
UC Berkeley
Research Reports

Title
Shift Reference Manual

Permalink
https://escholarship.org/uc/item/8090578j

Authors
Deshpande, Akash
Gollu, Aleks
Semenzato, Luigi

Publication Date
1997

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8090578j
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

January 1997

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Shift Reference Manual

Akash Deshpande
Aleks Göllü
Luigi Semenzato

UCB-ITS-PRR-97-8
California PATH Research Report

SHIFT

Reference Manual

PRCS project SHIC version 2.17

Wed, 02 Oct 1996 11:36:21 -0700

Akash R. Deshpande
Aleks Göllü

Luigi Semenzato

1 Overview

SHIFT is a description language for dynamic networks of hybrid systems. Such systems consist
of components which can be created, interconnected and destroyed as the system evolves in time.
Components exhibit hybrid behavior, consisting of continuous-time phases separated by discrete-
event transitions. They may evolve independently or jointly with each other. They interact through
input-output connections and synchronization of events. The interaction network may evolve in
time.

We believe this model offers the proper level of abstraction for describing complex applica-
tions such as highway and air traffic control systems, robotic shopfloors, and other systems whose
operation cannot be captured by conventional models, which typically support only static intercon-
nections.

SHIFT is extensible. We plan to use SHIFT as a mechanism for defining the Automated Highway
System Tool Interchange Format (AHSTIF). An automated highway system is a hybrid system
with specific characteristics and restrictions. SHIFT supports the definition and enforcement of
AHSTIF-specific semantics.

This is a reference manual for SHIFT. It presents its material in a logical order, but it aims to be
concise and has no pretense to be a SHIFT tutorial. Section 2 describes the model, and section 3 the
language.

The name SHIFT is a permutation of HSTIF (Hybrid System Tool Interchange Format).

2 The Model

2.1 Components and Worlds

A component is a part of a system, or a world. The behavior of a component (its time evolution)
depends on its state, and its environment (the visible part of other components).

A world is an evolving set of components. During the evolution of the world new components
may be created, and the manner in which they interact may change. At all times the behavior of the
world is self-contained, that is, it depends only on the state of its components.

1

2.2 Component Model

A component is defined by its state, inputs, outputs, and exported events; its continuous time
evolution; and its discrete event evolution.

At time t, the component’s state s(t) is the tuple (x(t); q(t); l(t)). The vector x(t) 2 Rn is the
continuous state. The discrete state q(t) is a state in a finite state machine. The link state l(t) is a
vector of references to other components.

Links describe both physical (e.g., wires and mechanical actuators) and logical (e.g., sensors
and communication channels) interconnections between components. Links are dynamic: the
components they reference may change in time.

A component’s inputs, outputs, and exported events define the component’s interface to the rest
of the world. Outputs are variables whose values are accessible (for reading) by other components.
Exported events are state machine transitions which can be synchronized to those of other compo-
nents. Inputs are variables whose values (during both continuous and discrete phases) are defined
externally to the component.

The continuous time evolution of the continuous state x is defined by differential equations and
algebraic expressions. The differential equations are in the form

ẋi = f
q(t)
i (x(t); u(t); w(t))

where u(t) is the input of the component, and w(t) the output of linked components. The algebraic
definitions are in the form

xj = g
q(t)
j (x(t); u(t); w(t));

with the restriction that algebraic equations are not allowed—that is, there may not be loops in the
dependency graph of algebraically-defined states. In a given discrete state q, a state variable must
be defined either algebraically or differentially. However, the mode of definition for a variable may
change with the discrete state.

The discrete event evolution of a component is defined by a finite state machine. Edges in the
state machine are labeled with guards, events and actions. A guard is a predicates on the state of
the component, its inputs, and the outputs of other components. A transition on an edge may be
taken only when its guard is true. Events are points of synchronizations between components. State
machines in linked components synchronize according to event correspondence rules, discussed in
section 3.12. A transition may trigger the execution of actions, which change the state and output
of the component, and create new components.

Associated to each discrete state is an invariant: a predicate on the states of a component and
the output of linked components, which constrains their region of feasibility. The behavior of the
system is undefined outside this region.

2.3 World Model

The world is a directed graph of components, where the labeled edges are links. The graph is
encoded by the links l(t) of components. Let a; b be components with b 2 la(t), then there is an
edge from a to b.

The l(t) evolves in time. A component may change l(t) through link or unlink actions associated
with a transition.

2

3 The Language

SHIFT is a textual notation for the abstractions in section 2.

3.1 Notation

Non-terminals are in italics. Keywords and other literal tokens are in typewriter. Braces indicate
repetition: f X g

� means zero or more repetitions of X, f X g
+ means one or more repetitions.

Brackets indicate optional parts, that is [X] stands for zero or one instances of X. The vertical bar
(‘j’) denotes alternation.

3.2 Lexical conventions

A SHIFT specification is a sequence of printable ASCII characters, including space, tab, and newline.
The characters are separated into tokens according to the rules given below (the rules are similar,
but not identical, to those of the C programming language).

� An identifier is a sequence of characters from the set f ‘a’: : :‘z’, ‘A’: : :‘Z’, ‘0’: : :‘9’, ‘_’g. The
sequence must start with an alphabetic character or ‘_’. Certain identifiers, called keywords,
are reserved by SHIFT, meaning they are not available as user-defined names. Table 1 lists all
the keywords.

all

array

continuous

create

define

discrete

do

else

exists

export

flow

function

if

in

input

invariant

logical

maxel

minel

number

one

output

set

setup

state

symbol

then

transition

type

when

Table 1: List of SHIFT keywords.

� An operator is a sequence of characters from the set f ‘+’, ‘*’, ‘-’, ‘/’, ‘<’, ‘>’, ‘=’, ‘&’, ‘|’,
‘'’, ‘`’ g, possibly enclosed in a balanced pair of parentheses, ‘(’ and ‘)’, ‘{’ and ‘}’, or ‘[’
and ‘]’. For instance: (+). (This is different from C: for instance, the character sequence
‘x+-3’ contains the tokens ‘x’, ‘+-’, and ‘3’.)

� A numeric-constant consists of a mantissa followed by an optional exponent. The mantissa
consists of one or more digits and optionally a single ‘.’ (period) in any position. The
exponent is in the form ‘ejE[+j-]fdigitg+’.

� A symbolic-constant is a sequence of characters starting with $ followed by an identifier
(examples: $ONE, $_TWO).

� A sequence of characters starting with ‘/*’ and ending at the first occurrence of the pair ‘*/’
(included) is a comment.

3

� A sequence of characters starting with ‘//’ and ending at the first occurrence of the end-of-line
character is a comment.

� Tabs, spaces, newlines, and comments terminate tokens but otherwise have no meaning.

� The characters ‘"’, ‘!’, ‘\’, ‘~’, and ‘?’ are reserved and may be used internally by SHIFT.

� The characters ‘@’, ‘#’, ‘%’ are guaranteed never to be used by SHIFT (thus they may be given
special meanings by a preprocessor).

� The remaining characters are used as specified by the grammar rules in the rest of this
document.

3.3 Scopes

Several SHIFT constructs establish a relationship between an identifier (for instance, ‘x’) and an
entity (for instance, a variable, or a type). The section of text for which the relationship is valid is
called the scope of the identifier. SHIFT has nested scopes; a scope always starts and ends within
another scope. When referring to two such scopes, the former is called the inner scope, the latter
the outer scope. The outermost scope is also called the global scope.

This manual defines scoping rules along with each construct which defines a scope. Some rules
are valid for all scopes.

� It is illegal to define an identifier twice in the same scope.

� It is permitted to redefine an identifier in an inner scope.

� Scopes are transparent: all meanings of identifiers from the outer scope are also valid in an
inner scope, except those of identifiers which are redefined.

Most constructs associating identifiers to entities are called declarations. Unlike other languages,
SHIFT has no ‘declaration-before-use’ rule. A declaration is valid for its entire scope, no matter
where it appears.

3.4 Preprocessing

SHIFT uses the same preprocessing as the ANSI C language, for the purpose of macro substitution
(#define), file inclusion (#include), and all other available facilities.

3.5 Overall structure

A SHIFT specification is a sequence of definitions.

specification) f definition g+

definition) component-type-definition
j global-variable-decl
j external-function-decl

4

3.6 Component types

A component type definition describes a set of components with common behavior.

component-type-definition) type type-name [: parent] { f type-clause ; g+ } [;]
type-name) identifier

parent) identifier
type-clause) state state-declarations

j input input-declarations
j output output-declarations
j export export-list
j setup action-clause
j setup { f action ; g� }

j flow flow-list
j discrete discrete-state-list
j transition transition-list

state-declarations) declaration-list
input-declarations) declaration-list

output-declarations) declaration-list
export-list) local-event f , local-event g�

local-event) identifier

The definition ‘type X : Y { : : : }’ defines a component type named X in the global scope.
The body of the definition (all text between { and }) is the local scope for X .

Y , if present, must be the name of another component type called the parent type of X . The
function P maps a type to its parent: in this case, Y = P (X). Type A is a supertype of B when
A = P (B) or A is a supertype of P (B). In such a case, B is a subtype of A.

A type represents a set of components. The statements ‘component x has type X’ and ‘x 2 X’
are equivalent.

The parent/child relationship implies certain constraints between the input, output, and export
lists of the involved types. These are described in section 3.16.

In a type definition there can be multiple clauses of each kind. The items in all clauses of like
kinds are concatenated in the order in which they appear, as if there were a single clause containing
all of them.

5

3.7 Declaration lists

declaration-list) declaration f ; declaration g�

declaration) type variable-clause f , variable-clause g�

variable-clause) variable-name [init]
type) simple-type

j set (type)
j array (type)

variable-name) identifier
init) := expression

simple-type) number

j continuous number

j symbol

j type-name

Input, output, and state declarations declare local variables in the scope of a component type.
Variable-name identifies a variable, and type is its type. The initializing expression is evaluated at
component creation time, and must be of a compatible type. If a variable is defined algebraically,
its initialization is ignored. Variables are initialized to zero or nil unless otherwise specified.

3.8 Types

Numbers. Variables of number type hold real numbers, such as 1 or 2.72. Scalar variables
whose type is continuous number may be used in the definition of the continuous evolution of a
component, as shown in section 3.9.

Symbols. Variables of type symbol hold symbolic constants (section 3.2), such as $GO or $STOP.
Every different symbolic constant represents a distinct value. The only operations available for
symbols are assignment and comparison.

Component types. A variable of type X , where X is a component type, is a reference to an
element in TX , that is a component whose type is X or any of its descendants.

Sets. A variable of type set(E) contains a set of elements of type E. The set might be empty.

Arrays. A variable of type array(E) contains a one-dimensional array of elements of type E.
The same variable may hold arrays of different lengths at different times. The elements of the array
are numbered consecutively starting from 0. An array might be empty.

3.8.1 Links

When the type in a declaration is a component type, or a set or array whose element is a component
type, the declared variable is a reference to another component (or a set of components). Such
variable, called link variable (or simply link), identifies edges in the link graph.

Let type X define a link variable c with type Y . Then each x 2 X has an edge to some y 2 Y ,
or to the special component nil. The edge is identified by the pair (x; c). In the local scope of X ,
c is a valid expression, and it refers to y. This is a single-valued link.

6

If c has type set(Y) or array(Y , : : :), each x 2 X has a set of edges to distinct components
in Y . In the case of a set the edges cannot be individually named. This is a multi-valued link.

For simplicity, this manual often uses c to refer to the element, or set of elements, currently
linked by (x; c).

3.9 Flows

flow-list) flow f , flow g
�

flow) flow-name { equation-list }
flow-name) identifier

equation-list) flow-or-equation f, flow-or-equationg�

flow-or-equation) differential-equation
j algebraic-definition
j flow-name

differential-equation) lhs ' = expression
algebraic-definition) lhs = expression

lhs) continuous-number-state
j continuous-number-output

continuous-number-state) variable-name
continuous-number-output) variable-name

A flow is a named set of differential equations and algebraic definitions, used to define the continuous
evolution of one or more variables in the component. Flow-name refers to the set of equations in
equation-list. Its scope is the body of the enclosing component type definition.

Flows define the behavior of state or output variables of type number. The left-hand side of an
algebraic definition, or a differential equation, is, respectively, one such variable or its derivative.
(For convenience, these rules are more relaxed than those of the standard input-output-state model.
The only difference between states and outputs is that outputs are visible on the outside, states are
not.)

The right-hand sides of both kinds of equations are expressions of all variables of this component
(states, inputs, and outputs) and the outputs of linked components.

There may be no circular dependencies in algebraic definitions.

When a flow-name appears in place of an equation, it stands for all equations in the corresponding
equation-list. If a flow defines variable x more than once, all definitions of x except the last one are
ignored.

Flows are used in the definition of discrete states, as shown in the next section. Two flow names
have special meanings.

� The flow named default is the default flow for all states that do not explicitly specify one.

� The flow named stop sets the derivative of all variables to zero.

3.10 Discrete states

discrete-state-list) discrete-state-clause f , discrete-state-clause g�

discrete-state-clause) state-name [{ equation-list }] [invariant expression]
state-name) identifier

7

A state-name is the name of the state. There must be at least one state in each machine. The first
state in the list is the initial state for a newly-created component.

Flow specifies the continuous behavior at the corresponding discrete state, as given in section 3.9.
The optional invariant expression is expected to be always true.

3.11 Transitions

transition-list) transition f , transition g�

transition) from-set -> to-state event-list transition-clauses
from-set) set-of-states

set-of-states) expression
to-state) state-name

event-list) { [event f, eventg�] }
event) local-event

j external-event
local-event) identifier

external-event) link-var : exported-event [(set-sync-rule)]
exported-event) identifier

set-sync-rule) one [: temporary-link]
j all

link-var) identifier
temporary-link) identifier

transition-clauses) [when-clause] [action-clause]
when-clause) when expression

A transition defines one or more edges in the finite state machine of a component type: one edge
from each state in the from set to the to-state state. Set-of-states is a constant expression which
evaluates to a set of states, or a single state. In this context, the identifier all is the set of all states
for this machine. See section 3.17 for a complete list of set functions and constructors.

Event is the event associated with this transition. It must appear in the export-list of the
component. Exported-event is a local event in a linked component. The link variable in an exported
event may not be algebraically defined. When a transition contains exported events, the state
machine of this component potentially synchronizes with the state machines in other components.
The synchronization rules are given in section 3.12.

The optional guard-clause contains a logical algebraic expression called the guard. A transition
may be taken only if the guard is true.

If the guard contains an expression with the quantifiers exists, minel, or maxel, the quantified
variable defines a temporary link whose scope is the action list for the transition (see section 3.17).

The action-clause specifies actions which are taken concurrently with the transition, as described
in section 3.14.

3.12 Synchronization rules

A component synchronizes its state machine with other state machines by labeling its own edges
with local-events and external-events. Local events are exported; they can be used as external events
by other components, and they can appear in setup-only actions (section 3.14.3). Each label of an
edge E establishes conditions under which a transition may be taken along E.

8

When all conditions are satisfied, and the guard, if present, evaluates to true, and the component
is in a state that has E as an outgoing edge, then the transition along E is taken simultaneously with
other transitions as required by the conditions.

The conditions associated with each label are as follows. Let x and y be components, and Z a
set of components. Let c be a single-valued link, and C a set-valued link. Let ey be a local event for
y, and ez a local event for all components in Z.

� If c evaluates to nil, an edge labeled c:ey may not be taken.

� If c evaluates to y, an edge E labeled c:ey must be taken simultaneously with an edge E 0

labeled ey in y; and, conversely, E 0 must be taken simultaneously with E.

� If C evaluates to the empty set, the edge labeled C:ez may not be taken if set-sync-rule is one.
Otherwise it may be taken.

� If C evaluates to Z then an edge labeled ez in any z 2 Z may only be taken simultaneously
with an edge labeled C:ez . The following also applies.

– If the synchronization rule is one, then an edge labeled C:ez may only be taken simul-
taneously with an edge labeled ez in a single component z 2 Z. If a temporary link is
specified, it is assigned the component z. The scope of the temporary link is the action
list for the transition.

– Otherwise, if the rule is all, an edge labeled C:ez must be taken simultaneously with
an edge labeled ez in every z 2 Z.

3.13 Evolution of a SHIFT system

A SHIFT system starts by executing all initializations of global variables, at time t = 0. Then the
system evolves by alternating discrete and continuous phases, starting with a discrete phase.

In the discrete mode, all possible transitions are taken, in some serial order unless explicitly
synchronized. Time does not flow in the discrete mode. The system switches to continuous mode
when no more transitions are possible.

The system evolves in continuous mode according to the flow associated to the discrete state
of each component. As soon as it becomes possible for one or more components to execute a
transition, time stops again.

3.14 Actions

action-clause) [define-clause] do-clause
define-clause) define { f local-definition ; g� }

local-definition) temp-var := expression
temp-var) identifier

do-clause) do { f action ; g� }

action) reset-action
j create-action
j setup-only-action

9

Actions are used to change the continuous state, create or destroy components, and change the
way in which components are linked. Setup-only actions may only be used in a setup clause and
establish I/O connections and synchronization of exported events.

A local-definition declares and initializes a variable whose scope is the following local defini-
tions, and the actions in the do-clause.

3.14.1 Resets

reset-action) selector := expression

Selector refers to a state or output variable of this component, or an input variable of a linked
component (it is defined in section 3.17). Expression is an expression of the old values (that
is, before they are reset) of all variables (input, state, and output) of this component, and output
variables of linked components. Resets have no effect on variables which are algebraically defined
in the final state of the associated transition.

Note on ‘:=’ vs. ‘=’. The notation ‘l := r’ represents a one-time assignment which occurs during
the discrete phase. The notation ‘l = r’ in certain contexts establishes equality of the left and
right-hand sides as time flows. In other contexts, ‘x = y’ is a logical expression which evaluates to
true when x is equal to y.

3.14.2 Creation

create-action) create-expression
create-expression) create (type-name f , initializer g�)

initializer) variable := expression
variable) identifier

The action create (C, : : :) creates a new component of type C. The left-hand side of an
initializer is a variable (not just an input) in the new component. The initializer sets this variable to
the value of the right-hand side, overriding the initial value of the variable in the declaration of the
new component.

The scopes of the left and right-hand sides of an initializer differ. Thus the action create(C,

v := v) sets variable v in the new component to the value of variable v in the creating component.

The setup actions of the new component are executed after completion of the transition that
created it.

3.14.3 Setup-only actions

setup-only-action) external-event <-> external-event f <-> external-event g�

j connection
connection) input (link-var) = expression

input) identifier
link-var) identifier

Setup-only actions are only allowed in the setup phase of a component’s life. They establish static
event synchronization and I/O connections for components without their direct involvement.

10

A connection makes the value of the left-hand side be that of the right-hand side at all times.
If the right-hand side of a connection is not a continuously-varying number, the left-hand side may
not contain continuously-varying numbers. In the input definition u(a) = E, u must be an input of
component a. The connection is static: if a later changes, the input definition refers to the value of
a at setup time. [What happens when a flow conflicts with a connection?]

The event synchronization
a:e <-> b:f

specifies that event e in a and event f in b may only occur simultaneously. Event synchronizations
are also static, and the synchronized components forever remain those reached through a and b at
setup time.

Some useful forms of connections are I/O connections (u(a) = y(b), where y is an output of
linked component b), I/I connections (u(a) = v, where v is an input of this component), O/I and
O/O connections.

There may not be circular dependencies in discrete definitions.

3.14.4 Linking and unlinking

Links are established and removed by resets (section 3.14.1) of link variables.

In a link statement of the form X := Y , X refers to a single or multi-valued link in this
component. The action modifies the edge, or edges, named by X .

When X is a single-valued link, the action removes the existing link and adds a new one, from
this component to the component obtained by evaluating Y (possibly to the nil component).

When X is a multi-valued link, the action can add or remove edges from the set, or leave it
unchanged.

3.14.5 Execution of actions

The order in which actions are specified is inconsequential. Actions are executed in phases as
follows.

1. All components specified by create-expressions are created.

2. The right-hand sides and the destinations of resets are evaluated, and so are the component
initializers.

3. The previously computed values for resets and link actions and component initial values are
assigned to their destinations.

4. Setup-only actions are executed.

Definitions in the define-clause are evaluated in the order in which they are given. The execution
sequence for the create-expression is: initial values, passed in arguments, define/do actions.

11

3.15 Setup clause

If a setup clause is present, its actions are executed before the finite-state machine enters the initial
state. If the initial state is S0, this is equivalent to creating an additional state S

�1, making it the
initial state, and placing an unguarded edge from S

�1 to S0 with the setup actions. Section 3.14
lists all possible actions. Some actions (the setup-only actions of section 3.14.3) may only appear
in the setup clause.

3.16 Input, output, and export declarations

Variables declared in an output list may be used outside a component. They may not be reset or
defined outside the component.

The input list declares local variables which can only be defined and reset from outside the
component.

The export declares local events of a type. They are all visible to other components.

IfX is the parent of Y , the export, input, and output lists of Y must be supersets of, respectively,
the export, input, and output lists of X . The same name in two input or output lists must refer to
the same kind of object.

12

3.17 Expressions

expression) selector
j numeric-constant
j symbolic-constant
j true

j false

j nil

j expression binary-operator expression
j prefix-operator expression
j expression postfix-operator
j expression ([expression-list])
j expression [expression]
j (expression)

j type
j { [expression-list] }
j [[expression-list]]
j all

j self

j state-name
j if expression then expression else expression
j exists identifier in expression : expression
j minel identifier in expression : expression
j maxel identifier in expression : expression

selector) continuous-selector
j link-selector

continuous-selector) number-var
j number-var (link-selector)

link-selector) link-var
j link-var (link-selector)

expression-list) expression [, expression-list]
prefix-operator) operator

postfix-operator) operator

The indexing expression a[i] accesses the (i+ 1)-th element of array a.

The expression { e1, : : :, en } evaluates to a set containing the elements e1; : : : ; en, which must
all be of the same type. Similarly, the expression [e0, : : :, en�1] evaluates to an array of length n.

The expression all evaluates to the set of all states in the state machine of this type.

The expression self is a self-link, that is a reference to the component containing the expression.

The expression nil is a special component whose behavior is absolutely boring: it has no
inputs, outputs, or exported events. It may be assigned to links of any type.

The logical expression if x then y else z evaluates to y if x is true, else it evaluates to z.

Grammar ambiguities are resolved by operator precedence. [need precedence table here]

13

3.18 Predefined functions and operators

The predefined functions and operators are listed and explained in tables 2—4. Table 2 gives
the standard functions on sets and logical values. Table 3 gives the arithmetic and mathematical
operators. Table 4 lists miscellaneous operators.

Expression Meaning

exists x in S : E A logical expression which evaluates to true if and only if the
set S contains at least one element which, when bound to x,
causes the expression E to be true. If an exists expression
appears in a guard, the scope of x includes the actions for that
transition, where it is bound to one of the components which
satisfy the guard.

maxel x in S : E

minel x in S : E

The element of S which, when bound to x, respectively maxi-
mizes or minimizes expression E.

S1 + S2, S1 * S2, S1 - S2 Respectively the union, intersection, and difference of sets S1

and S2.
x in S A logical expression which is true if x is a member of S.
reduce(S; f)
reduce(S; f; e0)

If S = fe1; : : : ; eng, reduce(S; f) returns
f(en; f(: : : ; f(e2; e1) : : :)), and reduce(S; f; e0) returns
f(en; f(: : : ; f(e1; e0) : : :)). f is a binary function or a binary
operator enclosed in double quotes (e.g., "*").

size(S) The number of elements in set S.
and, or, xor, not The standard logical connectives.

Table 2: Set and logical operators.

3.19 External functions

external-function-decl) function function-name ([arg-list]) -> return-type
arg-list) declaration-list

return-type) type

SHIFT does not have functions, but a SHIFT program can refer to external functions, whose imple-
mentation must be provided for the purpose of simulation. External functions are written in C. The
implementation of the simulator may impose further restrictions (for instance, it may require that
the type of all arguments and return values be number), and also defines a correspondence between
SHIFT types and C types (for instance, it may specify that the SHIFT number type corresponds to the
C double type).

3.20 Global variables

global-variable-decl) global declaration-list

Global variables have global scope, can be used in expressions, and can be set by any component.

14

Expression Meaning

+, -, *, /, **
<, >, <=, >=, =, /=

The standard arithmetic and relational operators (/= is “not
equal.”)

exp(x), ln(x), log10(x)
sin(x), cos(x), tan(x)
sqrt(x)

atan(x), atan2(x; y)

The standard elementary mathematical functions.

abs(x) Absolute value.
floor(x), trunc(x),
round(x),

Coercion to integers. Floor, trunc, and round produce results
rounded toward�1, toward 0, and toward nearest.

max(x1; : : : ; xn)

min(x1; : : : ; xn)

Maximum and minimum.

signum(x) Returns -1, 0, or 1, depending on whether x is negative, zero,
or positive.

random() random requires no arguments and returns a random number
uniformly distributed in [0, 1].

Table 3: Arithmetic Operators and Elementary Functions

Expression Meaning

narrow(X, y) The compile-time type of narrow(X, y) is X . Let Y be the
compile-time type of y. If Y is X or a supertype of X , and
the run-time value of y has type X or a subtype of X , then
narrow(X, y) returns y, otherwise it is an error.

Table 4: Miscellaneous Operators

4 Acknowledgements

Most of the ideas in this manual are the result of discussions involving the authors and other PATH
members. In particular we have greatly benefited from discussions with Datta Godbole, Raja
Sengupta and Pravin Varaiya.

15

