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Dynamic Force Spectroscopy (DFS) is a widely used technique to characterize the dissociation kinetics
and interaction energy landscape of receptor-ligand complexes with single-molecule resolution. In
an Atomic Force Microscope (AFM)-based DFS experiment, receptor-ligand complexes, sandwiched
between an AFM tip and substrate, are ruptured at different stress rates by varying the speed at which
the AFM-tip and substrate are pulled away from each other. The rupture events are grouped according
to their pulling speeds, and the mean force and loading rate of each group are calculated. These data
are subsequently fit to established models, and energy landscape parameters such as the intrinsic
off-rate (koff ) and the width of the potential energy barrier (xβ) are extracted. However, due to large
uncertainties in determining mean forces and loading rates of the groups, errors in the estimated koff

and xβ can be substantial. Here, we demonstrate that the accuracy of fitted parameters in a DFS
experiment can be dramatically improved by sorting rupture events into groups using cluster analysis
instead of sorting them according to their pulling speeds. We test different clustering algorithms
including Gaussian mixture, logistic regression, and K-means clustering, under conditions that closely
mimic DFS experiments. Using Monte Carlo simulations, we benchmark the performance of these
clustering algorithms over a wide range of koff and xβ , under different levels of thermal noise, and
as a function of both the number of unbinding events and the number of pulling speeds. Our results
demonstrate that cluster analysis, particularly K-means clustering, is very effective in improving the
accuracy of parameter estimation, particularly when the number of unbinding events are limited and
not well separated into distinct groups. Cluster analysis is easy to implement, and our performance
benchmarks serve as a guide in choosing an appropriate method for DFS data analysis. Published by
AIP Publishing. https://doi.org/10.1063/1.5001325

INTRODUCTION

Dynamic force spectroscopy (DFS) experiments are
widely used to characterize the dissociation kinetics and inter-
action energy landscape of protein-protein interactions,1–3

DNA-protein binding,4,5 and aggregation of misfolded pro-
teins.6,7 While these measurements can be performed
using different micromanipulation tools including atomic
force microscopy (AFM), micro-needle manipulation, optical
tweezers, and magnetic tweezers,8 AFM-based DFS experi-
ments are widely used because of their sub-nanometer spatial
resolution.8

In a typical DFS experiment, an AFM cantilever and sub-
strate functionalized with flexible polymer linkers are deco-
rated with the biomolecules of interest (Fig. 1).9 The function-
alized AFM tip and substrate are brought into contact, enabling
opposing molecules to interact, and then pulled apart at a range
of pulling speeds. The force applied to the protein complex is
sensed by the deflection of the cantilever while the rate of
applied force (the loading rate) is controlled by varying the
separation-speed of the AFM tip and substrate. Histograms of

a)Author to whom correspondence should be addressed: sivasank@
iastate.edu. Tel.: (515) 294-1220; Fax: (515) 294-6027.

rupture forces for each pulling speed are plotted to determine
the most probable unbinding force; from the dependence of the
rupture forces on loading rates, the energy landscape param-
eters of the system can be predicted.10,11 In the widely used
single barrier model, the intrinsic off-rate under zero force,
koff , and the width of energy barrier that inhibit protein disso-
ciation, xβ , are determined by fitting the most probable force
at different loading rates to the Bell-Evans model,

F∗(r) = Fβ ln(r/(koff Fβ)), (1)

where F*(r) is the most probable unbinding force, r is the
loading rate, Fβ = kBT/xβ , kB is Boltzmann’s constant, and
T is the absolute temperature.10,12 To increase the quality of
the fit, several pulling speeds are used so that the loading rates
cover a large dynamic range.13,14

In order to measure single molecule binding, DFS experi-
ments are typically designed such that the chance of observing
a specific unbinding event is less than 10%.15 Under these
conditions, collecting enough events to recover the unbind-
ing force distribution and accurately estimate the most prob-
able unbinding forces before the sample degrades is often
impractical. Consequently, the mean or median rupture force
is commonly used for data analysis instead of the most
probable force.16–18 Alternatively, the most probable force is
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FIG. 1. Schematic of the experimental setup for an AFM based DFS mea-
surement (not to scale). A receptor and its binding partner are tethered to the
AFM tip and substrate via poly(ethylene glycol) (PEG) linkers. The receptor
ligand complex is ruptured by translating the tip away from the substrate with
a piezoelectric actuator. During this process, force and tip-surface distance are
recorded.

determined by fitting the force histograms to a Gaussian distri-
bution.19 However, due to thermal fluctuations, heterogeneity
of chemical bonds, and “contaminating” multiple unbinding
and nonspecific adhesion events, the measured force distribu-
tion often varies from the theoretical model which decreases
the accuracy of parameter estimation using the simplified
mean or median force methods.20,21 This distortion is most
pronounced in the prediction of koff , where errors are expo-
nentiated with uncertainties of the same order of magnitude
as the estimated value.22 Different methods have been pro-
posed to improve the accuracy of the estimated koff and xβ ,
such as fitting the force and loading rate distribution with
a probability density function,23 introducing correction algo-
rithms,24 or by considering the force dependence of molecular
oscillation frequencies.25 However, a simple high-accuracy
method to improve parameter estimation in DFS experiments,
which retains the simplicity of using mean forces, is still
lacking.

To overcome this bottleneck, we use cluster analysis to
group unbinding events and improve the accuracy of fitted
koff and xβ in a typical DFS experiment. Cluster analysis
is a widely used technique in identifying specific patterns
from a large database, such as determining biologically rel-
evant genes in microarray experiments,26 identifying similar
behaviors in marketing research,27 and pattern recognition
in computer vision.28 Here, we use three clustering models:
Gaussian mixture, logistic regression, and K-means to group
single molecule unbinding events in DFS and to identify the
most representative forces and loading rates for subsequent fit-
ting. We simulated experimental data within a realistic range of
koff , xβ , thermal noise, number of pulling speeds, and number
of events by performing Monte Carlo simulations. The simu-
lated data were analyzed using both conventional analysis and
cluster analysis, and the performances of different methods
were compared. We show that clustering algorithms greatly
improve the estimation of koff and xβ , even when the amount
of data is limited and where the unbinding events measured at
multiple pulling speeds are not well separated from each other.

Although our simulated data were analyzed using the classic
Bell-Evans model, clustering analysis can be easily applied to
other DFS models described in the literature.29–31

METHODS
Force-distance curve simulation

When a receptor-ligand complex is ruptured by withdraw-
ing the cantilever away from the substrate using a piezoelectric
actuator (Fig. 1), force-distance (FD) curves are the primary
output of the measurement. We therefore simulated unbinding
events as FD curves at a range of loading rates (Fig. 2). Our
model parameters were chosen to relate the model in Fig. 1
to a realistic DFS experiment. We assumed that the receptor
and ligand were immobilized on an AFM tip and substrate
through polyethylene glycol (PEG; MW: 3400 Dalton) link-
ers. The spring constant of the cantilever was set to 40 pN/nm
since soft probes with 10–100 pN/nm stiffness are usually used
to measure weak biological interactions.13 The measurements
were simulated to occur at 25 °C with kBT equal to 4.1 pN
nm throughout the study. In order to mimic a realistic DFS
experiment where loading rates usually span only two to three
orders of magnitude,13 we fixed the lower and upper bounds
on loading rate to be 2000 and 106 pN/s.

We first calculated the probability distribution of rupture
forces, p(F), at a given loading rate, r, using the Bell-Evans
model,10

p (F) =
koff

r
exp

[
F
Fβ
−

koff Fβ
r

(eF/Fβ − 1)

]
. (2)

Since both the receptor and ligand were immobilized on the tip
and substrate using flexible PEG linkers, a non-linear stretch-
ing of PEG tethers should be measured in each FD curve. We
simulated the PEG stretching using the extended freely jointed
chain model,32

D (F) = LC ×

(
coth

(
FLK

kBT

)
−

kBT
FLK

)
+

FLC

LmKs
, (3)

where LC and LK are the contour length and Kuhn length of
the PEG tethers and Lm and KS are the average length and
stiffness of a PEG monomer. Based on previous studies,32 we
used a value of 43.6898 nm for LC , 0.7 nm for LK , 0.2837 nm
for Lm, and 150000 pN/nm for KS . We simulated FD traces
using Eq. (3) at 500 kHz data acquisition rate, with an unbind-
ing force randomly sampled from the probability distribution
of force [Eq. (2)] [Figs. 2(a) and 2(b)]. Since the FD curves
are simulated by randomly sampling a rupture force from the
probability distribution then attaching a linker spring to it,
interactions between the PEG tethers and potential of the bond
are assumed to be negligible.

Since the thermal fluctuations of the cantilever, which
are detected by the AFM’s Quadrant Photodiode (QPD) volt-
age, couple in as noise in both the measured force and the
calculated tip-surface distance, we calculated the QPD volt-
age at each time point of the FD curve and calculated the
noise in both force and tip-surface distance, using an optical
lever sensitivity of 30 nm/V to correlate changes in the QPD
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FIG. 2. Workflow for simulation of single molecule unbinding events. (a) An unbinding force greater than the force threshold (FTH ) was randomly sampled
from the probability distribution of force. FTH was set to 12.8 pN (FTH 0.5×), 25.6 pN (FTH 1×), and 38.4 pN (FTH 1.5×) for conditions with 0.5×, 1×, and 1.5×
thermal noise, respectively. (b) For the sampled unbinding force, a Force-Distance (FD) curve was simulated at 500 kHz using the freely jointed chain model to
account for the stretching of PEG linkers. (c) The noise in force and distance due to thermal vibrations of the AFM cantilever was added to the FD curve at each
time point. The calculated noise was normally distributed with standard deviations of 6.4 pN, 12.8 pN, or 19.2 pN in force and 0.16 nm, 0.32 nm, or 0.48 nm
in distance, for conditions with 0.5× noise, 1× noise, and 1.5× noise, respectively. (d) To determine the unbinding force and loading rate, we first smoothed the
noisy FD curve using a 4 nm moving average window and estimated the spring constant of the molecule, Km, by fitting the last 0.5 nm data to a straight line.
The loading rate was calculated by substituting Km into Eq. (4). The last force reading was used as unbinding force. (e) The calculated force and loading rate
for each FD curve were recorded. (f) By repeating the process described in panels (b)–(e), the unbinding events for a DFS measurement were simulated. Colors
represent different pulling speeds.

voltage to cantilever fluctuations.33 Since noise varies with
factors such as AFM design, quality factor of cantilever, and
environmental noise, we considered three levels of thermal
noise in our simulations: 0.5×, 1×, or 1.5×. We accounted for
these three thermal noise levels by adding normally distributed
noise with standard deviations of 6.4 pN, 12.8 pN, or 19.2 pN
in force and 0.16 nm, 0.32 nm, or 0.48 nm in distance to the FD
curve [Fig. 2(c)].34 In an actual DFS experiment, unbinding
forces lower than a force threshold (FTH ), which depends on
the level of noise, cannot be detected. We accounted for this in
our simulations, by setting an FTH value of 12.8 pN, 25.6 pN,
or 38.4 pN for conditions with 0.5×, 1×, or 1.5× thermal noise
and only sampled forces greater than FTH [Fig. 2(a)].

Next, we estimated the loading rate for each FD curve,
by modeling the cantilever and PEG linker as two springs that
were pulled in series. While the spring constant of cantilever,
KC , was fixed, the spring constant of the PEG linker, Km, was
calculated as the slope of the tangent line to the FD curve at
the unbinding force. Consequently, the loading rate, r, was
calculated as

r = Vpulling(KCKm/(KC + Km)), (4)

where Vpulling is the pulling speed. We smoothed the noisy FD
trace using a moving 4 nm window and estimated the spring

constant of molecule, Km, by fitting the last 0.5 nm data to
a straight line [Fig. 2(d)]. The loading rate was determined
by substituting Km, KC , and Vpulling into Eq. (4). To simulate
the dataset for a DFS experiment, we generated FD curves for
different pulling speeds and recorded their rupture forces (last
force reading in the FD curve) and loading rates [Figs. 2(e)
and 2(f)].

Calculation of koff and xβ

The simulated rupture events were sorted into groups
using four methods (described below); the number of groups
was limited to be the number of pulling speeds. To extract
koff and xβ , we determined the mean force and loading rate
of each group and then fitted the mean force vs. loading
rate to the Bell-Evans model [Eq. (1)] using a nonlinear
least-squares fitting with bisquare weights. Simulations were
repeated 100 times for each condition, and koff and xβ were
calculated for each simulation. Relative error in xβ was calcu-
lated as

[
median

(
calculated xβ

)
− (preset xβ)

]
/
[
preset xβ

]
.

Relative error in koff was calculated as
[
emedian(ln(calculated koff ))

− (preset koff )
]
/
[
preset koff

]
. The algorithms for clustering

have been derived in Ref. 28; Matlab code used for sepa-
rating rupture events into groups was directly adopted from
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Ref. 35 without modification. The methods we used to group
data include the following:

Method 1: Pulling speed. This is the standard method in
DFS data analysis where unbinding events with the same
pulling speed are grouped together.
Method 2: Clustering using 2D Gaussian mixture model
(GMM). Forces and loading rates were normalized for
GMM since the ranges they span can be dramatically
different. Each unbinding force F i was normalized using
(F i � Fmin)/(Fmax � Fmin), where Fmax and Fmin are
the maximum and minimum values for force. Loading
rate ri was normalized using (ln(ri) � ln(rmin))/(ln(rmax)
� ln(rmin)), where rmax and rmin are the maximum and
minimum values for loading rate. As an initial guess
for classification, events were grouped according to their
loading rates; groups were assigned with equal number of
events.
Method 3: Clustering using logistic regression model.
Data were normalized as in Method 2 and the initial guess
was used as the training dataset for 2D logistic regression
clustering.
Method 4: Clustering using 1D K-means. Events were
separated into groups based on the normalized loading
rates. The initial guess was the same as in GMM.

While koff and xβ can be also extracted by directly fit-
ting the entire data cloud to the Bell-Evans model, without
sorting into groups, previous studies have shown that this fit-
ting method results in large errors.23 Consequently, we did not
pursue cloud fitting in our study.

RESULTS AND DISCUSSION
Overview of cluster analysis

Cluster analysis is the process of sorting data into different
groups such that events within the same category share simi-
lar characteristics. The main idea in applying this approach
to a DFS experiment is that when a specific interaction is
probed repeatedly using the same tip-sample pulling speed,
the measured unbinding forces and loading rates are expected
to be similar within a certain noise level. Therefore, unbinding

events are expected to form clusters on a force versus load-
ing rate plot. The mean forces and loading rates calculated
from the clustered events share common characteristics such
that the influence of outliers are reduced. To test this idea,
we simulated unbinding events to closely mimic a realistic
DFS experiment and grouped the events either using cluster
analysis algorithms or according to pulling speed (the stan-
dard DFS analysis method where the unbinding events are
grouped according to the tip-surface retraction speeds). We
used three clustering analysis approaches in this work: Gaus-
sian mixture model (GMM), logistic regression, and K-means
(methods).28,36

Our rationale in using GMM28 is that since the rupture
force distribution at a constant pulling speed resembles a
skewed Gaussian with a long tail at low forces,10 the distri-
bution of forces collected with many pulling speeds can be
approximated as a mixture of Gaussian distributions. GMM
was used to assign each unbinding event to a group by maxi-
mizing the posterior probability that the data point belongs to
its assigned cluster such that the force distribution within each
group is most likely to be a Gaussian.28 In contrast to GMM,
logistic regression identifies the boundaries between groups
based on a training dataset, while K-means partitions data into
clusters by minimizing the distance from the data point to the
mean of its assigned cluster.28,36 The theory and mathematical
derivation of these methods are beyond the scope of this study;
we merely adopt these clustering algorithms as data-analysis
tools.

Overlap of data increases with increasing koff , xβ,
noise, number of unbinding events, and number
of pulling speeds

Since the goal of cluster analysis is to partition data
into groups by relocating ambiguous events at the boundaries
into their proper categories, this approach is beneficial when
unbinding events across multiple pulling speeds overlap. To
generate overlapping datasets, we first examined how each
parameter in our simulation affects data overlap (Fig. 3).

With a fixed range of loading rates, one would intuitively
expect data overlap to increase with the number of pulling
speeds, the number of unbinding events, and the level of

FIG. 3. Unbinding events across mul-
tiple pulling speeds overlap when the
number of pulling speeds, number of
data points, and thermal noise increases.
(a) Data were simulated using koff =
0.1 s�1, xβ = 1 nm, 6 pulling speeds,
100 events per pulling speed with 1×
thermal noise. Colors represent differ-
ent speeds. (b)–(f) Similar to panel (a),
unbinding events were simulated while
varying only one parameter at a time.
Simulations were carried out with (b) 9
pulling speeds; (c) 30 events per pulling
speed; (d) 0.5× thermal noise; (e) koff

= 0.001 s�1; (f) xβ = 0.5 nm. Each circle
represents one unbinding event.
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thermal noise. To confirm this, we first simulated a DFS exper-
iment consisting of 600 unbinding events across 6 pulling
speeds, using koff = 0.1 s�1, xβ = 1 nm, and 1× thermal noise
[Fig. 3(a); methods]. Fixing all the other parameters in the sim-
ulation, we increased the number of pulling speeds [9 pulling
speeds, Fig. 3(b)], decreased the number of events per pulling
speed [30 events per pulling speed, Fig. 3(c)], decreased
the noise level [0.5× thermal noise, Fig. 3(d)], reduced koff

[koff = 0.001 s�1, Fig. 3(e)], and reduced xβ [xβ = 0.5 nm, Fig.
3(f)]. As expected, the degree of data overlap increased with
the number of pulling speeds, number of unbinding events,
and a higher noise level [Figs. 3(a)–3(d)]. The simulated data
also showed an increasing overlap as koff and xβ increased
[Figs. 3(a), 3(e), and 3(f)].

Cluster analysis improves the estimation
of koff and xβ

Next, we compared the accuracy of different cluster anal-
ysis methods and the standard pulling speed method on the
estimation of koff and xβ . An example dataset containing
270 simulated unbinding events evenly distributed over 9 tip-
sample separation speeds with 1× thermal noise using koff

= 0.1 s�1 and xβ = 1 nm is shown in Fig. 4. The events were
separated into 9 groups using either pulling speeds, GMM,
logistic regression, or K-means (Fig. 4; methods). The most
probable unbinding forces and loading rates were calculated
by averaging data within each group (Fig. 4, red squares); koff

and xβ were then extracted by fitting those mean values to the
Bell-Evans equation (Fig. 4, red lines). We performed sim-
ulations where only one parameter (either the thermal noise,
number of unbinding events, number of pulling speeds, koff , or
xβ) was varied at a time, and the accuracy of different group-
ing methods on koff and xβ estimation was compared. When
the thermal noise, number of data points, or number of pulling
speeds was varied, koff and xβ were fixed at 0.1 s�1 and 1 nm,
respectively. When koff or xβ were varied, 9 pulling speeds
and 30 unbinding events per speed with 1× thermal noise

were used. Simulations for each condition were repeated 100
times, and the statistical distribution of estimated koff and xβ
was plotted (Figs. 5 and 6). In the following discussion, we
focus on estimated errors in koff since the estimation of xβ is
accurate within 10% error in all analysis.

First, we tested koff estimation using different grouping
methods when the number of pulling speeds was varied (6,
9, and 12 pulling speeds). Our data showed that as the num-
ber of pulling speeds was increased, cluster analysis improved
koff estimation [Fig. 5(a)]. While relative errors in koff using
the standard pulling speed method were between �53% and
�63% across all conditions, K-means analysis reduced the rel-
ative error from �43% at 6 pulling speeds to �11% and �8%
at 9 and 12 pulling speeds, respectively. Logistic regression
also decreased the error from �46% to �24% and �27% as
the number of tip-surface retraction speeds was increased. In
contrast, GMM showed a less significant improvement, with
errors of�55%,�36%, and�42% at 6, 9, and 12 pulling speeds,
respectively.

Next, we measured koff estimation when the number of
data points in each group equaled 10, 30, and 100 unbinding
events. Our results showed that koff estimation using the K-
means method was superior, even when the amount of data was
limited [Fig. 5(b)]. When individual groups had 10, 30, and 100
rupture events, the relative errors using K-means clustering
were �9%, �11%, and �27% which was significantly lower
than errors of �50%, �54%, and �58% measured with the
standard pulling speed analysis. The logistic regression model
also showed better accuracy, with errors of �24%, �24%, and
�37% while GMM showed a less significant improvement,
with errors of �51%, �36%, and �51% at 10 events, 30 events,
and 100 events per group, respectively. Interestingly, while
increasing the amount of data mainly increased precision, koff

accuracy did not increase.
The accuracy of koff estimation decreased with an increase

in thermal noise using all grouping methods [Fig. 5(c)]. When
the force due to thermal fluctuations of the cantilever was
6.4 pN, 12.8 pN, and 19.2 pN (0.5×, 1×, and 1.5× thermal

FIG. 4. Visual comparison of different clustering algo-
rithms used. Unbinding events were simulated using koff

= 0.1 s�1, xβ = 1 nm, 9 pulling speeds, 30 events per
pulling speed with 1× thermal noise. Events were clas-
sified into different groups based on (a) pulling speeds;
(b) Gaussian mixture cluster model; (c) logistic regres-
sion clustering; (d) K-means clustering. The results of
grouping are indicated by colors. The average forces and
loading rates (red squares) within each group were fit to
the Bell-Evans model (red line) to estimate koff and xβ.
The estimated values are indicated. Black line represents
the plot of the Bell-Evans equation using koff = 0.1 s�1,
xβ = 1 nm. Differences between the different methods
were observed at the boundaries between groups.
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FIG. 5. Evaluation of cluster analysis for estimating koff in DFS experiments. DFS data were generated using Monte Carlo simulations with koff = 0.1 s�1, xβ
= 1 nm, 9 pulling speeds, 30 events per pulling speed, and 1× thermal noise. Four classification methods (pulling speeds, Gaussian mixture cluster model, logistic
regression clustering, and K-means clustering) were used, and kinetic parameters were estimated using the Bell-Evans model. Simulations were repeated 100
times; the distribution of estimated koff is plotted. Red line represents the preset values of koff . The performance of methods was compared by varying (a) the
number of pulling speeds, (b) the amount of data, (c) the thermal noise, (d) koff , and (e) xβ. Cluster analysis significantly improved koff estimation when the
number of pulling speeds, number of unbinding events, and the thermal noise increased. Cluster analysis was especially accurate at high dissociation rates and
wide energy barriers.

noise), the relative errors in estimated koff using the standard
pulling speed method (�15%, �54%, and �97%), k-means
analysis (18%, �11%, and �88%), logistic regression (14%,
�24%, and �92%), and GMM (�1%, �36%, and �92%) were
comparable.

Importantly, our data showed that cluster analysis was
especially useful for studying molecular interactions with high

dissociation rates and wide energy barriers [Figs. 5(d) and
5(e)]. At dissociation rates of 10�3 s�1, 0.01 s�1, and 0.1 s�1,
the relative error in koff estimated by K-means was �34%,
�19%, and �11%, respectively. The relative error using logis-
tic regression was comparable to K-means with values of�39%
for 10�3 s�1, �32% for 0.01 s�1, and �24% for 0.1 s�1, respec-
tively. In contrast, koff calculated using both GMM and the

FIG. 6. Evaluation of cluster analysis for estimation of xβ. Unbinding events were generated using Monte Carlo simulations with koff = 0.1 s�1, xβ = 1 nm, 9
pulling speeds, 30 events per pulling speed, and 1× thermal noise. Pulling speeds, Gaussian mixture cluster model, logistic regression clustering, and K-means
clustering were used to group data. Kinetic parameters were estimated using the Bell-Evans model. Simulations were repeated 100 times. Red line represents
the preset values of xβ. Clustering methods were compared by varying (a) the number of pulling speeds, (b) the amount of data, (c) the thermal noise, (d) koff ,
and (e) xβ. As in the case of koff estimates shown in Fig. 5, cluster analysis significantly improved xβ estimation when the number of pulling speeds, the number
of unbinding events, the thermal noise, koff , and xβ increased.
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standard pulling speed method showed larger relative errors
(�40%, �35%, �36% for GMM and �44%, �44%, �54% for
pulling speed) for off rates of 10�3 s�1, 0.01 s�1, and 0.1 s�1,
respectively.

Similarly, when the conventional pulling speed method
was used, increasing the width of the energy barrier increased
the error in koff estimation (�2% error at 0.1 nm, �33% error
at 0.5 nm, and �54% error at 1 nm). However, this increase
in relative error was not observed when cluster analysis was
used [Fig. 5(e)]. With barrier widths of 0.1 nm, 0.5 nm, and
1 nm, the errors in estimated koff were 0%, �16%, and �11%
for K-means; �1%, �26%, and �24% for logistic regression;
�1%, �26%, and �36% for GMM.

Most importantly, the improvement in xβ estimation by
cluster analysis followed a very similar trend as the koff esti-
mation (Fig. 6), indicating that the accuracy of both koff and
xβ estimates increased at the same time. This is particularly
encouraging because it demonstrates that the increased accu-
racy of koff by cluster analysis was not offset by a reduced
accuracy in xβ estimation.

Finally, we validated the effect of clustering by simulta-
neously varying parameters across a range of values that have
previously been measured in DFS experiments with biological
systems including cell adhesion proteins and antigen-antibody
complexes.13 A total of 324 DFS experiments were simulated.

FIG. 7. Relative error in estimated (a) koff and (b) xβ using K-means cluster-
ing. DFS data were simulated using 9 pulling speeds and 1× thermal noise.
Other parameters include koff = 10�3, 0.01, 0.1, 1 s�1; xβ = 0.1, 0.5, 1 nm;
the number of events per pulling speed = 10, 30, 100. For each condition, the
relative errors were compared with the pulling speed method. Stars indicate
conditions where K-means is more accurate (0 stars: no improvement; 1 star:
relative error is reduced ≤10% for koff and ≤5% for xβ ; 2 stars: relative error
is reduced by 10%–20% for koff and 5%–10% for xβ ; etc.). Triangles indi-
cate conditions where the K-means analysis is less accurate; relative error is
increased ≤10% for koff and ≤5% for xβ .

We used four values of koff (10�3, 0.01, 0.1, and 1 s�1) in
combination with three values of xβ (0.1, 0.5, and 1 nm). In
order to account for different experimental conditions, we also
varied the number of pulling speeds (6, 9, and 12), number of
events per pulling speed (10, 30, and 100 events), and differ-
ent levels of thermal noise (0.5×, 1×, and 1.5×). We applied
cluster analysis to each condition and compared the estimated
koff and xβ to the results obtained using the pulling speed
method. The complete results of our simulations are presented
in the supplementary material (Figs. S1–S6; Tables S1–S3).
In Fig. 7, we just present results using 9 pulling speeds and
1× thermal noise analyzed using K-means, to illustrate its
power in estimating koff and xβ (Fig. 7). We use stars to indi-
cate conditions where K-means is more accurate and triangles
to indicate conditions where the standard pulling speed analy-
sis is more accurate; increase in the number of stars/triangles
indicates a proportionally higher accuracy using K-means/
standard-analysis.

As seen in Fig. 7, K-means clustering improved the accu-
racy of koff and xβ even when the number of unbinding events
was low. The improved accuracy of parameter estimation was
more pronounced for wide energy barriers and high off-rates
and when the unbinding events across different loading rates
overlap (Fig. 7). For instance, at a dissociation rate of 0.1 s�1,
xβ of 1 nm, and 30 events per pulling speed, K-means reduced
the relative error in koff to �11% as compared to a �54% rel-
ative error using pulling speed analysis. In contrast, when the
energy barrier was narrow or the off-rate was small, the unbind-
ing events were already well-separated and cluster analysis did
not significantly improve the estimation of koff and xβ .

CONCLUSION

This manuscript presents a high accuracy method using
clustering algorithms, to improve kinetic parameter estimation
while retaining the simplicity of data collection and analysis
of a conventional DFS experiment. We benchmarked the per-
formance of different clustering algorithms, by testing them
across an extensive range of conditions that mimic real-world
experiments. The parameters we varied included the number
of unbinding events, pulling speeds, and noise levels, across
a range of koff and xβ typical of receptor-ligand pairs. Under
these conditions, the K-means method had the highest accu-
racy in estimating koff and xβ . Although logistic regression and
GMM were more accurate than the conventional pulling speed
method, the improvement was not as significant as K-means.

The cluster analysis used in this study could be fur-
ther improved, by grouping unbinding events using Bell-
Evans force distributions10 or more sophisticated distributions
described in the literature.29,37 The analysis method presented
in our work can also be used to identify and eliminate artifacts
due to the formation of multiple receptor ligand bonds and
nonspecific binding events which are not tightly clustered on
a force-loading rate plot.38

SUPPLEMENTARY MATERIAL

See supplementary material for comparison of differ-
ent clustering methods using simulated data with different

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-001898
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-001898
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values of koff , xβ , pulling speeds, number of events, and
thermal noise.
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