UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Multi-view, broadband, acoustic classification of marine animals

Permalink
https://escholarship.org/uc/item/8051w1bx

Author
Roberts, Paul L. D.

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/8051w1bx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO
Multi-view, broadband, acoustic classification of marine animals

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy
in
Electrical Engineering (Applied Ocean Sciences)
by

Paul L. D. Roberts

Committee in charge:

Jules S. Jaffe, Chair

Mohan M. Trivedi, Co-Chair
William S. Hodgkiss
Kenneth Kreutz-Delgado
William A. Kuperman

2009



Copyright
Paul L. D. Roberts, 2009
All rights reserved.



The dissertation of Paul L. D. Roberts is ap-
proved, and it is acceptable in quality and form

for publication on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2009

il



DEDICATION

To my family: Jessica, Paul, Anne, Jane, Tenaya, and Charlie.

v



EPIGRAPH

“It would be a great mistake to suppose that vague knowledge must be false. On
the contrary, a vague belief has a much better chance of being true than a precise
one, because there are more possible facts that would verify it.”

—Bertrand Russell, 1923

Climb the mountains and get their good tidings.
—John Muir, 1912
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P — magnitude of the Fourier transform of the matched filter output
y — general transformed feature vector

y; — transformed feature vector in the j receiver

Y — matrix of feature vectors

E]C-M — discrete cosine transform of data on element j

C — frequency correlation matrix

p — probability density function

P — probability mass function

&; — echo envelope on the j recevier

ag — approximation wavelet coefficients at level (3

dg — details wavelet coefficients at level 3

c* — optimal class label

® — design (or kernel) matrix

w — kernel machine weight vector

w,. — kernel machine weight vector for separating class ¢ from the rest
Cs;, — sidelobe ratio; measures classifier confidence

P, — projected ellipsoid thickness
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Acoustical methods provide rapid, non-invasive, and synoptic tools for study-
ing marine ecosystems. Despite the dramatic advances in this technology during
the past three decades, there is presently a large disparity between the demand
for quantitative information about marine animals and the capability of acoustic
systems to deliver this information. A primary reason for this disparity is the
strong dependence of acoustic scatter from marine animals on their size, shape,
in situ orientation, and taxa. In a typical setting, these parameters are unknown,
and are difficult to determine using existing acoustic methods. To mitigate this
problem, a multi-view, broadband approach to marine animal classification and
size estimation is investigated in this thesis.

Initially, zooplankton classification was investigated for two ecologically im-
portant taxa: copepods and euphausiids. Numerical simulations compared physics-
based feature transformations, Nearest Neighbor (NN), and Multi-Layer Percep-
tron (MLP) classifiers. Results indicate that combining frequency-correlation fea-
tures with a MLP yields an accurate (> 90 % correct) classification algorithm.
Based on these promising results, a laboratory system was developed to recorded
multi-view, broadband scatter from live, individual copepods and mysids. Results
using frequency correlation features indicate that these features yield very good

separation between classes with non-overlapping standard deviations computed
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from eight individuals per class.

Next, sound scatter data from live, individual fish were used to develop sev-
eral kernel-machine-based multi-view fusion algorithms. Performance was quanti-
tatively compared as a function of the number of available views, feature spaces,
and classification problem type. A collaborative fusion algorithm performs bet-
ter than the others without requiring any assumption about view geometry, the
number of views, or the type of features.

Finally, multi-view fish size and orientation estimation was investigated
under three different approaches. Results indicate that classification-based size
estimation can be effective with a limited aperture and limited number of views.
Model-based and image-reconstruction-based estimation show very good perfor-
mance with full aperture data.

This thesis demonstrates that the multi-view, broadband approach offers
significant advantages for marine animal classification, sizing, and orientation es-

timation.
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Chapter 1
Introduction

Marine ecosystems provide basic and fundamental living resources for hu-
mans [1]. Of these resources, perhaps the ones with the most direct influence on
human life are fishes and the associated fisheries around the globe. In regard to
fish populations in the ocean, there has been increasing evidence showing that
many of these resources are being significantly depleted [2, 3|, and new strategies
of ecosystem-based management and marine protected areas (MPAs) are being
recommended [1, 4, 5]. For zooplankton, research has demonstrated a strong cor-
relation between increasing Sea Surface Temperature due to global warming and
zooplankton abundance [6], and populations of the California Current have de-
clined by 80 % during the last 60 years [7]. As the complexities of ecosystem
management increase with the changes to management paradigms and the need to
collect comprehensive data grows, new technologies must be developed, including

advanced remote sensing methods for animal abundance estimation [8].

1.1 Marine animal abundance estimation

The estimation of marine animal abundance in the ocean is a fundamental
challenge that is to-date still unsolved in many important aspects. In the context of
zooplankton, the development of scientific tools for estimating abundance has been

underway since the late 1800s [9]. In the context of fish several useful paradigms



for estimating abundance have emerged over the past 50 years [10]. In general
these estimation methods can be partitioned into two groups: direct and indirect.
Direct methods physically capture specimens which can be identified and measured
either at the time of capture or later in post processing. Direct sampling methods
typically use a sampling chamber or net that is deployed in the water column and
collects water samples from a specific 3D coordinate in the ocean at a single time
or integrated over the tow-path of a sample net. By combining multiple collection
devices together (for example a Rosette [9], or a MOCNESS [11]), direct samples
can be obtained as a function of both time and space. The primary advantage of
these methods is that they offer direct evidence for the type of animals present in a
particular region along with some information of their abundance. However, they
have the drawback that they are sensitive to the behavior of the animals being
studied in the response to the collection system, quantification and enumeration
of animals can be laborious, and total volumes sampled can be small compared to
other methods.

Indirect sampling methods measure a physical quantity of the animal. The
most common of these methods use either sound or light to interrogate the animal
and record the scattering of these waves in several dimensions, and in some cases
as a function of wave frequency. With the development of faster, smaller, and more
powerful computing resources, these methods have grown considerably in the past
three decades. These methods offer the distinct advantage over direct sampling
methods in that they can be applied to highly mobile animals, do not need to
disrupt the echosystem being studied, and are more readily adapted to automated
processing to yield quantitative scientific information. The primary drawback of
these methods is that their utility is highly dependent on the specificity of the
measurement, system; the degree to which it can distinguish between different
types of animals and infer biomass. Specificity usually comes with a tradoff of
range and sample volume. The larger the distance from the sensor or the greater

the volume sampled, the lower the specificity.



1.2 Modern optical and acoustical sampling meth-

ods

Optical methods sample small volumes with very high specificity. In con-
trast, acoustical methods typically sample large volumes with much lower speci-
ficity. Because of the complementary nature of optical and acoustic methods, they
are frequently used together [12, 13, 14]. In many cases, direct sampling is also
combined to yield ground truth data that can help adjust parameters used to
convert estimates from indirect samples into quantitative measures of abundance.

Optical and acoustic image-based methods have been applied to many dif-
ferent types of fish abundance estimation using diver visual surveys [15, 16], LI-
DAR [17], ROV and HOV based studies [18, 19], and imaging sonar [20]. Optical
methods for studying zooplankton have also been well developed over the past two
decades [21, 22, 23, 24]. While optical methods offer higher specificity than acous-
tical methods, they do so at the cost of limited range due to the high attenuation
of light waves in seawater. Ranges for optical systems are less than one meter with
sample volumes less than one liter. In some cases, water properties or nightime
operation preclude the use of optical methods alltogether. Optical methods can
also suffer considerably from biofouling [25].

In contrast to optical methods, acoustic methods can perform well at long
ranges in seawater, in total darkness, and for long term deployments. Fisheries
research has explored the use of acoustic methods for more than half a century
[26, 27] and adopted acoustic methods for many areas of study [28, 29, 30]. Recently
developed automated processing of acoustic data [31] and new fisheries sonars [32]
show promise in obtaining improved abundance estimates as well as permitting the
estimation of fish size and behavior. Passive acoustic methods for studying have
also been well developed [33].

Since the late 1960s, acoustics has played an important role in estimating
zooplankton abundance [34, 35, 36, 28]. Early work focused on multi- or single-
frequency abundance estimation using a linear inverse approach based on average

models of scattering from known species [35, 36]. These methods were then aug-



mented with development of improved scattering models which cover a wide band
of frequencies [37, 37] and broadband classification methods [38, 39]. Recently,
acoustic methods for estimating zooplankton abundance estimates have prolifer-
ated [40, 41, 42, 43].

Despite the many advantages of acoustic methods as enumerated above,
these methods suffer from poor specificity due to ambiguities that arise from the
difference in material properties, size, shape, and orientation of the animals being
studied. Based on these ambiguities, an acoustic system can easily confuse a
small number of animals with high reflectivity with a large number of animals
with low reflectivity as it has been shown that the echo energy per unit biomass is
widely variable over different taxa of zooplankton [44], and the correlation between
volume scattering and zooplankton abundance can be strong for certain taxa, and
non-existent for others [45]. Improved estimates of abundance have recently been
accomplished by accounting for the taxonomic differences in population structure
when applying scattering models, acoustic derived abundance estimates can be
improved [46, 47].

While significant research has gone into improving the specificity of acous-
tic methods for zooplankton abundance estimation by using broadband scattering
38, 37, 39, 48], these methods have only been applied to fish abundance estimation
in a few cases [49, 50, 51]. In addition, nearly all applications of acoustical methods
to estimation of bio-physical parameters of marine animals have used a co-located
transmiter and receiver, collecting monostatic backscatter measurements. Despite
the advances made by using broadband scattering, there is a remaining fundamen-
tal uncertainty in scattering which is due to the strong dependence of scattering
from marine animals on animal orientation. It has been shown [52, 53, 54] that fish
orientation plays a key role in the inference problem, to the extent that scattering
model errors can be dominated by errors due to uncertainty in fish orientation [54].
This effect has also been documented for zooplankton [55, 56, 57]. These findings
are a direct result of the fact that many fish and zooplankton are highly elongate
animals, whose length may be several times larger than their other dimensions. As

the sound used to insonify these animals is typically in the geometric scattering



regime, this causes a strong dependence on orientation. The animal’s scattering
cross-section is quite large when it is broadside to the sensor, and quite small when
it is off-broadside.

Recently, the idea of using multiple angle scattering to improve the char-
acterization of fish [58, 50], and zooplankton [59, 60] has been explored through
simulations and analysis of laboratory data. The basic premise of these methods
is that by observing scattering over multiple angles, the estimation of animal size,
shape, and taxa can be improved because multiple observations explicitly sample
the variability in scattering as a function of animal orientation.

There has also been significant research in fisheries applications devoted to
classifying echograms obtained by current scientific echosounders [61], [62]. These
methods compute features from an echogram of a fish school and then classify these
features with a neural network or kernel machines. In situations where the school
is represented by a single species, and the features computed from the echogram
are independent of echo intensity, these methods will not suffer from the unknown
orientation of the fish in the school. However, these methods are inherently single
aspect. There is one recent example [50] of using multiple angle spectra to classify
fish in which fish are insonified by a system while they swim around in a tank and
a video system tracks their position and orientation relative to the sonar. These
data are then used to classify the fish. However, the classification is based on
frequency vs. angle spectra when angle is assumed to be known, not on a small

set of scattering measurements made when angle is unknown.

1.3 Multi-view target classification

Aspect dependence in target detection and classification has been studied in
many sonar and radar applications [63, 64, 65, 66, 67, 68, 69, 70]. In these studies
the influence of unknown target orientation on target classification is mitigated by
first collecting scattering measurements over multiple angles and then fusing these
measurements together. In some cases, the approach allows the data collection

to be adapted to the scattering features of the target [71] allowing for improved



classification due to the collection of more discriminant information. In other cases,
the data collection model allows for estimation of the unknown target orientation
[72].

The most popular formulation employs a Bayesian framework in which the
orientation of the target relative to the sensor is assumed to be random and un-
known. Because the characteristics of the reflected wave change slowing as a func-
tion of view angle, the scattered signal will be highly correlated for small changes
in target aspect. Because of this correlation, numerous algorithms which model
the unknown orientation as a discrete set of angular “states” have been developed
during the past decade [73, 66, 68, 74]. The unknown orientation-state of the
target is then modeled as a first-order Markov process, and the probability of a
sequence of observations of the target is computed using a hidden Markov model
(HMM) framework. Recently, adaptations to the standard HMM structure have
been applied which allow for optimization of the number of states [68], [74]. In
parallel to the development of HMM based methods have been the development
of connectionist methods which train a network to classify features from a single
aspect, and then also to fuse classifications from multiple aspects together [63, 70].
These methods typically rely on the fact that targets can be accurately classified
using scattering from a single aspect. Finally, there has been recent work in ap-
plying collaborative filtering methods to multi-aspect data which allow different
aspects and feature transformations to be fused together to yield improved perfor-
mance [75]. A detailed discusion of the different types of classification algorithms

is given in Chapter 4.

1.4 Scope

Based on the perceived potential benefits of combing the use of broadband
methods with multi-view techniques, a research program was instituted to examine
these benefits for acoustic classification of fish and zooplankton. This dissertation
explores the application of multi-view broadband acoustic methods to classification

of acoustic scattering from marine animals. The problem is framed in a context



similar to that of the underwater target classification (UTC) literature. Given a
set of M observations of sound scattering recorded over a typically limited range of
angles, the objective is to define a function f which predicts the type of scatterer
the observations came from without knowledge of the orientation or length of the
scatterer. This dissertation considers the case where the function f is learned
from a large set of scattering data collected from the same, or similar scatterers.
The primary problem being addressed is that of learning the underlying scattering
features of each class which separate it from the other classes. In addition, this
dissertation considers the problem of inferring the size, orientation, and shape of
fish from observations of multiple angle scatter. This problem in evaluated in the
context of both limited- and full-aperture data under three different paradigms:
classification-based, model-based, and tomography-based.

The classification and estimation problems are framed in the context of
acoustic scattering from individuals (comparable with most UTC methods). It
is assumed that a broadband echo from an individual animal has already been
detected and segmented from the background, and the remaining problem is to
identify which class the animal belongs to, or to estimate a physical parameter of
the animal such as its size or shape. A small set of observations of broadband scat-
ter are assumed to be available for this purpose. These observations are generally
assumed to collected over a limited range of angles.

Simulation studies of zooplankton classification are performed using real-
istic numerical scattering models with uniform distributions assumed for animal
orientation and length. Using simulated data, the classification problem is posed
as a problem of developing feature transformations which combine multi-view data
into a single feature set which highlights fundamental differences between classes
(Chapter 2). These features are computed from simulated data and evaluated
using standard classification algorithms. The performance metric for comparison
between feature and classification algorithms is the probability of error as a func-
tion of the number of views collected.

Classification of scattering from live animals is evaluated using data from

a custom designed multi-view laboratory scattering system. Feature transforma-



tions developed in the simulation study are investigated for broadband multi-view
scattering from live, untethered zooplankton (Chapter 3).

Broadband scattering from over 30 different individual fish spanning 9 dif-
ferent species are presented and evaluated in the context of size- and species- based
classification using three different multi-view fusion algorithms (Chapter 4), trans-
mit signal bandwidth and array aperture sensitivity (Chapter 5), and fish size and

shape estimation (Chapter 6).

1.5 Significance and conclusions

This dissertation presents a comprehensive assessment of both the exper-
imental and computational aspects of the application of multi-view methods to
the acoustic classification of marine animals. Results indicate that the multi-view
approach offers significant advantages over corresponding single-view methods in
terms of lower classification error, or reduced uncertainty in parameter estimates.
As described above, there is currently a need for new tools for studying marine
animals non-invasively, remotely, and during all hours of the day. This disserta-
tion demonstrates that our laboratory multi-view system, in every case, results in
improved accuracy for classifying marine animals. This provides motivation for
the implementation of these techniques in a field system, where possible.

As part of the work, a new algorithm has been developed that uses col-
laborative fusion. The algorithm is general enough to be applicable to a host of
multi-class problems without modification. As one advantage of the algorithm, it
can be used even when the views are randomly obtained, owing to the fact that
the algorithm does not make any assumptions about view geometry in the fusion
process. A further advantage is that the algorithm is developed in a way that
allows for additional views to be acquired and processed without retraining the
algorithm.

During the course of this work, several important challenges have been iden-
tified for future research. The primary challenge is related to the effect of limited

aperture on multi-view performance. It has been shown both for classification and



size and shape estimation that limited aperture causes significant reductions in
performance. A future direction would be to investigate the design of multi-view
systems to take advantage of known animal orientation statistics and use this in-
formation to maximize the use of limited aperture collection geometries. A second
challenge is related to laboratory methods for collecting scattering data from live
animals. While the method presented here provides a very controlled and system-
atic way to collect data, it is time consuming, and suffers from potential biases due
to the reaction of the animals under study to the experimental system. An im-
portant future direction of research would be to develop a laboratory system that
could rapidly collect data from live, unrestricted animals in perhaps an aquarium
setting. Finally, the algorithm development and analysis in this dissertation has
focused on feature-fusion and decision-fusion algorithms which use kernel methods
for classification that do not explicitly model the joint probability of the observed
scattering. This is in contrast to hidden Markov models which have shown signif-
icant success in underwater target classification [72, 68, 74]. An important future
direction is to compare the kernel-based methods developed in this dissertation to

HMMs and other probabilistic feature-fusion methods.



Chapter 2

Multiple angle acoustic

classification of zooplankton

2.1 Introduction

Zooplankton play a major role in the global ecosystem and the employment
of remote sensing techniques for measuring abundance and behavior continues to
be a venerable goal. Compared with optically based methods, acoustic ones have
an inherent advantage in that sound is attenuated less than light. This leads
to both larger detection distances as well as sampling volumes. Unfortunately,
problems associated with a lack of specificity have hindered the use of acoustic
techniques on a routine basis. Work by McNaught [34] and the subsequent devel-
opment of multiple frequency methods by Holliday and colleagues have revealed
both the great advantages and also challenges that exist when using this technique
(35, 76, 36, 77, 78]. Although additional work with broad band sound to discrim-
inate between three groups of zooplankton [38, 56] indicated that it was possible
to correctly classify specific examples from each group with reasonable success
(80% overall average correct classification), the goal of robustly mapping acoustic
volume scattering to biophysical parameters of zooplankton under various oceano-
graphic conditions has remained elusive. One problem has been the confounding

influence of both orientation and material properties on backscatter magnitude.
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This often prevents investigators from making the necessary link between animal
size and backscatter magnitude. Additional complications have been that there is
substantial scatter from non-biological sources such as suspended sand, bubbles,
and perhaps even microstructure [79]. If a way could be found to discriminate
among various taxa acoustically, in spite of these problems, it would be of great
value.

In this article the potential increase in classification accuracy that results
from observation of reflected sound from multiple angles is considered. It has re-
cently been proposed that sound scattered at multiple angles can be used in order
to both size and measure the orientation of fish bladders [58]. The underlying
concept being that the spatial structure of the sound field from a single, strong
scattering target, has a characteristic pattern related to its size. The success of the
method was illustrated with a well known data set [80] and various sampling theo-
rems were proved to obtain unaliased sampling of the scattered sound field. Here,
the use of sound scattered at multiple angles in order to discriminate among two
zooplankton taxa is explored via forward modeling and subsequent classification.

Many have considered the formulation of acoustic models to predict backscat-
ter as an important component of a program to characterize animals in situ. A
family of scattering models can be successfully used to predict the acoustic reflec-
tivity of several different types of zooplankton [44, 81, 82, 83]. The situation with
respect to crustacean zooplankton is especially good as use of the distorted wave
Born approximation (DWBA) has been validated [57, 84]. A web site maintained
by Benfield [85] provides public access to several zooplankton models and their
morphologies.

Outside of the realm of ocean ecology, recent work in the acoustic classifica-
tion of stationary targets from multiple views has demonstrated that the multiple
views can significantly improve target classification when combined with suitable
feature extraction and classification algorithms [63, 68, 71, 70]. Applications such
as underwater mine detection [68, 70], airborne target identification [65, 86], and
unexploded ordinance detection [87] have been considered. Most algorithms apply

a hidden Markov model (HMM) to account for either the unknown sensor-target
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aspect [72, 68, 71], or the unknown target type [70]. One approach decomposes
the target reflections into a set of discrete angular regions yielding a set of possi-
ble states in the HMM [72]. Alternatively, a nonlinear Back Propagated Neural
Network (BPNN) has been used to fuse the classification results for multiple views
in a wavelet packet based feature space [63]. This formulation demonstrated very
good performance in discriminating between mine and non-mine like targets from
multiple aspect scattering measurements.

Adaptation of multiple angle scatter techniques to zooplankton classifica-
tion has promise to confer benefits when used in conjunction with the more tradi-
tional backscatter techniques. However, animals are dynamic and therefore require
an observation system in which multiple views are obtained almost simultaneously.
One solution is to use simultaneous multiple angle scatter measurements. A second
issue is related to the feature space used to represent the data. Previous work in
target classification considered rigid objects and therefore applied wavelet pack-
ets [63, 88, 70] or Matching Pursuit with an elastic scattering based dictionary
(72, 68]. However, the resulting feature spaces are not appropriate for the fluid-
like weak scatterers considered here. A more appropriate idea for this problem is
to exploit the relationship between the shape of the scatterer and the angularly
varying scatter amplitude.

This paper explores, through simulation, the use of a one-dimensional array
to collect multiple angle scatter and subsequently use these data to discriminate
among zooplankton taxa. The case treated is that of differentiating between two
taxa of crustacean zooplankton: copepods and euphausiids. The motivation for
treating these animals stems from their significance in zooplankton populations of
the California Current. As shown here, the large morphological difference between

the two groups [89] will allow this discrimination.
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2.2 Forward Modeling: Theory and Numerical

Implementation

In this section, an acoustic forward model for generating synthetic data is
proposed using linear system theory and the distorted wave Born approximation
(DWBA). The forward model permits the prediction of the received signal for a
known transmit signal using the impulse response of the scatterer. This depends
on both the physical properties of the scatterer such as size, shape, and material
and also the orientation of the scatterer and the geometry of transmitters and
receivers. Under the assumption of linearity, and neglecting effects of spreading
and medium attenuation, the received signal p(t) is given by the convolution of the
transmitted signal so(¢) with the impulse response of the scatter s(t¢, k;, ks, 0,6, T")

o0

p(t) = / So(7) * s(t — 7, k;, ke, 0, ¢, T)dr, (2.1)

—o00
where k; and k, are the incident and scattered wave vectors, 6 and ¢ define the
orientation of the scatterer, and I' is a parameter matrix describing the size, shape,
and material properties. Assuming values for these parameters permits the predic-
tion of the impulse response of the scatterer using the DWBA. This model does not
include propagation effects, however the effect of scatterer position in the beam
is included. A description of the multiple angle DWBA is given in Section 2.2.1.
Section 2.2.2 defines the size and orientation distributions that are used to gener-
ate synthetic data. Section 2.2.3 describes the procedure for generating synthetic

data.

2.2.1 Multiple angle DWBA scattering model

The scattering model used to obtain the impulse response of the scatterer
is the DWBA[82, 84]. This model relates the size, shape and material properties of
the scatterer to the complex scattering amplitude at a particular frequency. The
impulse response of the scatterer can be obtained from the complex scattering am-

plitude by an inverse Fourier transform. The expression for the complex scattering
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amplitude S(k) is
S(k) = ilr///(%(ro) — 7,(r0) cos @) e duy, (2.2)

where

k=k(e;—e;), (2.3)

and

cosa =e; - (—e;). (2.4)

The scalars ky = 27 f/c; and ko = 27 f/co are the wave numbers in the medium
and body of the scatterer respectively, e; and e, are unit vectors in the direction
of the incident and scattered sound waves, and « is the angle between the negative
incident wave vector and the scattered wave vector. The term v, (rg) —7,(ro) cos
is the gamma contrast [84, 90].

The gamma contrast inside of the volume integral is a function of the density
and sound speed of the surrounding medium and the body of the scatterer where
(omitting the explicit dependence on position in the body) 7. = (1 — gh?) /gh?
and 7, = (g —1)/g. The term g = py/ps1, is the ratio of the density of the
scatterer to the density of the surrounding medium and h = c¢y/cq, is the ratio
of sound speed in the scatterer to the sound speed in the surrounding medium.
equation (2.2) provides the basis for the forward model used in the numerical
experiments presented in this paper.

Using equation (2.3), the resultant wave vector k can be written as

sin(m — )
k=ky——F——-- 2.5
> sin(a)2) (25)
where
e, — €
d=—"—"—, (2.6)
les — eill2

is the unit vector that points in the direction of the difference between scattered
and incident wave vectors. It is apparent that the multiple angle DWBA is closely
related to the DWBA for backscatter[84] only now with a scaled and rotated wave
vector. This important relationship allows the DWBA for multiple angle scatter to
be computed using existing numerical methods for backscatter with only minimal

modification.
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(a) Copepod (b) Euphausiid

Figure 2.1: Cross-sectional view of the scatterer shapes used to define each class.
The copepod shape (a) and euphausiid shape (b) are displayed at different scales.
The scale is defined in the lower right corner.

2.2.2 Scatterer size and orientation distributions

An important aspect of the simulations is the choice of size and orientation
distributions for the ensemble of scatterers. These data have been generated using
a single shape for each class, scaled in volume and rotated in three dimensions.
The shapes used for the copepod and euphausiid classes were taken from an online
database of zooplankton scattering models [85]. Pictures of the cross-section of
the base shape used for each class are shown in Figure 2.1.

The volume scaling is parameterized by a length parameter L, the length
of the scatterer from head to tail. In order to simplify the treatment both length
classes were drawn from uniform distributions according to U[2 mm,4 mm)] for
the copepods and U[4 mm, 15 mm]| for the euphausiids. Note that the length
distributions overlap slightly and the distribution for the euphausiids is centered
around medium length juveniles rather than the larger adults.

Similarly, for the orientation distributions, a simple approach was taken.
Representing the orientation of the scatterer by a ¢ and ¢ angle where 6 is the
angle relative to the z axis, and ¢ the angle between the x and y axis (Figure 2.2)

the orientations were sampled uniformly in three-dimensions according to

0 ~ arcsin(U[—1, 1)), (2.7)
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Receivers

Transmitter/,
Receiver
JF1

Figure 2.2: View of the array configuration used to generate data. The scatterer
is represented by the gray ellipse where the nose of the scatterer is directed along
the unit vector defined by the angle ¢ in the z-y plane and 0 from the z axis. The
angular span of the array is 60 degrees with an angular spacing of 8.57 degrees
between elements. The j = 1 element functions as both transmitter and receiver,
while the j = 2, ..., 8 elements receive only.

o ~Ul—m, 7] (2.8)

2.2.3 Creation of model realizations

The simulation of a single realization of received scatter on the array is
described in this section. The configuration of the array is shown in Figure 2.2.
There are eight total elements, M = 8. The 5 = 1 element acts as both transmitter
and receiver while the 7 = 2, ..., M elements act only as receivers. The total angular
span of the array is 60 degrees with an angular sampling frequency of one sample
per 8.57 degrees. The orientation of the scatterer relative to the array is shown in
Figure 2.2 and is defined by the angles ¢ and 6 as mentioned previously.

The synthetic data is generated by predicting the received pressure signal

on each of the eight array elements for a given scatterer orientation. The data
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generation process is represented graphically in Figure 2.3. The first step is the
selection of a model: copepod or euphausiid. Each three-dimensional scatterer
shape is represented as a series of cylindrical segments of thickness 0.016 mm and
location z, y, and z corresponding to the center. The segments have radius a, and
relative density and sound speed g and h. The i segment can be represented as
the vector v, = (z,vi, 2, @i, Gi, hi)T and the entire model of the body by a matrix
I' = (vy,...,7g) with S being the total number of segments. Ambient sound speed
¢, is fixed at 1500 m/s. For all simulations performed in this work, the values
of ¢g; and h; are held constant throughout the body of the scatterer such that
gi = 1.035 V ¢ and h; = 1.027 V i. More information about these parameters,
the scattering models, and the algorithm used to compute the DWBA is available
from the Acoustic Scattering Models of Zooplankton website[85].

For each realization, a random sample from the distributions for ¢, 0, L is
selected. These parameters are combined with the sound speed ¢, the incident and
scattered wave vectors for each array element: kJ (incident) and ki (scattered)
for 7 = 1,..., M, and the model for the scatterer I'.  The DWBA is evaluated
for the given model parameters at each frequency yielding the complex scattering

amplitude
S;lk] = DWBA (6,0, L, c, k!, k,T) (2.9)

where k represents the index of a particular wave number bin.
To incorporate the effect of a range dependent sample volume in the sim-
ulation, for each realization, the scatterer is assigned a uniformly random three-

dimensional position relative to the array. The position is defined by the parameter

¢



(¢, k), k/,I') Fixed model

Orientation, parameters
position, and [k] Beam Shape
length B i.g Factor

S|k
@g (¢.0.L,%) | DWBA a

(Transmit Signal)

S, [k] IFFT H{ Re > p (7]

Gaussian @8

noise

Array Elements j=1,..., M

Figure 2.3: Block diagram of the creation of a single realization of scattering on the array. Randomness is included in
the model through the parameters ¢, 6, L, ¢, and the Gaussian noise W[k]. The model parameters which are constant
for all realizations are the sound speed ¢, the incident and scattered wave vectors for each array element k{ and k? for
j =1,.., M and the scatterer model I". The beam shape factor (3;[k] is computed for each array element and accounts
for the position of the scatter in the transmit and receive beam pair. The Gaussian noise W k] is added to the product
of the scattering amplitude S[k] and the beam shape factor 5;¢[k]. The result is then multiplied by the FFT transmit
signal Sy[k]. The real part of the inverse FFT of the product yields the pressure on the j array element. The pressure
is computed for each of the M array elements. This process is repeated 1000 times for each scatterer class to generate a
set of training and test data.

31



19

The range dependent sample volume is studied by calculating the position
of the scatterer in the transmit and receive beam. As the beam shape changes with
frequency, the incident sound intensity, and received sound intensity will vary in a
predictable way. For the simulations considered here, the transducers are assumed
to be disk shaped in which case the product of the transmit and receive beam
shapes is given by

_[2J1(krsin(n)) 2.1 (krsin(u))

Biclh] = kr sin(n) krsin(u) |’ (2.10)

where 7 is the radius of the transducer, J;(z) is the Bessel function of the first kind
of order 1, and 1 and p are the angles between the vector from the transducer to
the scatterer position, and the incident and scattered wave vectors respectively, for
a particular transmitter-receiver pair. For a wave vector k and scatterer position

¢, the angles are given by

k'k;, — kI ¢ )
1) = arccos : : ) (2.11)
<Hki\|2||kz' — ¢l
and
< kTk, — kI'¢ ) (2.12)
[ = arccos . .
[[ksl2 ks = €l

The geometry for the above calculations is shown in Figure 2.4. For all of
the simulations, the parameter r is set to 12 mm, and the components of ¢ selected
according to U[—H5mm, 5mm|. The horizontal distance from ¢ = 0 to the array
is defined to be 3 m, and thus the majority of scatterer positions are within the
-6dB beam width of the array elements at the highest frequency. To compare the
effect of the sample volume on the classification performance, the simulations are
performed with and without including the beam shape factor. The case without
the beam shape factor is equivalent to setting [3; ¢[k] = 1 for all realizations.

The received echoes in any practical system will be corrupted by noise due
to reverberation, electronics, and other sound sources. Noise due to reverberation
will be in the same frequency band as the received echo where as noise from
electronics and other sound sources will have energy in other frequency bands as

well as the band of the received echo. Since out of band noise can be reduced by
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<

Figure 2.4: View of the method for calculating beam shape for a scatterer posi-
tioned at ¢ and a transmitter and receiver pair. The angles between the scatterer
position vector, and the vector to each element are defined by 7 and u. The angles
are used to compute the the change in sound intensity as a function of frequency.

filtering, reverberation noise in the same frequency band as the transmit signal is
added to the scattering amplitude. The noise is generated by taking the product
of the Fast Fourier Transform (FFT) of the transmit signal Sp[k] with the FFT of
a realization of white Gaussian noise Wj[k].

A constant reverberation level is used and thus the signal to noise ratio
(SNR) varies as a function of length and orientation of the scatterer. The SNR for
the copepod data ranges from -11 to 24 dB whereas the SNR for the euphausiid
data ranges from -20 to 35 dB. These ranges for SNR were selected such that
the average SNR was close to 7dB for the copepods and 15dB for the euphausiids.
These values were deemed to be comparable to what is achieved in practical systems
[91, 92]. The noise level can also be defined in terms of an equivalent target strength
of -110 dB.

In generating the data, the noise term W;[k| is first added to the product
of the scattering amplitude and the beam shape factor at each wave number bin

to yield the noisy scattering amplitude
S;lk) = S[k]B; ¢ [K] + W;[K]. (2.13)

The convolution defined in equation. (2.1) is accomplished in the frequency domain



21

by computing the product of the FFT of the transmit signal Sp[k] with the noisy
scattering amplitude S’j [k]. Using equation. (2.13), the pressure signal on the ;%
element is then obtained by an inverse FFT (IFFT)

p;ln] = Real Z Solk Je2mink/N | (2.14)

This process is repeated for each of the M array elements building up the vector

p[n] = (m[n], ..., pun])” (2.15)

In order to explore the classification success as a function of carrier frequency
and bandwidth several different types of signals were used. For the narrow band
signals (10% bandwidth) frequencies of 1 and 2 MHz were selected. For the broad
band signal, a Linear Frequency Modulated (LEM) chirp was used with a starting
frequency of 1 MHz and ending frequency of 2 MHz. The signal duration and
energy was kept constant for all signals. The range of frequencies was selected
based on past experience with measuring scatter from animals of the size considered
here.

To improve the SNR of the data input to the feature extraction algorithms,
the raw echo data resulting from the simulation is passed through a matched
filter[93]. For the transmit signal sg[n], and a received echo on array element j

defined by p;[n|, the output of the matched filter is

o0

M;n] = D solplpslp — nl. (2.16)

p=—00

The matched filter output is windowed around the peak in the output with a
window size of W = 50, corresponding to a time of 5 us or a distance of 7.5 mm.
For the broad band signal the time-bandwidth product is 120, yielding a processing
gain of roughly 20 dB. For the narrow band signals, the time-bandwidth product
is much lower, and thus the processing gain is low as well, around 10 dB.

To visualize the type of noise, and its effect on the estimation of the scat-
tered signal, the model target strength is displayed along with the estimated target
strength for the broad band signal type in Figure 2.5.
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Figure 2.5: Typical examples of simulated data for both the copepod and eu-
phausiid class. The estimated target strength using the raw echo, and the matched
filter output are plotted on top of the target strength as modeled by the DWBA.
The high level of noise is clearly visible, as is the improvement obtained from the
matched filter.
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2.3 Feature extraction

In order to facilitate the classification procedure the data are mapped to
a feature space which dramatically reduces the dimensionality of the data while
simultaneously highlighting inter-class differences. The three feature spaces used

in this work are described in this section.

2.3.1 Single frequency based feature space

To explore the result of using only a single frequency rather than a broad
spectrum of frequencies, a single frequency based feature space is defined in which
the FFT of the matched filter output on each array element is computed and its
magnitude squared is integrated over a small bandwidth. Only the narrow band
data is used in this feature space. The resulting sum squared magnitudes on each
array element are then combined to form a single feature vector. Specifically,
assuming that the j' array element collects N samples, the power in the narrow

bandwidth of the signal (kpin t0 kmay) is

kmaz  |[N-1 PP
Pi= > |3 Mjn]e 2mink/N| (2.17)

k=kmin | n=0

For the simulations presented here, N = 1200. The single frequency feature vector
is then defined as
y= (PP, ....Pu)". (2.18)

The bandwith (ki t0 kmas) is set equal to the transmit signal bandwidth of 10%

of the center frequency. The center frequencies used are 1 and 2 MHz.

2.3.2 Discrete cosine transform based feature space

The discrete cosine transform (DCT) has numerous qualities that make it
attractive as a feature mapping. For one, the coefficients of the DCT are uncor-
related. It can also be shown, that the DCT can embed most of the energy in
the data into a small number of coefficients. While there is no guarantee that

such an embedding will yield a discriminant feature space, this is often the case in



24

practice. The DCT based feature space uses the power spectrum of the matched
filter output for the broad band 1-2MHz data. The power spectrum is computed

as

2

Py[k] = (2.19)

N-1 )
Z Mj [n]€727rmk/N
n=0

For the results presented here N = 1200. Having computed P;[k| for each array

element, the DCT of the power spectrum is computed as

B = 200 S Pk co (M) (220)

k=0

where

Lo 1=0
I = V2’ . 2.21
ol {1, lzl,..,N—l} (2:21)

The values of the K largest (ordered by magnitude) coefficients in the transform

are retained in the feature vector for the j array element
y; = (B[, ..., BS IR, (2.22)

where the features are arranged such that [ < [2 < ... < [¥. This procedure can be
interpreted as an adaptive threshold of the DCT of the power spectrum. Finally,

the feature vectors at each array element are combined into a single feature vector

y = (le, ...,yL)T. (2.23)

The feature vector y captures the K most energetic wave number bins in the power
spectrum of the received signal at each element of the array. A range of values for
K were analyzed. It was found that the values K = 1, K = 2, and K = 4 yield
the best performance. As K increases, the feature vector is able to capture more
of the variability in the frequency response of the scatterer at the cost of a larger
feature space dimension. A wavenumber bin width of Al = 35 rad/m was used

throughout the simulation.
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2.3.3 Frequency correlation based feature space

One of the major drawbacks of the previous two feature spaces is that they
do not naturally combine the multiple angle data. Instead, the features from each
angle of the multiple angle data are lumped together as one big feature vector. This
can cause problems in the case of the DCT feature space as the dimensionality of
the feature space grows as K times the number of angles M. In this section,
a feature mapping which combines the multiple angle data systematically while
extracting the features is defined. The features are the eigenvalues of the frequency
correlation matrix.

The frequency correlation matrix is obtained by computing the correlation
between all pairs of received waveforms in the frequency domain. Specifically, the

correlation matrix C is defined as

C = FF, (2.24)
where
F = (f,....fy), (2.25)
and
N—-1 )
filk] =37 Mjnjem#n/N, (2.26)
n=0

is the FFT of the matched filter output for the received data on element j.
Thus, the individual elements of the frequency correlation matrix are the cross-

correlations between the Fourier transforms of the data on the array elements

Cy; = f'f;. (2.27)

(3

The features are extracted from the frequency correlation matrix using an eigen-

value decomposition[94]

A =Q7CQ, (2.28)

where A = Diag (A, ..., A\ys) is the diagonal matrix of eigenvalues. The feature

vector is then formed by taking the diagonal elements of A

y = (Ao Aur) " (2.29)
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The eigenvalues (features) are not simply related to the data at each angle
as in the case of the previous two feature spaces. Each eigenvalue is derived from
data at all angles. This is the key benefit over the other two feature spaces. The
number of non-zero eigenvalues is upper bounded by the number of angles, yet
may be lower depending on the degree to which the echoes received at each angle

are correlated with one another in the frequency domain. For example, if

0 for i % j
flﬂsz{ O”%j}, (2.30)

k for 1 =7

the frequency correlation matrix C = kI and the eigenvalue spread is nearly flat.
In contrast, if

£ ~ Kk Y i, (2.31)

the frequency correlation matrix is approximately rank one, and the eigenvalue
value spectrum will be highly peaked at the first eigenvalue. The first example can
be thought of as representing a complex shape, where the spectrum of the received
signal varies substantially as a function of angle. This second example corresponds
to scattering from an angularly symmetric shape. Therefore, in the presence of

noise, the variability at each array element is due to only to noise.

2.4 Classification of features

Given a set of features that have been extracted from these data, the next
task is to develop a method for assigning a class label to each feature so as to min-
imize a particular loss function. Asis commonly done in pattern classification, the
“0-17 loss function is applied which assigns equal penalties to classification errors
made for either class [95]. In the zooplankton classification problem considered
here, this is a reasonable loss function due to the fact that each class has in effect,
equal significance. It can be shown [95] that the classification rule which minimizes

the “0-1” loss function is the Bayes decision rule (BDR)

i* = argmar Poyy (1]y), (2.32)
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where the class ¢*, having the maximum a posteriori probability given the feature
vector y, is chosen. The BDR can be written in terms of the Class Conditional
Density (CCD) py|c (y | %) using Bayes Rule, and assuming a prior class distribu-
tion Pg (i), as

i* = argmaz py|c (y | i) Po (7). (2.33)

In practice, the prior probability may or may not be known. For the procedure
considered here, it is assumed that the priors for each class are equal. As a result,
that term drops from the maximization. The remaining task is that of maximizing
the CCD which is equivalent to computing the Maximum Likelihood estimate of
the class label.

Unfortunately, the CCD is almost always unknown. In the best case, only
the form of the density is known, but not the parameters that define the actual
shape. This is one of the fundamental difficulties encountered in pattern classifi-
cation and is the point at which a priori knowledge or training data must be used
to learn about the structure of py|c (y | 9).

Here, two popular classifiers are considered: the nearest neighbor (NN)
classifier, and the multilayer perceptron (MLP) classifier. The properties of each of
these classifiers are briefly reviewed as the implementations used here are standard.

The NN classifier assigns a class label to a new pattern based on the label of
the training pattern which is “nearest” to the new pattern according to a particular
distance metric. For a given training set D = {(y1,1), ..., (Yn,in)} Where y, is a
feature extracted from the data according to the methods defined in Section 2.3
and i,, is the associated class label, the NN classifier under the 2-norm assigns the
label i;, where k is the index of the nearest neighbor

k= argmin(y —y:)" (y — i) (2.34)

(2

In contrast to the the NN method, the MLP tries to learn the mapping from fea-
ture space to class label space using multiple levels of weighted combinations of the
components of the features rather than using the training data explicitly to repre-
sent the underlying CCDs. In essence, the MLP learns to approximate Pejy (i]y)

via experience gained from analyzing numerous examples. It has been shown that
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this type of classifier can yield very good results in underwater target classification
[63] as it is one of the best methods for approximating a high dimensional function.

Given the two class problem, the MLP has two output nodes. The number
of input nodes is the same as the number components of the feature vector y.
A single hidden layer is used with the number of nodes selected to be twice the

number of input nodes. The network is compactly expressed [96] as

o =U Czj sV (é wjy>) , (2.35)

where U and V' are non-linear mapping functions, w; and wj; are network weights,
y; is the i component of the feature vector, and ¢; is the £ component of the
classification vector. The weight matrices of the network are initialized randomly
at the start of training, and updated at each iteration so as to minimize the error on
the training set. Both mapping functions are selected to be the softmax function
[95], and the network is trained using the Scaled Conjugate Gradient method.
Prior to training and testing, all inputs to the network are z-scaled in the log
domain. The training is implemented in MATLAB (The Mathworks; Natick, MA)
using the NetLab toolbox [97].

2.5 Results and Discussion

2.5.1 Classifier performance

The classifiers defined in section 2.4 are now evaluated quantitatively on a
set of test data mapped into each of the feature spaces defined in section 2.3. The
results are displayed as the absolute probability of error as a function of the number
of angles (or array elements) that are combined in the classifier. Specifically, the
number of angles is equal to the number of array elements included in order starting
from element 1. So for example, three angles would correspond to using array
elements 1, 2 and 3, and four angles would correspond to using elements 1, 2, 3,

and 4. The probability of error is computed according to

plcle) + p(elc)

p(error) = 5 ,

(2.36)
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Table 2.1: The correct and miss-classification probabilities for each classifier when
beam shape is excluded from the simulation.
Copepod Euphausiid Total
Classifier Correct  Miss  Correct Miss  p(error)
NN/1MHz 76.1% 23.9% T1.2% 28.8%  26.3%
NN/2MHz 74.1% 25.9% 64.6% 354%  30.6%
NN/DCT(4)  87.5% 12.5% 85.4% 14.6%  13.5%
NN/CM 90.8% 92% 87.0% 13.0% 11.1%
MLP/1IMHz  76.3% 23.7% 70.4% 29.6%  26.6%
MLP/2MHz  70.3% 29.7% 66.1% 33.9% 31.8%
MLP/DCT(4) 85.0% 15.0% 84.5% 155%  15.2%
MLP/CM 91.0%  9.0% 93.8%  6.2% 7.6%

where p(c|e) is the probability of classifying a euphausiid as a copepod, and p(e|c)
is the probability of classifying a copepod as a euphausiid. Here, the fact that
each class is equally likely in this simulation has been used. A consequence of
the equal representation for each class is that a system which randomly guesses
the class would have a probability of error of 50%. Therefore, 50% probability of
error can be achived with no effort, and any classification strategy should have
an error below 50%. The classification experiment is performed both for the case
where beam shape is neglected from the simulation, and where the beam shape
is included. The results of the classification for both cases of data are shown in
Figure 2.6.

The 1 and 2 MHz curves result from using the single frequency feature
space and the respective narrow band data. The DCT and CM curves result from
using the DCT and frequency correlation feature spaces with the broad band 1-
2 MHz LFM chirp data. The DCT(1), DCT(2), and DCT(4) curves apply the
DCT method outlined in Section 2.3 with K = 1, K = 2, or K = 4 respectively.
Figure 2.6 illustrates that there is a general trend of decreasing probability of
error as more angles are used in the classification. The amplitude and frequency
response of acoustic scatter from crustacean zooplankton is directly related to the
scatterer shape, size and orientation. The addition of more angles in the classifier
can be interpreted physically as observing the the scatterer from multiple views.

The probability of error is reduced as more angles are used in essence because there
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Figure 2.6: Comparison between the NN classifier and the MLP classifiers for the
case of no beam shape (a,b) and beam shape (c,d), in 6 different feature spaces.
The 1MHz and 2MHz curves correspond to the single frequency based feature
space. The DCT(1), DCT(2), and DCT(4) feature spaces use the DCT method
outlined in Section 2.3 with K = 1, K = 2, or K = 4, bin indices included at

each angle. The CM curves results from the frequency correlation feature space
outlined in Section 2.3
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Table 2.2: The correct and miss-classification probabilities for each classifier when
beam shape is included in the simulation.
Copepod Euphausiid Total
Classifier Correct  Miss  Correct Miss  p(error)
NN/1MHz 741%  25.9% 70.1% 29.9% @ 27.9%
NN/2MHz 67.8% 322% 60.2% 39.8%  36.0%
NN/DCT(4)  83.5% 16.5% 823% 17.7% 17.1%
NN/CM 85.8% 14.2% 81.5% 185% 16.3%
MLP/1IMHz  75.8% 24.5% 74.2% 25.8%  25.0%
MLP/2MHz  69.9% 30.1% 63.1% 36.9% 33.5%
MLP/DCT(4) 85.3% 14.7% 81.0% 19.0%  16.8%
MLP/CM 91.2% 88%  90.7%  9.3% 9.0%

is less uncertainty about the shape of the scatterer.

When only one angle is used, observing scatter over a broad range of fre-
quencies (1-2 MHz) reduces the probability of error substantially over the single
frequency case. This is a consequence of the fact that single frequency scatter is
much more sensitive to scatterer orientation and size then broad band scatter due
to the effect of coherent interference at a given frequency. As broad band data
excites many frequencies, it is far more robust to changes in scatterer shape and
orientation.

The effect of including beam shape on the probability of error can be clearly
seen by comparing the top and bottom rows of Figure 2.6. The effect is essentially
to shift the curves towards higher probability of error. This is a consequence of the
fact that the random position of the scatterer in the beam adds another kind of
noise to the data. However, it is possible that this kind of noise can be corrected
by exploiting the angular diversity of the array to locate the scatterer in the beam,
and correct for the beam shape. While not considered in this paper, this process
will be investigated in future work.

The frequency correlation feature space clearly outperforms all of the other
feature spaces for both classifiers. This is to be expected since it is the only feature
space which naturally combines the echoes at each angle when extracting features.
It may be inferred from the poor performance when only a single angle is used, that

the variation in the echo as a function of angle is most discriminant between the two
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classes. The frequency correlation feature space efficiently extracts this information
from these data. The performance (in terms of correct and miss-classification) of
each classifier using all eight angles with, and without including beam shape is
displayed in Table 2.1, and 2.2. Interestingly, there is a wide variation in the correct
and misclassification results for the different feature spaces. The improvement in
classification performance as additional angles, and as a result increased array
aperture, are used is a direct consequence of having additional independent views
of the scatterer. The additional views reduce the uncertainty in the shape of
the scatter by way of the intimate link between scatterer shape, and angularly
varying scattering amplitude as defined in equation (2.2). Since the two classes of
scatterers have distinct shapes, the reduced uncertainty in shape leads to improved
classification performance. In general, all of the feature spaces, and classifiers have
slightly higher accuracy for the copepod class rather than the euphausiid class
except for the frequency correlation feature space which is inconsistent between
the two classification algorithms. This is likely a consequence of the large number
of orientations for which scattering from the euphausiid is very weak due to the
elongated body. There is also a systematic increase in probability of error for the
2 MHz data over the 1 MHz data for both classifiers. This is likely caused by a
greater similarity in scattering amplitude at 2 MHz than 1 MHz between the two
classes. This could be caused by the fact that at 2 MHz, the scattering is further
into the geometric regime, and thus the scattering amplitude is less sensitive to the
scatter size. Finally, the best results, are miss-classifications of 9.0% and 6.2% for
the copepod and euphausiid respectively. As a result, the total absolute probability
of error is 7.6% in the best case. This gives an improvement over random guessing

of 84.8%.

2.6 Conclusions and future work

In this paper, the use of multiple angle acoustic scatter to discriminate be-
tween two classes of ecologically important zooplankton has been explored using

simulations. The research is motivated by the current need for more descriptive
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acoustic sensors for studying zooplankton in situ. Past work in this area has been
limited by the inherent ambiguity in discrimination ability due to the sensitivity
of acoustic scattering to material properties and scatterer orientation. These diffi-
culties have been confirmed here where it has also been shown that it is possible to
use scatter measured over a multiplicity of angles to achieve a higher rate of correct
classification. Using synthetic data, generated via the use of the distorted wave
Born approximation, two ecologically important classes of zooplankton: copepods
and euphausiids were classified. The classification performance, measured in terms
of probability of error, is dramatically improved over single angle observation meth-
ods via the use of additional angles. This improvement is even more substantial
when broad band scatter is used.

The simulations performed here were geared towards a practical system
which could be deployed in the field. Therefore, constraints were placed on the
bandwidth of the transmit signal, and the angular distribution of the receivers in
this context. The length distributions for both classes were chosen to be typical of
those encountered in the Southern California region [98, 99]. In order to understand
the ramifications of the proposed method in the presence of noise, a constant level
of noise that resulted in an average SNR of 7dB for the copepod and 15 dB for
the euphausiid, or an equivalent target strength of -110 dB, was used. This noise
level is consistent with practical systems that have been used in the field [91, 92].
In addition, although a strong effort was expended in order to make the work
realistic, the performance of a field system may be limited by issues that have not
been considered in this work. Specifically, the models used here, while accurate for
weak sound scattering, do not include variability due to individual shape, or body
pose. Furthermore, uniform orientation distributions were used here, where as in
the field, the distributions may be different. Given the promising results observed
here, these additional degrees of freedom certainly warrant further investigation
through more complex simulations, as well as observation of live animals.

A curious, but potentially very helpful aspect of our result is that a one
dimensional array is capable of capturing enough information from a random three-

dimensional orientation to yield good classification performance. It may therefore
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be that simple array geometries, which can dramatically reduce the development
and deployment cost associated with such systems, constitute a pragmatic solution

to the in situ classification of zooplankton after all.
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Chapter 3

Classification of live, untethered
zooplankton from observations of

multiple-angle scatter

3.1 Introduction

Crustacean zooplankton play a major role in the ocean’s ecosystem, so it
is important to develop non-invasive methods to measure their abundance and
behavior. Instruments deployed in the laboratory and field have measured sound
scatter from a wide range of animals [34, 36, 100, 37, 84, 47]. In addition, scattering
models and classification algorithms have been formulated [38, 81, 84, 48] with the
ultimate goals of quantification of animal size and abundance, identification of
different taxa [36, 28, 77], and measurements of in situ behavior [101, 92].

The fundamental challenge to achieving these goals arises from the vast
diversity of zooplankton in the ocean and the confounding influence of size, shape,
orientation, and material properties on acoustic scatter [56, 55]. Variations of these
factors lead to substantial ambiguities in using acoustics to both identify and count
animals. Reducing these ambiguities, while retaining a system that is practical for
fieldwork, would be of great value.

One potential solution is to observe sound that has been reflected at dif-

35
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ferent angles. In the context of diffraction theory, Jaffe (2006) demonstrated that
swim-bladder size could be accurately inferred from multiple-angle acoustic reflec-
tions observed from a single fish [58]. Roberts and Jaffe (2007) used numerical
methods to demonstrate that individual copepods and euphausiids could be clas-
sified using multiple-angle, wide-band reflections [59]. The study indicated that
the multiple-angle method was more accurate than other techniques using either
narrow- or wide-band sound with a single transceiver.

Here the multiple-angle technique was applied to two types of marine zoo-
plankton: copepods and mysids. Copepods are an order of crustacean zooplankton
(typically 1-4 mm in length) distributed throughout the world’s marine and fresh
waters. Mysids are common coastal inhabitants similar in size, shape, and com-
position to euphausiids (typically 5-10 mm in length). Copepods and euphausiids
are dominant taxa of marine ecosystems and there is great interest in quantifying
their distributions with remote, non-invasive methods.

A laboratory scattering apparatus was constructed to record simultaneous
reflections from zooplankton at multiple observation angles. To be compatible
with available hardware, eight receivers were evenly spaced on a line, forming a
2-m-long array. The length of the array was chosen so that it could eventually
be deployed on an autonomous underwater vehicle (AUV) or glider. The even
spacing of receivers sampled the available aperture uniformly. No optimization
of receiver position or array length was attempted, but the final geometry was
consistent with simulated multiple-angle experiments [59]. During recording of
acoustic reflections, two video cameras simultaneously recorded the size, position,
and orientation of animals. Multiple-angle observations were analyzed using a
correlation matrix approach designed to highlight changes in scattering across the
array. Eigenvalue analyses of these matrices demonstrate that, in our laboratory
setup, multiple-angle acoustic data can be used to accurately discriminate between

copepods and mysids.
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3.2 Experimental methods and data processing

3.2.1 Acoustic scattering apparatus

The scattering apparatus consisted of a linear array of 10 disk transducers
(Panametrics, Waltham, MA). Eight were used as receivers and two as transmit-
ters. All receivers and one transmitter were 19-mm-diameter, 2.25-MHz broadband
transducers (V305-SU). The other transmitter had a diameter of 38 mm (V395-
SU). The larger transmitter was used to increase the source level, improving the
signal to noise ratio (SNR) of echoes from smaller animals. The field of view
(FOV), defined by the overlap among all acoustic beams, was 42 ml with the 38-mm
transmitter and 328 ml with the 19-mm transmitter. Optical images within the
FOV were acquired using two high-sensitivity VGA cameras (Sony SPT-M320).
The acoustic array and cameras were rigidly connected by a Unistrut (Unistrut
Corporation, Wayne, MI) system to ensure minimal relative movement during ex-
periments [Figure 3.1(a)]. A custom-built rail system was used to slide the array in
and out of the water. This allowed the array to be kept dry when not being used,
and then precisely positioned and locked in place for experiments. All experiments
were performed in a 3.0-m-wide, 4.2-m-long, 2.4-m-deep elliptical tank with view
ports 1.2 m above the bottom. The tank was filled with chilled, filtered seawater
maintained at a temperature of 14.9° C throughout the experiments.

Acoustic data were acquired by a National Instruments (Austin, TX) PXI-
8195 controller running Windows XP (Microsoft, Redmond, WA) with two PXI-
6115, 10 MHz, 12 bit, 4-channel simultaneous sampling boards with 64 MB of
on-board memory. The output from each receiver was fed through a Panametrics
5670 broadband preamplifier prior to digitization. The transmitter was driven by
an ENI (Bell Electronics, Kent, WA) AP400B 400-W power amplifier. Waveforms
sent to the power amplifier were generated by a Stanford Research (Sunnyvale, CA)
DS345 arbitrary waveform generator. Software developed in LabVIEW (National
Instruments) controlled the acquisition, recording, and real-time display of data.

A single PC running Windows 2000 controlled the stereo video system.

Images were “grabbed” from each camera — at an adjustable rate controlled by
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Figure 3.1: (a) The multiple-angle scattering apparatus (viewed from above) show-
ing the acoustic and optic elements, Unistrut (Unistrut Corporation) frame, ex-
perimental tank, and associated data acquisition components. (b) The bottom-up
pump. Animals are drawn out of a tank above the surface and injected below the
field of view. (c) The top-down pump. Animals are sedated and allowed to sink
through the pipe into the field of view. All distances are in millimeters.
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the acoustic transmissions — using synchronized Matrox (Matrox, Dorval, Canada)
Meteor II frame grabbers. Software developed in C++ used the Matrox Imaging
Library to read images from the boards, bundle them together, display them in
real-time, and save them to disk.

To obtain high-contrast images of animals, a 200-mW laser was used for il-
lumination (Aixiz 200 mW, 650-nm module). A wavelength of 650 nm was selected
as it is almost invisible to the animals yet suffers limited attenuation through the
medium. The laser beam was spread with a diverging lens to yield a cone of light

that intersected the FOV.

3.2.2 Experimental setup

Preliminary experiments revealed that scatter from tethers maintaining zoo-
plankton in the FOV dominated observations at these high frequencies. Therefore,
a substantial challenge was to position live, untethered animals in the FOV. Cope-
pods were pumped from a small holding tank through a system of hoses and out
through a 3-in-diameter pipe positioned directly under the FOV [Figure 3.1(b)].
Copepods typically stayed near the FOV for several seconds after exiting the pipe,
whereas mysids quickly swam away from the FOV. To mitigate this problem,
mysids were sedated by placing them into a dilute (1% by volume) water bath
of clove oil and filtered seawater. They were kept in the bath until they ceased
swimming (typically 30-60 s) but retained leg movement. Sedated mysids were
then transferred immediately to a funnel system [Figure 3.1(c)] that guided them
into the FOV while they sank slowly. These mysids eventually recovered as inferred

by their swimming behavior.

3.2.3 System alignment and calibration

Alignment and calibration of the multiple-angle system were more compli-
cated than for a typical mono-angle system. Transducers were aligned using a long
strand of nylon monofilament suspended perpendicular to the array at a point that

was designated the system’s origin. The monofilaments diameter of 75 pum resulted
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in an acoustic scattering pattern that was omni-directional in the horizontal plane,
but narrow in the vertical plane. Pointing angles for all transmitters and receivers
were iteratively adjusted to maximize reflections.

Three-dimensional transducer positions were estimated using the time-of-
arrival at each receiver of the echo scattered from the monofilament. With the array
elements located on a line, their Euclidean offsets from the origin were determined
by computing the mean squared error between the observed and predicted arrival
time of echoes at each receiver, for all possible offsets. A clear minimum was
found [Figure 3.2(a)] and the model output, compared to measured data, yielded
excellent agreement [Figure 2(b)]. The array was off center with a total angular
span of roughly 46.7° (Figure 3.3). The horizontal distance from the center of the
array to the origin was 1.14 m and the angular spacing between array elements
was on average 5.8° 4+ / — 1°.

The video system was aligned with the acoustic system using a small sphere
suspended in the middle of the FOV. One camera was mounted so that it looked
through the tank’s view port (Side View). The second camera was mounted in a
waterproof housing with a small view port and submerged almost directly above
the FOV (Top View). Both cameras were mounted to the Unistrut frame using
heavy-duty, three-axis telescope mounts (Losmandy DCM?2, Los Angeles, CA).
These mounts allowed each camera to be rotated until the target was in the center
of each frame. They were then locked in place.

Before and after experiments, acoustic calibrations were performed using a
1-mm-diameter tungsten-carbide sphere, following the calibration procedure out-
lined by Foote [102]. Echoes were collected while the sphere was translated within
the FOV. Since the echo spectrum varied only slightly for displacements of the
sphere within the FOV, the beam pattern was assumed to be constant in that
region. The echo spectrum from the sphere was then used to convert recorded
echo spectra to target strength (TS). This process was repeated with the nylon
monofilament using the scattering model described in [103]. To check consistency
of the calibration, echo spectra —converted to target strength using each calibration

method —were compared and found to be within 3 dB. This was adequate for the
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Figure 3.3: The geometry of the acoustic array. All distances are in millimeters.
The two transmitters are at the right end of the array. Receiver element 1 is at
the left end of the array and element 8 is at the right end of the array.

subsequent analyses as the method only relies on the relative calibration among

receivers.

3.2.4 Data acquisition and processing

Multiple-angle data were collected during a series of experiments spanning
several months. All zooplankton were collected in the La Jolla Cove area (San
Diego, CA) by small boat and immediately brought back to the lab. Mysids were
collected by gently dragging a mesh butterfly net across the kelp at the surface
of the kelp forest. This procedure typically resulted in 10-100 mysids ranging

in length from 8-12 mm. Copepods were collected in a series of net tows using
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a 250-pm cod-end, 1-m-diameter net. This yielded several thousand copepods
(primarily calanoid) ranging in length from 1 to 4 mm. Animals were allowed to
equilibrate with seawater siphoned directly from the FOV for 30 minutes prior to
being injected into the tank. During experiments, between one and ten copepods
were injected toward the FOV at a time. Only one mysid was injected at a time.
Of those animals injected, roughly 10% actually passed through the FOV.

The transmit signal was a linear frequency-modulated (LFM) chirp from
1.5-2.5 MHz with a cosine-squared envelope and a duration of 500 ps. The data-
acquisition system recorded ten sequential echoes with 100-ms delay between them.
The large tank and relatively small volume of intersection between transmitter and
receivers allowed a nearly reverberation-free echo. However, in data from the mysid
experiments, there were some small artifacts caused by the injection pipe. These
were coherently removed in post processing using data recorded from the pipe
alone.

Raw acoustic data were matched filtered with a synthetic model of the
transmit signal [104, 93, 55]. The matched-filter output was then windowed to
localize the echo from the animal. A window length of 250 time samples (25 us
at 10 MHz sample rate) was selected to capture the longest possible echo for the
largest animal insonified. Due to the extended length of the transmit signal, the
matched-filter processing gave an SNR improvement of roughly 23 dB over a very
short pulse of equivalent power. This processing gain was critical for obtaining
good SNR from these weakly scattering animals. The same matched filter was also
applied to calibration data. A 4800-point fast Fourier transform (FFT) was used
to estimate power spectra of echoes recorded by each receiver. The FFT of each
received echo was multiplied by the power spectrum predicted by the calibration
model and divided by the power spectrum of the calibration echo. This corrected
for the shape of the transmit pulse and the small variation in element sensitivity

across the array.
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To highlight fundamental differences between echoes from each class of scat-
terers, a frequency correlation algorithm was developed. Let the M-point FFT of
the windowed, matched-filter output for the j* element be F;[k]. Then define the
cross-correlation between the positive frequency coefficients of the FFTs of two

elements a and b as

Xoplm] = kiva[((k))N}Fb[((k —m))y] for 1<a<band 1<b<b (3.1)

where ((x)))y denotes “z modulo N” and N = (M + 2)/2. The cross-correlation
with the maximum magnitude was then used to form an approximately Hermitian,

positive-semidefinite matrix

Gab = Xa7b[m*], (32)

where

m* = argmax |X,p[m]. (3.3)

As explained in [59], the matrix G will be nearly rank 1 if there is an equal
correlation between all pairs of receivers. In contrast, if there is a weak correlation
between non-identical pairs of receivers G will be similar to a scaled identity matrix.

To quantify the degree of correlation the eigenvalue decomposition [94] was

computed as

A =Q"GQ, (3.4)

where A = Diag(\y, ..., Ag) is a diagonal matrix of eigenvalues. In practice there
was a substantial amount of correlation among echoes across the array, and the
eigenvalues deceased logarithmically. Therefore, the log-eigenvalue spectrum was

used for analysis.

3.3 Results

3.3.1 Scattering apparatus and experiment analysis

The transducer array, video system, and data-acquisition hardware worked
well for collecting repeatable, multiple-angle scattering measurements when ani-

mals were positioned in the FOV. The combination of a rigid frame, with robust
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rotation mounts for all sensors allowed simple and straightforward alignment that
remained unchanged throughout the experiments. The rail system for translating
the array in and out of the water proved invaluable and was constructed using stan-
dard, off-the-shelf parts at small cost. The camera system’s low resolution, coupled
with the interlaced video signal and poor laser-beam characteristics, yielded images
of only moderate quality, though they were adequate for this study.

Positioning live specimens in the FOV without causing artifacts in the data
was the most challenging aspect of the experiments. Numerous methods were eval-
uated during the development of the system (including a wide variety of tethers)
but the injection method provided the only artifact-free data. Unfortunately, the
injection frequently added bubbles to the acoustic field, or the animal would move
out of the FOV before reflections were recorded. Therefore, few artifact-free echoes
were obtained during experiments. Data are presented here from eight individual
copepods and eight individual mysids. The small size of the data set is solely a
consequence of the lack of an efficient means for repeatedly placing untethered,

live animals in the FOV.

3.3.2 Multiple-angle data analysis

Multiple-angle data require additional processing to characterize the target
animals. In the first step, the spectra of echoes at each angle were computed (Fig-
ures 3.4, 3.5). Despite the small sample size, patterns in target strength data were
clear. These highlighted the influence of animal orientation on echo spectra, moti-
vating the frequency correlation processing. For copepods, target strength curves
(Figure 3.4) were very similar among receivers. In addition, target strength was
slowly varying across frequencies. Video observations indicated that both speci-
mens shown in Figure 3.4 were nearly broadside to the array. However, a small tilt
can be inferred from a null in the spectra moving from elements 1 to 8. Multiple-
angle data can therefore offer enhanced insight into the animal’s orientation. For
mysids, target strength is less similar among receivers than with copepods, and
varies more as a function of frequency (Figure 3.5). Video data showed that, for

the two specimens shown in Figure 3.5, orientation in the horizontal plane differed
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by roughly 900 (Figure 3.5, top-view images). Specimen 1 was nearly end-on to
element 1 and nearly broadside to element 8. Specimen 2 was nearly broadside
to element 1 and nearly end-on to element 8. Orientations can also be inferred
from acoustic data: there is a decrease in spectral complexity as the animal orien-
tation becomes closer to broadside. Near broadside, spectra are smoother with a
well-defined null. This null is likely a result of interference between sound reflected
from the sides of the mysids body closest to and farthest from the array element.
To highlight differences among data sets, multiple-angle spectra for each specimen
were combined together to form an image. The spectrum for each angle was first
normalized by its standard deviation to remove relative differences in the average
reflected energy. When plotted as a function of frequency and angle (Figure 6) this
normalized spectral magnitude shows substantial similarity among frequency and
angle for copepods [Figure 3.6(a)] with more variability for mysids [Figure 3.6(b)].
Frequency correlations among spectra of angular data were computed using equa-
tions (1) and (2). Log-eigenvalue spectra (Figure 3.7) indicate that echoes at each
angle are more correlated for copepods than for mysids: the slope of the average
spectrum for copepods is roughly twice that for mysids. Furthermore, the average
spectrum for copepods decreases steadily, whereas for mysids it is rather flat up

to the sixth eigenvalue at which point it steadily decreases.

3.4 Discussion and conclusions

Experiments using a multiple-angle acoustic receiver array and live cope-
pods and mysids have shown that it is possible to use the scattered acoustic signal
to distinguish between these zooplanktonic taxa. Preliminary experiments showed
that signals from animals tethered in the FOV were dominated by scatter from the
tether. Techniques were developed to introduce live, untethered animals into the
FOV; however, data quantity was limited by the low success rate in positioning
animals in the FOV. In a real pelagic environment these factors would not be an
issue.

Multiple-angle data (Figures 3.4, 3.5 and 3.6) exemplify a fundamental
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Figure 3.7: (a) Normalized magnitude of the scattering spectrum as a function of
frequency and array element number for all eight copepod specimens. These data
highlight the slowly varying nature of target strength as a function of frequency and
look angle. (b) Normalized magnitude of the scattering spectrum as a function of
frequency and element number for all eight mysid specimens. These data highlight
the relative increase in complexity of target strength as a function of frequency
and look angle when compared with (a).
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principle of sound scattering from weak scatterers: The scattered sound field in
the immediate vicinity of a target, and its radiated pattern in the far field are
Fourier transform pairs [90]. Therefore, variability in target strength is controlled
by the size and shape of the scatterer. A thicker scatterer at a given orientation
permits more variability over frequency for a fixed bandwidth. Likewise, a more
elongate scatterer permits more variability over angle. This can complicate the
interpretation of single-angle, wide-band scatter when animal orientation is un-
known [105]. A comparison of data from single angles (Figure 3.6) reveals that
single broadband echoes from copepods and mysids can be quite similar depending
on the orientation of the animal relative to the system. However, when multiple
angles are considered this similarity is dramatically reduced.

A further advantage of the method presented here is that the transducers
only need to be inter-calibrated and not absolutely calibrated. This method is
therefore relatively immune to biofouling, so long as the biofouling occurs equally
for all array elements. A potential disadvantage is that multiple elements require
more sophisticated hardware and computer processing than a single-element sys-
tem. However, several existing systems use multiple transducer configurations for
measuring Doppler shifts to infer currents, so this is not a problem — even in a
battery-powered instrument. Furthermore, the computational burden is modest.

While this study has demonstrated the utility of a multiple-angle array for
zooplankton identification, there remain several research issues requiring further
consideration. One concerns optimizing the array geometry: the number of ele-
ments, the distance between them, and the overall length of the array. Another
concerns extension of the processing methods, once the data are in hand. The
eigenvalue method described here works well in analyzing the presented lab data;
however, alternate analyses should be explored.

Naturally, the real challenge in zooplankton sensing is to implement the
method in the ocean. Beyond the basic issue of putting electronic instruments in
a corrosive, high-pressure environment, there is the added problem of the large
diversity of animals: the many compositional types and body morphologies make

enumeration and identification difficult. One approach might be to combine the
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use of broadband, multiple-angle scattered sound with target-strength observa-
tions of individuals. Such a system would generate information about both the
size and reflectivity of the animals, with reduced sensitivity to their absolute ori-
entation. This will greatly reduce the number of candidate animals corresponding
to a measured set of reflections, enhancing our ability to discriminate among them.
Incorporating these ideas into a sea-going system will increase our knowledge about
the marine planktonic ecosystem and the role of zooplankton in the regulating the

dynamics and fluxes through that ecosystem.
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Chapter 4

A multi-view, broadband
approach to acoustic classification

of marine fish

4.1 Introduction

Acoustic methods for studying fish populations offer the potential for a
rapid, non-invasive assessment that can be cost effective and operate over consid-
erable ranges, day or night. These methods have become routine in most fisheries
applications [106, 107, 108]. They provide a fundamental datum that can define
far reaching fisheries management decisions and increase our understanding of the
number and distribution of fishes in the ocean. One of the major challenges as-
sociated with extracting information about fish from acoustic scatter is that the
scattering from fish is strongly influenced by fish orientation [52, 109]. In some
cases, this sensitivity has been shown to dominate over errors in scattering models
[53] and lead to biases in estimates of abundance [54]. This difficulty arises pri-
marily from the conventional way acoustic methods are typically employed in fish
estimation problems. A single-frequency echo recorded from either a fish school
or individual fish is converted into an estimate using a model which has many un-

known parameters. These parameters are typically assigned values using historical
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data, net-tow data, or avoided all together by using averaged models. However,
this measurement paradigm may not yield enough information to constrain these
parameters and therefore they ultimately must be estimated from data.

In addition to estimating fish size, shape, and abundance using acoustic
scatter, there has also been considerable interest in classification of fish. Species
classification has proved to be a challenging problem [107], however recent studies
have shown some success in this area using echogram analysis [110, 62, 61], multi-
frequency methods [111], and broadband methods [51]. In general, methods that
use behavioral information encoded in echograms (see [62] for example) show very
good performance and methods that use energy-based properties of the scattered
sound have also shown some success [51]. Due to the typical lack of specificity
(echo energy is not inherently discriminant at a given frequency due to coherent
interference) associated with acoustic scatter, approaches which take into consid-
eration behavioral information (for example school shape, position tracking, or
swimming speed) should be more successful than those that use echo data alone.
However, observation of fish behavior can be a time consuming and costly process,
and modifications to existing echo-energy methods that improve accuracy would
be highly valuable.

The subject of classifying targets from observations of scattering has re-
ceived significant attention during the last three decades (Table 4.1). In general,

the classification methods can be grouped into three major categories:

1. e Hidden Markov model methods [72, 64, 112, 71, 70].
2. e Multi-layer Perceptron (MLP) methods [113, 114, 63, 115, 116].

3. e Information-theoretic and Bayesian probability methods [117, 118, 119, 67].

Most of these methods have been developed in radar and sonar applications.
More recently, these methods have been applied in fisheries acoustics [117, 50, 108].
In addition to HMM and MLP based methods, collaborative agent methods for
improving the performance of decision-fusion classifiers have been recently been de-

veloped for underwater object detection in sonar imagery [75, 120]. These methods
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improve upon the very good performance obtained with decision-fusion methods
such as [63], but do not require a constant or known number of observations.

Classification of fish in situ using a single view is challenging because of the
strong influence of fish orientation on acoustic scatter, the great degree of varability
in fish size and shape, and the sensitivity of acoustic scatter to internal structures
in the fish body such as the swim bladder. During the past four decades many
methods have been developed to improve on length and orientation estimation
[121], individual fish classification [122, 113, 114], and classification of fish schools
[61, 62]. A primary advantage of these methods is that they typically operate
within the existing acoustic paradigm employed in current practice. This allows
a direct application of these methods to current data. However, because most of
them are single-view by design, they remain sensitive to unknown fish orientation.
Because of the strong dependence of scatter on fish orientation, it is possible that
by directly measuring scattering over multiple views, additional information about
the length, orientation, and possibly taxa of the fish could be collected and used
to improve estimates of these unknown parameters.

During the last decade, several methods have been developed for processing
multi-view scattering (Table 4.1). Although the application areas are different, and
the scatterers themselves (typically man-made strong scattering objects) are quite
different, many of these methods can be applied to fish classification with good

success.



Table 4.1: List of echo classification methods developed in fisheries acoustics and sonar target classification during the
past three decades. Methods are grouped by application area and classification approach. Feature transformations are
listed with references to representative works.

Application / Classification Approach Representative works (Feature transforms)

Fisheries acoustics

e Gaussian mixture models Volume backscatter [117]
e Echo statistics Echo energy [123, 122, 124], Frequency vs. angle spectra [50]
e Length estimation, Multi-beam Echo duration [108]
e Wide-band tank reverberation Total target strength [125]
e MLP echo envelope [113, 114, 51| cepstral features [126]
e GLRT Echo intensity [118]
Sonar target classification
e Decision fusion, MLP and linear Wavelet packets [63]
o MLP Wavelets [127, 115], STFT [116], CCA [128, 129]
e RVM, Gibbs sampling Time reversal imaging [69]
e Adaptive KNN, MLP LDA [130]
e Adaptive multi-aspect HMM Matching pursuit [71, 74]
e Multi-aspect HMM Matching pursuit [72] [68], Scattering centers [112]
e Dual-HMM Wavelets [64]
o GRNN PCA [131]
e Aspect-independent classifier Eigenvalues of wavepackets [132]
e Combined MLP-HMM Wavelets [133], Wavelet packets [70]

e Full-spectrum classify-before-detect | STFT, GLRT [134]
e Collaborative multi-aspect agents Wavelet packets [75, 120]

9¢
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A useful means for categorizing multi-view classification strategies is the
method used to combine information for each view together. Feature-fusion meth-
ods [72, 70] typically estimate the joint probability of the set of views using a
model for how the statistics of the views change. Other feature-fusion methods
include the cosine-transform and correlation-based based algorithms in [59] and
the frequency vs. angle spectra processing in [50]. One of the main advantages of
feature fusion is that it can take advantage structural changes in the echoes from
each view to increase accuracy. This is especially advantageous in cases where the
scattering from each class is strongly dependent on angle, and the scatterers have
significant inter-class variability in size and shape.

In contrast to feature-fusion methods, decision-fusion methods combine the
outputs of classification algorithms which can be either real valued or binary val-
ued. Typically, these methods compute posterior class probabilities for each view
independently and then combine the views together using a fusion algorithm that
is optimized using training data [63]. The primary advantages of these methods
is that in each step they make discriminant decisions and can potentially model
more complex features. In addition, these methods can combine views together
in a way that is discriminant. The draw back is that they generally can not be
adapted to handle additional views without retraining the system so they have
limited application in problems where the number of sonar reflections collected for
a given target is variable.

A third type of fusion can be defined as collaborative fusion [120]. In
collaborative fusion, each view defines an independent agent who makes decisions
based on their observed feature vector and also on the decisions of the other agents.
By selecting probabilistic methods for combining agent decisions, the algorithm can
achieve better performance than decision fusion without the constraint of a fixed
number of views. This approach has all of the benefits of decision fusion, but does
not require a fixed or known geometry allowing it to be applied to problems were
views are collected randomly, and the total number of views is not known a priori.
In addition, collaborative fusion allows decisions made from single views to be

compared with decisions made from multiple views. Because of this last feature,
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collaborative fusion can outperform decision-fusion [120].

Adapting multi-view fusion methods to fish classification could offer sig-
nificant benefits for improving classification accuracy with only modest changes
(adding additional receivers) to current measurement systems. As fish are quite
different scatterers than the man-made elastic scattering objects studied in most
multi-view classification studies, different feature spaces and classification algo-
rithms must be developed to process scattering from these animals in an appropri-
ate manner. This paper explores the development of three different classification
algorithms and three different feature spaces for classifying broadband, multi-view
scatter recorded from individual fish in a laboratory. The problem is framed in
the ecologically relevant context of classifying fish as a function of their size, or
species. It is assumed that a set of training data is available for each fish which
includes observations of broadband scattering collected by eight receivers spanning
42° of aperture for several hundred uniformly randomly orientations of the fish.
Algorithms are then tested on data unseen during training. The primary objective
is to develop a classification algorithm that: achieves low error, yields the most
dramatic reductions in error as more views become available, and makes the least

number of assumptions about collection geometry.

4.2 Multi-view acoustic scattering data

Broadband acoustic reflections from several species of fish were recorded
using a recently developed laboratory scattering apparatus (Figure 4.1a). Fish
were sedated using an MS-222 protocol (UCSD IACUC, protocol # S07191) and
harnessed in the acoustic field by a 75 um diameter, monofilament line. Fach fish
would typically come to rest so that its head and tail were in the acoustic plane of
the receivers. Once stabilized, fish were rotated through 360° several times about
the vertical axis while echoes were recorded simultaneously on all eight receivers.
Synchronous with acoustic reflections, stereo video data were recorded and used to
estimate animal size, shape, and orientation. The system alignment and calibration

are discussed in detail in Chapter 3.
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The transducer array was positioned 1.25 m off the bottom of the tank.
The fish was positioned 1.14 m away from the array, approximately in the center
of the tank. The acoustic field of view was 5 cm?® for the highest frequencies used
and grew larger for lower frequencies. A very small harness was made from 75 pum
nylon monofilament (Figure 4.1b) which held the fish body roughly horizontal in
the tank and permitted rotation about the vertical axis. The use of an acoustically
minimal harness was critical to ensure that the signal from the harness did not
dominate the scattered signal and bias measurements of scattering. A small weight
was used to apply enough tension on the harness so that the fish could not easily
escape, and to ensure that the fish would stay roughly in the same horizontal
position while rotating.

Data were collected in two groups in February 2007 and September 2007
using different transmit signals. The first group spanned eight different species
ranging in length from 1 to 14 cm (Table 4.2). Transmit signals were broadband
linear frequency-modulated (LFM) chirps with center frequencies of 525 and 775
kHz, 250 kHz of bandwidth, and a cosine-squared envelope.

Acoustic and video data collected during the experiments were initially
analyzed by hand to check for artifacts, and remove records where the fish had
moved out of the field of view, or the field was contaminated by bubbles. Once
the records for each fish had been checked, an automated algorithm was used to
estimate the orientation of the fish from the top view camera. This algorithm was
supervised to ensure that the orientation estimates were meaningful. Using the
estimated orientation, the data sets were indexed to extract samples distributed

approximately uniformly in 6.
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Side view
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Figure 4.1: (a) Drawing of the scattering apparatus showing the transducer array,
sliding rail system for moving the array in and out of the water, unistrut frame, top-
and side-view cameras, and elliptical tank. (b) The geometry of the problem. The
transducer array is located at 1.25 m off the bottom of the tank. The transmitter
and receivers are aligned to intersect at a common point 1.14 m away from the
array. The total angular span of the receivers (bottom right) is approximately 42°
with 6° angular sampling. The fish are held in the field of view (FOV) of the array
by a 75 pum nylon monofilament harness (top right) which maintains the fish in a
horizontal aspect throughout the experiments. Very light tension is applied to the
harness using a small weight to ensure that the fish rotates about the vertical axis
and does not drift out of the FOV.



Table 4.2: The set of all specimens used in laboratory experiments. Data were collected at two non-overlapping bandwidths
of By = 400-650 kHz and By = 650-900 kHz. Fish species, length range, number of individuals studies, transmit signal

bandwidth, and total number of echoes collected are listed.

Species Lengths Specimens || Bandwidth || # Echoes
Northern Anchovy (Engraulis mordax): S; 10-12 cm 2 By 2000
Pacific Sardine (Sardinops sagax): Ss 12-14 cm 2 By 2000
Blacksmith (Chromis punctipinnis): S3 5.75-6.25 cm 2 B,y 2000
White Sea Bass (Atractoscion nobilis): Sy 6.8-7.1 cm 2 By 1000
Garibaldi (Hypsypops rubicundus): Ss 4-5 cm 2 B 1000
Blue Damselfish (Chrysiptera cyanea): Sg 3-5 cm 6 Bi, By 3000
Four-Striped Damselfish (Dascyllus melanurus): S7 1.5-3 cm 6 B, By 3000
Green Damselfish (Chromis viridis): Ss 2-5 cm 6 By, B 3000
Blue Yellowtail Damselfish (Chrysiptera parasema): S 3-4 cm 6 B, By 3000

19
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4.3 Acoustic data processing

Several approaches are typically used to extract acoustic features from
echoes. Wavelets [63, 133], matching pursuit [72, 68], and echo energy or shape
[118, 113, 114] have demonstrated good performance. For scatterers that have sig-
nificantly different scatter complexity as a function of view angle, cross-correlation
in frequency between multiple views lead to a marked decrease in error as opposed

to other methods [59]. In this paper, several different feature spaces are explored.

4.3.1 Data preprocessing

The fish scattering experiments performed in February 2007 and Sept 2007
yielded 500 GB of scattering data which included thousands of echoes from the
background, miscellaneous scatterers in the tank, fish (the intended subjects) and
a host of other data which was not usable for a variety of reasons. To transform
data to a usable form, several prepossessing steps were applied.

Raw acoustic data were filtered with a matched filter derived from a syn-
thetic model of the transmit signal. This allowed echoes from the fish to be lo-
calized with high resolution and separated from other scatterers in the tank. The
matched filter output is computed as [93]

oo

Ml = D solplpjlp — nl, (4.1)

p=—00

where p;[n] is the raw pressure signal on the j' receiver and sy[n] is the transmit
signal model. Due to the pulse-compression gain associated with this broadband
signal, this processing step yields a SNR increase of roughly 25 dB. The output
signals M[n] are windowed around the peak with a window size of 1000 time
samples, or 100 us.

The most dominant features evident in the acoustic data were the shape
and duration of the echo which varied systematically with fish orientation, size,
and shape. To extract echo shape, a Hilbert transform [135] was used to estimate

the envelope of the echo.
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Figure 4.2: The Multiscat software package showing the analysis of a single snap-
shot of scattering from a damselfish. The viewer shows the matched filtered output
on each receiver (top left) along with the estimated echo spectra (bottom middle).
Available data files are displayed in a list which can be easily browsed and se-
lected for viewing (bottom left). Different signal models and calibration data can
be loaded and applied to data. The top- and side-view images of the fish at the
moment of insonification are displayed in the top right of the figure. Data can be
browsed by ping number, set number, or file index.

A custom software package (Figure 4.2) written in MATLAB (Mathworks,
Natick, MA) Guide was developed for manually investigating data. This was
critical in the early stages of preprocessing to identify usable sections of data, check
for artifacts both in video and acoustic data, and evaluate possible adjustments to
the data collection method that should be applied in subsequent experiments.

The manual data parsing yielded a very large set of data (roughly 3000
pings per fish) which sampled the available orientations of the fish in a non-uniform
manner. In order to avoid biasing the estimates of classification performance by
comparing records with different average fish orientations, data were processed

according to the diagram given in (Figure 4.3).
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Figure 4.3: The data preprocessing used to parse through the raw experimental
data and generate a set of uniformly sampled (in #) data records when fishes were
in the field of view of the system. The system automatically assigns an orientation
to each fish as defined by its appearance in the top-view camera image. Assigned
orientations are used to ensure data for each fish can be sampled uniformly.
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The automated orientation detection was accomplished by applying back-
ground subtraction to video images with a unimodal Gaussian distribution for
each pixel [136] and a threshold that was set to three standard deviations above
the mean. This segmentation typically yielded many foreground objects which
could then be removed from consideration by computing the area of each object
(counting the 8-neighbor connected foreground pixels, [137]) and selecting the ob-
ject with the largest area. The orientation of the object was then estimated by
computing the covariance matrix between the z; and x5 coordinates of the con-
nected pixels of the object and defining the orientation as the direction of the
principle eigenvector of the matrix. For most fish this yielded an accurate esti-
mate for their orientation. These orientation data were then sampled to ensure a
nearly uniform distribution to build up data sets of scattering for each fish.

The raw signal to noise ratio was typically between 10 and 20 dB. Matched
filtering increased this to 35 to 45 dB which is comparable to achievable SNR for
broadband field systems [51]. However, to reduce the possibility of artifacts from
the experimental system biasing results, and to yield a more conservative estimate
of performance, white Gaussian noise was added to the matched filter outputs to

yield an effective SNR of 30 dB.

4.3.2 Cosine-based features

The discrete cosine transform (DCT) can yield features useful for discrim-
ination between scatters of different shape and size [59]. Here, the first 44 coeffi-

cients of the DCT of the echo envelope were used as features

N-1
y;ll] = D &jlk]cos [7?[(2/{:—1—1)] , for 1=0,1,...43, (4.2)
P 2N

where &; is the echo envelope estimated with the Hilbert transform. These 44

coefficients typically captured over 98% of the energy in the echo envelope.
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4.3.3 Wavelet features

The wavelet transform, as well as several variations (wavelet packets, for
example) have been applied to underwater target classification problems [63, 127,
115, 133]. The hallmark of the wavelet transform is its general ability to compress
real-world signals into a very small number of coefficients. This property is due
in part to the fact that the transform can be represented as a linear filter bank
with constant () filters, where () is the ratio of the center frequency of the filter
to its bandwidth. The wavelet transform approximation ag[n] and details dg[n]

coefficients satisfy the recursive relations
agln] = > hli — 2njag_[d], (4.3)

and
dsfn] = 3 gli — 2nas il (4.4)

where (3 is the level of the transform, A is the low-pass FIR filter, g is the high-pass
FIR filter, and ag[n] = s[n] where s[n] is the original signal. Equations (4.3) and
(4.4) show that the approximation coefficients are formed by recursively low-pass
filtering the input signal and downsampling. In contrast, the detail coefficients at
level 3 are formed by high-pass filtering ag_;. For a given level 3, the combination
of the approximation and detail coefficients simply give the low- and high-pass
filter outputs of G — 1-level approximation to the original signal. Here, the wavelet

coefficients of the echo envelope &;[k] for 5 = 6 are used as features
Yi= (aga dg)T> (4.5)

where ag and dg are the sixth-level coefficients computed from the j** echo enve-

lope.

4.4 Classification algorithms

The problem of interest is to classify a sequence (either in time, or space,
or both) of observations. Application of the Bayes Decision Rule (BDR) under the

“zero-one” loss function yields an optimal classifier [95]
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" = argmax P(clyi,..,Yu)- (4.6)

While Equation. (4.6) offers an optimal solution in general, for a specific applica-
tion the posterior density is typically unknown and difficult to estimate directly
from limited data. Therefore, approximate methods must be used. When the ob-
servations are separated in time and space, application of a hidden Markov model
has shown considerable success [72, 66, 64, 68, 70]. However, Multi-layer percep-
trons have also been applied to fuse multiple observations [63]. A comparison study
showed that out of several different methods, Support Vector Machines yielded the
lowest classification error [88] however this study did not consider multi-view fu-
sion.

The enhancement in classification accuracy as a result of combining several
views depends on two key factors: (1) the change in scatter between views is class-
dependent, and (2) the single view scatter is sufficiently unique between classes.
Both (1) and (2) are typically satisfied when the classes consist of different size or
shape scatterers. Scatterers of equivalent size and shape may also be discriminated
if their internal structure is sufficiently unique [72]. However, (2) is typically
violated when scatterers from a given class show considerable intra-class variability
in size as this typically dominates the scattering signal.

Three classification strategies are explored in this work. The algorithms
investigate feature- , decision-, and collaborative-fusion based on kernel machine

classification and estimation of posterior class probabilities.

4.4.1 A;: Multi-view feature-fusion algorithm

A commonly used algorithm is feature fusion (Figure 4.4) in which features
computed from all of the views are combined together to form a single feature vec-
tor. A special case of feature fusion is where features are computed from individual
views and then stacked together to form one large feature vector. In this case, the

feature vector used for classification is given by
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Y = (y1, ---,YM)Ta (4-7)

where y; is the feature vector computed from the j” view. As this approach
was evaluated for zooplankton classification [59] and yielded good performance,
it is adopted here as well. One of the potential drawbacks is that the dimension
of the feature vector grows linearly with the number of views. To compensate
for this increase in dimension, Principle Components Analysis (PCA) or Linear
Discriminant Analysis (LDA) can be applied to reduce the dimension of the feature
space while retaining features with significant variance (in the case of PCA) or the
best linear discrimination (LDA).

Given the set of combined feature vectors Y, a support vector machine
(SVM) classifier is trained using the one-vs-rest method [138] where C' binary SVM
classifiers are trained to separate one of the C' classes from the rest. The decisions
made by each of the binary classifiers are then combined together to yield the final
classification. The width of the kernel function o and the soft-margin parameter
of the SVM were selected using 5-fold cross-validation for each feature space. The

SVM used a radial basis function (RBF) kernel of the form

202

K(x,y) = exp (-”X_W> . (4.8)

It was found that the best value for o increased as additional views were added to

and therefore o was set according to
o(M)=441.5% M, (4.9)

where M is the number of views to be fused. This result held independently of the
feature transform used as the features were z-scaled prior to training and testing.
Optimization of the SVM learning problem was carried out using the SVM"“" [139]
code and interfaced into MATLAB using the Spider toolbox [140].

Although the SVM classifier has been shown to outperform several other
popular methods for underwater target classification [88], two other classifica-

tion algorithms based on the K-Nearest Neighbor (K-NN) [95] and Multi-class
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Figure 4.4: The feature-fusion algorithm. Data vectors from each view are com-
bined together and a feature transformation is computed to yield a combined
feature feature vector Y incorporating information from all M views. A single
classifier is trained using a multi-view training set.

AdaBoost [141, 142] classifiers were also tested. For the K-NN classifier, cross-
validation was used to select the number of neighbors. For all of the feature trans-
forms, a value of K = 3 was selected. For the Multi-class AdaBoost algorithm,
decision trees were used as the weak-learners, and the improvement in performance

was found to level off after ten iterations.

4.4.2 Ay: Multi-view decision-fusion algorithm

The decision-fusion algorithm used in this work is described in the diagram
given in Figure 4.5. This algorithm extends the approach used in [63] to the
case of SVM classifiers with posterior class probability outputs and multi-class
classification. In the first level of the algorithm, M SVMs are trained to classify
features from each view independently. The resulting classifications are converted
to probabilities, and passed as a whole to a final SVM which is trained using the
same data set used to train each individual classifier. In the following description
the term posterior class probability is used interchangeably with confidence and
does not imply a strict probability.

The classifiers used to compute the single-view posterior class probabilities
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are of the general form

fo(x) = w - ®(x) +b. (4.10)

Many of the popular nonlinear classification algorithms (eg. SVM, RVM, MLP)
take this form [143, 144]. Here, SVMs are used for both the single-view feature
classification and the multi-view fusion. The SVM output has the form [138]

fo(x) = sign(w - ®(x) + b). (4.11)

By removing the sign operation in equation 4.11, the SVM returns real-valued
numbers which indicate the distance of the example to the separating hyperplane
in feature space. Therefore the SVM does not inherently provide a way to obtain
posterior class probabilities. Several methods have been developed to estimate
posterior probabilities from the SVM output. However, it is known that converting
outputs from sparse learning algorithms into posterior probabilities can be error
prone. A simple explanation for this is that only the examples that lie on or in the
margin will impact the definition of the SVM classification boundary and therefore
the distance of points which lie near training examples that are not support vectors
is not directly related to the probability that the example belongs to the given class.
When using the SVM with one-vs-rest classification, C' SVMs are trained and each
one outputs the distance of the example to the separating plane which divides the
training data into one class vs. the other C' — 1 classes. A simple way to convert
these distances into probability estimates is to use the softmax function
exp(w, - ®(x) + b)

YO eap(w, - ®(x) +b) (4.12)

plelx) =

Equation (4.12) treats the distance on the positive side of the margin for each of
the C' SVMs as an indicator for relative degree to which the example may belong
each class. The output is bounded to be on the interval [0, 1], and for examples
which lie on or within the margin, the softmax function gives a good estimate for
the posterior probability. For examples which lie far away from the margin, the
probability estimate is poor, however in these cases, the examples are typically

well separated and a precise estimate of the probability is not as important.
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Figure 4.5: The decision-fusion algorithm. An SVM is used to classify features
from each view. Each SVM outputs an estimate for the posterior probability using
the softmax function. These outputs are combined into a probability vector which
is classified by a second SVM.

Classifier

M total Views

To fuse the posterior probability estimates from each view together, a prob-

ability vector is defined for each view

p; = (p(c = 1ly;), ... p(c = Cly;))" . (4.13)

The posterior probability vectors for every view are then grouped together to yield
one large probability vector containing the probabilities for every class based on

each view

P=(pi,...pu)" . (4.14)

This vector is then used for classification by training a second SVM to map P to
a class label. The same RBF kernel and widths were used as in equations (4.8)
and (4.9). Several other approaches were tested using for example MLPs or RVMs,
but the results were not found to be significantly different. The SVM offers much
faster training than the RVM and many fewer parameters to adjust than the MLP

and was used throughout this work.

4.4.3 Ajz: Multi-view collaborative-fusion algorithm

The primary advantage of the decision-fusion algorithm, over feature-fusion
algorithms such as HMMs, is that the decisions are made in a discriminant man-

ner in each step of the process. Preliminary testing of HMM-based algorithms on
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fish scattering data revealed that common probabilistic models such as Gaussian
mixtures were typically not able to yield good separation between classes. Further-
more, the implicit sequential nature of the HMM was not technically satisfied by
the data collection process as the views were collected in a bistatic, simultaneous
fashion. Recently, collaborative fusion strategies have been developed to address
some of the limitations of feature- and decision-fusion while maintaining the very
desireable quality of the HMM that additional views can be incorporated with-
out retraining [120]. They key component of these methods is decision feedback,
where decisions made using a subset of views are sent back to be used in updat-
ing the decisions made based on each view. In addition, emphasis is placed on
combing decisions from multiple views without training a classification algorithm
which permits the trained algorithm to incorporate new views without retraining.
The fusion algorithm used here is an extension of the one developed in [120] which
incorporates SVMs for single-view classification, applies to multi-class problems,
and uses confidence measures to obtain weights for combining decision feedback.
The general form of the algorithm is given in Figure 4.6.

The algorithm defines a set of M agents, one for each view. These agents
collaborate with each other to reach a final prediction about the class of the un-
known target. At the start of the algorithm, the j** agent estimates the posterior
class probability given the j view, p(c|y;) using the probabilistic SVM method
defined in Section 4.4.2. The process yields a set of posterior probability esti-
mates for each class. In the collaborative agent context, these probabilities are
treated as measures of confidence in the unknown target belonging to one of the
C' classes. The algorithm given in [120] was applied to binary classification where
the confidence was defined to be a scalar for each view, u; on the range [0, 1]. For
the multi-class problem considered here, the confidence is defined by the vector of

posterior probabilities from the 7% view

p; = (p(c =1]y;), ....p(c = Cly;))". (4.15)

Each agent transmits its probability vector p; to all of the other agents. Therefore,

after initially yielding a single-view prediction about the class, each agent receives
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Figure 4.6: Collaborative fusion algorithm. Each view defines an “agent” which
computes an initial posterior probability estimate using an SVM similar to algo-
rithm A,. These probability estimates are then sent from each agent to all the
other agents. Upon receiving estimates from all other agents, each agent computes
a final posterior estimate by combining their initial estimate and the estimates
from all other agents using confidence weighting. The final outputs from each
agent are multiplied together to yield a joint posterior probability for each class.

a set of probability vectors (py, ..., Di—1:Pji1s e p,,) that can be used to adjust the
initial prediction. Under the assumption of independence between the probability

vectors, the joint probability for a given class is computed as

p]omt c= le H Pz (416)
i#]

Given the initial posterior probability p;(c|y;) and the joint probability p;ein:(c[Y;),
the next step is to combine the two decisions together. There are many ways to
do this, including using a second SVM, although that would destroy the ability
of the algorithm to incorporate new views without retraining. The method used
here is based on the observation that the classifiers typically give accurate results
when the posterior probability of the class label is close to 1 for one of the classes
and close to zero for the others. When the probability is nearly even between

the classes, the class with slightly greater probability is frequently the wrong class




74

label. This is a consequence of the fact that examples which lie within the margin
for most of the trained SVMs are given evenly distributed probabilities between
classes by equation (4.12).

To quantify the degree to which the probability is spread between classes,
the sidelobe ratio [145] is used. The ratio is defined as
p(alY) = p(e]Y)

Csr = :
ot pled]Y)

(4.17)

where

p(c1]Y) > p(ea|Y) > ... > plce|Y). (4.18)

When most of the probability is given to ¢, Csy, is close to 1, when the probabilities
are roughly equation between classes, C'gy, is close to 0. To combine the individual
predictions with the joint probabilities, the sidelobe ratio is computed for each and

scaled to be unity. This gives the weights

szt
Wi’l’b’it szt C(]O’L’I’Lt ] (419)
and roint
C oin
Wj oint — (420)

szt + Cgomt
The final prediction output from the j** agent is then given as a vector of posterior

probabilities for each class label

p;(C|Y) p] (C|y]) wnat _I_ p]oznt(C|Y ) joint- (421)

Using these final predictions from each agent, the algorithm again computes the

joint posterior as

p*(c]Y) = H p] (c]Y). (4.22)

Several remarks are in order to explain the probabilistic computations in this algo-
rithm. First, there is an implicit assumption in computing the joint distributions
that the posterior estimates from each view are independent. This is not tech-
nically satisfied in our application, but is weakly satisfied for the SVM classifier,

especially for examples that are difficult to classify correctly from a single view.
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Second, because the predictions from the individual and the group are combined
using weights derived from the sidelobe ratio there is no explicit bias given to the

group prediction over the individual prediction.

4.5 Results and algorithm evaluation

Data sets listed in table 4.2 are divided up and regrouped together to test
the application of the classification algorithms to several classification problems
over varying degrees of difficulty. The definition of these data sets are given in
table 4.3. The difficulty of the classification problem is qualitatively described in
the table. Each data set is given a set of two ratings describing the amount of
inter-class variability in fish length and the amount of intra-class variability in fish
length. Data sets which consist of a single fish per class (Dy, D3, D4) have no
intra-class variability and typically result in lower errors. Data sets D, and Dg are
particularly difficult because there are several individuals per class (for the same

amount of training data) and there is significant intra-class variability in length.



Table 4.3: Data sets formed from combinations of the available scattering data. These data sets represent several
different types of classification problems. Methods for sampling from available data within a given species are listed
after the number of individuals per class. They are organized as follows: long selects the longest individuals from each
class; short selects the shortest individuals from each class; inter selects individuals that have the maximum inter-class
variability in length; intra selects the individuals that have the maximum intra-class variability in length. The final two
columns outline the relative intra- and inter-class variability in length over the data set. As length is a dominant feature
of the echoes, greater intra-class variability and lower inter-class variability are expected to yield higher error rates.

Set name Species Classes || # Per class | Samples | Intra- || Inter-
D1 567 S7, Sg, Sg 4 4, all (240 / 60) ngh Med
D, Se, S7, Ss, S 4 1, long (240 / 60) || None || Med
Dy Se, S7, Ss, So 4 1, short (240 / 60) || None || Med
D, Se, S7, Ss, So 4 1, inter (240 / 60) || None || Med
D5 Sﬁ, 57, Ss, Sg 4 2, inter (240 / 60) Med. ngh
D6 86, S7, Ss, Sg 4 2, ntra (240 / 60) ngh ngh
D7 Sl, SQ, 53, S4, S5, Sﬁ, S7, Sg 4 4, all (240 / 60) Med. ngh
Dg Sl, SQ, S3, S4, 55, S@, S7, Sg 8 2, all (240 / 60) Low ngh
Dy S1, Sy, S5, Ss 4 2, inter (240 / 60) || Low | High
DlO SQ, Sg, SG, 57 4 2, nter (240 / 60) Low ngh

9.
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4.5.1 Classifier performance

The performance of the classification algorithms is evaluated as the average
probability of error computed using 5-fold cross-validation. Standard errors of
the cross-validation estimate are computed using the adjusted variance estimate

(146, 147] of the form

1

1

71> I is the number of folds in the cross-validation, and Var[z] is

where p =
the sample variance. The variable p attempts to capture an overestimate for the
correlation between training sets and therefore an estimate of the variance which
is slightly higher, yielding a conservative measure of classifier performance.

Before evaluating the performance of the three algorithms defined in Section
4.4, the feature-fusion algorithm (Section 4.4.1) is evaluated on each data set using
all eight available views, feature spaces defined by the DCT, Db4, and Haar wavelet
coefficients, and the SVM, K-NN, and AdaBoost classification algorithms (Table
4.4). The results show a wide range of performance depending on the data set,
classifier, and feature space. The SVM classifier performs as well or better than the
K-NN or AdaBoost algorithms for all data sets and feature spaces. The AdaBoost
algorithm generally performs better than the K-NN algorithm for most data sets
except for the most challenging ones (D, D5, and Dg). This is likely a consequence
of the fact that the decision tree used as a weak learner for AdaBoost is not able
to synthesize structural information in the features any better than the K-NN
distance function, and therefore does not perform better when there is strong
overlap between the classes.

The wavelet-based feature spaces generally outperform the DCT features
for each data set. Of the wavelet feature spaces, the Haar wavelets typically
outperform the Db4 wavelets which is somewhat unexpected as the Db4 wavelet
typically gives better compression than the Haar wavelet for these kinds of echoes
and has shown better classification performance for scattering from elastic shelled

targets [64]. However, the performance improvement may be a result of the Haar
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transform retaining additional discriminant information which is left out of the Db4
transform due to retaining only the coarsest approximation and detail coefficients.

The relative error between data sets is correlated with the number of in-
dividuals per class, the intra-class variability in length, and also the inter-class
variability in length. These results are independent of classifier and feature space
used. Given that the SVM shows better performance than either the K-NN or Ad-
aBoost classifiers, it is used for the remainder of the results for the feature-fusion

algorithm.



Table 4.4: Average probability of error using all eight views and the feature-fusion algorithm with different classifiers.
Error is estimated using five-fold cross-validation with adjusted standard errors. Ten data sets (rows), three feature
transformations, and three classification algorithms are compared under the feature-fusion (Section 4.4.1) algorithm.

Set SVM K-NN ADABoost
DCT Db4 Haar DCT Db4 Haar DCT Db4 Haar

Dy |50 £ 17|47 +£15(43x£19(49+06|53x061| 46=+E0.7|51+03]|53=£061| 53+0.7
Dy |24+05|134+10(13+£12|33+13|45+£14|34+06|34+08|34+09]| 34=+0.5
D; 1615 124+10(10£1.0||284+12|37£22|26+1.728+1.6]33 06| 31+1.1
Dy 2010 124+£10(10£1.0|1324+12|38£1829+13(33+1135+£16|32+1.0
Dy (35+£02(|30+£27(26+1.1|35+09 41 +£1.1|35+1.1|44+09 |48 +051] 46 £ 1.0
Dg 143 +£1436+07(33+£32||46+10|51+£1144+1042+051(43L£09| 44+1.0
D; [|[27T£191224+19(20£14||37x1.0|40+£27(39+£22|28+1.0126=£08]| 28 +0.6
Dg |25 +£08(224+12|18+09|33+£07|31£10|30+13|31+08|34x09]| 33=+0.5
Dy 1609 10£+£101( 9£13 |21 +£25(22+£20(21+23|15+061| 1110 11 +1.0
Dl 13£17|154+18|14£1024+09|23+1222+10|18+1.0( 1509 | 18 +£0.7

6.
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4.5.2 Comparison of multi-view fusion algorithms

Using the SVM classifier for feature fusion, the three classification algo-
rithms (Section 4.4) are compared as a function of feature space and the num-
ber of views used for classification on the D; (Figure 4.7) and Dg (Figure 4.8)
data sets. The collaborative-fusion algorithm (A3) shows the best performance of
the three algorithms with the decision-fusion algorithm giving comparable perfor-
mance, and the feature-fusion algorithm performing significantly worse. Again,
the Haar wavelet feature space results in lower error than either the DCT or the
Db4 feature space.

A key feature of the decision- and collaborative-fusion algorithms is that
the performance improvement over the feature fusion algorithm increases as more
views are available. This result is likely a consequence of the fact that the feature
space dimension grows as Md, where d is the dimension of the feature space, and
M is the number of views. In contrast, the decision-fusion algorithm feature space
grows as C'd where C' is the number of classes, and the collaborative fusion algo-
rithm feature space dimension is d independent of the number of views. For all
algorithms and feature spaces, the average probability of error is typically mono-
tonically decreasing as additional views are added. However, the collaborative
fusion algorithm error curve generally decreases faster and more smoothly than
the others. The roughness in the error curve is related to the effect of adding more
views on increasing the feature space dimension and also increasing discrimination
capabilities. When the feature space dimension is increased without adding dis-
criminant information one might expect the error rate to stay the same, or possibly
get worse. Because the collaborative-fusion algorithm computes weighted averages
of initial probabilities from each agent, it results in a generally smoother curve
with a reduction in error that is more rapid as additional views are added.

The error curves for the other data sets (Do, D3, Dy, D5, Dg, D7, Dy, D1g)
show similar trends to D; and Dg (Appendix C). These two data sets represent
problems with high intra-class variability with four classes (D;) and low intra-
class variability with eight classes (Dg). The errors are much higher for D; than

for Dg. The collaborative fusion algorithm almost always performs as well or bet-
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ter than the decision-fusion algorithm, and the feature-fusion algorithm performs
significantly worse in all cases. However, relative errors between the algorithms
vary significantly as a function of the classification problem. Error curves for the
decision- and collaborative-fusion algorithms are very similar for D;. In contrast,
they are significantly different for Dg with the collaborative fusion algorithm show-
ing significantly lower error. The shape of the error curve highlights differences
in difficulty between data sets and the different behavior of the algorithms in re-
sponse to these different data sets. For example, D; has four individuals per class,
and contains the maximum amount of intra-class variability where as Dg has much
lower intra-class variability, but twice as many classes. The error curves for D; de-
crease much more gradually as views are added than for Dg indicating that adding
additional views is more beneficial in cases where there is less intra-class variability
in length.

In order to compare the performance of the algorithms across all data sets
and feature spaces, the average probability of error using all eight views is com-
puted and presented in Table 4.5. The general performance trends are similar.
In addition, it can be seen that the absolute error increases as more individuals
are added to each class. This is likely a result of having fewer training examples
per individual, but also a result of the addition of more individuals broadening
the feature distributions and causing more overlap between classes. This effect is
highlighted for Dy, D5, and Dg which show markedly higher errors than the other

data sets.
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Figure 4.7: Probability of error on the D; vs. the number of views used for
classification, all three classification algorithms, and the DCT (a), Db4 (b) and

Haar (c) feature spaces.
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Haar (c) feature spaces.



Table 4.5: Average probability of error using all eight views and all three classification algorithms with the SVM classifier
used for feature-fusion. Error is estimated using five-fold cross-validation with adjusted standard errors. Ten data sets

(rows) and three feature transformations are compared.

Set A, Feature fusion A,, Decision fusion As, Collaborative fusion
DCT Db4 Haar DCT Db4 Haar DCT Db4 Haar

D; |50 £1.7( 471543+ 19 |46 £201| 42301 36+3.01(44+20|36=L£201 33+1.8
Dy |24£05( 1310 13+12|18£20| 10101 910 ||17£2.0 | 10+£1.0 9+1.5
Ds |16 £15( 1241010101310 9+£1.0 8+20 ||12+10| 94+ 1.0 74+ 1.41
Dy 121210 124+10||10£1.0 15131 7x0.5 6+13 ||14£+£13| 710 5+ 1.5
D5 [[35£02|30£27(26+11]31+£30(26+24|22=+£1.0|28+30119=£1.3]| 17 £ 2.0
Dg (43 £14 |36 +0.7(33£32|35+14|27+23(24+£26|33+1.41 26+£18]| 22+ 3.65
Dy |27+£19(22+19204+14|19£1.7|19+14 |18 +10 || 17+1.7||19+14| 18 £ 1.0
Dg |25+£081(22+1218+09|20£0.7| 1812 13+1.114+06 | 15051 13 +0.9
Dy |16 £09| 10101 94+1.3 9+1.2 9+1.5 54+ 1.7 9+1.2 7+ 08 44+ 05
D |13+£1.7|15+18|144+1012+£14| 1518 |11 +12| 815 ||10+14 9+1.2

78
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4.5.3 Classification performance using random views

Thus far, the classification error has been evaluated under the assumption
that the view geometry is fixed, and the angular spacing between views is constant
and highly limited. This model fits the general paradigm of existing underwater
target classification methods, and also of the work previously performed on zoo-
plankton where it was assumed that the views were collected simultaneously from
a receiver array with limited aperture [59, 60].

In some applications (echo counting sonar for example), many observations
of individual fish may be collected where each individual has an unknown orien-
tation relative to the sonar. In this application, the multi-view approach could be
applied by treating the echo from each individual fish as a realization of multi-view
scattering from a single fish class. Under this model, each echo is assumed to pro-
vide a uniformly random sample from the orientation distribution of the fish from
a given class. That is, eight views are still collected, but the aperture is effectively
no longer limited, and the geometry is now random and changes for every sample.
Specifically, let k denote the k* sample in the data set, and let y? denote the
feature vector computed from echo data on the j* receiver for k7" sample. The

random set of views is then defined by

Y = (v, vk, yhan, (4.24)

where k; for i = 1,..., M are sampled uniformly randomly and independently from
the set of integers 1, ..., S with replacement and S'is the total number of examples
in the data set.

Under this model, one would expect an improvement in performance due to
the increase in effective aperture of the samples. However, this comes at the cost of
uncertainty in the geometry. This uncertainty is likely to cause the improvement
obtained from feature fusion to be significantly less than that obtained from either
decision or collaborative fusion.

The probability of error vs. the number of views is again plotted for the D,
and Dy (Figures 4.9 and 4.10). The error curves for the other data sets (Da, D3, Dy,

Ds, D¢, D7, Dg, D1g), computed using random views, show similar trends to D,
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and Dg (Appendix D). There is generally a significant reduction in absolute error
from the fixed and limited aperture case. However, the feature-fusion algorithm
sometimes shows an increase in error over the fixed view case for the DCT features.
For the Db4 and Haar features, the feature-fusion algorithm shows a reduction
in absolute error over the fixed view case, but the reduction is relatively small
compared to both the decision- and collaborative-fusion algorithms which show
very dramatic reductions for all feature spaces and data sets. This shows a key
advantage of the decision- and collaborative-fusion algorithms. Because neither
algorithm explicitly depends on the view geometry during training, they can fully
utilize the increased effective aperture even when the views are collected randomly.

The performance of the algorithms and feature spaces when all eight views
are available (Table 4.6) shows that using random views significantly reduces the
classification error for all data sets and algorithms. The reduction is dramatic for
the decision- and collaborative-fusion algorithms, and for the data sets which only
include one individual per class, the error is very small, sometimes less than 1%.
Comparing the error curves (Figures 4.9 and 4.10) for the Ds and D; data sets,
it can be seen that the error curves are close to converging to a very low error in
the case of the Dg. We conjecture that the error curves for the D; data set would
likely decrease much further by adding more views.

These results support the idea that systems which collect uniformly random
views would likely perform much better than systems which collect a limited set of
views. The algorithms not based on feature-fusion are significantly better at taking
advantage of the random views as they don’t make any explicit assumptions about

the view geometry during training.
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Figure 4.10: Probability of error on the Dg vs. the number of views used for
classification, all three classification algorithms, and the DCT (a), Db4 (b) and
Haar (c) feature spaces.



Table 4.6: Average probability of error using all eight views and all three classification algorithms with the SVM classifier
used as the classifier. The views are not constrained by a fixed geometry and are randomly sampled from available data.
Error is estimated using five-fold cross-validation with adjusted standard errors. Ten data sets (rows) and three feature

transformations are compared.

Set Ay, Feature fusion As, Decision fusion As, Collaborative fusion

Dy 49+1.739+16(36£07|32+16|26£41(21+21(32+161]26£14]| 18+ 1.3
Dy |24+05( 10101 9+£1.2 5% 20 24+ 1.0 1+£1.0 6 + 2.0 2+1.0 1+£15
Dy |24 +42 | 1242211 £18| 2+0.5 1+£02 1£0.2 3+ 1.0 1£02 1+04
Dy 2530 8+0.6 6 & 0.8 44+ 0.5 1+0.7 1£02 4409 1+£04 1+£03
Dy 39+12(224+26||18+27||16+12| 9+£06 || 7+14 ||[16+18|| 7406 || 5+1.5
Dg |46 +19 |30+£32 (3027 ||22+12|13+21||10£+£1.7(23+22|12+1.2] 10+ 1.8
D; [[26£20 || 1127 9£1.5 7T+14 7+ 1.2 3+ 1.2 5+ 0.7 4+1.0 3+09
Dg |28+ 1.0| 171316 £0.7| 4+0.9 6 + 1.0 4+09 3+ 0.7 3+ 0.6 3+04
Dy 1110 4£1.0 4412 1+£05 1+£0.3 1£0.3 1+04 1+£02 1+£02
Dy | 1827|124+ 15| 1210 2+£0.5 3+0.7 24+ 0.8 1+£05 24+ 0.3 1+0.7
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4.5.4 Classification performance as a function of problem
size

Although the collaborative fusion algorithm appears to yield better per-
formance for many of the data sets and feature transformations, an additional
important comparison between algorithms is the rate at which error increases as
more classes are added to the problem.

To investigate this measure of performance, the Dg data set is used, and
seven sub-problems are defined by including more classes from the Dg data set
starting with a binary problem and increasing up to the full eight-class problem.
The algorithms and feature transforms are applied in the same manner as above
and probability of error is estimated using five-fold cross-validation.

It can be seen that the collaborative-fusion algorithm out performs both
the feature-fusion and decision-fusion algorithms dramatically in all three feature
spaces (Figure 4.11). Interestingly, in the DCT feature space, the collaborative
fusion curve begins to flatten out after 4 classes are added and the error remains
just over 10 %. This behavior is not seen in any of the other algorithms or feature
spaces. There is a sharp cusp in the performance curve at 4 classes. This is due to
the order in which the classes are added, where there first three classes are easily
separated by all methods. The fourth class is quite similar to the third class, and

as a result the error increases significantly after including that class in the problem.

4.6 Conclusion

In this work, a multi-view approach to marine fish classification has been
developed using laboratory data from live animals. The approach is based on fusing
features or classification results from individual views together to dramatically
improve the accuracy of the classifiers. This improvement was typically on the
order of 50 % or higher, and in some cases could be as high as 90 %.

To give a comprehensive evaluation of the fish classification problem, three

different feature spaces, three different classifiers, and three algorithms were de-
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veloped and compared with one another. The features were all based on transfor-
mation of the echo envelope recorded from each view of the fish. The classifica-
tion algorithms represented extensions of modern methods that have been used in
underwater target classification to multi-class problems using support vector ma-
chines. A collaborative-fusion algorithm based on multi-aspect object classification
[120] was developed that yielded the best performance with the least number of
assumptions about view geometry and number of available views. This algorithm
has the significant advantage that it can be applied to problems with unknown and
variable view geometries, and can incorporate additional views without requiring
retraining.

While the results of the application are promising, several important areas
for future research exist. First, this work dealt only with fusion algorithms which
do not explicit model the joint probability of the observation sequence (for example
hidden Markov models). Given the success of the collaborative fusion algorithm, it
is likely that an algorithm which combines the decision feedback with probabilistic
modeling of the observation sequence would yield good results. In this regard,
a comparison between the collaborative-fusion and HMMs would be useful. In
addition, a potential improvement to the collaborative-fusion algorithm would be
to assign an additional weight which incorporates the degree of confidence given
to the group rather than the individual. However, the advantage of the unbiased
weighting is that it allows strong predictions from one agent to overpower weak
predictions from the group. A second issue is one of generalization fish popu-
lations with significant intra-species variability in length. Given the sensitivity
of the algorithms to scatterer length variability, training the algorithm with only
a few individual fish may not be sufficient to yield adequate performance when
applied to diverse populations. A natural question that arises when performing
laboratory experiments is the similarity to what is observed in the lab to what
would be observed in the field. In these experiments, the animals movements were
constrained as well as them being anesthetized. An important future direction is
to deploy a similar system in a less-artificial setting such as an aquarium where

measurements could be recorded from many more individual fish under conditions
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which are potentially less stressful for the fish.

Currently, there is a need in fisheries ecology for more specificity in acous-
tic surveys. In this study, it has been shown that multi-view methods may offer
considerable advantages in improving specificity of acoustic systems which could
translate to increased classification accuracy over currently used single-view meth-

ods.
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Chapter 5

Study of the effect of bandwidth

and aperture on classification

performance

5.1 Introduction

The performance of the multi-view classification approach has been stud-
ied assuming a realistic, yet fixed set of system parameters as the bandwidth of
the transmit signal, and the aperture and number of views of the receivers has
been fixed or assumed to be uniformly random. In this chapter, the performance
trade-offs in changing these three parameters are explored through simulation and
analysis of laboratory data.

The relationship between bandwidth, aperture, and system performance is
an important topic which has been studied in many areas related to weak scat-
tering [148, 149, 150, 151]. Due to the Fourier transform relationship between
the scattered field and the scatterer [90], the bandwidth and aperture required to
recover specific attributes can be defined. Figure 5.1 gives an example of the rela-
tionship between scattering measurement geometry and spatial frequencies of the
scatterer that are sampled under the Born approximation. It can be seen from the

figure that increasing transmitter bandwidth yields spatial frequencies along a sin-
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Figure 5.1: Example of the different spatial frequencies sampled under monostatic
and bistatic geometries as a function of bandwidth and aperture for weak scattering
under the Born approximation. It can be seen that the coverage of wavenumber
space is directly related to bandwidth in the case of monostatic scattering, but not
for bistatic scattering. In the case of monostatic scattering, low spatial frequencies
are only sampled when low transmit signal frequencies are used. In contrast,
forward bistatic scattering samples the DC spatial frequency for any transmit
signal frequency.

gle direction in the wavenumber space where as increasing aperture (moving along
the perimeter of a circle in wavenumber space) yields directional spatial frequen-
cies. Clearly, combining full aperture and bandwidth yield complete (when both
magnitude and phase are recorded) data that uniquely determine the scatterer.
The influence of bandwidth on underwater target classification was evalu-
ated by Yao et. al 2002 [152]. In this study, classification performance using data
with 40 kHz and 80 kHz of bandwidth was evaluated and it was shown that the
80 kHz data yielded significant improvements in accuracy over the 40 kHz data.

This study however did not investigate the role of aperture as it was limited to



96

single-view classification.

To explore how bandwidth and aperture influence classification accuracy, a
pragmatic approach was taken. Using simulated and laboratory data, classification
algorithms were trained and tested for different transmit signal bandwidths and
receiver array apertures. The influence of these parameters was quantified by
computing the average error of the classification algorithm on test data for each
combination of bandwidth and aperture.

Bandwidth B defines the difference between the maximum and minimum
frequencies in the transmit signal for which the intensity S(f) is within 3 dB of
the peak intensity,

B = finaz — fmin; (5.1)

where S(fmin) = 0.55(f.), S(fmaz) = 0.55(f.), and f. is the center frequency of
the signal. The system is assumed to collect a set of V views over a given aperture.
The aperture A is then defined by the range of angles over which scattering is

measured,

A=10,— 064, (5.2)
where it is assumed that the angles are limited to the range [0°,90°] and increase
from 6, to 6y. Finally, the angular sample frequency F, is defined to be

Fa= (5.3)

5.2 Scattering model and echo simulations

The model used for simulating echoes is a hybrid version of the ellipsoid-
DWBA (Appendix A), which allows multiple ellipsoids to be modeled. The model
also takes into account the energy loss due to reflection at each ellipsoid interface.
In general, the model can be defined as

N
fosu(k,0,8) =3 fbs(k,6,T,)e?ke*n (5.4)

n=1
where E is a set of model parameters (I'j,...,T'y), 0 is the angle of the incident

wave vector relative to the head of the scatterer, and e is the direction of the
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Figure 5.2: Visualization of the hybrid DWBA model using three ellipsoids. Each
ellipsoid is given a separate g and h value. The values are chosen to model a weaker
scattering body and stronger scattering head and spine.

incident wave vector, and x,, is the position of the n** ellipsoid. The function
fbs(x) can be any backscattering model.

For the sake of simplicity, three ellipsoids that represent the head, body,
and spine of the fish were used for simulations. An example of the model is given in
Figure 5.2. By incorporating additional ellipsoids (over the traditional DWBA) the
more complex model is able to capture some of the complex features observed in
measured scattering patterns (Figure 5.3). This figure shows a comparison between
measured scattering data (Figure 5.3 (a)) and a matching model output (Figure 5.3
(b)). The model is able to capture the complex banding structure seen in the
measured data quite well throughout a wide range of 6 values. However, the exact
position of bands in the data and the model is inconsistent. This is indicative of a
mismatch in sound speed between the actual scatterer and the model. Despite the
strong qualitative similarity between measured data and model output, it should be

noted that assessing quantitative agreement between the model and data remains
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Table 5.1: Model parameters used for each type of scatterer in the simulation.
Units of a, b, ¢, and = are millimeters.

Scatterer a b c x g,h
Si-Body 2 075 035 0 1.05
Si-Head 0.5 0.35 0.22 -1.3 1.09
S1-Spine 1.8 0.10 0.10 0 1.12
So-Body 1.5 056 026 0 1.05
So-Head 0.37 0.26 0.16 -0.97 1.09
So-Spine  1.35 0.07 0.07 0 1.12
S3-Body 2 0.1 055 0 1.05
Ss-Head 1 045 032 -1.3 1.09
S3-Spine 1.8 0.20 0.20 0 1.12

an important area of future research.

For the simulations presented here, a three-ellipsoid version of the model is
used, with only the size and shape being varied. The values for all parameters and
each scatterer are given in Table 5.1. Scatterer S; is the base model. Scatterer
S5 has the same shape as Sp, but is 25% smaller. Scatterer S; has the same body
length (¢ = 2 mm) as S, but a different shape (wider and shorter). These three
scatterer types are used to compare the effect of bandwidth and aperture when

discriminating between scatterers of different size (S; and Ss) and different shape
(Sl and 83)

5.3 Scattering simulations

The classification algorithms use the echo envelope to compute features. As
such, the differences in echo structure provide the basis for discrimination. Before
comparing the effect of bandwidth and aperture on classification performance, the

effect of these parameters on the structure of the echo is explored.
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Figure 5.3: Comparison between measured scattering data from a small Damselfish (Chrysiptera cyanea) (a), and a
matching model output from the hybrid DWBA (b). The model output is able to capture many of the complex banding
structures in the measured data. Deviations between the measured data and the model are likely due to a mismatch in
assumed sound speed in the body of the fish.
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To investigate the effect of bandwidth and aperture on echo structure, two
separate comparisons are made. First, two views are compared as a function of
four different bandwidths (Figure 5.4). Second, two bandwidths are compared as
a function of four different views (Figure 5.5)

Figure 5.4 shows a direct relationship between bandwidth and resolution
of peaks in the echo. For each view, increasing bandwidth yields more detail in
the structure of the echo. The primary consequence of the this is that resolving
differences between the two views critically depends on bandwidth. When there
is very little bandwidth (Figure 5.4 (a)) the normalized echo output is identical
between the two views. As the bandwidth increases (Figure 5.4 (b-d)) the two
echoes show significant differences. The local maxima in the echoes are due to
interferences in the body of the scatterer. Viewed near-broadside with 250 kHz
of bandwidth, three peaks can be resolved in the echo, two peaks are due to the
front and back wall of the scatterer body, and the third is due to the combination
of the head and skeleton ellipsoids. In Figure 5.4 (b-d) a broadening in the the
two outer peaks is noticeable in the 81° view. This is due to the projection of
the ellipsoid of the body becoming longer as the view moves away from broadside.
Detection of the difference in spacing between the two peaks in Figure 5.4 (b) for
each view would be sufficient (in the absence of noise) to estimate the length of
the body. However, note that bandwidths greater than 100 kHz (Figure 5.4 (c-d))
are required to resolve the internal structure. These results indicate that, in a
scenario where the body length alone was insufficient to distinguish between the
classes, increasing the bandwidth of the system would be a possible strategy to
improve performance. The performance gain would be dependent of the degree of
similarity between classes at finer scales.

Figure 5.5 shows a complex relationship between scatterer orientation, band-
width, and the resolution of structures in the body of the scatterer. For both 72
and 220 kHz bandwidth, the resolution of the peaks in the echo is orientation
dependent. The number of resolvable peaks changes between orientations, and in
certain cases (Figure 5.5 (d), 72 kHz) the peaks are masked together and are not

resolvable. However, while the internal structures may or may not be resolved
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Figure 5.5: Comparison between two bandwidths as a function of four different
views.

for a given orientation, the duration of the echo increases monotonically and the
scatterer orientation moves away from broadside. This result is the key feature
which allows fish length and orientation estimation methods ([58],[153]) to work

well even in the absence of knowledge about the internal structure of the scatterer.

5.4 Classification error for different parameter

combinations

5.4.1 FError analysis on simulated data

Using the decision-fusion algorithm defined in Section 4.4.2, the hybrid
model is used to generate several realizations of scattering from scatterers Sy, Ss,
and S3. White Gaussian noise was added to the model output at a level of -76
dB. A Monte Carlo simulation is performed while varying the bandwith of the
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transmit signal from 0 kHz to 250 kHz and also the aperture of the views. As an
initial evaluation of the relationship between aperture and bandwidth, the average
probability of error for discriminating between S; and Sy was computed while
varying the aperture from 0 to 90° and the bandwidth from 0 to 250 kHz (Figure
5.6 (a)). A systematic relationship between the probability of error and both
aperture and bandwidth can be seen. For a given aperture, increasing bandwidth
(moving along a row in the figure) significantly reduces error from a high 45% down
to a low 5%. This trend holds true for the majority of the apertures. However,
it can be seen that for larger aperture, less bandwidth is required to yield a given
error reduction, and for the case of very little aperture (top row), the error remains
very higher up to full bandwidth. Interestingly, for a given bandwidth, increasing
aperture only offers a small reduction in error that can be obtained with even a
modest increase in aperture.

Given that bandwidth appears to be the most important factor when only
two views of variable aperture are considered, the impact of increasing the number
of views (from 1 to 9) is evaluated (Figure 5.6 (b)). Interestingly, it can be clearly
seen that increasing the number of views (even though the aperture remains rela-
tively small) yields a significant reduction in error, but only when the bandwidth
is greater than 100 kHz. This is likely a result of the fact that for a very limited
aperture, difference between views only become apparent when there is enough
bandwidth to resolve the differences in length and thickness between S; and Ss.

This result shows an important connection between aperture and bandwidth.

5.4.2 FError analysis on laboratory data

Using the laboratory scattering data from three different fish, the effect of
the number of views and bandwidth are evaluated in a manner similar to Figure 5.6
(b), but with one fewer views owing to the limitations of the experimental system.
In this case, the problem is broken down into a size-based classification problem
(Figure 5.7 (a)) and a species-based classification problem (Figure 5.7 (b)). In the
case of size-based classification, similar results to those of the simulation study

(which also considered size-based classification) are obtained. However, certain
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Figure 5.6: Average probability of error as a function of aperture and bandwidth
for a two-class size-based classification problem with simulated data. (a) Two views
with increasing aperture (rows) and bandwidth (columns). (b) Increasing number
of views and aperture (rows) and bandwidth (columns). Each pixel is the average
probability of error over 5 random trails of training and testing with 250 training
examples per class and 250 testing examples per class.

bandwidths (175 and 200 kHz) yield much lower error than others when all eight
views are used. In addition, the reduction in error obtained by adding more views
is higher than it was in simulation. This is likely a consequence of the fact that
the experimental setup had a 3° angular spacing where as the simulation used only
a 12 angular spacing. Despite these differences, the size-based classification yield
very similar conclusions in both simulation an experiment.

The species-based classification (Figure 5.7 (b)) shows some very interesting
features. In this case, increasing bandwidth does not help as much as increasing
the number of views. This is likely due to the two classes being similar in size and
shape. Therefore, increasing the resolution of the system by adding bandwidth
does not yield any new discriminant features. In contrast, adding more views
helps because each view provides some additional discriminant information related
to angular changes in scattering due to differences in shape.

The previous results demonstrate that increasing the number of views makes
a significant improvement in classification performance which can dominate im-

provements obtained by increasing bandwidth in the case of species-based classifi-
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Figure 5.7: Average probability of error as a function of the number of views and
bandwidth for a two-class classification problem with simulated data. (a) Size-
based classification problem. (b) Species-based classification problem. Each pixel
is the average probability of error over 5 random trails of training and testing with
250 training examples per class and 250 testing examples per class.

cation. In order to evaluate the impact of choosing different views, and changing
the aperture and number of views independently, the size-based classification prob-
lem with laboratory data is evaluated again using different combinations of views

and aperture (Figure 5.8).

5.5 Conclusions

In this chapter, the effects of available bandwidth and aperture on classifi-
cation performance have been investigated. Results indicate that sufficient band-
width is critical for yielding good classification accuracy when the classes are of
different sizes. The bandwidth required to achieve good accuracy is found to be
greater than 100 kHz for the 2-5 cm length fish considered here. When classes are
of different shape and similar size, the number of views plays a more significant
role with performance increasing as more views are added. In practice, the num-
ber of available views will likely be dictated by experimental limits. However, for
systems geared towards species classification, an emphasis on larger aperture and

high view count would likely be more beneficial than larger bandwidth.
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Figure 5.8: Probability of error as a function of different numbers of views and
different amounts of aperture. For each plot, A denotes the total aperture of the
views and V' denotes the number of views used. It can be seen that in this case, the
number of views makes the most dramatic difference in performance. In addition,
increasing aperture can reduce error further.



Chapter 6

Multi-view acoustic sizing and

classification of individual fish

6.1 Introduction

The advantages of acoustic methods for studying fish populations are rapid
and non-invasive assessment that can be cost effective, operate over long ranges,
and operate in complete darkness. In pelagic fisheries applications, acoustics has
become the standard means for abundance assessment [107]. However, despite
these advantages, acoustic methods generally lack specificity, and are highly sensi-
tive to fish orientation [54, 53]. Since fish orientation is typically unknown during
the time of insonification, this presents a potential problem for translating mea-
sured energy into abundance. In the case of individual fish, acoustic scattering is
highly sensitive to fish size, shape, and orientation. This limits the inferences that
can be made with conventional single-frequency and single-view methods.

In the context of zooplankton classification, broadband scattering mea-
surements recorded at several different angles can offer dramatic improvements
in the discrimination capabilities over both narrowband and single-view methods
[59, 60]. Here, the key aspect of improvement is a result of exploiting characteristic
shape differences across multiple views for different zooplankton classes. Although

fish typically share more shape similarity between classes than zooplankton, these

107
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methods can be naturally extended to fish classification with appropriate modifi-
cations to the learning algorithms.

In addition to classification, it is useful to estimate physical parameters
of the fish such as size, shape, orientation, and perhaps even internal structure.
Such an approach has been presented [58] for estimating swim-bladder length from
multiple views using narrow or wideband scattering. This method was based on
analysis of variability in echo magnitude as a function of view angle and frequency.
In this document, an alternative approach is investigated based on echo duration.
Here, the echo duration from multiple views is converted into a “thickness.” These
thickness estimates are then compared to an ellipsoid model to yield an estimate
for ellipsoidal shape.

In addition, it is shown that both echo energy and echo duration can be
combined to create a two-dimensional reconstruction that is a projected image of
the fish. The method is investigated using full aperture scattering measurements

and incorporates a procedure for aligning and windowing these data.

6.2 Laboratory Scattering Measurements

In order to observe multi-view broadband scattering measurements a labo-

ratory system for recording these data was constructed.

6.2.1 Multi-view scattering apparatus

The details of the scattering apparatus and its calibration are described in
Roberts et. al 2008 [60]. The system is used in a similar configuration, except
that the transmit frequencies are lower, and the fish are harnessed in the field of
view under a sedation protocol approved by the University of California, San Diego
(IACUC #S07191). Broadband, bistatic scattering is recorded simultaneously on
eight receivers for a single transmit pulse. The receiver array is positioned at mid-
depth in a large elliptical tank, 1.25 m off the bottom (Figure 6.1). The transmitter
and receivers are aligned so that their beams intersect at a common location that

is 1.14 m away from the array. The field of view varies with frequency, but is no
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smaller than 5 cm3. Two cameras record the position and orientation of the fish
while it is being insonified. During insonification, the fish is held roughly horizontal

in the plane of the array and rotates about the vertical axis.

6.2.2 Fish scattering experiments

Two sets of experiments were performed using broadband linear frequency-
modulated (LFM) chirps, one in February 2007 with 250 kHz of bandwidth with
a center frequency of 500 kHz, and the second in September 2007 with 250 kHz
of bandwidth and a center frequency of 750 kHz. In total, 50 specimens were
insonified by the system. Of those, 36 resulted in usable data where the orientation
of the fish was roughly horizontal during insonification, the fish stayed alive during
the entire experiment, and data were free from artifacts due to bubbles or other
contaminants. Scattering data were preprocessed by matched filtering raw echoes
with a transmit signal model [93]. The matched filter output was windowed around
the peak with a window duration of 100 us. Windowing was applied to each receiver
independently to account for differences in travel time between the transmitter and
receiver. Video data provided an estimate for the orientation of the fish during

each ping.

6.3 Multi-view fish classification

There has been substantial research in the area of multi-view target classi-
fication during the past decade [63, 68, 70]. This has lead to a progression towards
methods that combine both discriminant and probabilistic algorithms [70]. The
classification algorithm used in this work is a network based approach applying
a cascade of multi-layer perceptions (MLP) and a single support vector machine
(SVM) to combine probabilistic predictions from the individual views. The fea-
tures used were discrete cosine transform (DCT) coefficients computed from re-
ceived echoes. The algorithm was evaluated on two, three-class problems where
the algorithm was trained using a subset of available data and tested on the re-

maining data. Average error rates were obtained by repeating this process five
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Figure 6.1: Two-dimensional drawing of the experimental setup showing the ge-
ometry of the problem, the harness used to hold fish in the field of view, and the
array geometry with 6° spacing and a full aperture of 42°.

times using different sets for training and testing. The classification results for the
two problems are shown in Figure 6.2. Size-based classification is accurate ( 10
% error), and significant ( 40 %) reductions in error are obtained using a small
number of views. In the case of species-based classification, the absolute error is
significantly higher, yet the fractional error reduction remains at roughly 40%. In
addition, the error curve does not level out after eight views indicating that further

reduction in error could be achieved by acquiring additional views.
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6.4 Multi-view size and orientation estimation

6.4.1 Ellipsoid model

Multi-view echo data were combined with an ellipsoid scattering model to
estimate fish size and orientation. The scattering model is a special case of the
distorted wave Born approximation (DWBA) [84] which assumes the scatterer is
an ellipsoid. For a single ellipsoid, the DWBA has been shown to be a spherical
Bessel function of the first kind (Appendix A)

J1(kP)
kP,

S(k) = C(g, h,a)k3abc (6.1)

where

P, = \/a20032(¢)3in2(6’) + b2sin?(¢)sin?(0) + c*cos?(0), (6.2)

and a, b, and ¢ are the principle radii of the ellipsoid and ¢, and 6 define the
direction of the wave vector with wavenumber k with respect to the principle axes
of the ellipsoid. The scaling term C(g, h, Ia) is a function of the gamma contrasts
of the scatterer [84]. The parameter ¢ was assumed to be zero since the fish rotates
in the plane of the array, and the parameter b was fixed to a constant value. The
P, term is a AATLJthicknessaAl parameter, and can be related to an AALJ equivalent
spherical radiusaAl due to the fact that the DWBA for a sphere of radius r can be
obtained from equation (6.1) by substituting r = P, and r® = abc (Appendix A).

6.4.2 Posterior parameter estimation

The unknown ellipsoid parameters were assumed to be random and un-

known. A factorized prior was assumed over the model of the form

p(a, ¢, 9) = p(a, C)p(e), (63)

where © = (a,c)’ and

1

P(©) = sqrt(2m)?|X|

exp ((@ - N@)T (e - N@)) g (6.4)

and p(0) is uniform.
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Figure 6.2: Probability of error for the size- and species-based classification prob-
lems with three classes. The error is plotted as a function of the effective aperture
in degrees resulting from increasing the number of views. Error bars denote one
standard deviation. Fractional reductions in error for each problem are above 40%
using all eight views for both classification problems.

The likelihood function was assumed to be Gaussian with unknown variance
which was estimated from data using the sample variance. The error for the 7

view was computed as

e; = PA’Z — Pi(a,c,0), (6.5)

where P, is the thickness for the i view estimated from echo data using frequency
domain analysis.

Examples of marginal posterior probability density functions (pdfs) for a,
¢, and 6 are shown as a function of the number of views of the fish, when the views

cover 360° (Figure 6.3), and also when the views are increasingly limited (Figure
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Figure 6.3: Marginal posterior pdfs for different angular sampling frequencies
(rows). The left column shows the modeled (black line) and estimated thickness
(gray circles) and the other columns show the marginal pdfs. Going from the top
to the bottom row, the angular sample frequency is reduced by 50% at each step.
The measured parameters are shown by the black “+” signs.

6.4). In the case of the limited views, a size proportional prior (Equation 6.4) is
used to constrain the posterior pdfs. As can be seen, the estimates are tightly
peaked near the true parameter values when a complete set of views are avail-
able (Figure 6.3). In contrast, when the aperture is decreased, the distributions
stay peaked until the aperture decreases below 60°. When the aperture is highly
limited (Figure 6.4, bottom row), the distributions are quite broad demonstrat-
ing a fundamental uncertainty between length and thickness of the fish at limited

aperture.

6.5 Fish shape reconstruction

In this section, the reconstruction of the 2D image of the fish (as viewed
from above) is investigated using the full 360° of backscattering over 250 kHz
of bandwidth centered at 750 kHz. Due to the limited bandwidth, and the use

of backscatter, the range of spatial frequencies sampled by the system is limited
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to an annulus centered at the origin with width radial frequencies varying from
650 to 900 kHz. This prevents direction reconstruction from echo data as no low
frequency data is available. To mitigate this problem, the echo envelope is used
to approximate the impulse response of the fish at a given observation angle. This
is similar to creating a time of flight image of strong scatterers on the fish body.
The laboratory experiments were not designed with this type of reconstruction
in mind, and the echoes must first be registered for different fish orientations. To
align and window echoes, sparse Bayesian learning ([154], [144]) is used to estimate

an impulsive impulse response w which satisfies

1
plylw,o) = exp (—5lly — @w|?). (6.6
(2m02) 202
such that
N 1 w?
) =[] —=—exp (-] 6.7
i) =TT oo () (©.7)

These constraints on w enforce a sparse solution [154]. Given the registered, win-

dowed echo envelopes for all 360 views, the image of the fish is reconstructed using



115

-30 -30
20} — 20}
-10} | -10}
€ €
E o= E 0 ""
> = >
10¢ 1 10}
20t 1 20t
P B
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
X (mm) X (mm)

(a) (b)

Figure 6.5: Reconstructed 2D image of a damselfish (a) showing internal structure
in the reconstruction and very good agreement with the video image (b).

an inverse Radon transform [155] (Figure 6.5).

6.6 Conclusions

In this paper, the application of multi-view acoustic methods to sizing and
classifying individual fish has been presented. It has been shown that observing
multiple views of scattering offers significant advantages for classifying fish both in
terms of size classes and species classes. The absolute error in species-based clas-
sification is much higher due to the lack of discriminant information in the echoes.
Results of this study show that size-based classification is mostly likely to be a vi-
able and accurate strategy for inferring information from limited view data. When
full-aperture data is available, the inverse Radon transform approach performed
better than the parametric approach due to mismatch between the ellipsoid model
and the true shape of the fish. However, the ellipsoid model was able to yield
accurate estimates when full-aperture data was used. These results highlight some
promising areas of research in applying multi-view methods problems in fisheries

and oceanography.
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Appendix A

Multi-view, broadband scattering

from weak scattering ellipsoids

A.1 Introduction

It is well known that plane wave scattering in the far field under the Born
approximation can be represented as a Fourier transform of the scatterer [90]. In
the context of inffering biophsyical information about the scatterer from measur-
ments of the far field scattering pattern, perhaps the most important consequence
of the Fourier transform relationship is that the finite support of the scatterer
implies that the far field pattern will be band-limited. If scattering is observed
at a fixed angle over a wide band of frequencies, the oscilations in the pattern
directly code the support of the scatterer along the direction of wave. Estimation
of this oscilatory frequency (or its time domain, echo-duration equivalent) is at the
core of most of the estimation methods presented in this dissertation. Therefore,
the analytic expresion for this frequency is derived for a general ellipsoid as this
shape yields a good model for scattering from many zooplankton, and a reasonable
model for scattering from the body of some fishes. The expresion is derived un-
der assumption of homogeneous scattering from a fluid-like ellipsoid with density
and sound speed compariable to that of the surrounding medium. In this case, a

modification of the Born approximation is applicable.
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The distorted wave Born approximation (DWBA) [82, 84] for a spheriod [156],
and ellipsoid (Dezhang Chu, Woods Hole Oceanographic Institute, USA, pers.
comm., 2007) have been derived previously. Here, a derivation of the DWBA for
an ellipsoid is offered which directly applies the projection-slice theorem, naturally

Y

incorporates the notion of an “equivalent radius,” and results in the proof of an

equivalent sphere theoreom.

A.2 DWBA for a homogeneous ellipsoid

The DWBA for a general bistatic configuration can be written as
k; A
Sk) = o2 [ [ [ () = () cos ) e, (A1)
T
1%

where the wavevector k is derived from the wavevectors for the bistatic incident and
scattered wavevectors k; and k, according to [59]. If the scatterer is homogeneous,

the DWBA simplifies to

S(k) = C(y, h,a)ﬁ / / / %y (A.2)

where
C(g,h, @) = (yx — Ypcosa), (A.3)
and
Ve = (1= gh?) Jgh?, (A4)
and
Y% =1(-1/g (A.5)

The direction of the wavevector k = (ky, ks, k3)T will be defined in terms of the

angles ¢ and 6 according to
k1 = kcos(¢) sin(0), (A.6)

ko = ksin(¢) sin(), (A7)
ks =k cos(0), (A.8)
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where k is the wavenumber in the body of the scatterer.
The DWBA for a homogenious ellipsoid can be derived using a generaliza-
tion of the projection-slice theorem, and the intersections of planes and ellipsoids

at arbitrary orienations. The volume of integration is given by the set
V={x|x"Rx <1Vx € ®*}, (A.9)

where R = diag(a™2,b72,¢?), and the quantities a, b, and ¢ make up the lengths
of the principle axes of the ellipsoid. Given the definition of the volume in equa-
tion (A.9), equation (A.2) can be recognized as the three-dimensional Fourier trans-
form of the function

£(x) :{ C(g,h,a)3t, for x € V } (A.10)

0, otherwise

Using the projection-slice theorem (Appendix B.2), equation (A.2) can be written
as

k? P o,
S(k) = Clg, h, ) /_P fv (P, a')e™ da| (A.11)
T

where 2’ is a point along the direction d = (cos(¢)sin(0), sin(¢p)sin(0), cos(6))",
fv (P, x") is the area of the intersection ellipse between the ellipsoid and the plane
normal to d centered at z’d, and P; is the length of the vector from the ellipsoid
center to the plane that is normal to d and tangent to the ellipsoid surface. From

the derivations given in [157], the expresions for P;, and fy (P, a') are

P, = \/a20082(¢)3m2(6’) + b2sin?(¢)sin?(0) + c*cos?(0), (A.12)
and ,
abem x

fv(P, ') = 2 <1 — Pf) : (A.13)

Subsituting equation (A.12) and equation (A.13) into equation (A.11) yields
K2abe [Pi 2\
K) = Clg,h )0 [ (1= 2 ) e anf A4
S(k) = Clg. h, )= —a( PE>6 @) (A.14)

which can be seen as the Fourier transform of a parabola on the interval [— P, P,].

This has the solution (Appendix B.1)

P 'CE/2 ikx! 7 1 4.
/ L= | ! = iR, (A.15)

_Pt
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where ji(z) is the spherical bessel function of the first kind. Substituting equa-
tion (A.15) into equation (A.14) yields

h(P)

_ 2
S(k) = C(g, h, a)kjabc P,

(A.16)

A.3 Equivalent sphere theorem

With the DWBA for the general ellipsoid, the DWBA for a sphere of radius
r follows from letting a = b = ¢ = r. Substituting into equation (A.16) and

simplifying yields (k)
J1\kT
kr

It can been seen that equation (A.16) and equation (A.17) are equivalent up to a

S(k) = C(g, h, a)kir’

(A.17)

scale factor under the definition of an equivalent radius

Teqg = P = \/a20052(¢)5in2(9) + b2sin?(p)sin?(0) + c*cos?(0), (A.18)

where the ratio of the DWBA for the ellpsoid to the DWBA for the sphere is the
constant
K- e (A.19)

rg’q
The constant K is the ratio of the volume of the ellipse with semi-axes a, b, and
¢, to that of the sphere of radius r.,. Note that 7, is exactly equal to the distance
between two parallel planes normal to the direction of the wavevector k, the plane
through the origin of the ellipsoid, and the plane tangent to the surface of the
ellipsoid [157].
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Fourier transforms for ellipsoids

B.1 Fourier transform of a finite parabola

We wish to find the Fourier transform of a parabola of the form (1 —z?/r?)

on the interval [—r,r|. The Fourier transform is given by

F(k) = L (1 . jfj) ¢k (B.1)
= _T e dy — :Z/j r?e™ dy (B.2)
_ sin(kr) 1 o sin(kr) sin(kr) cos(kr)
= QT -3 <27’ P <4 3 4r 2 )) (B.3)
4 (sin(kr)  cos(kr)
= ( 2 T > (B.4)
= ijl(kr)a (B-5)

where the final step in the solution made use of the identity

Ji(z) =

where j;(z) is a spherical bessel function of the first kind [158].

sin(z)  cos(x)

, (B.6)

2 T

B.2 n-1 fold projection-slice theorem

Following the development of the projection-slice theorem in [159], we wish

to show that the n-dimensional Fourier transform of an n-dimensional function
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evaluated along a line in Fourier space is equivalent to the one-dimensional Fourier
transform of the n — 1 fold projection of the function onto the line. First, define
the n-1 fold projection of the function f(x) onto the dimension z; as the integral

over all other dimensions

p(z;) = / . ~/f(x)dx1 codxi_dxigy - da,. (B.7)

The n-dimensional Fourier tranform of the function f(x) is

:/---/f(x)e_i“Txdxl---dZEn. (B.8)

Now, define the line along which the transform is evaluated to be ud for €
[—00,00] and ||d||s = 1. Without loss of generality, we can define the line to lie on
the x; axis such that d = (1,0,...,0)". The transfom, evaluated as a function of

1, then becomes

e Xy o day, (B.9)

[ 59
/ e~ Mgy - - day, (B.10)
/-

/f Ydxy - - - dx, | e H T day (B.11)

=/

/OO
[
/ p(zy)e "1 dxy, (B.12)

oo

where p(z) is the n —1 fold projection of the function f(x) onto the z; dimension.



Appendix C

Additional error curves for the

fixed geometry

Error curves for additional data sets defined in Table 4.3 are shown in the
following figures for all three feature spaces and classification algorithms defined
in Chapter 4. Error curves in this appendix are computed by treating the view
geometry as being fixed and therefore the angular sampling frequency and aper-
ture do not vary between training and testing. The aperture is limited by the

experimental setup (Section 4.2).

123



124

40 : : : : : : : 40— : : : : : : :
[ = = FF (A1) —DF (A2) CF (A3)] [ - = FF (A1) —DF (A2) CF (A3)]
35} {35 1
S S
— 307 — 307
S S
W 25¢ JN ‘ W 25¢
s N 2
£ 20t i £ 20t
I I
Qo Qo
o 15¢ o 15¢
o o
10r 10r
5 i i 5 i i i
1 2 3 4 5 6 7 8 1 2 3 4 8
Views Views
(a) (b)
40 : : : : : :
- = FF (Al) =——DF (A2) CF (A3)]
35¢
S
= 30
S
w5t
5 AN
> N Ve
Z 20 \'I
z { .'"l-""l"
[ 15 \f /h/"l-‘ 4
o "'I
10} I b f-. 4
===
5 i

Views
(c)

Figure C.1: Probability of error on Dy vs. the number of views used for classifi-
cation, all three classification algorithms, and the DCT (a), db4 (b) and Haar (c)

feature spaces.



125

40 : : : : : : : 40 : : : : : : :
[ = = FF (A1) —DF (A2) CF (A3)] [ - = FF (A1) —DF (A2) CF (A3)]
35r . 35F i
S S
— 307 — 307
S S
Ww 25+ Ww 25+
© ©
2 20} 2 20t
Qo Qo
3 3
o 15¢ o 15¢
o o
10r 10r

[6)]
[6)]

= = FF (Al) ——DF (A2) - - ~CF (A3)\

Probability of Error (%)
[ N N w
a1 o [¢,] o

=
o
T

6]

Figure C.2: Probability of error on D3 vs. the number of views used for classifi-
cation, all three classification algorithms, and the DCT (a), db4 (b) and Haar (c)
feature spaces.



126

40 : : : : : : : 40 : : : : : : :
[ = = FF (A1) —DF (A2) CF (A3)] [ - = FF (A1) —DF (A2) CF (A3)]
350 X« 1 357 1
< 30} S 30 =
S S \
w25 w25 )
5 5 N\
2 20} 2 20t Y
i) o I .,
3 3 ~ia,
S 15/ S 15/ QG %
o o 1."‘-1.‘- _I
10t 10t N
lN‘jt\I
5 i i i i i i i i 5 i i i i i i i I
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Views Views
(a) (b)
40 : : : : : :
- = FF (Al) =——DF (A2) CF (A3)]
35¢ ]
S
= 30
o
W 25 =
5 \
£ 20} e
% \L\
-E 15+ INUY. o
o F ’i ‘‘‘‘‘ .l/.’~ .:
1op \l\:
5 i i i i i i I
i1 2 3 4 5 6 7 8
Views
(c)

Figure C.3: Probability of error on Dy vs. the number of views used for classifi-
cation, all three classification algorithms, and the DCT (a), db4 (b) and Haar (c)
feature spaces.



127

50 50— | : : : : : :
[ - = FF (A1) —DF (A2) CF (A3)]
45; 45; H : 1
= 40 = 40 \ v
o o ) \}
W 35/ W 35/ “'»[,_
© © ) -
£ 30} £ 30}
I I
Qo Qo
o 25 o 25
o o
20 20

=
[6)]
=
[6)]

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Views Views
(a) (b)
50

‘ | - = FF (Al) = DF (A2) ‘CF(A‘3)‘

N
a1

N
o

N
o
T

Probability of Error (%)
w w
o 2]

F—
/ K
\'\
- - ]
,
/
v
,
4
L4
Tt
4

15

Figure C.4: Probability of error on Dj vs. the number of views used for classifi-
cation, all three classification algorithms, and the DCT (a), db4 (b) and Haar (c)
feature spaces.



128

60

| ‘-‘;‘FF(Al);DF(AZ)

~CF (Aé)\

Probability of Error (%)
N o
o o

w
o
T

60

| ‘-‘;‘FF(Al);DF(AZ)

~CF (Aé)\

al
o

N

Probability of Error (%)
D
o

w
o
T

20 ‘ : 20 ‘
1 2 3 4 5 6 7 8 1 2 3 4 5 6
Views Views
(a) (b)
60 : : : : : :
- = FF (Al) =——DF (A2) CF (A3)]

o
o
T

w
o
T

Probability of Error (%)
D
o

20

Figure C.5: Probability of error on Dg vs. the number of views used for classifi-
cation, all three classification algorithms, and the DCT (a), db4 (b) and Haar (c)

feature spaces.



129

40 : : 40— : : : : : : :
\ - - FF (AL) —DF (A2) CF (A3)] [ - = FF (A1) —DF (A2) CF (A3)]
=35 l = 35[
S S
5 ﬁ [ ] 5
5 30} 1 5 30t
S S
2 2
= 25¢ 3 257
© ©
Qo Qo
° °
& 20t S & 20t

=
[6)]
=
[6)]

Views Views

(a) (b)

N
o

= = FF (Al) ——DF (A2) - - ~CF (A3)\

w w
O a1
T

N
U'I

Probability of Error (%)

20t

15

Figure C.6: Probability of error on D7 vs. the number of views used for classifi-
cation, all three classification algorithms, and the DCT (a), db4 (b) and Haar (c)
feature spaces.



130

w
o
w
o

‘ \ - - FF (AL) —DF (A2) ‘CF(A‘S)‘ ‘ \ - - FF (AL) —DF (A2) ‘CF(A‘S)‘

N
&)
T
N
&)
T

N
o
T
N
o
T

=

o
T

=

o
T

Probability of Error (%)
[==Y
a1
Probability of Error (%)
(==Y
a1

&)
&)

= = FF (Al) ——DF (A2) - - ~CF (A3)\

25r

201

15¢

10t

Probability of Error (%)

Figure C.7: Probability of error on Dy vs. the number of views used for classifi-
cation, all three classification algorithms, and the DCT (a), db4 (b) and Haar (c)
feature spaces.



131

30 : : : : : : : 30 : : : : : : :
[ = = FF (A1) —DF (A2) CF (A3)] [ - = FF (A1) —DF (A2) CF (A3)]
i = 25f
5 5
5 5
5 20 5 20}
© ©
2 2
= 15f 3 157
© ©
o o
° °
& 10t & 10t
5 : 5
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Views Views
(a) (b)
30 w w w w w w
- = FF (Al) =——DF (A2) CF (A3)]
= 25¢
S
S
5 20}
©
=
= 15f
©
el -~
9 ! -
& 10}
5

Figure C.8: Probability of error on D vs. the number of views used for classifi-
cation, all three classification algorithms, and the DCT (a), db4 (b) and Haar (c)
feature spaces.



Appendix D

Additional error curves for the

random geometry

Error curves for the additional data sets defined in Table 4.3 are shown
in the following figures for all three feature spaces and classification algorithms
defined in Chapter 4. Error curves in this section are computed by treating the
view geometry as being random, as defined in Section 4.5.3, and therefore the
angular sampling frequency and aperture vary between training and testing. The
aperture is not restricted by the experimental setup defined in Section 4.2) and as

a result views are sampled from the full 360°s around the fish.
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Figure D.1: Probability of error on Dy vs. the number of random views used for
classification, all three classification algorithms, and the DCT (a), db4 (b) and
Haar (c) feature spaces.
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