
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Efficiently Merging r-indexes

Permalink
https://escholarship.org/uc/item/8086b9pc

Authors
Oliva, Marco
Rossi, Massimiliano
Sirén, Jouni
et al.

Publication Date
2021-03-26

DOI
10.1109/dcc50243.2021.00028

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8086b9pc
https://escholarship.org/uc/item/8086b9pc#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Efficiently Merging r-indexes

Marco Oliva∗, Massimiliano Rossi∗, Jouni Sirén†, Giovanni Manzini‡,
Tamer Kahveci∗, Travis Gagie§ and Christina Boucher∗

∗University of Florida §Dalhousie University
Gainesville, FL, USA Halifax, Canada

‡University of Eastern Piedmont †University of California Santa Cruz
Alessandria, Italy Santa Cruz, CA, USA

Abstract

Large sequencing projects, such as GenomeTrakr and MetaSub, are updated frequently
(sometimes daily, in the case of GenomeTrakr) with new data. Therefore, it is imperative
that any data structure indexing such data supports efficient updates. Toward this goal,
Bannai et al. (TCS, 2020) proposed a data structure named dynamic r -index which is
suitable for large genome collections and supports incremental construction; however, it is
still not powerful enough to support substantial updates. Here, we develop a novel algorithm
for updating the r -index, which we refer to as rimerge. Fundamental to our algorithm is
the combination of the basics of the dynamic r -index with a known algorithm for merging
Burrows-Wheeler Transforms (BWTs). As a result, rimerge is capable of performing batch
updates in a manner that exploits parallelism while keeping the memory overhead small. We
compare our method to the dynamic r -index of Bannai et al. using two different datasets,
and show that rimerge is between 1.88 to 5.34 times faster on reasonably large inputs.

1 Introduction

The 1,000 Genomes Project [1] was largely completed in 2012 and the 100,000 Genomes
Project milestone was reached in 2018 [2]. Read alignment tools — such as BWA [3],
Bowtie [4, 5] and SOAP [6] — have been fundamental to the analysis of these datasets.
They take as input a set of sequence reads and one or more reference genome(s),
build an index from the reference genomes, and use this index to align the reads to
the genome(s) allowing a small number of insertions and deletions. Read aligners use
the FM-index [7] to store the indexed genomes in a compressed form. The FM-index,
which consists of the Burrows-Wheeler transform (BWT) of the input text, a rank
data structure over the BWT and the suffix array (SA) sampled at constant size inter-
vals, cannot effectively scale to terabyte sized datasets because the space used by SA
samples grows linearly with the input size. In an effort to build an index in sub-linear

MO, MR, and CB are funded by the National Science Foundation (NSF) IIS (Grant No.
1618814), NSF IIBR (Grant No. 2029552) and National Institutes of Health (NIH) NIAID (Grant
No. HG011392 and R01AI141810). MO and TK are funded by US NAVY (Grant No. N62473-18-2-
0011). TG is funded by NSF IIBR (Grant No. 2029552) and NIH NIAID (Grant No. HG011392) and
NSERC Discovery Grant RGPIN-07185-2020. JS was supported by the National Human Genome
Research Institute (Grant No. 1U01HG010961-01, 1R01HG010485-01 and 1U41HG010972-01). GM
was partially supported by PRIN (Grant No. 2017WR7SHH) and by INdAM-GNCS (Project
2020MFAIS-IoT). CB is funded by NSF SCH: INT (Grant No. 2013998).

space, Gagie et al. [8] made a significant breakthrough by defining a variant of the
FM-index whose space requirements is proportional to the number of runs r of the
BWT. Hence, they refer to their index as the r -index. Compared to the FM-index, the
r -index is able to locate all occurrences of a pattern in a text of length n in optimal
time using O(r log(n/r))-space. This is possible since the SA samples are stored only
at the beginning and at the end of each run of the BWT.

Conceptually the result of Gagie et al. was a significant step forward, but it did
not lead to efficient construction of the r -index. This was only later achieved by
Boucher et al. [9] and then Kuhnle et al. [10], where they developed Big-BWT, an
algorithm that is able to construct the r -index for very large datasets. It is based on
a preprocessing step where a scan of the text generates a dictionary and a parse that
are, in turn, used to build the BWT and the SA samples. The construction space of
the BWT and the SA samples is proportional to the size of the dictionary and parse.
This result proved to be extremely useful in bioinformatics where the data is highly
repetitive.

Although Big-BWT is very effective to build the r -index for large datasets, every
time a new sequence is included in the dataset, the r -index has to be rebuilt. This
overhead may be affordable when the dataset is small, but it is impractical when the
size of the update is only a small fraction of the original index. For this problem,
Sirén [11] and Ferragina et al. [12] proposed solutions for the FM-index which suc-
cinctly merges two BWTs. Later refined in [13], the BWT merge algorithm by Sirén is
based on the idea of computing the rank of each suffix extracted from one BWT with
respect to the other. Those ranks are then used to guide the merge of the characters
of the two BWTs. Prezza and Rosone [14] recently proposed an alternative approach
to merge two BWTs. Their solution consists in building the Document Array, an
array that will tell us whether the i-th entry of the output BWT comes from the first
or the second BWT in input. While these two approaches solve efficiently the problem
of merging two BWTs they do not address the problem of merging two r -indexes.

Recently, Bannai et al. [15] proposed a dynamic version of the r -index. It main-
tains a data structure to compute the LF-mapping and a balanced search tree for
the predecessor search on the SA samples. Both these operations are performed in
O(log r) time. Hence, the backward search in the dynamic r -index takes O(log r)-
time per character. Even though their method, denoted as dynamic r -index, allows
to incrementally build the index for the dataset, in practice its construction takes
much more time than Big-BWT.

The ability to update an index significantly extends its practicality. Being able
to store only the index without the need to store the uncompressed file for future
updates makes the database more manageable. Moreover, as in the case of the 1,000
Human Genomes project, databases are updated as projects proceed. Updating the
index allows us to take advantage of the information contained in the new sequences
promptly.

In this paper, we focus on updating the r -index without relying on dynamic data
structures. We devise and implement an algorithm for efficiently merging two or
more r -indexes, which we refer to as rimerge. We formally define the steps of
rimerge, and prove that it correctly builds the r -index for the desired input. Intu-

itively rimerge operates in two steps. It starts computing the position where every
suffix extracted from the second r -index should be inserted in the first r -index and,
simultaneously, computing the candidate SA samples for the output index. Once the
first step is completed it proceeds interleaving the two indexes using the information
computed previously.

We demonstrate the utility of our method by reporting the time, space and mem-
ory needed to update an r -index built from two different genetic datasets: 1,512
haplotypes of chromosome 19 from the 1,000 Genomes Project [1], and 7,048 strains
of salmonella from GenomeTrakr [16]. We show that although dynamic r -index is
faster on small inputs (less than 8 haplotypes of chromosome 19, and less than 32
strains of salmonella), rimerge quickly becomes faster than the dynamic r -index.
rimerge was almost two times faster for 16 haplotypes and over five times faster
for 256 haplotypes. rimerge is implemented in C++, open source and available at
https://github.com/marco-oliva/rimerge.

2 Background

In this section, we introduce the notation and concepts that we will use in the paper.
We assume the reader is familiar with basic index based data structures, including
self-balancing search trees, and refer the reader to Navarro [17] for a further exposition
of these concepts.

Merging BWTs Given two texts S[1..n] and T [1..m] terminated by $S < $T

respectively, we want to compute the BWT of the text ST = S[1]..S[n]T [1]..T [n] as
the result of the merge of BWTS and BWTT . As described in [11], the first step to
merge the two BWTs is to compute the rank of each suffix of T in the set of sorted
suffixes of S. This can be done by backward searching T in BWTS [18]. The key
observation is the following. Given an index i > 1 and the rank ki of the i-th suffix
of T , T [i..m], we can compute the rank ki−1 of the (i− 1)-th suffix of T by counting
how many suffixes of S, smaller than T [i..m] are preceded by T [i − 1]. This can
be accomplished using the LF-mapping, i.e. ki−1 = LFS(ki, T [i − 1]).Here we use
the notation LF(i, c) to specify the character we are computing the LF-mapping on,
therefore LF(i) = LF(i,BWT[i]). We store the ranks of all suffixes of T in an array
called rank array RA. The ranks are stored in suffix array order of the suffixes of T .
Formally, we define the rank array RA[1..m] as follows, for all i = 1, . . . ,m, RA[i] =
|{j | S[j..n] ≤ T [SAT [i]..m]}|. To compute the rank array during the backward
search of T in BWTS, we reconstruct T using the LF-mapping. Since $S < $T , we
set RA[1] = 1 and provided we have computed RA[i], the value of the LFT [i]-th entry
of the rank array is computed as RA[LFT [i]] = LFS(RA[i], BWTT [i]). One important
property of the rank array is that it is monotonically non-decreasing, i.e. for all
1 ≤ i < j ≤ m, RA[i] ≤ RA[j]. The information contained in RA is then used to
merge BWTS with BWTT . We insert, between the symbols BWTT [i] and BWTT [i+1],
all symbols in BWTS[RA[i] + 1..RA[i + 1]]. The merging algorithm is summarized in
Algorithm 1, and Figure 1 shows how to use the RA to interleave two BWTs.

Algorithm 1 BWT Merge

Input: The BWTs of two texts S[1..n] and
T [1..m].

Output: The BWT of the text ST .
1: procedure merge(BWTS ,BWTT)
2: i← 1,RA[1]← 1
3: while BWTT [i] 6= $ do
4: RA[LFT [i]]← LFS(RA[i],BWTT [i])
5: i← LFT [i]
6: end while
7: i← j ← k ← 1
8: while i ≤ m do
9: while j ≤ RA[i] do

10: BWTST [k]← BWTS [j]
11: k ← k + 1, j ← j + 1
12: end while
13: BWTST [k]← BWTT [i]
14: k ← k + 1, i← i + 1
15: end while
16: while j ≤ n do
17: BWTST [k]← BWTS [j]
18: k ← k + 1, j ← j + 1
19: end while
20: return BWTST

21: end procedure

Run-length encoded BWT and the r-index Given a text S and its BWT,
a run in BWT is a maximal substring of equal characters in BWT. The run-length en-
coded BWT is an equivalent representation of the BWT where each run is represented
as the character of the run and its length.

The r -index [8] is an evolution of the FM-index designed to better exploit the
repetitiveness of the input which can be approximately measured by r, the number of
runs in the text’s BWT. The r -index stores the SA values in the positions correspond-
ing to the beginning and the end of each run, and stores the BWT as a run-length
encoded string. Therefore, the space needed is O(r). In order to compute the samples
not stored with the index, the r -index uses a function that, given the value of the
suffix array in position i, allows to compute the value of SA in position i + 1. This
function is implemented as a predecessor data structure that stores the SA samples
at the end of each run. We refer to this function as φ.

Dynamic r-index Bannai et al. [15] presented a dynamic version of the r -index
that is based on the following observation. Given a text S and its BWT, if we want
to prepend a character c to S we can compute the rank of cS among the suffixes of
S as LFS(i, c), where i is the index of the end marker of S in the BWT. We then
replace the end marker with c and insert a new end marker between LFS(i, c) and
LFS(i, c)+1. During this process we need to update the set of SA samples. Replacing
the end marker with c may cause the join of two runs, while inserting the end marker
in position LFS(i, c) may split a run in the BWT. In the first case, we just need to
remove the samples corresponding to the end marker and to the joined runs, while
in the second case we need to insert three new samples: one corresponding to the
end marker and the two samples at the beginning and at the end of the new runs
generated by the split. To address this issue, we make use of the following lemma.

Lemma 2.1 ([15]) Given a text S[1..n], its BWT and the SA samples at the begin-
ning of each run, if we know j = SA[k + 1] for some position k, we can compute, for
any character c, the text position j′ such that S[j′..n] is the lexicographically smallest

suffix that is larger than cS[SA[k]..n] (if such S[j′..n] exists).

The intuition behind Lemma 2.1 is to look at BWT[k+1..n] and whether it contains
the character c or not. We have three cases. Either i) BWT[k + 1] = c and thus,
j′ = SA[k+1]−1; or ii) BWT[k+1] 6= c and the first occurrence of c in BWT[k+1..n]
is the beginning of a run, at which we have the corresponding SA sample stored so
we can compute the value of j′; or iii) BWT[k + 1] 6= c and BWT[k + 1..n] does not
contain the character c, so we look for the first occurrence of the smallest character
c′ > c that occurs in S, which is also the beginning of a run at which we have the
corresponding sample stored so we can compute the value of j′.

Symmetrically to Lemma 2.1, we can compute the lexicographicaly largest suffix
smaller than cS[SA[k]..n] provided that we have the SA samples at the end of each
run of the BWT.

Lemma 2.2 Given a text S[1..n], its BWT and the SA samples at the beginning of
each run, if we know j = SA[k] for some position k, we can compute, for any character
c, the text position j′ such that S[j′..n] is the lexicographically largest suffix that is
smaller than cS[SA[k]..n] (if such S[j′..n] exists).

3 Merging r-indexes

A simple way to merge two r -indexes is to merge the BWTs and then, as a second
step, reconstruct the missing SA samples and discard those not needed. The missing
samples could be reconstructed using the predecessor data structure and the function
φ of the two texts S and T . However, this trivial approach is time consuming since
the number of steps that may be necessary is proportional to the average length of a
run in the r -indexes.

Our algorithm avoids the worst-case complexity of the trivial algorithm by taking
advantage of the construction of the rank array to build a set of candidate samples.
In order to present our algorithm we first describe how to: i) reconstruct the missing
samples from S, and ii) reconstruct the missing samples from T . Both sets of samples
are computed during the construction of the rank array. In the following, we first
describe T because it is the more immediate given that the SA samples are available
during the backward search. We note that since we do not need the predecessor data
structure, we store only the run-length encoded BWT [19] and the SA samples at the
beginning and at the end of each run.

3.1 Computing the Missing Samples of T

The missing samples correspond in BWTST to characters in the middle of a run that
become the beginning or the end of a run. In the case of T , this may occur when
two elements in a run have different rank values in RA or when a character from T
is placed in a a run of S of a different character. While we extract all the suffixes of
T from BWTT to compute their rank relative to S, we also compute the associated
suffix array values. For each distinct value of RA, the only positions where we could

break a run in BWTT are the first and the last occurrences of the current value of
RA. All the suffix array samples corresponding to runs ends/starts between the first
and the last occurrence are also samples of BWTT and no suffix of S will be placed
in this interval.

We make use of two self-balancing search trees T` and Tr. The self-balancing
search tree T` (resp. Tr) stores the values of SAT corresponding to the position of
the first (resp. last) occurrence of each distinct value of the rank array RA. Since we
want to compute T` and Tr while we compute the rank array, we store in addition
the value of the position in which each suffix array value occurs. Thus, for each new
value of RA, we keep the suffix array value associated with the smallest (resp. largest)
position computed so far.

3.2 Computing the Missing Samples of S

We need to reconstruct a sample of S when a character c of BWTT is placed between
two characters of BWTS different from c. We check for this condition while computing
the rank array values. We use Lemmas 2.1 and 2.2 to compute the missing samples
of the suffix array of S. As well as for the missing samples of T , for S we define one
self-balancing search tree S which stores, for each distinct value of RA, the values of
the suffix array of S in positions corresponding to the value of RA and the same value
incremented by one. Since we use Lemma 2.1 to compute the missing samples of S,
we require that the second value of SAS is sampled. An example of the merge of two
r -indexes is shown in Figure 1.

3.3 rimerge: Putting it all together

Given two texts S[1..n] and T [1..m] over an alphabet Σ, terminated by $S < $T

respectively, their BWTs and the suffix array samples at the beginning and at the
end of each run of their BWT. We assume without loss of generality that m < n,
otherwise we exchange the role of S and T .

As the first step, we compute the rank array of T with respect to S. We recover
the text T from BWTT backward, starting from T [m− 1], i.e. BWTT [1]. Each time a
new rank array value is computed, we update the data structures storing candidate
samples for the merged BWT described in the previous section.

As second step, we use the rank array and the data structures with the candidate
samples to build BWTST and its SA samples. For each element RA[i] of the rank array,
we write all the elements of BWTS with an index smaller than or equals to RA[i] and
greater than RA[i− 1]. If the first element written from BWTS is the beginning of a
run in BWTST , we need to store the suffix array samples of the end of the previous
run and the beginning of the current run. The sample corresponding to the end of
the previous run is stored in Tr in position RA[i−1], while we compute the sample for
the beginning of the current run as follows. If the current element of BWTS is either
the beginning or the end of a run in BWTS, its corresponding suffix array sample
is stored in SAS, otherwise the corresponding suffix array sample is stored in S in
position RA[i− 1]. When writing the i-th character of BWTT , if this character is the

RA Suffixes of T SAT BWTT BWTS SAS Suffixes of S
1 $ 14 C C 14 $
2 AC$ 12 C T 12 AC$
2 ACAC$ 10 T $ 1 ACGTAGTACTTAC$
2 ACATGTTACAC$ 3 G T 8 ACTTAC$
5 ATGTTACAC$ 5 C T 5 AGTACTTAC$
6 C$ 13 A A 13 C$
6 CAC$ 11 A A 2 CGTAGTACTTAC$
6 CATGTTACAC$ 4 A A 9 CTTAC$
8 GACATGTTACAC$ 2 T A 6 GTACTTAC$
10 GTTACAC$ 7 T C 3 GTAGTACTTAC$
11 TACAC$ 9 T T 11 TAC$
13 TGACATGTTACAC$ 1 $ G 7 TACTTAC$
13 TGTTACAC$ 6 A G 4 TAGTACTTAC$
14 TTACAC$ 8 G C 10 TTAC$

BWTST = C C T C T G $ T T C A A A A A A T A C T T T G G $ A C G
SAST = 14 28 12 26 24 17 1 8 5 19 13 27 25 18 2 9 16 6 3 21 11 23 7 4 15 20 10 22

∗ ∗

Figure 1: Merge of the r -indexes of S = ACGTAGTACTTAC$ and T = TGACAT-
GTTACAC$. From left to right, RA represents the rank array: the next column
reports the suffixes of T in lexicographic order; SAT and BWTT are the suffix array
and the BWT of T ; BWTS and SAS are the BWT and the suffix array of S; The
last column reports the suffixes of S in lexicographic order. The arrows drawn from
BWTT to BWTS show the rank of each character of BWTT with respect to the char-
acters of BWTS. At the bottom BWTST reports the BWT resulting from the merge
of S and T as well as SAST reports the suffix array. The elements of SAT , SAS, and
SAST that are not sampled in the r -index are colored in gray. The asterisks identify
suffixes that are sampled in BWTST but not in BWTT and BWTS. In particular 9 is
a missing sample of S, while 21 is a missing sample of T .

beginning of a run in BWTST , we store the suffix array samples of the end of the
previous run and the beginning of the current run. The sample corresponding to the
end of the previous run is either stored in S in position RA[i] or in SAS, while the
sample for the beginning of the current run is stored in T` in position RA[i].

3.4 Analysis

The computation of the rank array takes O(m) steps, one for each suffix of T . At
each step we update the set of candidate samples stored in a red-black tree which
requires O(logm)-time per operation. Hence, the overall time needed for the first step
of the algorithm is O(m logm). Interleaving the two BWTs, given the information
computed in the first step, takes O(n+m) time. The computation of the SA samples

requires O(r) queries to a red-black tree, where r is the number of runs in BWTST .
In total, the time required to merge two r -indexes is O(n+m+m logm+ r logm).

The rank array usesO(m) words and the red-black tree requiresO(m logm) words.
The LF-mapping and the SA samples take O(r)-space. Thus, the total amount of
memory used by the algorithm is O(m logm+ r).

4 Experiments and Discussion

To evaluate the performances of rimerge we compare it against the implementation
of the r -index of Bannai et al. [15] (dynamic r -index). We performed our experiments
using two distinct datasets. The first one consists in a set of 1,512 chromosome 19
haplotypes extracted from the VCF file of phase-3 of the 1,000 Genomes Project [1].
The second contains 7,048 strains of salmonella from GenomeTrakr [16]. The size of
the dataset containing all the sequences for chromosome 19 and salmonella is 84GB
and 34GB, respectively.

All experiments were performed on an Intel(R) Xeon(R) CPU E5-2698 v3 at
2.30GHz with 32 cores and 125GB of RAM. The machine had no other significant CPU
tasks running, and up to 32 threads of execution were used. The given time statistics
were recorded with the linux /usr/bin/time measurement tool while the memory
usage statistics were retrieved with the malloc count tool (https://github.com/
bingmann/malloc_count).

Using the chromosome 19 data, we built the r -index for the first 1,000 haplotypes
using Big-BWT. Next, we used rimerge to insert new sequences from the remaining
512. The increments size were 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512. The same has
been done with the salmonella dataset. We have built the r -index for the first 5,000
strains and then used rimerge to insert 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1,024
and 2,048 strains. Since the dynamic r -index does not offer an option to serialize the
index we built the index for the first 1,000 chromosome 19 haplotypes and then we
recorded the insertion time and memory for each sequence inserted. We applied the
same strategy on salmonella, starting from 5,000 strains.

We report the wall clock time in seconds of both methods in Table 1, along with
the division of the total time of rimerge in building and merging. The total wall
clock time for both methods is plotted in Figure 2. rimerge quickly became faster
for updating the r -index. The dynamic r -index was faster on small inputs (less than
16 haplotypes of chromosome 19 and 32 strains of salmonella), rimerge proved to
be faster than the dynamic r -index on both the datasets. The improvement in the
speed was more substantial when the number of inserted sequences was larger. For
example, when 16 haplotypes were inserted, rimerge was 1.88 times faster, when
128 haplotypes were inserted the improvement in the speed more than doubled to
4.84, and when 256 and 512 haplotypes were inserted, the improvement increased
even more. In particular when inserting 512 new chromosome 19 haplotypes, as well
as when inserting 2,048 strains of salmonella, it was five times faster. Moreover, the
difference between the two methods when inserting a small number of sequences was
negligible; less than 300 seconds when inserting up to 32 strains of salmonella and less
than 500 seconds when inserting up to 8 chromosome 19 haplotypes. The memory

consumption of both methods was negligible; neither exceeded 37 GB even on the
largest input.

Finally, we point out that rimerge needs as many bytes of disk space as the
size of the text we want to insert in the index to store the rank array RA while the
dynamic r -index stores its data structures only in memory.

No. Sequences Update Size (GB) rimerge Build (s) rimerge Update (s) rimerge Total (s) dynamic r-index (s)
1,001 0.06 47 472 519 79
1,002 0.12 51 492 542 158
1,004 0.24 54 511 566 316
1,008 0.47 63 539 602 632
1,016 0.94 78 592 670 1,264
1,032 1.89 112 634 747 2,528
1,064 3.78 166 1,010 1,176 5,056
1,128 7.56 282 1,803 2,085 10,112
1,256 15.12 482 3,306 3,788 20,224
1,512 30.24 897 6,771 7,669 40,448

Table 1: Comparison of the wall clock time required by rimerge against the dynamic
r -index on the chromosome 19 dataset. We report the number of sequences in the
index (“No. Sequences”), size in GB of the data to be inserted (“Update Size”), the
total time for rimerge (“Total”) and the total time of dynamic r -index. In addition,
for rimerge we report separately the time required for building the update text’s
index with Big-BWT (“rimerge Build”) and the time required to merge the update’s
index (“rimerge Update”). Since the initial set consisted in 1,000 haplotypes the
number of sequences inserted is the number reported in “No. Sequences” minus 1,000.

108 109 1010

Update Length [characters]

102

103

104

Ti
m

e
[s

ec
]

RIMERGE
Dynamic

10
01

10
02

10
04

10
08

10
16

10
32

10
64

11
28

12
56

15
12

10
01

10
02

10
04

10
08

10
16

10
32

10
64

11
28

12
56

15
12

Number of sequences in collection

107 108 109 1010

Update Length [characters]

101

102

103

104

Ti
m

e
[s

ec
]

RIMERGE
Dynamic

50
01

50
02

50
04

50
08

50
16

50
32

50
64

51
28

52
56

55
12

60
24

70
48

50
01

50
02

50
04

50
08

50
16

50
32

50
64

51
28

52
56

55
12

60
24

70
48

Number of sequences in collection

Figure 2: Comparison of the wall clock time for updating the index of 1,000 chromo-
some 19 haplotypes with up to 512 sequences (left) and updating the index of 5,000
strains of salmonella with up to 2,048 sequences (right).

5 Conclusions

In this work we address the problem of adding new sequences to a pre-existing r -
index. We show how to maintain the r -index structure computing the necessary
samples without relying on the φ function. We show that our algorithm, making use
of the rank array RA, can perform batch updates that turn out to be faster than single
insertions. In terms of memory consumption, rimerge differs from the dynamic r -
index by a small amount (less than 10GB). A possible extension of this work consists

in adding the support for deleting sequences since the same theoretical results can be
applied to perform deletions as well. As discussed in the previous sections, the RA
values guide the interleaving of the two indexes. The same information can be used
to mark the sequences that we want to remove. To support deletions, during the
interleave step, instead of inserting the characters from the second index we simply
need to remove them.

References

[1] The 1000 Genomes Project Consortium, “A global reference for human genetic varia-
tion,” Nature, vol. 526, pp. 68–74, 2015.

[2] C. Turnbull et al., “The 100,000 genomes project: bringing whole genome sequencing
to the NHS,” Br. Med. J., vol. 361, 2018.

[3] H. Li and R. Durbin, “Fast and accurate short read alignment with Burrows–Wheeler
Transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[4] B Langmead, C Trapnell, M Pop, and S Salzberg, “Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome,” Genome Biol., vol. 10, pp.
R25, 2009.

[5] B. Langmead and S.L. Salzberg, “Fast gapped-read alignment with Bowtie 2,” Nat.
Methods, vol. 9, no. 4, pp. 357–359, 2012.

[6] R. Li et al., “De novo assembly of human genomes with massively parallel short read
sequencing,” Genome Res., vol. 20, no. 2, pp. 265–272, 2010.

[7] P. Ferragina and G. Manzini, “Opportunistic data structures with applications,” in
Proc. of FOCS, 2000, pp. 390–398.

[8] T. Gagie, G. Navarro, and N. Prezza, “Fully functional suffix trees and optimal text
searching in BWT-runs bounded space,” J. ACM, vol. 67, no. 1, pp. 1–54, 2020.

[9] C. Boucher, T. Gagie, A. Kuhnle, B. Langmead, G. Manzini, and T. Mun, “Prefix-free
parsing for building big BWTs,” Algorithms Mol. Biol., vol. 14, pp. 13, 2019.

[10] A. Kuhnle, T. Mun, C. Boucher, T. Gagie, B. Langmead, and G. Manzini, “Effi-
cient construction of a complete index for pan-genomics read alignment,” in Proc. of
RECOMB, 2019, pp. 158–173.

[11] J. Sirén, “Compressed suffix arrays for massive data,” in Proc. of SPIRE, 2009, pp.
63–74.

[12] P. Ferragina, T. Gagie, and G. Manzini, “Lightweight data indexing and compression
in external memory,” in Proc. of LATIN, 2010, pp. 697–710.

[13] J. Sirén, “Burrows-Wheeler transform for terabases,” in Proc. of DCC, 2016, pp.
211–220.

[14] N. Prezza and G. Rosone, “Space-efficient computation of the LCP array from the
Burrows-Wheeler transform,” in Proc. of CPM, 2019, p. 7:1–7:18.

[15] H. Bannai, T. Gagie, and T. I, “Refining the r-index,” Theor. Comput. Sci., vol. 812,
pp. 96–108, 2020.

[16] E.L. Stevens et al., “The public health impact of a publically available, environmental
database of microbial genomes,” Front. Microbiol., vol. 8, pp. 808, 2017.

[17] G. Navarro, Compact Data Structures: A Practical Approach, Cambridge University
Press, 2016.

[18] W.-K. Hon, T.W. Lam, K. Sadakane, W.-K. Sung, and S.-M. Yiu, “A space and time
efficient algorithm for constructing compressed suffix arrays,” Algorithmica, vol. 48,
no. 1, pp. 23–36, 2007.

[19] V. Mäkinen and G. Navarro, “Succinct suffix arrays based on run-length encoding,”
Nord. J. Comput., vol. 12, no. 1, pp. 40–66, 2005.

