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Abstract

This paper presents an analysis of strong discontinuities in inelastic solids at finite strains.
Solutions exhibiting this type of discontinuities, characterized by a discontinuous displace-
ment field, are shown to make physical and mathematical sense in a classical multiplicative
plasticity continuum model if the softening modulus is reinterpreted as a singular distri-
bution. Physically, the softening is localized along the discontinuity. Conditions for the
appearance of strong discontinuities in the geometrically nonlinear range are characterized,
as it is the response of the material after localization. In addition, these analytical results
are exploited in the design of a new class of finite element methods. The proposed methods
fall within the class of enhanced strain methods, and lead to solutions independent of mesh
size and insensitive to mesh alignment, without requiring any regulatization of the solutions
by numerical parameters like a characteristic length.

1. Introduction.

The analysis of strain localization in inelastic materials has received an important
amount of attention in the past, particularly in the last decade motivated by the interest
in the numerical simulation of the failure of solids. Even though some of the physical and
mathematical issues involved in this problem are already well understood, the problem
can still be considered as open problem to a large extent, as pointed out recently in
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ZIENKIEWICZ [1992] . For instance, the presence of strain-softening in the constitutive law
is known to be one of the factors that trigger the inception of strain localization. The
mathematical inconsistencies that strain-softening may introduce in a continuum have
been well characterized. These inconsistencies translate at the numerical level in the mesh
dependence that finite element solutions exhibit. As described briefly below, a number of
techniques have been proposed to overcome these inconsistencies, some of them leading
to efficient numerical techniques. However, the appropriate choice seems still a matter of
personal preference of the analyst.

Classical analyses of the localization in solids can be traced back to THOMAS [1961],
HiLL [1962] and MANDEL [1966], in connection with the earlier work of HADAMARD [1906]
concerned with the study of discontinuities in solids. See also in this respect the complete
analyses of RICE [1976] and Asaro [1983]. This approach is based on the considera-
tion of the bifurcation of an homogeneous solution into a solution involving discontinuous
deformation gradients. Such discontinuities are commonly referred to as weak disconti-
nuities. The analysis identifies the loss of strong ellipticity of the governing equations of
rate-independent models as a necessary condition for the appearance of such discontinu-
ous solutions. Linearized stability analyses have been proposed for viscous models; see e.g.
SuAawKl & CLIFTON for a comprehensive review article. Even though experimental results
indicate the formation of very narrow bands, commonly known as shear bands, classical
rate-independent plasticity models (like the one described in Section 2.2) do not possess
an intrinsic characteristic length. As noted by Tresca as early as the end of last century
(see the historical review of JOHNSON [1987]), at the macroscopic level it is appropriate to
model the localization of strains by considering the limit case of a surface of discontinuity
of the displacement field. The classical concept of a slip-line, as it appears in rigid-plastic
theories is then recovered (see e.g. the classical texts of HILL [1950] or KACHANOV [1971]).
The main goal of this paper is the precise characterization of this limit case, referred to as
strong discontinuities. in the context of multiplicative finite strain plasticity.

A number of different approaches have been proposed in the literature that take into
account the above considerations for the modeling of strain localization, with an especial
interest in its numerical simulation. A first approach consists of the consideration of
alternative constitutive models that possess an intrinsic characteristic length, regularizing
the problem in the process. Examples of these ideas are non-local constitutive models
(BAZANT et al [1984]), Cosserat type models (DE BORST & Spuys [1991]), and higher-
gradient models (COLEMAN & HODGON [1985]), to mention few representative references.
There are a number of theoretical and practical issues that arise in these cases. Perhaps
the most fundamental one is the actual definition (or rather determination) of the intrinsic
characteristic length. At a more practical level, the extra numerical cost involved in these
formulations over more traditional continuum models is sometimes difficult to justify.

A second traditional approach consists of the consideration of a numerical character-
istic length for the regularization of the numerical simulations involving softening materials.
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The standard continuum plasticity model is maintained, and the case of zero width of the
localization band (now a surface) is assumed. However, a finite dissipation is associated
to the deformation along the discontinuity. At the numerical level, more precisely in the
context of the finite element method where the minimum width is determined by the size
of the mesh, the dissipation per unit volume characteristic of a continuum material model
is modified according to the size of the mesh to obtain a fixed and finite dissipation per
unit area. Usually the slope of the (continuum) softening law is modified according to
the mesh size through the introduction of the aforementioned characteristic length. In the
limit, as the mesh size tends to zero, the localization surface is modeled by a discontinuity
exhibiting a finite dissipation. See OLIVER [1989] for a precise discussion and formulation
of these ideas. Similarly, the formulation of finite element methods incorporating special
interpolation functions at the element level to capture the localization of the deforma-
tions can be found in BELYTSCHKO et al [1988] and NACAR et al {1989}, to mention two
representative examples.

An alternative approach was presented recently in SIMO, OLIVER & ARMERO [1993].
The main idea behind this approach is the consideration of the limit problem, i.e. solutions
involving a discontinuous displacement field (strong discontinuities), in both the analysis
and the development of numerical methods for the simulation of strain localization. Most
notably, the analysis not only identifies the actual condition for the appearance of strong
discontinuities (recovering in fact the loss of strong ellipticity condition), but also char-
acterizes completely the localization mode. It is shown that to make mathematical and
physical sense of the continuum equations a localized softening law along the disconti-
nuity. relating the (driving) traction and jump of the displacement, is to be considered.
It is therefore concluded the existence of a localized dissipation along the discontinuity.
Finite element methods based on these ideas for the infinitesimal case have been presented
in this last reference, SIMO & OLIVER [1994], and ARMERO & GARIKIPATI [1995]. The
connection of these ideas with the previous approach based on a numerical characteris-
tic length, as well as discrete crack type models (see e.g. HILLERBORG [1985]), becomes
readily apparent. However, the different analytical characterization as well the completely
different aspects involved in the numerical implementation of these theoretical results are
to be contrasted.

We extend in this paper the ideas and results involved in this last approach to the
fully nonlinear finite strain range. The main goal is to extract the information present
in a classical continuum multiplicative plasticity model in order to characterize solutions
involving strong discontinuities. The approach presented herein considers the bifurcation
of a smooth initial solution into a solution involving strong discontinuities. The analysis
then proceeds formally to make mathematical and physical sense of these equations in
the context of distribution theory. Solutions exhibiting strong discontinuities are shown
to be consistent with a rate-independent continuum model if the strain-softening low is
understood in distributional sense; that is, the softening modulus is a singular distribution
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(a delta function) along the discontinuity, meaning physically that the softening response
of the material is localized in a set of measure zero.

It is important to note that a complete characterization of the functional setting of
the problem is still a challenging open problem in the literature. In fact, even for the case
of nonlinear elasticity there are still a number of open issues; see CIARLET [1988]. In the
case of infinitesimal perfect plasticity, a key contribution was presented in MATTHIES et al.
[1979], where the space of displacement fields with bounded (infinitesimal) deformations,
the so-called BD(£2) space, was identified in the context of the variational structure of the
problem, as presented earlier in DUVAUT & LIONS [1972] and JonNson [1976]. Further
results along these directions can be found in SUQUET (1978, 1981], TEMAM & STRANG
[1980]. ANZELLOTTI & GIAQUINTA [1982] and TEMAM [1986], among others. The approach
proposed herein is a first formal attempt to extent these ideas to the finite strain range,
and investigate their practical consequences in the design of finite element methods for the
solution of the problem at hand.

At the numerical level, the main goal is not only the design of efficient numerical
methods that are independent of the size of the mesh, but also the development of meth-
ods that are insensitive to the mesh alignment, despite the strong oriented character that
localized solutions exhibit. The finite element methods proposed herein accomplish these
features by the inclusion of the localization mode identified in the analysis of strong dis-
continuities in the actual finite element spaces, without resolving to a regularization of
these discontinuities. The final methods are formulated in the context of the enhanced
strain methodology proposed originally by SIMO & RiIFAl [1990] in the infinitesimal range,
and extended in SIMO & ARMERO [1992] and SimMO, ARMERO & TAYLOR [1993] to the
geometrically nonlinear case. As a result. the finite element methods proposed herein do
not require the introduction of any extra numerical parameters for a correct simulation of
the localization of strains in inelastic solids.

An outline of the reminder of the paper is as follows. Section 2 defines the problem
under consideration. introducing the notation used in the rest of the paper as well as a
complete description of the constitutive equations characterizing multiplicative finite strain
plasticity. Section 3 includes the analysis of strong discontinuities in this fully nonlinear
range. A description of the kinematics of this class of discontinuities as well as the con-
ditions for their appearance in inelastic solids is presented. A complete characterization
of the localization mode is similarly obtained. These theoretical results are exploited in
Section 4 in the design of a new class of enhanced strain finite element methods. A brief
description of these methods is presented, together with the discussion of a representa-
tive numerical simulation showing the main properties of the proposed methods. Finally,
concluding remarks are drawn in Section 5.
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2. Problem Definition.

This section describes the governing equations of the problem under consideration.
The notation employed in the rest of the paper is introduced as well.

2.1. Governing Equations. Notation.

Let B C R™™ (ngim = 1,2 or 3) be the reference placement of a solid with material
particles denoted by X € B. Let the solid be subjected to a deformation ¢: B — R™m,
with det Dy > 0 and satisfying the essential boundary conditions ¢ = ¢ on d.B C 9B for
some given function ¢. Denote by P the nominal stress field (first Piola-Kirchhoff stress
tensor), defined by the particular constitutive relations of the material as described in the
following section.

In this context, the weak form of the equilibrium equations are given by the usual
expression

/P:GRAD[n} dB = f-nd5+/ T.-ndl vn eV, , (2.1)
B B 8B

for a given body force field f and imposed tractions T on 9,5 C &B. The usual assumptions
3, BU OB = 0B and O BB =0, (2.2)
are considered. The space of test functions V, is defined as
Vy={n:B—=R"" : n=0 on 09,8} (2.3)

with the appropriate smoothness conditions for (2.1) to make sense. It is to be noted in
this respect that even for the case of hyperelasticity where there is a complete existence
and regularity theory for ¢ as a minimizer of the potential energy (BALL [1977]), it is not
clear in what sense the weak Euler-Lagrange equations (2.1) are satisfied. The reader is
referred to CIARLET [1988], Section 7.10, for further details.

Let I" C B denote a smooth (C!) surface in R™m ™! with unit normal IN. Assume
that P is everywhere continuous, except perhaps across I'. Then, a calculation based on
integration by parts in (2.1) leads to

/mwuﬂ+ﬂqwm+/ﬁpwwndr+/ P~ PN]-ndl', Vnev,
B r B

where [P] denotes the jump of the stresses P across I'. A classical argument leads then
to the local (strong) form of the equilibrium equations and natural boundary conditions,

i.e.
pv[P]+f=0 and PN=T on 95, (2.4)
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together the compatibility jump condition
[PIN =0 on I'. (2.5)

This result allows to introduce a well-defined object T := PN on I', which we shall refer
to as the nominal driving traction.

2.2. Constitutive relations.

This section introduces the constitutive equations considered in the present analysis,
namely, finite strain multiplicative plasticity. A very brief summary is given in Section 2.2.1
of the relations characterizing this class of constitutive models. The reader is referred to the
comprehensive monograph by SIMO [1995] for further details. The elastic rate equations
employed in the forthcoming analysis are derived in Section 2.2.2.

2.2.1. Multiplicative finite strain plasticity.

The case of interest corresponds to a rate-independent plasticity model, characterized
by the multiplicative decomposition

F=F°F", (2.6)

of the deformation gradient F := D¢ in an elastic F¢ and a plastic part FP. In this
context. a general plasticity model is characterized by the following constitutive relations.

i. Hyperelastic response. The elastic response of the material is characterized by a
stored energy function

Wo=W(C)  with C°:=FTF°, (2.7)

where the dependence on C° follows from a classical argument based on material frame
indifference. The stresses in the material are then given by the relations

§=20cW and T=F°SF", (2.8)

where S is the second Piola-Kirchhoff stress tensor (in the intermediate local configuration
defined by FP), with P = F°S and the Kirchhoff stresses 7. Recall that the Cauchy
stresses (true stresses) o are given by o = 7/J with J :=det F' > 0.

ii. Yield condition. We consider a model determined by an admissible elastic domain
defined in terms of the Kirchhoff stresses 7, given by a yield function of the form

¢(r,q) = d(T)+q—0y, <0, (2.9)
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where ¢ denotes a scalar stress-like internal variable modeling the hardening/softening
response of the material. Relation (2.9) represents a typical yield surface with an initial
yield limit ,, and a homogeneous function @(7) of degree one. It is to be noted that
relation (2.9) is restricted to the isotropic case by frame indifference

9(QTQT) =d(r)  VQ € SO(naim) , (2.10)

i.e., @(T) is an isotropic function of the Kirchhoff stresses 7. We shall restrict the following
developments to this case for simplicity.

ii. Plastic evolution equations. The use of the decomposition (2.6) results in the
additive decomposition

l:=FF ' =FeF° ' FFPFP 'Fe™! = o7, (2.11)
=l = FeLrFe' = Ir

for the spatial velocity gradient tensor I. The evolution equations of the plastic rate of the
deformation and plastic spin are given in general by

df :=sym (IP) = A ngy , and w? :=skew (") =\ @, (2.12)

where 0 < A € R is the plastic consistency parameter, and the symmetric tensor mg
and skew-symmetric tensor w are two given tensors defining the evolution of the plastic
deformation rate and plastic spin, respectively. It is to be noted that both d?P and w?
are objective rates, so the constitutive relations (2.12) are correctly defined. Typically the
plastic spin is assumed to vanish @ = 0; see MOHAN, ORTIZ & SHIH [1990], S1MO [1995],
and references therein. See DAFALIAS [1984], and ANAND [1985] for examples involving a
non-zero plastic spin. We shall restrict the following developments to the case characterized
by

ng = 0ro(T,q), (2.13)

that is, ny is the normal to the yield surface. Similarly, we shall consider an associated
hardening/softening law given by

Hl'g=-X0,0=-X\, (2.14)
for a hardening/softening modulus H.

iii. Kuhn-Tucker conditions. The elastoplastic model is completely defined then by
the conditions

<0, A>0, d¢=0, and Ab=0, (2.

8]

sk

5}
p——

identifving the loading/unloading conditions.
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Remark 2.1. An important consequence of the choice (2.13) will be used in the forthcom-
ing developments. Since o(-,q) is an isotropic function of 7 by (2.10), the two symmetric
tensors ny and T are coaxial. T herefore, these two tensors commute, 1T 18 symmetric,
and consequently

ngwr =ng 7w =70 (2.16)

for all skew-symmetric tensors w € s0(Ngim)- B

2.2.2. Rate form of the elastic constitutive relations.

We conclude this section with the derivation the rate form of the elastic relations
considered above. Taking the material time derivative of (2.8); and making use of the
relation %C"f — FedeFel, we obtain

§-Cler = L= F5F =cd, (2.17)

where the material C. and spatial ¢, elastic moduli are defined by

VAT o
IJKL __ oW A gkl _ ei el prek el IJKL
Ce = 4W and Ce = F i F N F K F L (Cg s (218)
TIYY KL
respectively. Given (2.18)y, the spatial elastic tangent tensor €. possesses the minor sym-

metries
i ikl i
(.Cz]kl — Ce]lk — Cel‘]lk ) (219)

and the major symmetry
c B = ¢ R (2.20)

Expanding the material time derivative in (2.17)s using (2.8), we obtain the equivalent

expression
£y = Fo 1t — 11T, (2.21)

for the elastic Lie derivative of the Kirchhoff stresses.

The elastic rate equations can also be expressed in terms of the elastic Jaumann rate
.- . Ve .
of the Kirchhoff stresses 7, defined as

Ve N , N ]
Yo W — Tw = £T +dT+ rdel | (2.22)
where w® denotes the elastic spin w® := skew([l¢]. Combining this last expression with

(2.18) leads to the relation
¥ = a.d®, where agfj""l = Cei’jkl + -]2; [T““(Sjl —+ Tildjk} + % [Tﬂéik -+ Tjkéu] . (2.23)

after some straightforward algebraic manipulations. The spatial tangent a. possesses the
same symmetries (2.19)-(2.20) as Ce.
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Remark 2.2. The different character of the yield condition (2.9) when compared with
the rest of the equations defining the constitutive model should be noted. Namely, (2.9) is
a pointwise bound on the stresses 7 and g. This fact can be easily seen for the case @ =0
by casting the model in the form of a variational inequality. Using the notation introduced
in this section, and after some straightforward algebraic manipulations, we arrive at the
expression

/ (r—7) (Vv—a;'7) = (¢—q) H ' ¢] dB<0 v(7,q) € E, (2.24)
B

where v 1= ¢ is the material velocity, and E = {(T,q) ESxR: ¢(r,q) <0 } (with S
being the space of rank two symmetric tensors) is the (pointwise) elastic admissible domain
defined by (2.9). Note that in this case 7 = 7, since w? = 0. The reader is referred to
SiMo [1995] for a complete description of the details involved in (2.24). In particular, the
variational principle underlying (2.24) corresponds to the classical principle of mazimum
plastic dissipation. [

3. Strong Discontinuities in Multiplicative Plasticity.

This section describes the conditions that govern the appearance of strong disconti-
nuities in the context of the general < 1ss of multiplicative plasticity models summarized
in the previous section. The approach considered herein follows the classical analysis of
weak discontinuities as a bifurcation problem from an homogeneous deformation state. We
consider, however, the limiting problem involving a strong discontinuity (a discontinuity
of the deformation ¢ itself). To this purpose, the kinematics of strong discontinuities in
the finite strain range are described first.

3.1. Kinematics of strong discontinuities.

Consider an initial deformation @: B — R"*™ assumed smooth in B, with a (regular)
deformation gradient F = D@. We want to investigate the conditions that make possible
the bifurcation of this field to a discontinuous or singular deformation across a smooth
material surface I' ¢ BN R™="! in a neighborhood 2p C B of a point Xy € B. With
no loss of generality we may assume @ to be homogeneous in 2. Consider then the
discontinuous deformation in 2y defined by

e(X)=@(X)+[e] Hr(X). VX € r (3.1)

where [¢]: B — R™¥™ is the jump discontinuity, and H (X ) denotes the Heaviside function

on I, ie.
1 if X e f,

Hp(X) = 3.2
ri {0 it X e 0 3.2)
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FIGURE 3.1. Kinematics of strong discontinuities. Local decom-
positions associated to a strong discontinuity

Here, QF and 2 denote the components of {2y on either side of the surface ['; see Figure
3.1. Denote by N the unit normal to I" (pointing to 2F). Tt is to be noted that I’ needs
only to be defined locally in the neighborhood 2p. Given the assumed smoothness of I,
there would be then no loss of generality in restricting the following argument to a plane
through X with normal N. Similarly, the decomposition (3.1) is defined locally. The
relations obtained from this analysis are necessary local conditions for the appearance of
strong discontinuities in solids.

The deformation gradient F corresponding to the deformation (X)) in (3.1) is given,
after using a classical result in distribution theory, by

F=F+[p]@Ndr, (3.3)
where o denotes the Dirac delta function on I'. We introduce the material jump J: B —

R'fbdim’ deﬁned b} F
J T F-wl[[‘lo]] ! (34)

i.e., the pull-back of the spatial jump [¢] by the original smooth deformation. With this
notation in hand, the singular deformation gradient F' n (3.3) can be written as

F=FF where F:=1+J o N r . (3.5)
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This last relation introduces a multiplicative decomposition of the total deformation gra-
dient F in a regular F' and singular part F.

The above material description of the discontinuous deformation under investigation
has a spatial counterpart. To this purpose, denote by v = @(I") the current placement of
the material surface I". Then, the deformation gradient F associated to the discontinuous
mode (3.1) can be decomposed equivalently as

F=FF where F=1+[e]londr, (3.6)
and where nn denotes the normal to the surface v obtained as
n=FTN. (3.7)

The vector n is normal to v at @(Xr), but it need not be a unit vector necessarily.
Note also that we can write Jéy = 4, where 6, denotes the Dirac delta function on v
and J := det F > 0. The multiplicative decompositions (3.5) and (3.6) are illustrated in
Figure 3.1.

The next step is the calculation of the velocity gradient tensor associated with the
bifurcation to the discontinuous mode ¢ in (3.1) from the original smooth deformation
@. An argument similar to (2.11) involving the decomposition (3.5)1 and the material
character of the surface S (i.e., N = 0), leads readily to

FF1 4 Fle]o F-TN 6r

i

=1+ Lyle]onir
+1, (3.8)

Il
~

where we have introduced the spatial objects
[.= FF! , [ = Lyle]@ndr . and  £yfe] = FJ. (3.9)

Relation (3.9)3 identifies £4[¢] with the Lie derivative of the jump vector [¢]. A simple
calculation shows the important fact that this object is frame indifferent; that is, given
two observers related by a rigid body motion, we have

if F*=QF . then £ylo] =Q£Lvle]. YQ € SO(ngim) - (3.10)

Therefore, we conclude that the appearance of the bifurcation to the discontinuous mode
(3.1) leads to an additive decomposition (3.8) of the spatial velocity gradient I in a regular
[ and singular part I on the discontinuity I, the latter being an objective rate tensor (since
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both £y [¢] and n are objective). Outside the discontinuity (i.e., in 2p\I") the material
is subjected to the bounded velocity gradient I. Remarkably, as in the case of weak
discontinuities characterized by a continuous deformation and discontinuous deformation
gradients, the difference between the basis and bifurcated modes involves a rank one tensor.
However, the singular character of [ in (3.9)5 is to be noted.

Remark 3.1. It is important to emphasize once again the local character assumed for the
decomposition (3.1). Figure 3.1 has to be understood in a local sense. For instance, the
two surfaces that may appear after the inception of the discontinuous solution will not
be considered in the actual numerical simulations. Alternatively, a constitutive relation
will be derived for the jump [¢] modeling the localized response of the material. For
this purpose, the objectivity of the strain rate £y [] pointed out above will prove to be
crucial, as shown in the next section. ]

3.2. Strain localization in multiplicative plasticity.

This section investigates the conditions that make possible the discontinuous defor-
mation (3.1) in the general class of multiplicative plasticity model described in Section 2.
For this purpose, the assumptions considered in the analysis are first characterized in Sec-
tion 3.2.1. The localization condition signaling the appearance of localization 1s derived in
Section 3.2.2. A complete characterization of the localization mode is obtained in Section
3.2.3.

3.2.1. Basic assumptions.

From a theoretical point of view, the two main assumptions underlying the approach
described herein are:

1. The continuum constitutive model prior to localization is able to predict the inception
of the localization of the strains.

2. Moreover, the localization mode is characterized by the rate relations of the contin-
wum model, i.e. persistency of the continuum relations is imposed during localization.

It is to be noted that these assumptions are also considered in classical analyses involving
weals discontinuities. Assumption 1 can be found stated explicitly in RICE [1976]. Physi-
cally, these assumptions imply that even though the actual physical mechanism controlling
the material response after localization may be completely different that the physical mech-
anisms responsible for the response of the solid prior to the bifurcation, localization can
be signaled and described by the relations of the continuum model.

For the case of interest here, involving strong discontinuities with the corresponding
strain rates being singular distribution as described in the previous section, Assumption
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2 implies that the continuum rate equations have to make physical and mathematical
sense in general distributional form. To this end, and given the character of the different
equations described in Section 2, we have:

1. To make sense of the pointwise constraint imposed by the yield condition (2.9) (see
Remark 2.2), the stress-like variables ¢ and the function 63(7”) of the IGrchhoft stress
+ are (pointwise) bounded functions in B. Technically, these functions are CO(B); see
e.g. MATHIES et al. [1979] for a discussion in the infinitesimal range.

2. Persistency of the boundedness conditions identified in the previous item implies that
q and CZ;(T) remain regular functions (that is, they are not singular distributions),
making sense of the consistency condition (2.15)4 in the case of plastic flow.

3. Similarly, the nominal traction T is continuous by the equilibrium equations, as
obtained in (2.5), and remains bounded. Therefore, T is not a singular distribution.

The above considerations for the stress-like variables in the model are to be contrasted
with the singular character of the strain rate measures as described in the previous section.
In particular, the plastic consistency parameter determining the plastic rates will be in
general a singular distribution. Note that evolution tensors ng and w in (2.12) are bounded
objects depending on the smooth deformation @. The case of interest herein involves
localized plastic flow along the discontinuity. We referred to this case as the localization
mode on I, being characterized by

A= Ardr, (3.11)

with A > 0 by (2.15)3. The regular part of X is associated to diffusive plastic flow outside
the discontinuity, leading to standard treatments of the plasticity problem. Therefore, and
without loss of generality, this part is assumed to vanish in (3.11) and in the following
developments.

The goal of the analysis presented in the following sections is to make physical and
mathematical sense of the constitutive relations given the above considerations. The main
objective is to identify not only the conditions that indicate the appearance of the localized
mode defined by (3.11), but also to characterize completely this mode. In particular, the
evolution of the jump [¢] is of the main interest.

3.2.2. The localization condition in multiplicative plasticity.

The first step in the analysis is to obtain the explicit expression of the evolution of
the nominal traction Ty on I". For this purpose, we note that

TF -~ PN = LyT +1l7In = {f%‘l‘ 1 — T 4 IT} n
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o [cede’ P — 7T 4 l'r} n
= [c.d — a.d” — WPt ~ Twhl + 1t n
— [cecf+ l—'r] n+ [cfcim a.d? — oPr — 7Pl + l~‘r] n, (3.12)

—
regular singular

after noting that N is a material vector (i.e. N = 0). Here, the decomposition of the
symimetric strain rate tensor

d:=symll]=d+d, where d := sym][l] and d := symll] , (3.13)

have been introduced after the decomposition (3.8) of I. Similarly, dP = dP and OF = WP
given the singular character of A by (3.11). Impose that T is a regular function, i.e. the
singular part of (3.12) must vanish, leading to

{ceciw a d? — &Pt — 7ot + l~'r} n=0. (3.14)
Setting dr = Ang and wP = Aw, equation (3.14) can be written as
[cecz- Aangy + 1w —0T) + [T} n=0. (3.15)
It is to be noted that both d and A are singular distributions proportional to dr.
Next, the plastic consistency condition (2.15)4 leads to

O—;g';:n(;):7‘+(j:n¢:‘:r'e+(j:n¢:ae(d—dp)+(]
=ng a.d+(+ngal(d—d), (3.16)

regular singular

where the result (2.16) has been used explicitly. The regularity conditions described in
the previous section allow to identify the regular and singular components of this last
expression. The two parts must vanish separately for the plastic consistency condition to
make sense, leading to
ngia.d+¢=0, (3.17)
and
~ = 1

ca(d-d)=0 = A=——mnya.d. 3.
ng:ac(d — d’) n¢:aen¢n¢a (3.18)

for the singular plastic consistency paramenter A = Apdp.

Combining (3.15) and (3.18), and noting that [ = £4]¢] @ n 6r with d = sym(l),
we conclude that the £y [p] must satisfy the equation

Qe’,pf’v[@]} =0 (319)
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where

Qep=n-|Cc— ———-——}————(aendj +TO - @T)@amng|n+(n-Tn) 1, (3.20)
Mg ATy

with 1 behind the rank two identity tensor. Condition (3.19) has the classical form of the
loss of (strong) ellipticity condition (see TRUESDELL & NOLL [1965]), involving though the
acoustic tensor Q., constructed with the perfect plasticity tangent tensor (the bracketed
expression in (3.20)). In fact, repeating the same argument for the case of X being a regular
function (i.e. no localization of the plastic flow), condition (3.19) is obtained, involving
now the elastic acoustic tensor

Q.=n-cn+((n-t™m)1l, (3.21)

or, in index notation, Qﬁf =n; Cy"'lm + Tﬂnj n;6** . In what follows, we shall assume that
the elastic law does not exhibit the loss of ellipticity, focusing on the localization mode
(3.11) triggered by the inelastic response of the material.

In summary, a necessary local condition for the bifurcation to a discontinuous defor-
mation under the assumptions indicated in the previous section is that the perfectly plastic
acoustic tensor is singular, with £y [¢] belonging to the kernel of Q. This condition is
the analog to the result obtained in StM0, OLIVER & ARMERO [1993] for the infinitesimal
case. We shall refer to this condition as the localization condition.

3.2.3. The localization mode.

The goal of this section is to characterize the discontinuous mode of the deformation
that may appear when the localization condition (3.19) is satisfied for some N (or corre-
sponding n). To this purpose. the hardening/softening law (2.14) together with the fact
that ¢ is a regular function as indicated in the previous section, imply the result

H™' ¢ = ZArdp = H'=H"'6r. (3.22)
regular singular distribution

That is, a distributional softening response localized on the discontinuity surface I is
obtained. See Remark 3.2 below for a justification of the claim that the localized plastic
flow must involve a softening response in these circumstances. The same conclusion has
been obtained in SiMo, OLIVER & ARMERO [1993] in the infinitesimal problem, with a
direct relation of H with the energy expended in the material to create the discontinuity
surface (‘fracture’ energy). The reader is referred to this last reference for further details.

The regular part of the consistency condition given by (3.17) leads to the relation

0=ngacd+d=ng T+, (3.23)
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Ve 7 . . " . . .
where 7 = a.d is the elastic stress response outside the discontinuity I Therefore, we
can write

Ve

j=—-H)\p=-ng T (3.24)

where we have made use of (3.22). The combination of this equation with (3.18) implies
that the strength of the rate of the jump (, defined by

Lyle] =:Cm with lm|| =1, (3.25)
is obtained as
1 c(mneom)’
(= ——ny: T .o A i(nom) (3.26)
ZH I Mg - ATy

Therefore. we conclude that the rate of the jump is given directly in terms of the localized
softening modulus A, and the elastic evolution of the stresses 7 outside the band.

Remark 3.2. The localization mode is characterized by elastic unloading outside I, since
the regular part of A vanishes by (3.11). The Kuhn-Tucker loading/unloading conditions
(2.15) can be written equivalently in the classical form ny : ¥ < 0 in this case. This
relation together with the consistency relation (3.24) lead to ¢ > 0, which together with
Apr > 0 implies that we must have necessarily a negative modulus # < 0in (3.22), implying
the softening response of the material along the discontinuity. [

In summary, this analysis shows that the softening response of the material is lo-
calized on the discontinuity surface, and characterizes together with the elastic unloading
outside this discontinuity the jump observed on I'. We further assume that the response
of the material after bifurcation to the localization mode continues with these character-
istics. on a fixed material orientation N determined by the initial localization condition
(3.19) and a localized softening law between T’ with [¢]. leading to a stress-displacement
relation along I'. See Section 5.1 for a representative example of these considerations.

4. A New Finite Element Method for Strain Localization.

Previous sections have characterized the different features of strain localization in
general multiplicative plasticity models. In particular, the localization mode involving
the formation of a strong discontinuity in the deformation ¢ and corresponding singular
distributions for the strain measures has been identified. The numerical solution of the
problem has then to be able to reproduce these features if a correct simulation of these
phenomena is to be expected. In this respect, two important issues need to be resolved

correctly:
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Node (1)

Discontinuity

a)

FIGURE 4.1. Finite element interpolations. a) Regular triangu-
lation of B. b) Discontinuous interpolation function.

1. The localized softening law (3.22) together with the evolution equation for the jump
discontinuity (3.26), leading to a localized dissipation along the discontinuity I", have
to be taken under consideration if a numerical solution independent of the mesh size
1s to be obtained.

2. Numerical solutions independent of the mesh alignment require an accurate reso-
lution of the kinematics of strong discontinuities, as described in Section 3.1. The
inclusion of the singular distributions identified in previous sections in the actual
finite element interpolations (i.e., solving the limit problem consisting of a strong
discontinuity with no smoothing or regularization) appears as a requirement for this
purpose.

Standard Galerkin methods do not meet such conditions, thus leading to a overly
diffuse resolution of the discontinuities with a strong mesh dependence. The method
described below falls within the class of enhanced strain methods proposed originally for
the infinitesimal range by SiM0O & RIFAI [1990], and later extended to the finite strain
range by SIMO & ARMERO [1992] and SiMO, ARMERO & TAYLOR [1993]. The essence
of the proposed technique is a local enhancement of the finite element interpolations that
includes explicitly the localization mode identified in the previous analysis. We present
in this section a brief description of the finite element methods that we are currently
developing following these ideas.
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4.1. A class of enhanced strain methods for localization.

Consider a regular finite element triangulation B = Ut B, of the reference configu-
ration B ~ B, as depicted in Figure 4.1.a. Let " € V" be a finite element interpolation of
the deformation ¢ = (X ) satisfying the essential boundary conditions on 9.B". Denote
by V! the associated test functions, defined explicitly by

Vh = o € (OB mlge € [PEBY™»  and 0 =0} (4.1)

for the space of complete polynomials PE(BY) of order < k. For concreteness, we shall
consider in this presentation the simple setting defined by the above Galerkin interpolations
based on triangular elements for ngim = 2. The method proposed herein extends easily
to general cases involving quadrilateral elements, and general mixed finite elements based
on separate interpolation of the deformation and, for instance, the pressure fields. In fact,
the numerical simulations presented in Section 5 take as base element for the formulation
of the enhanced elements the mixed quadratic triangle P2 bubble /P1 of CROUZEIX &
RAVIART [1973] depicted in Figure 5.1.a.

Standard finite element formulations of the type (4.1) result in a continuous interpo-
lation of the deformation . Therefore, they do not possess the localization mode identified
in the analysis presented in Section 3. The key idea of the newly proposed finite element
methods is to introduce this mode by a local enhancement of the deformation gradient,
following (3.3), as

F!" = Grablp"|+ FI' . (4.2)
N e’ N

conforming  enhanced

After the developments of Section 3.1, we define the enhanced deformation gradient 17’6” as

~ 1 , - .
Flg = —ri(ee® N) + (e @ N) o (4:3)

h
e,loc

(3.19) for a normal N. In (4.3), NG denotes the normal to the side opposite to node
(i) sustaining the discontinuity I", and h{Y) is the corresponding altitude, as depicted
in Figure 4.1.b. The enhanced deformation gradient (4.3) implies a piecewise constant

at the elements B where localization has been detected with the localization condition

approximation, discontinuous across elements of the localization mode (3.3), with the local
clement parameters a, € R™™ approximating the spatial jump =

Remarks 4.1.

1. The motivation behind (4.3) can be found in the local decomposition (3.1). with the
discontinuous part expressed in terms of the discontinuous function

Mr(X)=Hp(X)— PM(X) in the neighborhood 20 C B, (4.4)
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instead of the Heaviside function Hp(X) alone, for some continuous function Y
such that Mp

sor = 0. A finite element approximation of My is obtained as

MMX):=Hp(X)-NO(X) in B, (4.5)

e,loc *
where N is the linear shape function

(X — X®). N

B =1 -
N 1 R(1) ’

(4.6)

for node (i) with reference coordinates X @, The function M2(X) is depicted in
Figure 4.1.b. Noting that GRaD[N®] = ~N® /h() a simple calculation shows that
F = GRAD[M}].

2. It is important to emphasize that the construction behind (4.5) is not to be under-
stood as defining an incompatible mode field in B”. Instead, the proposed method
falls within the class of assumed enhanced strain methods with the introduction of
the enhanced deformation gradient (4.3). The goal is not to construct a discontinuous
approximation of the discontinuous deformation ¢ in (3.1) following, in particular,
the different surfaces that appear in this case, but rather to enhance the strain field of
the element to capture accurately the localization mode involving singular distribu-
tions, as identified in Section 3.2. In particular, the form of the enhanced deformation
gradient in (4.3) motivated by the renormalization (4.4) will be exploited in the fol-
Jowing section for the construction of the enhanced strain variations satisfying the
patch test. |

4.2. The enhanced strain variations.

The introduction of the local enhanced parameters c. requires the addition of a
new set of equations to the original weak equilibrium equations (2.1). Following the ideas
originally proposed in SIMO & ARMERO [1993], the finite element method proposed herein
is based on the weak equations

/P:GR,AD[n]dB:/f-ndB—}— T.-ndl Ve Vi,
B B 8.3 (4.7)

/ P.-H'"dB=0 VH" ¢ H' and e=1,2,... (localized elements) ,
Be,loc

for enhanced variations H! € H". BEquation (4.7); corresponds to the usual weak state-
ment of the balance of momentum, imposing weakly the equilibrium of tractions across
stress discontinuities (element boundaries) in particular. On the other hand, the test func-
tions H " are designed such that (4.7)2 imposes weakly the compatibility condition (2.5)
across the discontinuity I7. To this end, and motivated by (4.3), we set
¢
Al =S (B oN)+(BON) i BeR?, (4.8)

it 4
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where A, is the reference area of the element B, ., and 1% is the weight assigned to the
integration of the delta function dr. that is

/ 5 dB:/ ar =15, (4.9)
JBh rk

e, loc

where I'" = I'U BQ loe- One can think of {7 as the length of the discontinuity line in the
element, but as noted in Remark 4.2.1 below the final formulation is independent of the
parameter [{.

The enhanced strain variations (4.8), satisfy the consistency condition set forth in
SiMo & ARMERO [1993]. Namely, constant nominal stress fields are in the solution space
(patch test), since in this case (4.7)7 is satisfied identically as

~ o LS
/ H! dB= (8. ® N)° [—-f Ac+15]1=0 VB, € R? | (4.10)
Bh “le

e,loc

for all localized elements Bﬁzoc-

GRraD[V] have null intersection, as required in the aforementioned reference.

Furthermore, the spaces fi? generated by (4.8) and

Inserting (4.8) in (4.7)q, it follows that this last equation imposes

1 f 1
il Tr =
];* . Feh r J4(:Y

/ PN dB, (4.11)
Bh

e,lac

where T = PN |pn. For the case of a linear triangle, involving constant stresses P at the
element level, this expression reduces to

Ty = — / PN dB . (4.12)
. Bh

"/ e
e, loc

Here, the nominal driving traction T is obtained explicitly from the localized softening law
along I" in terms of the jump o, and the regular stress field P is given by the continuum
constitutive law in BQJOC\F e" For higher order triangles, T is approximated similarly by
a constant field at each element, as conjugate variable to the jump a., recovering in this
fashion (4.12). One can thing of performing the integration in the left-hand-side of (4.11)
by a single quadrature point with weight 15.. See Remark 4.2.1 and Remark 4.3.1 in this

respect.

Remarks 4.2.

1. We note that the basis for the interpolation of the enhanced part of the defor-
mation gradient (4.3), and the enhanced variations (4.8) differ unless (I5/Ac)N =

(1/h)N . This situation corresponds to the case when '’ is aligned with one
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side of the triangle. This leads to a non-symmetric tangent matrix in the localized
elements. This non-symmetry could have been avoided by choosing the same type
of interpolation (4.8) in (4.3). However, the formulation presented herein has shown
a sharper resolution in capturing strong discontinuities, at the price of symmetry for
non-aligned meshes.

2. Equation (4.12) and, therefore, the whole formulation is independent of the particular
value of the parameter [$. This parameter introduces simply a scaling of the weak
equation (4.7)2. The choice (. = (N - N®)A,/h® is preferred, since then symmetry
of the linearized equations is recovered in the aligned case, as discussed above.

4.3. Some remarks on the numerical implementation.

An important characteristic of the finite element method outlined in the previous
sections is that the delta functions appearing in (4.3) and (4.8) are not smoothed out by
an especial regularization technique, as originally presented in SiMO, OLIVER & ARMERO
[1993]. Instead, these singular distributions are integrated explicitly leading to the nonlin-
ear finite element equations

Tvel

R := ot — / blrdB =0,
é s
. ’ (4.13)
rezzw/ geT‘rdB—- Tr dl'=0.
B?,loc - wah

Clearly, the consequence of maintaining explicitly ér in (4.8) is translated in the integral
along I'". As indicated in (4.13), the final implementation is carried out in the current
configuration " (B"), where the sparsity of the matrices involved is recovered (see e.g.
SiMo & ARMERO [1993]). In this way, b, in (4.13) denotes the standard (sparse) strain
operator associated to the interpolation of the conforming part in V!, whereas g, is defined
from the regular part of (4.8) as g = —(lg/A:) n.

Linearization of (4.13) is performed explicitly, carrying material and geometric terms
(details are omitted), leading to a numerical implementation that requires only simple
modification of existing finite elements. Namely, equation (4.13); has to be formed and
solved locally at the elements where localization has appeared. An important feature of
the proposed approach is that no extra numerical parameters, like a characteristic length
common in numerical analyses of the problem at hand, are required. The correct mesh-size
independence of the solution is accomplished by the explicit consideration of the localized
softening law (3.22) along the strong discontinuity I'. Similarly, numerical simulations
has shown the insensitivity of the proposed methodology to the mesh alignment, as the
example in Section 5 illustrates.
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Remarks 4.3.

1. As described in Section 4.2, the line integrals along I " are computed simply as
fr@(') dI' = (-) l%, since the integrands are approximated by constant fields at
the element level. Furthermore, the area integrals in (4.13) do not require a special
quadrature rule as it is the case when a band of finite width is present in the element.

9. The extra enhanced modes . are only added and solved for when the inception of
localization is detected with condition (3.19) at any quadrature point of the element.
The element has the option of exciting the two modes corresponding to the two
different normals solution of this equation. Adjacent elements pass the information
required to determine the correct orientation of the normal, so only one mode is
excited in a regular propagation of the slip-line. Alternative procedures for this
purpose will be addressed in detail in a future publication.

3. The efficient implementation of the proposed method involves the elimination at the
element level of the scalar parameter o, through a static condensation. See SIMO &
ARMERO [1993] for further details. =

5. A Representative Model Problem.

This section considers the representative model example of plane strain Jy-flow the-
ory. The results obtained in Section 3 are particularized for this case in Section 5.1.
Section 5.2 includes representative numerical simulations involving this model problem
that demonstrate the independence of the proposed finite element method of the size and
the alignment of the mesh.

5.1. Strong discontinuities in plane strain J;-flow theory.

The case of interest, plane strain Jo-flow theory, is recovered from the equations
presented in Section 2.2 by setting @ =0 (i.e. no plastic spin) and

3(r) = fj | devir) (5.1)

where ||s||? = s;;si;. The elastic model assumed in the simulation of Section 5.2 corre-
sponds to a regularized logarithmic elastic law (regularized Hencky’s law), defined by the
stored energy function

WAL AS) = bk (log J9)? + [(mg 36)° + (log 7\5)2} (5.2)
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where {A], A5} denote the elastic principal stretches (square roots of the eigenvalues of C€)
for this plane strain case, and A§ = Jem1/3 AG for A =1,2. Note that the yield surface
(5.1) implies the usual isochoric character of the plastic flow, since

- 3 dev
Ny = Oro = \/; HTZ%’_—]]—” = t.r[n¢] =0, (53)

leading to J? = det F? = 1 and, consequently, J = J° = A{A5. In (5.2), x and p denote
the bulk and shear modulus, respectively.

The results presented in Section 3.1 apply directly to this case, in particular, the
localization condition (3.19) involving the perfectly plastic tangent. A particularly simple
expression of this condition is obtained by noting the different order of magnitude of
the yield limit o, (and, consequently, the stresses 7) and the elastic moduli in metals
(oy/p =~ 107?). Neglecting then small geometric terms of order o(a, /i), we conclude as a
first approximation

1 <
0= er.{:fv H¢ﬂ ~ {’n . I:ae — maen¢ 15 a€n¢J n} -£’U HLP]]
= sym [Ly[e] @ n] x ng (5.4)

The approximation in (5.4) is classical for the problem at hand. Details can be found
in ASARO [1983], together with complete evaluations of the localization condition (3.19)
without the involvement of the above approximation. The reduced localization condition
(5.4)2 will suffice for our purposes. In this case, (5.4), coincides with its counterpart in
the infinitesimal case (ARMERO & GARIKIPATI [1995]). From (5.3) we conclude

tring) =0 = Lyfe] n=0 (5.5)

recovering then the classical concept of a slip-line. Moreover, condition (5.4), implies that
the slip-line direction IN bisects the principal stress directions in a first approximation; see
ARMERO & GARIKIPATI [1995] for details.

Similarly, the expression for the evolution of the jump (3.26) in the localization mode
can be simplified as follows. Consider the orthonormal basis {M, N} in the reference
configuration I3, with IN being the unit normal determined by the localization condition.
Consider the convected basis {m*, n*} in the current configuration () defined by

mt=FM and n'=FN, (5.6)

where F is the regular part of the deformation gradient as introduced in Section 3. The
vector m! is not a unit vector necessarily, but it satisfies m*-n = M-IN = 0. A particularly
convenient expression of the jump [¢] is obtained in the convected basis (5.6) as

[¢] = &nnt + &,m? = J=F o] =N +&,M, (5.

ot
-1
~—
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with normal £, and tangential £, components. The use of the relation (3.9)5 leads to the
explicit expression
£y]p] = Eunt + Em? (5.8)

for the Lie derivative of the jump. Relation (5.5) implies én =0, and &, > 0 by (3.24)
and (3.26), implying the irreversibility of the localized flow (the vector M is assumed in
the direction of the slip). Equation (3.26) implies then

1 o a.n,: (n® mﬁ)s

= =Ny T where == . 5.9
Sm =H ¢ r Ng @ AcNy (5-9)

Define the resolved shear stress (the “Schmid stress”) as

T, =m' - mn=ml Tr. (5.10)
A calculation using relations (5.6) and (5.10) results in

T =mt-[F +dr — vdn, (5.11)

see ASARO [1983]. Neglecting small geometric terms of order o(a, /1), relation (5.9) implies
as a first approximation the softening law

Tm - H(gm)ém s with ém z 0 s (512)

for some general softening modulus H = H(¢,,). The law relates the rates of resolved shear
stress T, with the rate of slip ém, and is. therefore, an objective relation. As noted in
Section 3, after localization the material direction IN is assumed fixed, with the softening
law assumed along the discontinuity. The classical Schmid law is. therefore, effectively
recovered in this case. The reader is referred to the comprehensive review article by
AsaRO [1983] for further details.

Remark 5.1. The finite element method described in Section 4 approximates the jump
Tl by a. € R2 at the element level. In the present case, however, the normal component
of the jump vanishes by (5.5). In the numerical simulations presented in the following
section, this constraint is regularized by penalization as

T, i=n -Tr=hkn . (5.13)

where &, = n - a,, and penalty parameter k.. In the limit as k, — oo, the constraint
(5.5) is recovered, while maintaining the structure described in the Section 4 for the finite
element method. Formulations imposing (5.5) exactly can be easily devised. The finite
element equations are then completely defined with the nominal driving traction defined
as

Tr = Tyn + T,ym’ ,  where m’=F 1M, (5.14)
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R ® displacement
l A displacement
(higrarchich bubble)
O pressure

(discontinuous)

a) b)

FIGURE 5.1. Tension test. a) Problem definition (8 x 3 compu-
tational domain). b) Base element: P2 & bubble/P1, with (7 node)
quadratic displacements and discontinuous linear pressure.

with T, and T}, given by (5.13) and (5.10), respectively, in terms of the slip &, = m” - a.
and (regularized) normal jump &, = n - a.. [

5.2. Representative numerical simulations.

This section presents a number of representative numerical simulations based on the
new finite element methods proposed herein. The goals are twofold: to show the indepen-
dence of these methods on 1) the mesh size, and 2) the mesh alignment. For this purpose,
the simple setting given by the model problem of plane strain Jo~flow theory described in
Section 5.1 is considered. In particular, the regularized logarithmic hyperelastic law (5.2) is
assumed with x = 164.206 and p = 80.1938. The yield limit is o, = 0.45, with a (localized)
linear softening law (3.22) with softening modulus A = —5. As described in the previous
sections, the softening is introduced with the localization condition is satisfied for some
N. In this case, this condition reduces to (5.4)2 which can be expressed in closed-form
(see ARMERO & GARIKIPATI [1995]), with the slip-lines bisecting the principal directions.

We consider the plane strain tension test as a benchmark problem; see TVERGAARD
& NEEDLEMAN [1984] and references therein for other numerical studies of this problem.
The problem definition is depicted Figure 5.1.a. A small material imperfection is intro-
duced to trigger the localization of the flow in these perfectly symmetric situation; the
yield limit is reduced by 1% in one element at the lower boundary. The mixed triangle
P2 4 bubble/P1, consisting of quadratic interpolations of the displacement field with a
hierarchic bubble (7 node triangle), and linear discontinuous pressure interpolation, is con-
sidered as the base element to which the enhanced modes described in Section 4 are added.
This element, depicted in Figure 5.1.b, was originally proposed in CROUZEIX & RAVIART
[1973] and satisfies the LBB condition. The motivation for the consideration of this type
of elements is the need to avoid the locking response of standard isoparametric elements
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FIGURE 5.2. Tension test. Deformed configurations at an im-
posed displacement of 0.75 computed with the P2 & bubble/P1 tri-
angle with enhanced modes: a) Structured mesh, 192 elements; b)
Structured mesh, 768 elements; ¢) Unstructured mesh, 100 elements;
d) Unstructured mesh, 254 elements. The elements with excited en-
hanced localization modes are shown in gray.

due to the isochoric plastic response present in the problem before localization.

Figure 5.2 shows the solutions obtained by the proposed enhanced finite elements.
Structured and unstructured meshes are considered, involving from 100 to 768 elements.
The deformed configurations shown in this figure demonstrate the ability of the elements to
simulate the localization mode with a complete general mesh unrelated to the final solution.
The elements shown in gray scale have excited enhanced modes. More importantly, the
load-displacement curves are included for the different simulations in Figure 5.3 showing
the independence of the present methods on the mesh size and alignment. The curves for
the four different meshes literally overlap.

Standard Galerkin methods not only show the well-known strong dependence on
the mesh size, but also strong dependence on mesh alignment. Good resolution can be
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Tip displacement

FIGURE 5.3. Tension test. Load-displacement curves for the
different solutions shown in Figure 5.2. The independence of the
solution on the mesh size and mesh alignment is readily apparent.

a) b)

FIGURE 5.4. Tension test. Comparison of the solutions obtained
with the P2 @ bubble/P1 triangle a) with, and b) without enhanced
localization modes, for an unstructured mesh (100 element) in the
perfect plasticity limit (H = 1072). Relative slip = 0.45. The overly
stiff (and non-objective) response of standard mixed methods is to
be contrasted with the enhanced element. The elements with excited
enhanced localization modes are shown in gray.
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obtained with aligned meshes, but in general they are too stiff when general unstructured
meshes are considered. Figure 5.4 shows the solution obtained by the mixed triangle of
Figure 5.1.b with and without modes, and a unstructured 100 element mesh. The perfectly
plastic limit is effectively recovered by setting H = —10~%; for the elment without modes,
a continuum (non-localized) linear softening law is considered with this modulus. While
the enhanced formulation is able to capture the localization of the strains, the standard
mixed triangle leads to a solution involving diffuse necking. In both cases, the material
imperfection is present, but due to the overly stiff response of the mixed element without
the modes the localization mode is lost in this case.

6. Concluding Remarks.

An analysis of strong discontinuities has been presented in the fully nonlinear con-
text of multiplicative finite strain plasticity with strain-softening. This analysis shows
that solutions involving this type of discontinuities can be completely characterized by
making formal sense of the continuum relations in distributional form. In particular, a
distributional softening modulus has been obtained for the localization mode. Physically,
the softening response of the material is localized along the discontinuity.

This analysis is a first formal attempt to extend to the finite strain range some well-
known results of discontinuous solutions in infinitesimal plasticity. A complete mathemat-
ical description of the results and ideas presented herein are currently under investigation.
In fact, a complete existence and regularity theory for finite strain plasticity is still lacking
and appears to be a very challenging task.

In addition, the introduction of the localization mode identified in the analysis in
finite element interpolations through the enhanced strain methodology has led to finite
element formulations especially suited for this class of problems. These methods lead to a
sharp resolution of strong discontinuities, and have shown not only their independence to
the mesh size, but also a strong insensitivity to the mesh alignment. These properties have
been accomplished by the introduction of singular distributions (delta functions) in the
finite element spaces, without any kind of smoothing or regularization. The final numerical
implementation does not require in this manner any numerical ad-hoc (regularization)
parameter.
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