

eling framework was used to represent relationships between process variables and gas product

concentrations at the outlet of the reactor. The proposed approach combined the output of LSTM

model-based gas-phase ethylene and carbon monoxide concentration estimators with GC mea-

surements to implement multivariable control of the production rate of these two products in the

reactor. Steady state data was used to construct a feedforward neural network for the calculation

of feasible operating points. Using this model and an optimization model, economically-optimal,

energy-efficient set-points were computed. In the absence of first-principle modeling descriptions

needed to implement an efficient control system for the reactor, experimental GC measurements

and data regression techniques were used to construct probable experimental trajectories for ex-

periments run over lengths of 7 hours while the GC data available is discrete in nature, and only

collected every 20 minutes. The enhanced trajectory dataset was used to train the LSTM model,
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which is the basis for the gas concentration estimator. In the implementation of the estimator-

based multi-input multi-output control system, the real-time GC measurements are fed back to the

controller for which the controller parameters have been tuned in different operating regions in

order to better respond to the nonlinear nature of the electrochemical process. The estimator-based

multi-input multi-output control system was successfully demonstrated to be capable of driving

the process outputs to a variety of optimal setpoints for C2H4 and CO.

In Chapter 5, a procedure to apply neural network model-based MPC to perform real-time

multivariable control for an experimental electrochemical reactor is presented; the approach in-

volves on-line linearization of the neural network model and is applicable to broad classes of

chemical processes. Specifically, in this study, an LSTM neural network model was used to cap-

ture the nonlinear dynamic input-output relationship to control an electrochemical reactor that

converts CO2 to valuable chemical products. The Koopman operator method was found to be able

to linearize the LSTM model efficiently (in terms of computational effort) and effectively (in terms

of model performance). Based on that method, a systematic approach was developed to linearize

a neural network model using linear regression, which is efficient and easy to implement. Open-

loop simulations were performed to evaluate the performance of the original LSTM and linearized

LSTM models, and the MPC developed based on the linearization of the LSTM model was ap-

plied to control the experimental electrochemical reactor. As the closed-loop results demonstrated,

the MPC calculates the optimal control actions with reasonable computation cost and successfully

drives the process outputs to desired set-point values. Furthermore, a transfer-learning scheme was

introduced to account for the data shift problem (due to catalyst activity variability every time a

new catalyst is introduced) by updating the LSTM model using new process measurement data.
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The transfer-learning method was demonstrated to be able to update the original LSTM model

with a limited amount of new data and computational resources. Finally, the updated LSTM model

and the resulting MPC were demonstrated to resolve the data shift problem by driving the process

outputs to the desired set-points in a closed-loop experiment under the new experimental (catalyst)

conditions.

In Chapter 6, it was presented that steam methane reforming could be made more sustainable

through replacing fossil fuel based heating with electricity, and being able to control this process

is the key to maximizing the energy efficiency. The experimental setup for a Joule-heated SMR

was modeled with first-principle nonlinear dynamic equations with parameters calculated using

experimental data. Set-point tracking control was simulated under PI control and MPC. It was

demonstrated that MPC leads to an optimal closed-loop response and is robust to disturbances.

Chapter 7 presented the use of steady-state experimental data to develop a lumped parameter

model for this process that was used in a model predictive control system. During the experimental

procedure, the temperature rate of change increase was kept within a 6 ◦C/min limit to prevent

thermal damage to the catalyst. The model was incorporated into an MPC scheme used to drive

the SMR process to a new H2 production setpoint. To prove the efficiency of the MPC, PI control

experiments were also conducted. While the PI controller successfully drove the H2 production to

the set-point under conditions like catalyst deactivation and coke formation, the MPC was found to

be more efficient with a significantly faster approach to the setpoint while respecting control action

constraints.
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