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Abstract 

Achieving linguistic proficiency requires identifying words 

from speech, and discovering the constraints that govern the 

way those words are used. In a recent study of non-adjacent 

dependency learning, Frost and Monaghan (2016) 

demonstrated that learners may perform these tasks together, 

using similar statistical processes — contrary to prior 

suggestions. However, in their study, non-adjacent 

dependencies were marked by phonological cues (plosive-

continuant-plosive structure), which may have influenced 

learning. Here, we test the necessity of these cues by 

comparing learning across three conditions; fixed phonology, 

which contains these cues, varied phonology, which omits 

them, and shapes, which uses visual shape sequences to 

assess the generality of statistical processing for these tasks. 

Participants segmented the sequences and generalized the 

structure in both auditory conditions, but learning was best 

when phonological cues were present. Learning was around 

chance on both tasks for the visual shapes group, indicating 

statistical processing may critically differ across domains. 

Keywords: statistical learning; speech segmentation; 
generalization, language learning; non-adjacent dependencies; 
implicit learning 

Background 

Learners must master a number of critical tasks in order to 

reach linguistic proficiency, including learning how to 

segment individual words from speech, and learning to 

identify the constraints that govern the way those words are 

structured and used. Learners are remarkably adept at these 

tasks, thanks in part to the myriad cues that speech contains 

that may assist learning. One such cue is the statistics that 

describe co-occurrences of items in speech; for instance, the 

co-occurrence of syllables provides a helpful cue to what 

constitutes possible words, while information about how 

those words are used in combination helps learners to discern 

how the language operates. The ability to detect and draw on 

this distributional information - statistical learning - is 

suggested to play a key role in language acquisition, for both 

segmenting speech and for learning about grammatical 

structure (e.g., Conway, Bauernschmidt, Huang, & Pisoni, 

2010; Frost, Monaghan, & Christiansen, 2019; Redington & 

Chater, 1997). 

Since word- and structure-learning appear to have distinct 

requirements, it is unsurprising that the nature of the 

(statistical) processes that underlie these tasks has been 

subject to substantial debate (e.g., Peña, Bonatti, Nespor, & 

Mehler, 2002; Perruchet, Tyler, Galland, & Peereman, 2004). 

Central to these discussions have been questions concerning 

the types of computations required to discover word-like and 

rule-like items in speech, and learners’ capacity to do so by 

computing over co-occurrence statistics. 

These issues have been extensively tested using a classic 

artificial language learning paradigm (Peña et al., 2002), 

which examines learners’ ability to acquire linguistic 

structure that is defined in terms of non-adjacent 

dependencies (i.e., an AxC structure, where A and C are 

syllables that reliably co-occur, regardless of which x syllable 

intervenes). AxC languages are used to jointly assess 

learners’ capacity for statistical word and structure learning, 

since they contain novel words that learners must discover 

(AxC strings), in addition to structural regularities within 

those words (A-C relationships).  

Initial studies using this paradigm suggested that learners 

perform statistical computations on the non-adjacent 

dependencies to segment the speech into individual AxC 

strings (or words), but perform more abstract computations 

on those words in order to learn about their structure - and 

perhaps do so only when speech segmentation has been 

resolved (typically by inserting pauses between words in the 

training stream).  

A recent study by Frost and Monaghan (2016) expanded 

on this work, aiming to shed further light on two key 

questions about how word- and structure-learning unfold in 

language acquisition:  whether these tasks occur sequentially 
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or simultaneously, and whether they may actually utilize 

similar statistical computations – contrary to prior 

suggestions. In their study, participants were able to draw on 

the non-adjacent dependencies to segment continuous speech 

into words, and to learn about the non-adjacent dependency 

structure that those words contained, possibly simultaneously 

(though further work is required to conclusively establish the 

time-course of learning for these tasks). The key difference 

between this and earlier work on this phenomenon was a 

slight methodological change which addressed a possible 

confound in the previous measure of generalization. 

Specifically, prior generalization tasks typically required 

learners to indicate a preference for ‘rule words’ over part-

words, with rule words comprising a trained dependency, 

intervened by an onset/coda from another dependency (e.g., 

A1A2C1 or A1C2C1). While such comparisons do permit 

assessment of preference for the overall structure, they 

require learners to use trained A and C items flexibly in a way 

that deviates from their knowledge of syllable position, which 

may affect performance. Indeed, using amended test items 

(trained dependencies with entirely novel intervening items), 

Frost and Monaghan (2016) demonstrated that adults can 

segment statistical nonadjacent dependencies and generalize 

them to novel grammatically consistent instances in the 

absence of additional information, such as pauses between 

words (see Isbilen, Frost, Monaghan, & Christiansen, 2018, 

for a replication of this effect). 

This finding was contrary to prior suggestions that these 

tasks are fundamentally computationally distinct (e.g., Peña 

et al., 2002), and provides crucial evidence to suggest that 

learners may draw on the same type of statistical processing 

mechanisms for both of these tasks, and they may do so at the 

same time during language learning.  

However, one possibility that cannot be overlooked is that 

learning in this study was not just driven by computations 

over transitional probabilities; learning may have been 

assisted by the phonological properties of the language. In 

line with Peña et al.’s (2002) landmark study, Frost and 

Monaghan (2016) employed an artificial language that 

contained both statistical dependencies between elements, 

and phonological structure, which aligned with the non-

adjacency structure such that A and C syllables contained 

plosives, whereas intervening x syllables contained 

continuants. 

Prior research has noted that the pattern of phonological 

information in artificial languages can significantly benefit 

learning, and phonological similarity between related 

elements has been found to support learning of non-adjacent 

dependencies in particular. For instance, in a series of 

experiments with a similar paradigm, Newport and Aslin, 

(2004) demonstrated that learning nonadjacent dependencies 

between syllables was remarkably difficult to accomplish in 

the absence of phonological cues (though the difficulty there 

may also have been due to additional factors, including 

learnability of the language - i.e., the number of 

dependencies, and the number of intervening items, which 

has been shown to impact learning - together with the relative 

complexity of some of the tests). Similarly, in Gomez and 

Gerken (1999), dependency learning was supported by 

phonological distinctions between A/C items and x items, 

where A and C were bisyllabic, and x were monosyllabic. 

Yet, research has also suggested that this phonological 

information should not be essential for learning to take place 

(Onnis, Monaghan, Christiansen, & Chater, 2004). Further 

research is therefore required to assess the extent to which 

this phonological information guided learning in Frost and 

Monaghan’s (2016) study, to determine whether learners can 

indeed discover words and structures together, from 

distributional information alone. 

In the present paper, we replicate Frost and Monaghan 

(2016), to confirm that participants can compute over non-

adjacent dependencies to learn about both words and 

structure. We also test whether scores on these tasks 

correlate, to further assess whether these abilities are similar, 

or distinct. Crucially, we also compare performance for this 

replication against that for a condition in which participants 

are trained on the same language but with a more varied 

phonology (i.e., without phonological cues). Examining the 

extent to which segmentation and generalization are possible 

in the absence of these phonological cues will provide critical 

insights into how learners rely on statistical computations 

during language acquisition, by removing the possibility that 

successful performance is due to additional information 

outside of the syllable distribution.  

While manipulating properties of the language allows us to 

determine how multiple cues interact with statistical learning, 

it does not inform us about whether that learning is due to 

domain-specific mechanisms, or whether language learning 

involves the specific application of general-purpose learning 

mechanisms (Frost, Monaghan, & Tatstumi, 2017; 

Siegelman & Frost, 2015). To further explore adults’ capacity 

to compute non-adjacent dependencies, we also assessed 

whether their ability to do so is unique to language, by 

extending the paradigm to examine non-adjacent dependency 

learning from non-linguistic sequences (comprising shapes). 

This condition will help constrain theorizing on the generality 

of the mechanisms used for these tasks. 

Thus, in this study we examine whether adults’ capacity for 

segmenting and generalizing non-adjacent dependencies 

extends to more varied linguistic stimuli, or if it is contingent 

on a correspondence between distributional and phonological 

cues to structure. We will also assess whether this capacity is 

similar or different across modalities. We expect that 

participants will demonstrate knowledge of words and 

within-word structure (i.e., non-adjacent dependencies) in 

both language conditions (Frost & Monaghan, 2016; Onnis et 

al., 2004), and in the shapes group, in line with the suggestion 

that statistical learning mechanisms may serve learning 

broadly across modalities (e.g., Frost et al., 2017). We predict 

that segmentation and structure learning will benefit from 

phonological cues, but that these will not be essential for 

learning (Onnis et al., 2004). Further, we expect that structure 

learning will be better for linguistic than nonlinguistic input 

(due to increased experience with learning linguistic structure 
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relative to structured sequences of shapes; Siegelman & 

Frost, 2015). 

Method 

Participants 

90 Cornell University undergraduates (age: M = 19.6 years, 

range = 18-24 years; 49 females, 41 males) participated for 

course credit. All participants were native English speakers.  

Design 

Participants were randomly allocated to one of three 

conditions (each N = 30): fixed phonology, where AxC 

sequences contained plosive-continuant-plosive structure 

(Frost & Monaghan, 2016, Peña et al., 2002), varied 

phonology, which randomized the allocation of plosives and 

continuants to different positions within words, and shapes. 

These conditions permit comparison of learning from the 

original training input (fixed phonology) with an amended 

version containing no reliable phonological cues to word 

structure (varied phonology), and also a non-linguistic 

analogue. This will provide critical assessment of whether the 

pattern of learning demonstrated by Frost and Monaghan 

(2016) is unique to the properties of the input used in that 

study, or whether it can be extended to more varied linguistic 

input, as well as input in a different modality. 

Stimuli 

Speech stimuli were created with Festival speech 

synthesiser, from a pool of 9 monosyllabic items (pu, ki, be, 

du, ta, ga, li, ra, fo), as used in Peña et al. (2002), and three 

additional monosyllabic items (ve, zo, thi). These additional 

syllables were reserved for the generalization task for the 

fixed phonology group in line with prior research (Frost & 

Monaghan, 2016), but formed part of the general syllable 

pool for the varied phonology group, to maximise variability. 

Shape stimuli were created from the Fiser and Aslin (2002) 

set of novel shapes (novel shapes in black on a grey 

background). 

Familiarization Syllables/shapes were concatenated into 

triadic sequences that followed an AxC structure, with A, x, 

and C representing an individual syllable/shape. There were 

three A-C pairings, and three x items that could be used in all 

pairings (A1X1–3C1, A2X1–3C2, and A3X1–3C3), giving 9 

strings in total. 

For the fixed phonology condition, syllables were mapped 

onto words pseudorandomly, such that A and C syllables 

were plosives, whereas x syllables were continuants, 

meaning each AxC string had a plosive-continuant plosive 

structure (e.g., puraki). For the varied phonology condition, 

syllables were randomly allocated to A, x, and C positions, 

meaning there were no reliable phonological cues that could 

guide learning. For the shapes condition, shapes were 

randomly allocated to A, x, and C positions, providing a 

visual non-linguistic analogue of the varied phonology 

condition. See Table 1 for example stimuli for each condition. 

 

Table 1: Example stimuli for each condition 

Condition Triads 

Fixed 

Phonology 

 

puliki, puraki, pufoki 

beliga, beraga, befoga 

talidu, taradu, tafodu 

 

Varied 

Phonology 

 

 

livedu, liradu, likidu 

fovezo, forazo, fokizo 

bevepu, berapu, bekipu, 

Shapes 

 

 

 

 

 

 

 

 

  

 

Syllable/shape triplets were concatenated into 

familiarization streams containing 900 sequences (100 

repetitions of each individual AxC sequence), in line with the 

materials used by Frost and Monaghan (2016). For speech 

stimuli, this was done using the Festival speech synthesizer 

(Black et al., 1990), and for shape stimuli this was done using 

Eprime 2.0. For all conditions, training streams contained no 

immediate repetition of individual AxC sequences.  

For the fixed phonology and varied phonology conditions, 

the training stream lasted for 10.5 minutes, and was edited to 

have a 5-second fade-in and fade-out, to avoid providing cues 

to word boundaries.  

For the shape sequences, presentation of the training 

stream took 22 minutes overall. For comfort this was split 

into 3 blocks of 300 sequences, and participants were invited 

to take short breaks in between blocks if desired. To ensure 

stimuli were analogous to the linguistic input, sequences were 

programmed such that shapes were presented sequentially, 

one by one. Shapes were presented for 225 ms in the centre 

of the screen, with a 225 ms inter-item interval between all 

shapes for comfortable viewing (note that since this occurs 

between all shapes, it does not cue segmentation). 

Presentation criteria were in line with those used in a 

comparable study by Frost et al. (2017). Analogous to the 5 

second fade-in/-out applied to the speech streams, visual 

sequences always began and ended mid-triad, to prevent 

participants receiving any information about sequence 

boundaries at the start/end of the streams (this is true for the 

beginning and end of the entire sequence, and also for either 

side of the scheduled breaks). 

To control for the relative ease of learning particular 

dependencies, for each condition 8 versions of the language 

were generated and counterbalanced across participants. For 

the varied phonology and shapes stimuli, these were created 

by randomly assigning syllables/shapes to A, x and C roles. 

For the fixed phonology stimuli, these were created by 
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randomly assigning plosives to the A and C roles, while x 

items were always the same (see Frost & Monaghan, 2016). 

Testing Learning was assessed using a two-alternative 

forced-choice (2AFC) test of segmentation and 

generalization. This contained 18 trials, nine of which 

assessed segmentation, and nine of which assessed 

generalization. Segmentation trials contained word versus 

part-word comparisons, with words being AxC items that 

occurred in the training stream, and part-words spanning 

word boundaries such that they comprised the end of one 

word and the start of another (e.g., xCA, CAx). 

Generalization trials contained rule-word versus part-word 

comparisons, where rule-words were trained dependencies 

but with novel intervening items (e.g., A1NC1), and part 

words were structured as before, but with one syllable 

replaced with a novel syllable (e.g., NCA, CNA, CAN). This 

was to control for the possibility that participants’ responses 

on these trials were due to novelty alone (see Frost & 

Monaghan, 2016, for further discussion. Ongoing work by 

Isbilen, Frost, Monaghan and Christiansen further explores 

these generalization effects using A1N1C1 vs. A1N1C2 

comparisons).  

Procedure  

Familiarization Participants were presented with a 

familiarization stream which comprised either sequences of 

speech (10.5 minutes), or sequences of shapes (~22 minutes). 

Participants were instructed to pay attention to the sequences, 

and the shapes group was instructed to take optional breaks 

at the designated pauses if required. 

Testing At test, participants completed a 2AFC task 

comprising 18 trials; nine segmentation trials (words versus 

part-word comparisons) and nine generalization trials (rule-

words versus part-word comparisons). Presentation of 

segmentation and generalization trials was randomized. 

Participants were instructed to carefully listen to/look at each 

test pair, and indicate which of the two best matched the 

training stream they had just heard/seen.  

 

Results and Discussion 

Accuracy Scores 

Accuracy scores for each condition are shown in Figure 1. 

One-sample t-tests (two-tailed) were conducted on the data 

for each group to compare performance to chance. 

For the fixed phonology group, performance was 

significantly above chance for both the segmentation (M = 

.709, SD = .245), t(29) = 4.659, p < .001, d = .853 and 

generalization tasks (M = .661, SD = .173), t(29) = 5.100, p < 

.001, d = .936, replicating Frost and Monaghan’s (2016) 

demonstration that learners can segment and generalize non-

adjacent dependencies from continuous speech. For the 

varied phonology group, performance was also significantly 

above chance for both tasks (segmentation: M = .623, SD = 

.199, t(29) = 3.391, p = .002, d = .618;  generalization: M = 

.594, SD = .217, t(29) = 2.366, p = .025, d = .433), suggesting 

that acquisition of statistically defined non-adjacent 

dependencies in this task is not contingent on the 

phonological properties of the speech input (i.e., 

phonological similarity between dependent syllables). 

For the shapes group, however, performance on the 

segmentation task was only marginally above chance (M = 

.552, SD = .156), t(29) = 1.827, p = .078, d = .333), and 

performance on the generalization task was at chance level 

(M = .485, SD = .205), t(29) = -.410, p = .685, d = -0.073) – 

indicating that adults’ ability to segment and generalize 

sequences using non-adjacent transitional probabilities may 

not extend to visually presented non-linguistic input.  

Segmentation and generalization performance were 

significantly correlated for the fixed phonology (r = .385, p = 

.036) and varied phonology (r = .625, p <. 001) groups, but 

not for the shapes group (r = .281, p = .133). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Pirate plot depicting performance on the 

segmentation and generalization tasks for each condition. 

Mean scores are shown in black, with standard error in white. 

The distribution of scores is depicted in red for the 

segmentation task, and blue for the generalization task, with 

individual participants’ scores in grey. The dashed line 

indicates chance level.  

Comparing performance across groups 

To compare performance across each of these groups, 

Generalized Linear Mixed Effects (GLMER) analysis was 

conducted on the data, examining whether segmentation and 

generalization scores differed according to whether 

participants were trained on sequences comprising varied or 

fixed phonology, or shapes. A significant main effect of 

condition would imply different overall performance across 

the groups, while a significant main effect of test type would 

indicate that participants performed differently on the 

segmentation and generalization tasks overall. An interaction 

between these variables would tell us that participants’ 

performance on the segmentation and generalization tasks 

differed as a function of their condition – indicating that 

adults’ capacity for statistical learning on these tasks differs 

M
ea

n
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u
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%

) 

Generalization 
Segmentation 
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across conditions, and possibly across domains, shedding 

light on the generality of the possible mechanism(s) that may 

underlie performance.  

GLMER analysis was performed on the data (Baayen, 

Davidson, & Bates, 2008), modelling the probability (log 

odds) of response accuracy at test considering variation 

across participants and materials. The model was built 

incrementally, with random effects of subjects, particular 

test-pairs, and language version (to control for variation 

across the randomized assignments of phonemes to 

syllables). Random slopes were omitted if the model failed to 

converge with their inclusion (Barr, Levy, Scheepers, & Tily, 

2013).  

We then added condition (varied phonology, fixed 

phonology, and shapes) as a fixed effect, and considered its 

effect on model fit with likelihood ratio test comparisons. 

There was a significant effect of condition (model fit 

improvement over the model containing random effects: 

(2)2 = 7.903, p = .019), with the shapes group performing 

significantly worse than the fixed phonology group 

(difference estimate = -.767, SE = .257, z = -2.987, p = .003). 

The fixed phonology group also outperformed the varied 

phonology group, however this difference was marginal 

(difference estimate = -.389, SE = .217, z = -1.788, p = .074).  

We then added test type (segmentation and generalization), 

to see whether participants performed differently on each 

type of task. The effect of test type was marginal (model fit 

improvement over the model containing random effects: 

(2)2 = 3.144, p = .076) with participants performing better 

on the segmentation task than the generalization task 

(difference estimate = .224, SE = .125, z = 1.791, p = .073). 

We then added the interaction between condition and test 

type, to see whether performance on the tasks differed 

according to the input participants had received. The 

interaction was not significant (model fit improvement over 

the model containing random effects: (2)2 = .366, p = .833), 

suggesting participants performed similarly across each of 

the conditions. See Table 2 for a summary of the final model.

Table 2: Summary of the GLMER (log odds) for accuracy scores. 

 

1620 observations, 90 participants, 18 trials. R syntax for the final model is: NAD_DG3 <- glmer (testresponse.ACC ~ 

condition + test_type + (1|subject) + (1+lang_ver|test_pair), data =NAD_DG, family=binomial, 

control=glmerControl(optimizer="bobyqa",optCtrl=list(maxfun=100000))).

General Discussion 

 

Recent evidence for the similarity (and possible simultaneity) 

of statistical segmentation and generalization has advanced 

our understanding of the way these processes unfold during 

language acquisition (see Frost & Monaghan, 2016, and see 

e.g,, Peña et al., 2002 and Perruchet et al. 2004, for more on  

 

 

 

 

 

the earlier debate about the nature of these tasks). Yet, due to 

the phonological properties of the training language, it is 

possible that learning in this recent study was not solely 

contingent on the statistical regularities contained within the 

language; learning may have been assisted by the plosive-

continuant-plosive structure that AxC sequences adhered to 

(e.g., Newport & Aslin, 2004). 

Fixed effects 
Estimated 

coefficient 
SE 

Wald confidence 

intervals 

2.50%        97.50% 

 

z 

 

 

Pr (>|z|) 

(Intercept) .7405 .2082 .3325 1.149 3.557 .0004 

Condition: Shapes -.7658 .2583 -1.272 -.2595 -2.965 .003 

Condition: Varied Phono .-.3883 .2183 -.8161 .0395 -1.779 .0753 

Test_type .2235  -.0211 .4680 1.791 .07332 

       

Random effects Variance Std. Dev.     

Subject (Intercept) .355 .5958     

Test Pair (Intercept) .5871 .773     

Lang_version .0019 .0435     

  

AIC 

2097.6  

 

BIC 

2140.8  

 

logLik    

-1040.8  

 

Deviance 

2081.6 
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To explore this possibility, the study at hand examined 

adults’ capacity for non-adjacent dependency learning across 

three conditions; the first of which used the input from Frost 

and Monaghan (2016) (see also Peña et al., 2002), which 

contained the phonological structure described above (termed  

the fixed phonology condition). The second condition omitted 

these phonological cues, such that AxC sequences had no 

fixed phonological structure (the varied phonology 

condition). The third condition tested learning from 

sequences of shapes, to provide a non-linguistic assessment  

of non-adjacent dependency learning, with a view of 

considering whether learning was comparable across 

modalities — perhaps drawing on similar statistical 

mechanisms. The critical test was whether participants in 

each group demonstrated learning (i.e., performed above 

chance), and whether performance in the varied phonology 

and shapes groups differed significantly from the fixed 

phonology group. 

Participants in both language conditions performed 

significantly above chance on the segmentation and 

generalization tasks. This finding replicates the results of  

Frost and Monaghan (2016), showing that speech 

segmentation and structural generalization may proceed 

together during language learning, and can be accomplished 

from the same distributional statistics (though additional 

research is required to conclusively establish the precise 

time-course of learning for these tasks). Further, our results 

demonstrate that adults’ capacity for learning non-adjacent 

dependencies extends to more phonologically diverse input. 

However, the difference in overall performance in these 

conditions was approaching significance, with results 

indicating that phonological cues were advantageous for 

learning (evidenced by marginally higher scores for the fixed 

phonology than the varied phonology group) — in line with 

Newport and Aslin’s (2004) suggestion that such cues were 

important for learning. Critically though, our data indicate 

that these cues were not essential (Onnis et al., 2004). 

In previous studies of word and structure learning, 

segmentation and generalization have tended to be tested 

separately. In the current study, these tasks were completed 

by all participants (within subjects). We show that the same 

learners can segment non-adjacencies from speech, and 

generalize them to new instances (see also Isbilen et al., 

2018). In line with previous studies, performance on the 

segmentation task was higher than that seen for the 

generalization task (see Isbilen et al., 2018, for a comparable 

finding), and crucially performance on these tasks was 

significantly correlated for both language conditions — 

adding further support to the notion that they may be 

underpinned by similar mechanisms. 

The results for the shapes group followed the same general 

pattern as those seen in the varied phonology and fixed 

phonology conditions, with a trend toward higher 

performance on the segmentation task than the generalization 

task. However, scores for this group were significantly lower 

than those seen for the fixed phonology group, with accuracy 

scores on the segmentation task being only marginally above 

chance, while performance on the generalization task was at 

chance level. It is important to note that the shape stimuli 

differ from the speech stimuli in two key ways: they are both 

visual and non-linguistic, and therefore differ both in 

modality and domain. Thus, this pattern of results could be 

attributed to a number of possible explanations. 

One possibility for the difference between the language and 

the shape task is that there are critical differences in statistical 

learning across modalities, with tasks being underpinned by 

different mechanisms (e.g., Conway & Christiansen, 2005). 

A second possibility is that, for the shapes group, 

performance could have been negatively affected by 

participants’ relative lack of experience with learning 

distributionally defined streams containing sequences of 

visual non-speech input (compared to experience with heard 

speech) (e.g., Siegelman et al., 2018). Another possibility is 

that the difference in performance is due to key differences in 

task demands: in the speech conditions, the presentation of 

stimuli is such that participants have no choice but to attend 

(be that actively, or passively). However, in the shapes 

condition, this is not necessarily the case. Thus, it is possible 

that the lower scores observed for this group are (at least in 

part) due to participants attending less to the input during 

training (and thus, learning less during familiarization). 

Ongoing replications of this work employing a cover task that 

maintains participants’ attention will help to unpack these 

possibilities.  

To summarise, these data provide further evidence that 

adults can compute non-adjacent dependencies to discover 

words and within-word structure from continuous speech. 

This supports the notion that these tasks may be underpinned 

by similar statistical processes, and may occur together 

during language learning. Further, results illustrate that these 

abilities are not dependent on phonological cues, suggesting 

that adults’ capacity for performing statistical computations 

over linguistic input is even more powerful than previously 

suggested. 
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