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Abstract: Herein, we report on the performance of a hybrid organic-ceramic hydrophilic pervaporation
membrane applied in a vacuum membrane distillation operating mode to desalinate laboratory
prepared saline waters and a hypersaline water modeled after a real oil and gas produced water.
The rational for performing “pervaporative distillation” is that highly contaminated waters like
produced water, reverse osmosis concentrates and industrial have high potential to foul and scale
membranes, and for traditional porous membrane distillation membranes they can suffer pore-wetting
and complete salt passage. In most of these processes, the hard to treat feed water is commonly
softened and filtered prior to a desalination process. This study evaluates pervaporative distillation
performance treating: (1) NaCl solutions from 10 to 240 g/L at crossflow Reynolds numbers from 300
to 4800 and feed-temperatures from 60 to 85 ◦C and (2) a real produced water composition chemically
softened to reduce its high-scale forming mineral content. The pervaporative distillation process
proved highly-effective at desalting all feed streams, consistently delivering <10 mg/L of dissolved
solids in product water under all operating condition tested with reasonably high permeate fluxes
(up to 23 LMH) at optimized operating conditions.

Keywords: pervaporation; membrane distillation; ceramic membranes; desalination; hyper-saline
water; brine; produced water treatment; specific energy consumption

1. Introduction

Pervaporation (PV) is a hybrid distillation process whereby separation performance is a function
of the relative solubilities (in the membrane) of the constituents in the feed as well as their relative
boiling points. In practice, PV is primarily used for separation of azeotropic liquid mixtures like
alcohols and water [1], polar aprotic solvents and water [2], as well as other applications such as
bioethanol dehydration [3], production of non-alcoholic wine and beer [4], and catalytically active
membranes for reactive-separations [5,6]. While PV has found limited practical application in water
desalination to date, pervaporative desalination (PVD) has been studied for over 25 years [7,8].

Various researchers have explored the use of zeolite and carbon molecular sieve-coated ceramic
membranes for PVD, where one of the key challenges is making a defect free zeolite coating that is
thin enough to give a reasonable flux [9–14]. Other studies explored different types of polymeric and
mixed matrix membranes applied to PVD [15–20]. Several earlier studies have explored the PVD
process and even solar powered PVD [21–23]. Among the most comprehensive set of studies include
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those by Gray and co-workers [21,24–27], who have explored novel polymeric thin film composite and
nanocomposite PV membrane materials as well as scaled-up process energy demand and cost; they
conclude that PVD (like traditional membrane distillation, MD) will be more expensive and energy
intense than RO, so it may be limited to brine concentration, where commercial RO membranes cannot
operate at high enough pressures to achieve reasonable permeate recovery [26].

Despite the rather limited practical application of MD and PVD to brine concentration, water
sustainability imperatives motivate efforts to achieve minimal or zero liquid discharge (MLD/ZLD)
in many desalination applications. As such, the dense separating layer of PV membranes offers a
potential advantage over conventional MD. In conventional MD processes, a hydrophobic membrane
with pores on the scale of ~0.1 to ~0.5 µm separates the feed and permeate streams; this is depicted
in Figure 1a in the form of vacuum MD (VMD). A MD membrane must be very hydrophobic and
the pores of sufficient size and shape to maintain a vapor-liquid interface (or meniscus) at each pore
entrance [28–31]. The feed is heated, while the permeate is either cold water, a cool sweep gas or under
vacuum—the combined effects lower the trans-membrane partial pressure difference for water leading
to evaporation below the boiling point. However, when a hydrophobic MD membrane experiences
fouling or scaling the pores become less hydrophobic, reducing the pore liquid entry pressure (LEP)
risking “pore wetting”, which leads to salt passage and complete system failure [32]. In contrast, PV
employs a dense hydrophilic membrane, which first absorbs liquid water then passes it as water vapor
(Figure 1b) [8,33]. The dense hydrophilic PV membrane could lose permeability due to fouling or
scaling, but would not suffer process failure as happens in MD.
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Figure 1. Comparison between (a) VMD and (b) PVD.

Herein, we report on the performance of a hybrid organic-inorganic thin film composite PVD
membrane evaluated in a process mode identical to that of VMD. We evaluate the effects of feed
temperature, crossflow velocity and feed water salinity (up to 240 g/L) to establish a basic understanding
of the PVD membrane’s performance characteristics. We then evaluate the potential for treating a
real hyper-saline produced water stream derived from upstream oil and gas production via hydraulic
fracturing. The organic-inorganic thin film composite membrane was chosen because of its stability
under extreme operational conditions (high salinity, temperature, acidity, etc.) [34]. This silica-based
amorphous material offers a true hybrid silica pore network in which organic and inorganic fragments
cooperate. The hybrid structure provides more stable bonds, lower solubility, and higher crack
propagation energy resulting in more ductile material, all of which contribute to its remarkable stability.
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2. Materials and Methods

2.1. Materials

The hydrophilic PV membrane used in this study, HybSi® PVM-039, (Pervatech BV, Rijssen,
The Netherlands), comprised a proprietary cross-linked organo-silane selective layer casted on an
α-Al2O3 tubular ceramic membrane support. The thin coating of selective layer is prepared by a
sol-gel process from the bis-silyl precursors, such as BTESE [(EtO)3Si–CH2CH2–Si(OEt)3] and BTESM
[(EtO)3Si–CH2–Si(OEt)3], that has been described in detail elsewhere [34,35]. The coating film was on
the inside of the ceramic tube. The tube had exterior diameter of 10 mm, an interior diameter of 7 mm
and a length of 25 cm giving an active membrane area of 0.005495 m2.

All feed solutions in this study were synthetic solutions made of salts and laboratory de-ionized
water (18 M-ohm). Sodium chloride (NaCl), magnesium sulfate heptahydrate (MgSO4·7H2O),
calcium chloride dihydrate (CaCl2·2H2O), sodium bicarbonate (NaHCO3), sodium bromide
(NaBr), strontium chloride hexahydrate (SrCl2·6H2O), potassium chloride (KCl), iron(II) sulfate
heptahydrate (FeSO4·7H2O), sodium sulfate (Na2SO4), sodium metasilicate (Na2SiO3), sodium silicate
(Na2O+SiO2·H2O) were purchased from Sigma-Aldrich (St. Louis, Missouri, USA) and used as received.

2.2. PVD Bench-Scale Testing Apparatus

The laboratory PVD setup is depicted in Figure 2. The membrane unit was secured in a
cylinder-shaped module. The feed solution was preheated to a desired temperature by circulating it
directly through a recirculating heater/chiller bath (Sahara, SCE 150-S3, Thermo Neslab) and returned
to an insulated high-density polyethylene (HDPE) feed tank. A separate external thermometer (VWR)
was used to directly monitor the temperature inside the feed vessel. During the experiment, the solution
was drawn from the feed tank and circulated through the PV membrane module using a gear pump
(75211-30 A-Mount Suction, Micropump).
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Figure 2. Schematic of the bench-scale PVD system.

The feed mixture, at elevated temperature and atmospheric pressure, was in direct contact with
the interior, hydrophilic organo-silane coated side of the membrane. The permeate was removed in a
vapor state from the reverse side of the membrane using a vacuum pump (GAST, Benton Harbor, MI,
USA) at a vacuum of 0.85 bar. The vapor was converted into liquid state in a condenser comprising
a glass coil attached to a second recirculating heater/chiller set to 5 ◦C. A graduated cylinder was
attached to the condenser outlet to collect permeate.
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2.3. Basic PVD System Performance

The PVD system performance was characterized by the observed water flux and salt rejection.
The volumetric permeate flux (J) was determined from the permeate mass (M), per unit time (t), density
of permeate (ρw) and effective membrane area (A) according to,

J =
M
ρwAt

(1)

Experiments were performed to evaluate the impact of feed concentration, feed temperature, and feed
crossflow velocity on system performance. A serious of aqueous solutions containing 10 to 240 g/L
NaCl were chosen to represent the typical salt concentration of brackish water, sea water, and brine
streams. Feed temperature was varied in the range of 60 to 85 ◦C. The feed crossflow velocity was
varied to achieve different flow regimes, as reflected by Reynolds number (Re) which is calculated as

Re =
ρudH

u
(2)

where u is the channel average crossflow velocity, ρ is solution density, dH is the hydraulic diameter
(m), and µ is the solution viscosity [36–39]. Both ρ and µ were calculated at its corresponding salinity
and temperature [37]. The target Reynolds number was in the range of ~300 to ~4800.

For each set of test conditions, permeate samples were collected for 30 minutes after the system
stabilized. The salt concentration of the feed (cf) and permeate (cp) were obtained from measured
electrical conductivities with a conductivity meter (Hach, Loveland, CO, USA). The salt concentration
of the feed and permeate were determined from measured. The salt rejection (R) was determined by

R =
C f −Cp

C f
× 100% (3)

The apparent diffusion coefficient of water was calculated from a simplified version of Fick’s law,

Dw =
Jδ

C f −Cp
(4)

where δ is the membrane coating film thickness.
The overall effect of temperature on flux, as well as the solubility and diffusivity of component

within the membrane, can be reflected by an apparent activation energy, Ea, based on the
Arrhenius relationship,

J = A·exp(−
Ea

RT
) (5)

where J is the permeate flux, A is the pre-exponential factor, R is the ideal gas law constant, and T is the
absolute temperature.

2.4. Integrated Membrane Process for Produced Water Desalination

The performance of PVD system was evaluated by treating a simulated produced water using
the composition of a real produced water sample. OLI Stream Analyzer software (OLI Systems,
Morris Plains, NJ, USA) was used to evaluate solution quality with different ionic compositions.
According to the simulation results from OLI, the produced water composition given by the oil &
gas producer possessed an extremely high scaling potential particularly at elevated temperatures,
which would substantially limit permeate water recovery in the PVD process. Therefore, integrating
pre-treatment steps such as lime softening and filtration, is necessary to prevent scaling on the PVD
membranes. In this study, slaked lime (CaO, Sigma Aldrich, St. Louis, MO, USA) and soda ash
(Na2CO3, Sigma Aldrich, St. Louis, MO, USA) were used to soften synthetic produced water and
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the precipitated solids were filtered out using a 0.45-µm cellulose acetate membrane (EW-06645-14,
Cole Parmer, Vernon Hills, IL, USA).

2.5. Energy Performance of the PVD System

The main energy requirement of the PVD system should include: the thermal energy needed
to heat up the feed stream, the electrical energy required to create vacuum and the electrical energy
needed to circulate the feed. The thermal energy is the largest energy component, increasing sharply
with increasing temperature [40]. The evaluation of the energy consumption of the PVD system is
based on the quantities of energy consumed and the quantity of treated water. The specific energy
consumption SEC, which is defined as the amount of total energy supplied (heat and electrical energy in
this case) to produce a unit mass of pure water [41], was calculated to evaluate the energy performance
of the PVD process as [42],

SEC = STEC + SEEC (6)

where STEC is the specific thermal energy consumption, or the specific heat consumption, which can
be calculated from the rate of heat input into the PVD system,

.
Qheat, and the mass flow rate of pure

water produced,
.

mper as [43],

STEC =

.
Qheat

.
mper

, (7)

and SEEC is the specific electrical energy consumption defined as the amount of electrical energy
consumed,

.
E, to produce a unit mass of pure water [44],

SEEC =

.
E
.

mper
. (8)

The SEEC value here includes both the vacuum pump and feed recirculating pump.
The required thermal energy includes the initial thermal energy to heat up the feed from ambient

temperature to desired temperature, and continuous thermal energy to keep the feed at desired
temperature. Thus, the rate of thermal energy input

.
Qheat can be calculated as, [26]

.
Qheat =

.
m f Cp, f

(
Tin, f − T0

)
(9)

where
.

m f is the mass flow rate of the feed solution; Cp, f is the specific heat capacity of the feed; T0 and
Tin, f are the temperature of the feed before heating and feed channel inlet, respectively.

The electrical energy consumption is composed of the energy needed to circulate the feed and
to create vacuum on the permeate side. Therefore, the rate of electrical energy input

.
E is calculated

as [45],
.
E =

.
Evac +

.
Ecir (10)

.
Evac =

3.35× 10−3

ηvac
Tpq0 ln (

Patm

Pvac
) (11)

.
Ecir =

.
V f ∆P

ηcir
(12)

where,
.
Ecir and

.
Evac are the rate of electrical energy consumption of the feed flow pump and the vacuum

pump, respectively; ηcir and ηvac are the efficiency of feed and vacuum pump, respectively;
.

V f is the
volumetric flow rate of the feed solution; ∆P is the feed bulk pressure difference between the inlet
and outlet; Tp is the permeate temperature and q0 is the flow rate of the air to be evacuated from the
permeate line; Patm and Pvac are the atmospheric and vacuum pressures, respectively.
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2.6. Model Development

The transport model outputs the system average product water fluxes, which is based on a
series of differential mass, momentum and heat balances and employs a forward difference numerical
solution. The global average water vapor flux is determined from

J =
∫ L

0
Jxdx (13)

where the local permeate flux Jx is obtained by

Jx = Am(Pm f ,x − Pv) (14)

where Am is the membrane permeability, Pm f ,x is the local partial vapor pressure at feed/membrane
interface, Pv is the absolute pressure on the permeate side. Pm f ,x is determined by the local temperature
at the feed/membrane interface Tm f ,i, which can be expressed in Antoine Equation [46]

Pm f ,x = (
1

1 + mx
) exp (23.1964−

3816.44
Tm f ,x − 46.13

) (15)

where mi is the local molar fraction of salt at the feed/membrane interface.
Based on the mass balance of the feed, local cross-flow velocity is determined by [47]

ρxux − ρ0u0 =
1
hc

∫ L

0
ρx Jxdx (16)

where ρ represents feed density, u is the feed velocity, and hc is the feed channel height. The subscript
0 denotes the value of the parameter at the membrane inlet. The density and the viscosity of the feed
solution change along the membrane module length. The local feed density can be determined by [37]

ρx = −3.033405 + 10.1288163k− 8.750567k2 + 2.663107k3 (17)

where the coefficient k is calculated as

k = −9.9559e−0.004539mx + 7.0845e−0.0001638(Tb,x−273) + 3.9093e0.00002551∆Ph,x (18)

where Tb,x is the local bulk feed temperature, and ∆Ph,x is the local feed pressure. The local feed
viscosity µb,x is obtained by [37]

µb,x = µw,x
(
1 + 0.0816mx − 0.0122mx

2 + 0.000128mx
3 + 0.000629Tb,x

(
1− e−0.7mx

))
(19)

where the local viscosity of water µw,x is calculated as

µw,x = 2.414× 10−5
× 10

247.8
Tb,x−140 (20)

Local hydraulic pressure ∆Ph,x is determined by [47]

∆Ph,x = ∆Ph,0 −
1

2dH

∫ L

0
fsp,xρxux

2dx (21)
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where ∆Ph,0 is the inlet pressure of the feed, dH is the hydraulic diameter which is the diameter of the
membrane in this case, fsp,x is the local frictional factor determined by

fsp,x =

{
24Rex

−1 (Rex < 2300)
0.079Rex

−0.25 (Rex ≥ 2300)
(22)

Local bulk feed temperature can be estimated from a heat balance [48]

Tb,x =
1

ρxuxcp,x
(ρ0u0cp,0Tb,0 −

ρw∆Hx

Mwhc

∫ L

0
Jxdx) (23)

where Tb,0 (K) is the inlet bulk feed temperature, ρw is the density of water, Mw is the molar mass
of water, ∆H is the latent heat of vaporization of the feed, and cp is the feed specific heat capacity.
The local value of both ∆H and cp can be calculated according to the local solute concentration, cx,
and temperature, Tb,x [38,39]

∆Hx = 1.91846× 106
× (

Tb,x

Tb,x − 33.91
)

2

× (1−
cx

1000ρx
) (24)

cp,x = (5.328 −9.76× 10−2S + 4.04× 10−4S2
)

+
(
−6.913× 10−3 + 7.351× 10−4S

+3.15× 10−6S2
)
Tb,x

+
(
9.6× 10−6

− 1.927× 10−6S + 8.23× 10−9S2
)
Tb,x

2

+
(
2.5× 10−9 + 1.666× 10−9S− 7.125× 10−12S2

)
Tb,x

3

(25)

From boundary layer heat transfer theory, temperature at the membrane surface Tm,x can be
estimated by

Tm,x = Tb,x −
Jx

ρx
Mw

∆H

h f ,x
(26)

where h f ,x is the local heat transfer coefficient, which can be determined from Nusselt (Nu)-Reynolds
(Re)–Prandtl (Pr) relationship [49–51],

Nux =
dH

kT
h f ,x =


0.097Rex

0.73Prx
0.13 (Rex < 1600)

0.023Rex
0.8Prx

0.3 (Rex > 2200)
0.43Rex

0.59Prx
0.3 (1600 ≤ Rex ≤ 2200)

(27)

where kT is the thermal conductivity of feed water calculated as [38,39],

log10(kT, x) = log10(240 + 0.0002S) + 0.434× (2.3

−
343.5+0.037S

Tb,x
)(1−

Tb,x
647+0.03S )

0.333 (28)

The salt concentration of the bulk feed cb is determined by [47]

cb,x =
cb,0u0

ux
(29)

Accounting for concentration polarization [52], the salinity at the membrane surface cm is
determined by

cm,x = cb,x exp
(

Jx

k f ,x

)
(30)
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where k f ,x (m/s) is the local mass transfer coefficient given by Sherwood (Sh) – Reynolds (Re) -Schmidt
(Sc) relationship as the following,

Shx =
k f ,xdH

D

=


1.65

(
RexScx

dH
L

)0.33
(Rex < 1600)

0.04Rex
0.75Scx

0.33 (Rex > 2200)

1.65
(
RexScx

dH
L

)0.33
+ 0.04Rex

0.75Scx
0.33 (1600 ≤ Rex ≤ 2200)

(31)

where Scx is the local Schmidt number (= µx
ρxD ), and Dx is the local diffusion coefficient of NaCl.

3. Results and Discussion

3.1. Membrane Flux

Figure 3 shows the effect of feed temperature on the PVD system performance desalinating 15 g/L
NaCl solution. The feed flow rate was maintained at 0.56 L/min to keep the feed flow channel Reynolds
number at 4800. As feed temperature increased from 60 ◦C to 85 ◦C, the water flux increases from 4.3
LMH to 16 LMH. A higher water flux was expected at a higher temperature, because the partial vapor
pressure difference between the feed and permeate side, which is the driving force of a PVD process, is
strongly affected by temperature. As the feed temperature increased, the water vapor pressure on the
feed side increases, whereas the vapor pressure on the permeate side remains unchanged. As a result,
the vapor pressure difference across the membrane increased which led to an increase in vapor flux.
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Figure 3. The impact of feed temperature on PVD system performance with cross-flow Reynolds
number of 4800, feed NaCl concentration of 15 g/L and permeate vacuum of 0.85 bar. The blue bars
represent permeate flux (y-axis on the left) and the red triangle dots represent salt rejection (y-axis on
the right).

In addition, the increase in temperature also increases water diffusion through the membrane,
likely through a combination of higher bulk diffusivity and more swollen (open) membrane pore
structure, resulting in higher water permeability (Table 1). Based on free volume theory [53], momentary
free volumes are created by the thermal motion of polymer chains in an amorphous region; therefore,
as the temperature increased, the free volume of the membranes could increase the higher frequency
and amplitude of chain motion. When the polymer-free volumes increase, water molecules diffuse
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through with less resistance; combined with a higher bulk diffusivity, the apparent water permeability
and observed water flux increased.

Table 1. Apparent diffusion coefficient of water at different temperatures.

Temperature (◦C)
Water Diffusion Coefficient (×10−10 m2/s)

60 65 70 75 80 85

15g/L NaCl Re = 4800 0.69 1.39 2.02 2.37 2.65 2.79

Figure 4 shows a linear Arrhenius plot of the natural logarithm of water flux versus reciprocal
temperature. The apparent activation energy Ea of water in the membrane was determined to be
32.6 kJ/mol from the slope of the Arrhenius plot. Compare to other studies, the apparent activation
energy of water in the Hybsi membrane is similar to other hybrid pervaporative membranes, where the
activation energy in those membranes were reported to be in the range of 11.8–45 kJ/mol, depending on
the different membrane materials and operating conditions [25,54–58]. The positive activation energy
implies that permeation flux increases with increasing temperature [25], as confirmed by the results
shown in Figure 3.
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Figure 4. Arrhenius plot of the water flux at crossflow Reynolds number of 4800, feed NaCl concentration
of 15 g/L and permeate vacuum of 0.85 bar. The purple rounds represent experimental data and the
blue dotted line is the linear regression line.

The impact of salt concentration on separation performance of aqueous salt solution is shown in
Figure 5. At the temperatures of 85 ◦C with crossflow Reynolds number of 4800, the water flux decreased
from 23.84 LMH to 1.76 LMH when NaCl concentration in the feed increased from 10 g/L to 240 g/L.
Table 2 demonstrates the membrane surface temperature, surface salinity, and partial vapor pressure
difference (i.e., the driving force) under different feed salt concentration calculated with the model
described in Section 2.6. The results show that as feed salt concentration increased, the concentration
polarization got significantly worse (evidenced by more than 20 times of the membrane surface
salt concentration at 240 g/L feed compared to 10 g/L feed concentration). The membrane surface
temperature change with different feed concentration is minimal. The driving force for permeation
(feed-side interfacial water partial pressure) decreased ~10% when NaCl concentration increased
from 10 g/L to 240 g/L (Table 2). Feed salt concentration is believed to directly affect the water
sorption at the liquid/membrane interface [25], because water concentration in the feed decreased
as salt concentration increased, which led to the water concentration decrease in the membrane.
The substantial change in membrane surface salinity could also change in membrane structure thus
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membrane permeability, which also plays a role decrease in flux with feed concentration (Equation
(16)). These findings indicate that the mass transfer on the feed side was significantly limited by the
extent of concentration polarization.Water 2020, 12, x FOR PEER REVIEW 10 of 20 
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Figure 5. The impact of feed concentration on PVD system performance at 85 ◦C with crossflow
Reynolds number of 4800 and permeate vacuum of 0.85 bar. The blue bars represent permeate flux
(y-axis on the left) and the red triangle dots represent salt rejection (y-axis on the right).

Table 2. Simulation results of parameters values with different NaCl concentration.

NaCl Concentration (g/L)
Modeling Results with 85 ◦C Feed and Re 4800

10 15 60 120 240

Average surface temperature (◦C) 79.7 79.7 79.6 79.4 79.3
Average surface salinity (g/L) 10.2 15.3 61.2 122.4 244.6

Partial vapor pressure difference (kPa) 29.9 29.8 29.0 28.0 26.2

Figure 6 shows the effect of the feed crossflow Reynolds number on the pervaporation performance
of the PVD system when the feed flow rate varied from 0.04 to 0.56 L/min at the feed concentration of
15 g/L and temperature of 85 ◦C. Permeate vapor flux substantially increased from 1.5 LMH to 16 LMH
when the feed crossflow Reynolds number increased from 300 to 4800. As Re number increases,
assuming the change in water diffusivity with temperature is directly proportional to T, the water
diffusivity increase due to temperature increase is less than 3.6%. In Table 3, we present the membrane
surface temperature, surface salinity, and partial vapor pressure difference under different hydraulic
conditions calculated with the model described in Section 2.6. The results show that as feed flow rate
increased, the flow regime in the feed channel changed from laminar flow to turbulent flow, which
helped to reduce concentration polarization (evidenced by lower membrane surface salt concentration)
and temperature polarization (evidenced by higher membrane surface temperature). In contrast,
the driving force for permeation (feed-side interfacial water partial pressure) is almost three times
higher at Re 4800 than for Re 300 (Table 3). The change in membrane surface temperature and salinity
could also change in membrane structure, which could account for the additional increase in flux
with temperature (Equation (14)). These findings imply that the mass transfer on the feed side was
significantly limited by the extent of concentration and/or temperature polarization, which is consistent
with results from other studies [25]. Therefore, both polarization phenomena need to be managed to
enhance mass transfer in PVD systems.
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Figure 6. The impact of feed crossflow Reynolds number on PVD system performance at 85 ◦C with
15 g/L NaCl solution and permeate vacuum of 0.85 bar. The blue bars represent permeate flux (y-axis
on the left) and the red triangle dots represent salt rejection (y-axis on the right).

Table 3. Simulation results of parameters values with different Re.

Re
Modeling Results with Feed Contains 15 g/L NaCl @ 85 ◦C

300 600 1200 2400 4800

Average surface temperature (◦C) 67.6 72.1 76.3 76.6 79.7
Average surface salt concentration (g/L) 17.1 17.4 17.5 15.4 15.3
Partial vapor pressure difference (kPa) 11.5 17.4 23.9 24.4 29.8

3.2. Salt Rejection

The observed NaCl rejection of PVD system remained above 99.86% under all the tested
operating conditions, which is similar to the typical rejections in conventional VMD processes [28–31].
The permeate salt concentrations were below 10 mg/L in all cases. The high salt rejection was expected
because NaCl, as a non-volatile compound, is not likely to penetrate the dense PV membrane material
and enter the vapor stream on the permeate side. The mass transfer in a PVD process can be described
by solution-diffusion model, which indicates that sorption selectivity is more dependent on the affinity
between the membrane active layer and the permeants in the solution [8,59]. As the Hybsi membrane
used in the study is hydrophilic in nature [60], the much smaller water molecules should preferentially
partition into the membrane, diffuse across the dense coating film and evaporate through the porous
ceramic support. While some salt uptake by the coating film is likely to occur, being non-volatile there
is no obvious mechanism for NaCl to make its way into the distillate [8,25].

3.3. Synthetic Produced Water Treatment with PVD Process

Produced water ranges in dramatically in quality and composition depending on the geological
formation as well as the oil & gas production method employed; a comprehensive review is beyond
the scope of this study, but the reader is directed to other references for more details [61,62]. The water
quality (after de-oiling) of an actual produced water provided by a large California oil & gas producer
(anonymity requested) is reported in the third column from the left in Table 4. According to this
water quality, synthetic PW water was made (see recipe in Table 5) and tested in the PVD process.
The results from the OLI simulations are shown in the columns to the right in Table 4. The fourth and
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fifth column represents the same ionic concentration at the temperature of 25 ◦C and 85 ◦C, respectively.
As shown in Table 4, the solid concentration increased from 8.64 mg/L at 25 ◦C to 1208 mg/L at 85 ◦C,
which indicates that the synthetic produced water possessed an extremely high scaling potential
at elevated operating temperatures. Therefore, warm lime softening and membrane filtration were
integrated as pre-treatment to prevent scaling on the PV membranes. The last column shows the water
quality after addition of slaked lime and soda ash to reduce scaling potential. The solids were filtered
with 0.45-micron membrane at high temperature before feeding the produced water into the bench
scale PVD system.

Table 4. Reported and Analyzed Produced Water Quality.

Symbol Produced Water
Quality (mg/L)

OLI Adjusted
@ 25 ◦C (mg/L)

OLI Adjusted
@ 85 ◦C (mg/L)

OLI after Softening
at 85 ◦C (mg/L)

Chloride Cl− 4258 4207.92 4378.51 4180.88
Bromide Br− 19 18.64 18.64 18.66
Sulfate SO4

2− 1717 1697.70 950.00 1694.44
Total Alkalinity as HCO3

− 296.2 304.18 115.57 9.01
Sodium Na+ 1247 1386.36 1493.64 3657.54

Potassium K+ 73 73.42 73.42 73.51
Calcium Ca2+ 1283 1281.27 912.55 0.01

Magnesium Mg2+ 341.2 394.44 394.44 0.02
Strontium Sr2− 27.3 27.93 24.20 0.34

Silica SiO2 32 32.00 32.00 0.07
Iron Fe 2 2.01 2.01 0.01
pH 6.23 6.23 6.23 10.17

Solid formed Mg in 1 L 8.64 1208.00 7579.00

Table 5. Synthetic Produced Water Recipe.

Chemical Formula Concentration (mg/L)

Sodium chloride NaCl 5020.90
Magnesium sulfate heptahydrate MgSO4·7H2O 3361.02

Calcium chloride dihydrate CaCl2·2H2O 4641.78
Sodium bicarbonate NaHCO3 407.80

Sodium bromide NaBr 24.47
Strontium chloride hexahydrate SrCl2·6H2O 81.19

Potassium chloride KCl 139.19
Iron(II) sulfate heptahydrate FeSO4·7H2O 10.00

Sodium sulfate Na2SO4 539.56
Sodium silicate Na2SiO3 139.08

Figure 7 shows the flux and permeate water quality of a 10 h long experiment of desalinating
feed solutions that contain 10 g/L TDS, with feed crossflow Reynolds number of 4800, feed water
temperature of 85 ◦C and permeate vacuum of 0.85 bar. Permeate flux and TDS were monitored and
recorded every 30 min. In the first ~1 h of the experiment, the feed solution to the system only contains
10 g/L NaCl. The feed water was changed to the softened produced water recipe (TDS = 10 g/L) in the
second experiments that lasted for 5 h. Then the feed was changed back to 10 g/L NaCl for the final 4 h.
The flux was relatively stable throughout, but water vapor flux declined slightly when the feed water
was changed from NaCl solution to the softened produced water solution. The flux bounced back to
similar level when the feed water was switched back to NaCl, therefore the effect appears reversible.
This can be explained by the change in driving force on the feed side. Although the two feed solutions
tested here had the same TDS, the difference in ion composition of the solution could lead to a difference
in ionic strength, water activity, salt ion diffusivity and concentration polarization. Compared to NaCl
solution, the synthetic produced water contains more multi-valent ions that lower the water activity of
the solution, which essentially decreased water vapor pressure on the feed side [63–65]. The impact of
feed electrolyte composition on water flux through membranes have also been investigated in other
studies and a similar trend was reported that the feed solution with multiple ions tend to show lower
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flux [9,55,66,67]. Regarding the permeate TDS values, it stayed at a fairly constant level despite the
change in feed solutions.
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Figure 7. Water flux and permeate TDS of 3 continuous desalination experiments in the PVD system,
with feed crossflow Reynolds number of 4800, feed water temperature of 85 ◦C and permeate vacuum
of 0.85 bar. The red triangles and green squares represent data from experiments with 10 g/L NaCl
feed solutions and the blue diamonds represent data from experiments with synthetic produced water
(TDS = 10 g/L) feed solutions. The solid markers represent flux data and the empty markers represent
permeate TDS data.

A side by side comparison of the performance data from the produced water and NaCl solution
is shown in Figure 8. The results indicate that the PVD process was able to produce high quality
permeate (>99.8% rejection) at 19.7 LMH and 85 ◦C. Compare to other PVD processes with silica-based
membranes reported in literature (Table 6), the PVD system in this study has exhibited relatively high
water vapor flux and salt rejection. More importantly, the PVD system in this study demonstrated
stable performance when tested in extreme operating conditions, such as high feed concentration,
temperature and cross-flow velocity.
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Figure 8. Comparison of system performance when desalinating 10g/L NaCl solution and synthetic
produced water (TDS = 10 g/L). The bars in blue and red represent flux and salt rejection data, respectively.
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Table 6. Comparison of PVD process performance with silica-based membranes.

Feed Composition Feed TDS
(g/L)

Feed Temperature
(◦C)

Flux
(LMH)

Salt Rejection
(%) Reference

silica natural saline water 17.1–30.5 26–60 0.33–1.19 69.9–99.9 [68]
silica NaCl 3–150 22 1.5–6.5 >90 [69]

La25Y75-BTESE-SiO2 NaCl 3–75 25–60 7.9–15.6 >99.9 [57]
PVA-MA-silica NaCl 2–50 22–65 8–11.7 >99.9 [25]
PVA-MA-silica NaCl 2 22 6.93 99.5 [21]
PVA-MA-silica NaCl 2 65 11.7 99.9 [26]

MTES-SiO2 NaCl 35 25 2.6 90 [70]
Amorphous molecular

sieve silica NaCl 35 25 1.8 97 [70]

nickel oxide silica NaCl 3–35 25–60 2.5–6 91.5–99.9 [71]
interlayer-free cobalt

oxide silica NaCl 3–75 22–60 7.7–20 >99.7 [72]

cobalt oxide silica NaCl 10–75 25–75 0.2–1.8 >99 [73]
P123-silica NaCl 0–150 25–60 9.2–19.8 >98.4 [74]
P123-silica NaCl 3–75 22–60 2.2–7.5 >99.5 [75]
ES40-silica NaCl 3–35 25–60 2–4.6 >99 [76]
ES40-silica NaCl 3–35 25–60 1.8–2.32 >99 [77]

Hybsi® NaCl 10–240 60–85 1.5–23.8 >99.9 This study

Hybsi® Synthetic produced
water 10 85 19.68 99.81 This study

3.4. PVD Process Energy Performance

Herein, we chose a scenario to investigate the SEC of the PVD process when the system was
operated to treat synthetic produced water (TDS = 10 g/L) at 85 ◦C with cross-flow Reynolds number of
4800 and permeate vacuum of 0.85 bar. Figure 9 shows a breakdown of the different energy components
for PVD of the produced water and the NaCl feed solution. It is clear that the specific thermal energy
consumption dominants the overall SEC. In a lab-scale system with low water recovery such as the
one demonstrated here (~0.15% recovery), a total amount of 17.6 MWh thermal energy was needed to
heat up the feed from ambient temperature to 85 ◦C to generate permeate flux at the rate of 23.8 LMH.
In a full-scale system with a much higher water recovery (typ., 30 to 90%), the required thermal energy
drops down to 52.7 kW·h/m3 at 50% water recovery. Compared to thermal energy, the electrical energy
remains negligible, as indicated by the small SEEC values in Figure 8. Note that the SEC values are
very sensitive to permeate flux, which could vary substantially as a function of recovery and other
operating conditions.

Although the SEC values reported here only reflect the energy performance of one specific
PVD system operating at a preset condition, the conclusion still holds that PVD would likely be
more energy-intense at scale than other desalination processes such as reverse osmosis (RO), reverse
electrodialysis (RED), multi-stage flush (MSF), multi-effect distillation (MED), and vapor compression
(VC). The findings are consistent with other studies that PVD requires very little electricity, but consumes
large amount of thermal energy [8,26,78]. In fact, the electrical energy needed for PVD is the lowest
compare to other desalination technologies (Table 7) [78–80]. If low grade or waste heat could be
harvested and/or renewable energy such as solar thermal energy could be integrated to provide the
thermal energy needed to drive a PVD process, the overall fossil fuel-derived energy consumption of
PVD process could be dramatically lower [21–23,26]. Additionally, heat recovery could be considered
as another strategy to lower thermal energy consumption.
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Figure 9. Breakdown of specific energy consumption in kW·h/m3 (presented in log scale) of the PVD
system when desalinating synthetic produced water (TDS = 10 g/L) at 85 ◦C with cross-flow Reynolds
number of 4800 and permeate vacuum of 0.85 bar. The blue solid bars and red hatch bars represent
specific electrical and thermal energy consumption, respectively.

Table 7. Energy consumption for various desalination technologies [80–82].

Process Thermal Energy (kWh/m3) Electrical Energy (kWh/m3)

MSF 12–24 3.5–5
MED 12.2–19.1 2–2.5

VC-thermal 14.6 1.5–2
VC-mechanical N/A 7–12

RO-seawater N/A 3–7
RO-brackish water N/A 0.5–2.5
ED-brackish water N/A 2.6–5.5

MSF—multi-stage flush, MED—multi-effect distillation, VC—vapor compression, RO—reverse
osmosis, ED—electrodialysis.

The results showed that pervaporative desalination cannot compete with other desalination
technologies directly from the perspective of specific energy consumption. However, PVD process still
possesses some advantages that might make it attractive in some applications. First of all, PVD process
is capable of desalinating hypersaline feed (up to 240 g/L from this study) such as oil and gas hydraulic
fracturing produced water; thus, it can be implemented to concentrate wastewater on-site and facilitate
minimal liquid discharge, directly, and if combined with a crystallizer, zero liquid discharge. Second,
when waste heat or solar heat is integrated to provide “free” thermal energy, PVD requires much less
electrical energy compared to other thermal process such as MSF and MED. In addition, PVD is more
robust and less prone to system failure compare to traditional porous membrane-based MD processes,
which suffer from pore-wetting related process failure.
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4. Conclusions

Pervaporative distillation for saline water desalination has not been widely studied, despite the
extensive applications of pervaporation to organic/water and organic/organic separations. In this
study, a commercial ceramic-supported, cross-linked organosilane-based hydrophilic pervaporation
membrane was tested using a bench-scale PVD apparatus. Results from PVD experiments suggest
higher feed temperature, lower feed salt concentration, higher feed cross-flow rate, and simpler feed
composition all contribute to higher permeate water flux. Observed conductivity rejection exceeded
99.9% with feed salt concentration up to 250,000 mg/L except for the more complex brackish feed
electrolyte, which produced 99.81% conductivity rejection. This PVD process was proven to be an
effective treatment option for hyper-saline, hard-to-treat water that can consistently deliver high
product water quality (<10 mg/L of TDS) under all operating conditions tested, and high permeate
flux (up to 23.8 LMH) under optimized operating conditions. The analysis of energy consumption
of PVD process indicates that the high thermal energy consumption is the main energy requirement
and appears to be the obstacle of scaling up. If coupled with wasted heat or solar energy, PVD
still has the potential to become an efficient and promising desalination technology with optimized
engineering processes.
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