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Abstract

Background: Epidemiological findings are inconsistent regarding the associations between air 

pollution exposure during pregnancy and gestational diabetes mellitus (GDM). Several limitations 
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exist in previous studies, including potential outcome and exposure misclassification, unassessed 

confounding, and lack of simultaneous consideration of air pollution mixtures and particulate 

matter (PM) constituents.

Objectives: To assess the association between GDM and maternal residential exposure to air 

pollution, and the joint effect of the mixture of air pollutants and PM constituents.

Methods: Detailed clinical data were obtained for 395,927 pregnancies in southern California 

(2008–2018) from Kaiser Permanente Southern California (KPSC) electronic health records. 

GDM diagnosis was based on KPSC laboratory tests. Monthly average concentrations of fine 

particulate matter < 2.5 μm (PM2.5), <10 μm (PM10), nitrogen dioxide (NO2), and ozone 

(O3) were estimated using kriging interpolation of Environmental Protection Agency’s routine 

monitoring station data, while PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter 

and black carbon) were estimated using a fine-resolution geoscience-derived model. A multilevel 

logistic regression was used to fit single-pollutant models; quantile g-computation approach 

was applied to estimate the joint effect of air pollution and PM component mixtures. Main 

analyses adjusted for maternal age, race/ethnicity, education, median family household income, 

pre-pregnancy BMI, smoking during pregnancy, insurance type, season of conception and year of 

delivery.

Results: The incidence of GDM was 10.9% in the study population. In single-pollutant models, 

we observed an increased odds for GDM associated with exposures to PM2.5, PM10, NO2 

and PM2.5 constituents. The association was strongest for NO2 [adjusted odds ratio (OR) per 

interquartile range: 1.176, 95% confidence interval (CI): 1.147–1.205)]. In multi-pollutant models, 

increased ORs for GDM in association with one quartile increase in air pollution mixtures were 

found for both kriging-based regional air pollutants (NO2, PM2.5, and PM10, OR = 1.095, 95% CI: 

1.082–1.108) and PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter and black 

carbon, OR = 1.258, 95% CI: 1.206–1.314); NO2 (78%) and black carbon (48%) contributed the 

most to the overall mixture effects among all krigged air pollutants and all PM2.5 constituents, 

respectively. The risk of GDM associated with air pollution exposure were significantly higher 

among Hispanic mothers, and overweight/obese mothers.

Conclusion: This study found that exposure to a mixture of ambient PM2.5, PM10, NO2, and 

PM2.5 chemical constituents was associated with an increased risk of GDM. NO2 and black carbon 

PM2.5 contributed most to GDM risk.

Keywords

Gestational diabetes mellitus; Air pollution; PM2.5 constituents; Exposure mixtures

1. Introduction

Gestational diabetes mellitus (GDM), defined as diabetes diagnosed in the second or third 

trimester of pregnancy that was not clearly overt diabetes prior to gestation (American 

Diabetes, 2021), is a major pregnancy complication affecting approximately 7.6% of 

pregnancies in the U.S. (Casagrande et al., 2018). The prevalence of GDM has continued 

to increase globally over the past decades (Ferrara, 2007; Zhu & Zhang, 2016). GDM 

is associated with higher risk of short- and long-term adverse health outcomes in both 
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mothers and their offspring. Specifically, mothers who have GDM are more likely to develop 

type 2 diabetes, metabolic syndrome, and cardiovascular disease later in life (Daly et al., 

2018; Farahvar et al., 2019; Mirghani Dirar & Doupis, 2017; Tobias et al., 2017). For 

offspring, GDM increases the risk for several adverse outcomes, including preterm birth, 

fetal overgrowth, neonatal hypoglycemia, hyperbilirubinemia and hypocalcemia (Farrar et 

al., 2016; Martino et al., 2016; Yang et al., 2019), childhood autism, obesity, as well as 

diabetes and cardiometabolic disorders later in life (Clausen et al., 2008; Farahvar et al., 

2019; Jo et al., 2019a; Metzger, 2007; Nijs & Benhalima, 2020; Tam et al., 2017; Xiang et 

al., 2015; Xu et al., 2014).

A number of maternal characteristics have been identified as risk factors for GDM, including 

ethnicity, age, parity, genetic susceptibility, family history of diabetes, a history of GDM in 

a prior pregnancy, as well as lifestyle behaviors, obesity and hypertension (Chiefari et al., 

2017; Farahvar et al., 2019; Getahun et al., 2010; Hedderson & Ferrara, 2008). There is 

growing interest in understanding the potential role of environmental factors in triggering 

GDM and further providing preventive opportunities for vulnerable populations. Previous 

studies suggested that outdoor air pollution is related to the development of type 2 diabetes 

(Balti et al., 2014; Liu et al., 2019; Rao et al., 2015) through several pathways, including 

oxidative stress, systemic inflammation and endothelial dysfunction (Finch & Conklin, 

2016; Rajagopalan & Brook, 2012), each of which may cause insulin resistance (Brook et 

al., 2013) and result in subsequent diabetes. Air pollution exposure during pregnancy may 

also affect the development of GDM by similar mechanisms (Ben-Haroush et al., 2004). 

The emerging evidence indicates that higher preconception exposure to air pollution might 

be associated with elevated blood glucose levels associated with increased insulin resistance 

and GDM development (Najafi et al., 2020). An increasing number of epidemiological 

studies have examined the relationship between air pollution exposure and the risk of GDM 

(Choe et al., 2019; Choe et al., 2018; Fleisch et al., 2014; Fleisch et al., 2016; Hu et al., 

2015; Jo et al., 2019b; Malmqvist et al., 2013; Padula et al., 2019; Pan et al., 2017; Pedersen 

et al., 2017; Robledo et al., 2015; Shen et al., 2017; Yu et al., 2020; Zhang, et al., 2020a; 

Zheng et al., 2020), although conclusions are inconsistent regarding the effects of different 

air pollutants and exposure windows. A recent meta-analysis (Zhang, et al., 2020b) showed 

that maternal exposure to sulfur dioxide (SO2) during the first trimester was associated with 

elevated risk of GDM [odds ratio (OR) = 1.39, 95% confidence interval (CI): 1.01–1.77], 

while pre-pregnancy ozone (O3) exposure was inversely associated with GDM development. 

They did not observe any effect for fine particulate matter with diameter < 2.5 μm (PM2.5), 

< 10 μm (PM10) and nitrogen dioxide (NO2). However, in another meta-analysis (Hu et al., 

2020), only maternal first trimester exposure to nitrogen oxides (NOx) and second trimester 

exposure to PM2.5 and SO2 increased the risk of GDM (OR = 1.03, 95% CI: 1.00–1.07, per 

10 parts per billion increase in NOx; OR = 1.04, 95% CI: 1.01–1.09, per 10 μg/m3 increase 

in PM2.5; and OR = 1.25, 95% CI: 1.02–1.53, for high versus low SO2). High heterogeneity 

among studies were found in both meta-analyses. Reasons that may partially explain the 

variation in results include differences in study design, exposure assessment methods, 

exposure time windows, study region, population, covariates adjustment, and criteria for 

diagnosing GDM.

Sun et al. Page 3

Environ Int. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Several limitations exist in previous studies, including potential outcome misclassification 

and unmeasured confounding in the administrative databases (e.g., birth certificate) (Devlin 

et al., 2009), and exposure misclassification due to the sparsely-distributed monitoring 

stations. For PM2.5 exposure, most previous studies only examined PM2.5 total mass 

neglecting the different chemical compositions which have large spatiotemporal variations 

and affect health differently (Bell et al., 2007). Heterogeneity of PM is related to differences 

in source types, climatic and topographic conditions, traffic intensity and land use (Austin 

et al., 2013; Merbitz et al., 2012). There has been limited study of maternal exposure to 

PM2.5 constituents on the development of GDM (Robledo et al., 2015; Yu et al., 2020; 

Zheng et al., 2020). Nitrate (Robledo et al., 2015), organic matter, ammonium (Zheng et al., 

2020) and black carbon (Yu et al., 2020) may be the main components that are associated 

with GDM, but results are still inconsistent. Moreover, existing studies regarding PM2.5 

constituents assigned exposure to either the mother’s residence at delivery on birth records 

(Zheng et al., 2020) or to delivery hospital region (Robledo et al., 2015; Yu et al., 2020) 

without considering residential changes during pregnancy, which may induce differential 

exposure misclassifications. Further, most studies focused on exposure windows by trimester 

during pregnancy (e.g., the first and/or second trimester); only a few studies have examined 

effects of preconception exposures (Jo et al., 2019b; Rammah et al., 2020; Robledo et al., 

2015; Shen et al., 2017). Finally, studies regarding the joint effects of multiple air pollutants 

are sparse. Recent methodological developments allow for the consideration of multiple, 

correlated exposures. Notably, quantile g-computation (Keil et al. 2020) is a novel approach 

to study the effects of complex exposure mixtures. To the best of our knowledge, no study 

has explored complex air pollution mixtures effects on pregnancy complications such as 

GDM. Therefore, it is crucial to address these limitations and provide evidence to better 

understand the underlying mechanisms between air pollutants and GDM and further to 

develop targeted interventions.

In this study, we aimed to 1) investigate the relationships between GDM and maternal 

residential exposures to various air pollutants, including PM2.5, PM10, NO2, O3, and PM2.5 

constituents in a large population-based pregnancy cohort based on the Kaiser Permanente 

Southern California (KPSC) electronic health records (EHR) data between 2008 and 2018, 

and 2) examine the joint effect of the mixture of air pollutants on the risk of GDM.

2. Method

2.1. Study population

This retrospective cohort study included women who gave birth to singleton children 

between January 1, 2008 and December 31, 2018 at KPSC facilities, including 15 

hospitals and 234 medical offices across Southern California (Appendix A). Information 

on demographic characteristics, residential history, medical records, birth records and 

individual lifestyle was extracted from KPSC EHRs. Population selection process was 

outlined in Appendix B. In total, 395,927 pregnancies were included in the primary analysis 

after excluding women who were not KPSC members or with gestational age < 20 or > 

47 weeks (n = 8,912), without address data (n = 680), or with multiple birth (n = 7,454). 

We also excluded pregnancies with preexisting diabetes (n = 5,518), or missing GDM status 
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due to missing lab test results (n = 30,355). All addresses of residence were geocoded 

with the Texas A&M, NAACCR, Automated Geospatial Geocoding Interface Environment 

(AGGIE) Geo-coder (Goldberg et al., 2008). Gestational age was calculated from date of last 

menstrual period (LMP) and corroborated by early pregnancy ultrasonography. If LMP was 

unknown or if disagreement was found between dates estimated from LMP and sonogram, 

the date generated from the latter was used (ACOG, 2017).

This study was approved by the Institutional Review Board of KPSC and the University of 

California, Irvine.

2.2. Outcome: GDM

Most pregnant women were routinely screened for GDM between 24 and 28 weeks of 

gestation, with the exception of women at higher risk for GDM who are screened earlier in 

gestation. Two criteria for GDM testing were used: the Carpenter-Coustan criteria [a 1-hr 

50-g glucose challenge test (GCT) > 200 mg/dL or two abnormal values for 3-hour 100-g 

oral glucose tolerance test (OGTT), the cutoff values were fasting ≥ 95, 1hr ≥ 180, 2hr ≥ 

155, 3hr ≥ 140 mg/dl (Carpenter & Coustan, 1982)]; or the International Association of 

Diabetes and Pregnancy Study Groups (IADPSG) criteria [one abnormal value for 2-hour 

75-g OGTT, the cutoff values were fasting ≥ 92, 1hr ≥ 180, 2hr ≥ 153 mg/dl (Metzger, 

2010)].

2.3. Air pollution exposures

As described in previous studies (Laurent et al., 2016; Wu et al., 2016), hourly ambient 

air pollution measurements for PM2.5, PM10, NO2, and O3 were obtained for years 2007–

2018 from U.S. Environmental Protection Agency’s monitoring stations. Daily averages 

(24 h for PM2.5, PM10 and NO2, and an 8-hour window of 10 AM-6 PM for O3), and 

then monthly averages were calculated. Monthly averaged concentrations were spatially 

interpolated between stations using empirical Bayesian kriging (EBK). The EBK method 

was used in our previous research and showed cross-validation R2 ranging 0.65 to 0.75 (Wu 

et al., 2016).

Historical ambient monthly PM2.5 total mass and constituents (i.e., sulfate, nitrate, 

ammonium, organic matter and black carbon) from 2007 to 2017 were obtained from 

the fine-resolution geoscience-derived models developed by Dalhousie University, Canada 

(Meng et al., 2019b; van Donkelaar et al., 2019). This model provides validated and 

publicly-available PM2.5 outputs at a 1-km resolution over North America by combining 

chemical transport modeling (GEOS-Chem), satellite remote sensing of aerosol optical 

depth, and ground-based observations with a geographically weighted regression. The PM2.5 

mass estimates were generally consistent with ground PM2.5 measurements since 1999 (R2: 

0.6–0.85) (Meng et al., 2019a). For PM2.5 species, long-term cross-validated agreement of 

the model were high (R2 = 0.57–0.96) (van Donkelaar et al., 2019). In our study region of 

the southwestern US, agreement was highest for nitrate (R2 = 0.78) and ammonium (R2 = 

0.75), followed by sulfate (R2 = 0.59), organic matter (R2 = 0.52), and black carbon (R2 = 

0.42).
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Air pollution estimates were spatiotemporally linked to each woman based on the geocoded 

residential addresses during pregnancy. Residential histories with information on residential 

changes (address, start date and end date) were abstracted from KPSC EHRs. In our 

analysis, approximately 44% of the population moved during pregnancy, and 13% of them 

moved more than once. We temporally interpolated the monthly air pollution metrics to 

generate daily exposures from three months before pregnancy to delivery date using the 

TIMESERIES Procedure of the SAS 9.4 software (SAS Institute, Cary, NC). We then 

calculated month/trimester-specific and entire-pregnancy exposures by averaging the air 

pollution measurements in each specific time period: preconception (three months before 

conception), the first trimester (1st – 3rd gestational months) and second trimester (4th – 6th 

gestational months). Entire exposure was defined for the period from the date of conception 

to the date of delivery.

2.4. Covariates

Covariate data were abstracted from KPSC EHRs. Pregnancy-related covariates and 

potential confounders were selected a priori based on the existing literature (Eze et al., 2015; 

Thiering & Heinrich, 2015; Zhang, et al., 2020b), including maternal age, race/ethnicity 

(African American, Asian, Hispanic, non-Hispanic white, and others including Pacific 

Islanders, Native American/Alaskan and mothers with multiple race/ethnicities specified) 

and educational level (≤8th grade, 9th grade to high school, college < 4 years, and college 

≥ 4 years); median household income at block group level in 2013 (Nielsen) (CDC, 

2020); pre-pregnancy body mass index (BMI, kg/m2); exposure to active or passive (i.e., 

secondhand smoke) smoking during pregnancy; season of conception (warm: May-October; 

cool: November–April) and year of infant birth. Pre-pregnancy BMI was categorized as 

underweight (<18.5), normal (18.5–24.9), overweight (25.0–29.9) and obese (≥30.0). Pre-

pregnancy weight and delivery weight were used to estimate gestational weight gain that 

was categorized as inadequate, appropriate or excessive based on the Institute of Medicine 

and National Research Council guidelines (Rasmussen et al., 2009).

2.5. Statistical analysis

Distribution of selected population characteristics and exposures to PM2.5, PM10, NO2, O3 

and PM2.5 constituents were assessed, comparing women with and without GDM. Pearson’s 

correlation was used to examine the correlation between air pollution metrics; t-test was 

applied to determine the difference between GDM and non-GDM groups. To examine the 

associations between GDM and air pollution, we first used logistic regression to fit single-

pollutant models on exposure to PM2.5, PM10, NO2, O3 and each of the five selected PM2.5 

constituents during the entire pregnancy, in the preconception period and in the first and 

second trimesters. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated 

per interquartile range (IQR) increment for each air pollutant. Main analyses adjusted for 

maternal age, race/ethnicity, education, median household income, pre-pregnancy BMI, 

active or passive smoking during pregnancy, insurance type, season of conception and year 

of birth. Given the large spatial scale of the data, Moran’s I was used to test the spatial 

clustering for GDM. The Moran’s I was 0.07 (z = 20.01, p < 0.001). The spatial correlation 

is weak despite its statistical significance. County was fitted as a random effect to account 

for potential spatial clustering for GDM. Further, zip codes were fitted as a random effect 
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in the sensitivity analyses to account for smaller spatial scale clustering for the PM2.5 

chemical constituent model. Zip code was not included in the EBK model since the coarse 

exposure estimates based on kriging interpolation of monitoring stations can only reflect 

regional-level exposures and cannot accurately capture within-zip code exposure variability.

Further, we analyzed the joint effects of air pollution mixtures using the “qgcomp” package 

in R. G-computation is a causal inference method that can be seen as a generalization of 

standardization and computes estimates of the expected outcome distribution under specific 

exposure patterns. Quantile g-computation yields estimates of the effect of increasing 

all exposures by one quantile simultaneously, which is useful to estimate a causal dose–

response parameter of the entire exposure mixture in air pollution study. Quantile g-

computation can be described as a flexible extension of weighted quantile sum regression, a 

historical approach to model mixtures which uses a quantized exposure index with empirical 

weights for each exposure obtained from quantiles of the exposures (Keil et al., 2020). Yet, 

quantile g-computation can handle exposures that are not associated with the outcome of 

interest on the same direction, both negative and positive weights, and allows for non-linear 

and non-additive effects of individual exposures and the mixture. In multi-pollutant models, 

we included the following air pollutants that had positive associations with GDM in the 

single-pollutant models, simultaneously: 1) three krigged air pollutants (i.e., PM2.5, PM10, 

NO2); 2) five PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter and black 

carbon) with additional adjustment for PM2.5 total mass.

In sensitivity analyses, we further examined the influence of adjusting for gestational 

weight gain, which may be affected by the endocrine disruptors from air pollution and 

in the causal pathway of the development of GDM (Elobeid & Allison, 2008). However, 

gestational weight gain was not included in the main analysis as it may run the risk of 

conditioning on potential intermediate or collider. We also conducted sensitivity analysis 

restricting to non-movers, movers, frequent movers (i.e., mothers moved more than once 

during pregnancy), and solely using residential address at delivery without considering 

address history to explore the impact of residential changes. We further included daily mean 

temperature derived from a spatiotemporal, 4-km gridded, surface meteorological dataset 

(Abatzoglou, 2013) as a sensitivity analysis. Furthermore, we included a sensitivity analysis 

using a weighted quantile sum (WQS) regression approach as an alternative method of 

quantile g-computation. To examine potential critical windows at the monthly level, we 

further implemented distributed lag models that consider current exposure at a given time 

t, past exposure before time t (using an inverse weighting approach to consider non-linear 

lagged effects), and potential interactions between past and current exposures as a sensitivity 

analysis. Given that socioeconomic status and race/ethnicity have been shown to act as 

important modifiers of air pollution effects on health (Hajat et al., 2021), we performed 

analyses stratified by maternal race/ethnicity and neighborhood household income. Due 

to potential differential susceptibility across population subgroups with different outcome-

related characteristic and co-morbidity, we also conducted stratified analyses by pre-

pregnancy BMI categories, and maternal co-morbidity based on the availability of data 

in KPSC EHRs, including asthma, acute upper respiratory infections, chronic hypertension 

and gestational hypertension, to explore the differences between population subgroups. 
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Cochran Q tests were used to measure the heterogeneity among subgroups. All analyses 

were conducted with SAS version 9.4 (SAS Institute, Inc., Cary, NC) and R 4.0.4.

3. Results

The distribution of selected demographic and pregnancy characteristics and air pollution 

levels is presented in Table 1. In total, among 395,927 women included in the primary 

analysis, 42,970 (10.9%) cases of GDM with clinical diagnosis were identified. The mean 

(standard deviation) of maternal age in our study was 30.3 (5.7) years. Compared to the 

entire cohort, GDM cases were found more frequently among older mothers, Asian or 

Hispanic mothers, mothers who live in low-income neighborhoods, overweight or obese 

mothers, and mothers with chronic hypertension. Residential exposure levels of air pollution 

metrics during entire pregnancy were higher among GDM cases for PM2.5, NO2 and PM2.5 

chemical constituents, including nitrate, ammonium, organic matter and black carbon (P 

< 0.001), but not for PM10 (P = 0.24). Table 2 describes summary statistics and Pearson 

correlation coefficients between air pollutant metrics during entire pregnancy. PM2.5 mass 

concentrations from the EBK model were highly correlated with those from the chemical 

constituent model (r = 0.83), and moderately correlated with krigged PM10 (r = 0.66) and 

NO2 (r = 0.61). For PM2.5 and its chemical constituents from the chemical constituent 

model, we observed moderate to high correlations between PM2.5 total mass, nitrate, 

ammonium, organic matters and black carbon (r: 0.53–0.91). The correlations between 

sulfate and other PM2.5 constituents were weak, with correlation coefficients of 0.49 or 

smaller. Overall, O3 is negatively correlated with most air pollution metrics, except PM10, 

sulfate and ammonium.

Fig. 1 illustrates the associations between exposure to air pollution during entire pregnancy 

and the risk of GDM in the single-pollutant models. For krigged air pollutants, positive 

associations were observed between GDM and PM2.5, PM10 and NO2. The adjusted OR 

per IQR increase was strongest for NO2 (1.18, 95% CI: 1.15–1.21), followed by PM2.5 

(OR = 1.12, 95% CI: 1.09–1.14) and PM10 (OR = 1.09, 95% CI: 1.007–1.11). O3 was 

inversely associated with GDM (OR = 0.77, 95% CI: 0.75–0.78). Exposure to PM2.5 total 

mass and its constituents during entire pregnancy were also associated with increased GDM 

risks. We found similar patterns of the increased GDM risks for other exposure windows: 

preconception, first trimester, second trimester and the first two trimesters. Details on the 

effect sizes of specific exposure periods are provided in Appendix C. In the monthly time 

window analyses (Appendix D), relatively stronger associations were observed during 4th – 

6th gestational months (second trimester) for most air pollutants of interest, except PM2.5 

black carbon, with higher odds in early pregnancy. In sensitivity analyses (Appendix E), 

associations between air pollution and GDM were slightly decreased in magnitude after 

further adjusting for gestational weight gain, temperature, or including zip code as a random 

effect in the PM2.5 component mixture analysis, respectively. Associations between solely 

using the address at delivery or considering residential mobility were close.

In multi-pollutant models (Table 3), β coefficients > 0 indicate positive weights of individual 

exposure components; β coefficients < 0 indicate negative weights of individual exposure 

components. The g-computation estimator ψ is the sum of all regression β coefficients of 
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the exposures of interest, corresponding to the change in GDM risk expected for one quartile 

change in all exposures simultaneously. For example, a change in exposure to the mixture 

of krigged air pollutants of interest by one quartile would be associated with a 10% increase 

in odds of GDM (OR = 1.10, 95% CI: 1.08–1.11), and overall mixture effects were driven 

by NO2 (78%), followed by PM2.5 (22%). It is noteworthy that the weight of an individual 

pollutant is a scaled effect size based on which pollutants are included in the current 

analysis. For instance, if another hazardous pollutant were to be included, the contribution 

of NO2 might be<78%. For the PM2.5 chemical constituent model, there was a 26% increase 

in risk of GDM associated with exposure to a mixture of PM2.5 chemical constituents 

during entire pregnancy (OR = 1.26, 95% CI: 1.21–1.31), and black carbon gave the greatest 

contribution of overall mixture effects (48%) among all individual constituents, followed 

by nitrate (29%) and ammonia (23%). In sensitivity analyses of multi-pollutant models, 

associations between air pollution mixtures and GDM using WQS regression (Appendix F) 

were similar to the results from quantile g-computation. NO2 (85%) and black carbon (45%) 

gave the greatest contribution among all krigged air pollutants and all PM2.5 constituents, 

respectively.

Furthermore, our results of subgroup analyses (Appendix G) showed that the risk of 

GDM associated with air pollution exposure (i.e., PM2.5, NO2, and PM2.5 chemical 

constituents) was significantly higher among Hispanic mothers, and overweight/obese 

mothers. Specifically, an IQR increase of NO2, PM2.5 total mass, nitrate, ammonium and 

black carbon were associated with greater increase in odds of GDM among Hispanic 

mothers, followed by black mothers, than Asian mothers in this population. For maternal 

co-morbidity, despite Cochran’s Q tests not revealing any significant heterogeneity, ORs for 

GDM in association with most air pollutants were found to be slightly higher for mothers 

with chronic hypertension.

4. Discussion

In this large retrospective cohort study of 395,927 pregnant women residing in southern 

California from 2008 to 2018, we found that exposures to PM2.5, PM10, NO2, and PM2.5 

chemical constituents were associated with an increased risk of GDM. Analyses focusing on 

air pollution mixtures showed that NO2, PM2.5 total mass and its constituents, particularly 

black carbon, nitrate and ammonium were associated with elevated odds of GDM. Further, 

Hispanic mothers, and overweight/obese mothers may be more likely to be affected by air 

pollution on the risk of GDM.

An increasing number of epidemiological studies have examined the relationship between 

air pollution exposure and the risk of GDM. Consistent with our findings, results from a 

recent meta-analysis (Zhang, et al., 2020b) that included 13 epidemiological studies showed 

that pre-pregnancy O3 exposure was inversely associated with GDM (OR = 0.98, 95% 

CI: 0.98–0.99) when not considering a multi-pollutant model. In another meta-analysis 

that included 11 epidemiological studies (Hu et al., 2020), the authors found second 

trimester PM2.5 exposure was associated with increased GDM risk (OR = 1.04, 95% 

CI: 1.01–1.09, per 10 μg/m3 increase in PM2.5). Although several studies found potential 

positive associations between air pollution and GDM, no significant pooled estimates were 
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observed for other exposure windows or other pollutants (i.e., PM10 and NO2). However, 

our results showed that GDM was positively associated with exposure to NO2 and PM10 

for all exposure windows during pregnancy. Further, the single pollutant models of our 

study showed that preconception O3 was associated with reduced risk of GDM, while 

preconception PM2.5, PM10 and NO2 may increase risk of GDM, which agreed with a 

previous study that was also conducted in southern California using KPSC EHRs between 

1999 and 2009. However, the positive associations between first trimester PM2.5, PM10, NO2 

and GDM in this study were not observed in the previous KPSC pregnancy cohort (Jo et 

al., 2019b). Overall, our results add further evidence to the growing body of research that 

air pollution exposure may increase the risk of GDM. It is also noteworthy that we cannot 

conclude that O3 is protective on the risk of GDM. The inverse associations between O3 

and GDM could be caused by the inverse association of O3 with the other traffic-related 

pollutants (correlation of −0.36 with NO2) that act as ozone precursors (Crutzen, 1979). 

Future studies are warranted considering different air pollutants, susceptible windows as 

well as study regions.

PM2.5 constituents have large spatiotemporal variations (Bell et al., 2007), but few studies 

examined the association between different PM2.5 constituents and the risk of GDM. The 

first epidemiological study concerning PM2.5 constituents and GDM was conducted by 

Robledo et al. in the U.S. in 2015 using hospital referral regions to estimate exposures, 

which observed that first trimester high levels of nitrate was associated with an increased 

GDM risk while preconception and first trimester sulfate was associated with a decreased 

GDM risk (Robledo et al., 2015). Recently, a study in Florida (Zheng et al., 2020) found 

that exposures to PM2.5 constituents, including sulfate, nitrate, ammonium, organic matter 

and black carbon, during the second trimester are positively associated with GDM. Another 

study in Texas (Rammah et al., 2020) observed increased odds of GDM for ammonium 

and sulfate exposure during the first trimester. A study conducted in China (Yu et al., 

2020) reported that organic matter, black carbon and nitrate may be the main culprits for 

the association between PM2.5 and GDM. In our single pollutant models, we found that 

PM2.5 constituents, including sulfate, nitrate, ammonium, organic matter and black carbon 

were associated with increased GDM risk during the entire pregnancy. To date, although 

our results are partially consistent with previous findings, associations between PM2.5 

constituents and GDM are still unclear due to limited relevant studies and large variations 

in the exposure levels, windows and assessment methods among studies. For example, 

there was a large difference in the concentrations and primary components of PM2.5 across 

studies. The primary PM2.5 constituents were organic matter and sulfate in previous studies 

conducted in the U.S. (Rammah et al., 2020; Robledo et al., 2015; Zheng et al., 2020); while 

organic matter, nitrate, and black carbon may be more prevalent in Southern California, 

which may lead to the heterogeneity in findings.

Another potential reason that may partially explain the equivocal results in the existing 

literature is the inconsistency in adjustment for multiple air pollutants. Most previous studies 

estimated the risk of adverse health outcomes associated with the exposure to a single air 

pollutant (Hu et al., 2020). However, humans are simultaneously exposed to a complex 

mixture of air pollutants from various sources. Therefore, it is important to measure the 

joint health effects of air pollution exposure using a multi-pollutant approach. Only few 
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studies reported effects from multi-pollutant models, and most of them only adjusted for 

other pollutants (Choe et al., 2019; Hu et al., 2015; Jo et al., 2019b; Shen et al., 2017) or 

simultaneously included all PM2.5 constituents (Rammah et al., 2020; Zheng et al., 2020) 

in the model. In our study, we applied a new approach to estimate the joint effects of air 

pollution mixtures and the weight of each exposure. Unlike other inferential approaches that 

examine the effects of individual exposures while holding other exposures constant, this 

“quantile g-computation” approach combines the inferential simplicity of weighted quantile 

sum regression with the flexibility of g-computation to help address the effects of exposure 

mixtures and design potential public health interventions that act on specific exposure 

sources (Keil et al., 2020). In the multi-pollutant model with kriging-based NO2, PM2.5, and 

PM10, the main effect of increased GDM risk was driven by NO2 (78%) among the three 

air pollutants. In the multi-pollutant model with PM2.5 constituents (i.e., sulfate, nitrate, 

ammonium, organic matter and black carbon), black carbon (48%) contributed most to the 

risk of GDM. Thus, interventions targeting the sources of such air pollutants, mainly fuel 

emissions, may translate into a more pronounced reduction of GDM in southern California 

and optimize the potential benefits of reducing air pollution exposure during pregnancy.

Maternal characteristics and lifestyle behaviors such as maternal race/ethnicity, 

socioeconomic status, smoking, BMI, gestational weight gain, and co-morbidity during 

pregnancy have been associated with GDM (Alves et al., 2019; Anna et al., 2008; Goldstein 

et al., 2017; Hedderson & Ferrara, 2008; Schwartz et al., 2015; Zhang et al., 2014). The 

relationship between air pollution and GDM might be confounded and modified by these 

potential driving forces. However, most previous studies used administrative data (e.g. birth 

registry system) without individual-level information on lifestyle and co-morbidity (Zhang, 

et al., 2020b). In our stratified analysis, various potential modifiers were collected for 

individual pregnant women from KPSC EHRs. Higher risks of GDM were observed among 

Hispanic mothers, overweight/obese mothers, and mothers with pre-existing hypertension, 

alone and in combination, suggesting that these population subgroups may be more 

vulnerable to air pollution on GDM risk and that prevention strategies and earlier screening 

could be recommended for these subpopulations. Potential biological mechanisms regarding 

higher susceptibility of the obese group to air pollution exposure could be 1) air pollution-

induced inflammation: study based on high fat diet-induced obese mice demonstrated 

that PM2.5 exposure was associated with signs of marked insulin resistance, systemic 

inflammation, and an increase in visceral adiposity (Sun et al., 2009), which make them 

particularly vulnerable to air pollution-induced inflammation; and 2) toxin accumulation in 

adipose tissue: existing evidence suggest that environmental toxicants can be accumulated in 

adipose tissue. Sequestration of environmental toxicants in adipocytes may minimize their 

harmful effect; however, it may also pose cumulative effects of low-level chronic stimulation 

leading to low-grade inflammation (Jackson et al., 2017). We also found that the proportion 

of overweight/obese mothers was high (approximately 64%) among Hispanic populations. 

The results from the sensitivity analysis showed that air pollution concentrations and 

neighborhood socioeconomic conditions solely using the address at delivery or considering 

residential mobility were close. One potential reason is that the air pollution exposure based 

on kriging may have captured only regional-level exposure variation rather than localized 

exposure. Although PM2.5 constituents estimates had an improved spatial resolution at 1 km 
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resolution, they may still have limited capability in capturing the true variation of specific 

chemical constituents at a local scale. Additionally, the median distance between the old 

address and new one was approximately 6 km in this population. Thus, most of women who 

moved during pregnancy may likely have moved within the same sub-region, which would 

not significantly change their estimated exposure levels.

This study has several strengths. First, the diagnosis of GDM for all KPSC members 

followed standard guidelines and was obtained using laboratory glucose tolerance tests 

rather than through recall information or diagnostic codes, thus minimizing the selection and 

screening biases. In addition, the KPSC EHRs contain comprehensive maternal lifestyle and 

co-morbidity information, which may not be available from administrative databases. This 

can enable deeper understanding of air pollution and GDM by adjusting for a wide range 

of confounders and investigating potential modifiers. Further, the mobility of women during 

pregnancy was documented from the KPSC database. In this population, approximately 44% 

women moved during pregnancy. Air pollution exposure estimation without considering 

residential changes may lead to misclassifications bias. More accurate residential addresses 

in combination with well-validated air pollution models can enhance the accuracy for the air 

pollution exposure assessments in this study. Moreover, an innovative statistical method was 

used to estimate the joint effects of exposure mixtures, which may provide insights about air 

pollution mixtures-GDM relationship and help develop targeted interventions. In addition, 

a wide range of air pollutants (i.e., PM2.5, PM10, NO2, O3 and five main components of 

PM2.5) and exposure windows (i. e., preconception, first trimester, second trimester and 

entire pregnancy) were considered in this analysis.

However, several limitations in our study should be noted. First, we focused on air pollution 

exposure windows by trimester since only monthly air quality data were obtained. Thus, 

narrower exposure windows cannot be examined in this study. Second, although the date 

of GDM diagnosis is available in the KPSC database, the time-varying exposure based 

on the exact date of diagnosis was not accounted for. Some high-risk women may be 

screened and diagnosed with GDM early in their pregnancy (12% during the first trimester). 

However, the trimester-specific analyses (i.e., preconception, first, and second trimester) can 

reflect the exposure levels for most pregnant women since about 78% GDM cases were 

diagnosed after late second trimester. Further, missing lab tests for GDM diagnosis and 

self-reported covariates used for adjustment may lead to potential bias. In addition, potential 

exposure misclassifications may exist since indoor and personal exposure levels could not be 

estimated without data on activity patterns or personal monitors. More advanced exposure 

models with finer resolution would also help alleviate exposure misclassification. Moreover, 

previous studies have reported protective associations between built environment (e.g., green 

space and walkability) and GDM or diabetes (DenBraver et al., 2018; Liao et al., 2019); 

specifically, we found near-road pollutants (e.g., NO2 and PM2.5 black carbon) contributed 

most to the increased GDM risk. Although KPSC EHRs allowed us to control for a number 

of covariates in our analysis, other potential confounders, including family history of 

diabetes, diet, physical activity, and other maternal co-morbidities, such as hyperlipidemia, 

were not taken into account. Further research is also needed exploring the joint effects 

of air pollution and other related exposures, such as green space, noise and additional 

meteorological factors. Finally, air pollution exposure levels could vary in different regions 
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and might cause different health impacts. Therefore, more studies conducted in other 

regions, especially in developing countries with severe air pollution, are warranted.

5. Conclusions

In conclusion, this large study found that maternal exposures to ambient residential PM2.5, 

PM10, NO2, and PM2.5 chemical constituents were associated with an increased risk of 

GDM. The main effect of increased GDM risk was driven by NO2 and PM2.5 black 

carbon. Targeted interventions focusing on air quality regulation and intervention (e.g., 

use of air filter and purifier), earlier screening, and promoting healthier lifestyles could be 

conducted to reduce the risk of air pollution on GDM, especially among Hispanic mothers 

and overweight/obese mothers in Southern California.
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Fig. 1. 
Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of GDM associated with air 

pollution during pregnancy in single-pollutant models. GDM, gestational diabetes mellitus; 

ORs and 95% CIs were calculated for per interquartile range (IQR) increment for each 

air pollutant; Model adjusted for maternal age, race/ethnicity, education, block group 

household income, pre-pregnancy BMI, smoking during pregnancy, insurance type, season 

of conception and year of birth; county was fitted as a random effect.
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Table 1

Selected population characteristics and air pollution concentrations during the entire pregnancy by Gestational 

diabetes (GDM) groups, 2008–2018.

Characteristics GDM
n = 42,970

Non-GDM
n = 352,957

Total births
n = 395,927

Maternal age, years, mean (SD) 32.6 (5.3) 30.0 (5.7) 30.3 (5.7)

Maternal race/ethnicity, n (%)

African American 2273 (5.3) 27,776 (7.9) 30,049 (7.6)

Asian 8833 (20.6) 42,775 (12.1) 51,608 (13.1)

Hispanic 22,549 (52.6) 166,627 (47.3) 189,176 (47.8)

Non-Hispanic white 7445 (17.4) 97,702 (27.7) 105,147 (26.6)

Multiple/other 1804 (4.2) 17,597 (5.0) 19,401 (4.9)

Maternal education, n (%)

≤ 8th grade 778 (1.8) 2974 (0.9) 3752 (1.0)

9th grade – high school 12,319 (29.2) 104,595 (30.2) 116,914 (30.1)

College (<4 years) 9594 (22.7) 78,448 (22.7) 88,042 (22.7)

College (4 years) 14,026 (33.2) 111,956 (32.4) 125,982 (32.4)

> College 5485 (13.0) 48,078 (13.9) 53,563 (13.8)

Median household income at block group level in 2013, n (%)

≤ $43,973 11,401 (26.6) 87,270 (24.8) 98,671 (25.0)

$43,973–$56,396 11,292 (26.4) 87,382 (24.8) 98,674 (25.0)

$56,396–$72,032 10,806 (25.2) 87,903 (25.0) 98,709 (25.0)

≥ $72,032 9360 (21.8) 89,261 (25.4) 98,621 (25.0)

Smoking, n (%)

Never Smoker 35,967 (83.7) 294,903 (83.6) 330,870 (83.6)

Ever Smoker 4992 (11.6) 40,189 (11.4) 45,181 (11.4)

Smoking during pregnancy 2011 (5.1) 17,852 (4.7) 19,863 (5.0)

Passive smoker, n (%)

Yes 693 (1.6) 7686 (2.2) 8379 (2.1)

No 42,267 (98.4) 345,013 (97.8) 387,280 (97.9)

Insurance type, n (%)

Medicaid 3241 (7.6) 32,967 (9.5) 36,208 (9.3)

Other insurance type 39,240 (92.4) 315,331 (90.5) 354,571 (90.7)

Season of conception, n (%)

Warm season 20,492 (47.7) 174,705 (49.5) 195,197 (48.5)

Cool season 22,478 (52.3) 178252(50.5) 200,730 (51.5)

Pre-pregnancy BMI in categories, n (%)

Underweight (<18.5) 521 (1.2) 9135 (2.6) 9656 (2.5)

Normal (18.5–24.9) 11,610 (27.2) 159,565 (45.5) 171,175 (43.5)

Overweight (25.0–29.9) 12,635 (29.6) 98,469 (28.1) 111,104 (28.2)

Obese (≥30.0) 17,904 (42.3) 83,467 (23.8) 101,374 (25.8)

Gestational weight gain in IOM categories, n (%)

Inadequate 17,091 (40.1) 85,828 (24.5) 102,919 (26.2)
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Characteristics GDM
n = 42,970

Non-GDM
n = 352,957

Total births
n = 395,927

Appropriate 12,653 (29.7) 112,546 (32.1) 125,199 (31.8)

Excess 12,919 (30.3) 152,189 (43.4) 165,108 (42.0)

Chronic hypertension, n (%)

Yes 2682 (6.2) 9198 (2.6) 11,880 (3.0)

No 40,288 (93.8) 343,759 (97.4) 384,047 (97.0)

Air pollutants from kriging model, 2008–2018, mean (SD)

Krigged PM2.5 11.8 (2.2) 11.6 (2.3) 11.6 (2.3)

Krigged PM10 28.6 (5.3) 28.5 (5.4) 28.6 (5.4)

Krigged NO2 16.1 (4.0) 15.6 (4.1) 15.6 (4.1)

Krigged O3 43.1 (6.5) 44.2 (6.3) 44.1 (6.4)

PM2.5 constituents, 2008–2017, mean (SD)

PM2.5 total mass 13.2 (2.5) 12.8 (2.6) 12.9 (2.6)

PM2.5 sulfate 1.3 (0.3) 1.3 (0.3) 1.3 (0.3)

PM2.5 nitrate 2.5 (0.6) 2.4 (0.6) 2.4 (0.6)

PM2.5 ammonium 1.0 (0.3) 0.9 (0.3) 0.9 (0.3)

PM2.5 organic matter 5.5 (1.2) 5.4 (1.3) 5.4 (1.3)

PM2.5 black carbon 1.6 (0.6) 1.5 (0.6) 1.5 (0.6)

SD, standard deviation; BMI, body mass index; IOM, Institute of medicine. The units are μg/m3 for PM10, PM2.5 mass and PM2.5 constituents, 

and parts per billion for NO2 and O3.
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Table 3

Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of GDM associated with air pollution during 

pregnancy in multi-pollutant models.

Pollutants Coefficient β Effect of mixtures ψ (log OR) 95% CI OR 95% CI

Model 1: Krigged air pollutants

Krigged PM2.5 0.031

Krigged PM10 −0.051 0.091 (0.079, 0.103) 1.095 (1.082, 1.108)

Krigged NO2 0.111

Model 2: PM2.5 constituents

PM2.5 sulfate −0.004

PM2.5 nitrate 0.082

PM2.5 ammonium 0.065 0.229 (0.187, 0.273) 1.258 (1.206, 1.314)

PM2.5 organic matter −0.050

PM2.5 black carbon 0.135

GDM, gestational diabetes mellitus;

Model adjusted for maternal age, race/ethnicity, education, block group household income, pre-pregnancy BMI, smoking during pregnancy, 
insurance type, season of conception, year of birth and county.
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