UC Berkeley

Research Reports

Title
Shift Reference Manual

Permalink
https://escholarship.org/uc/item/8090578j

Authors

Deshpande, Akash
Gollu, Aleks
Semenzato, Luigi

Publication Date
1997

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8090578j
https://escholarship.org
http://www.cdlib.org/

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Shift Reference Manual

Akash Deshpande
Aleks Golla
Luigi Semenzato

California PATH Research Report
UCB-ITS-PRR-97-8

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

January 1997
ISSN 1055-1425

SHIFT
Reference Manua

PRCS project SHIC version 2.17
Wed, 02 Oct 1996 11:36:21 -0700

Akash R. Deshpande
Aleks Gollu
Luigi Semenzato

1 Overview

SHIFT is a description language for dynamic networks of hybrid systems. Such systems consist
of components which can be created, interconnected and destroyed as the system evolvesin time.
Components exhibit hybrid behavior, consisting of continuous-time phases separated by discrete-
event transitions. They may evolve independently or jointly with each other. They interact through
input-output connections and synchronization of events. The interaction network may evolve in
time.

We believe this model offers the proper level of abstraction for describing complex applica-
tions such as highway and air traffic control systems, robotic shopfloors, and other systems whose
operation cannot be captured by conventional models, which typically support only static intercon-
nections.

SHIFT isextensible. We plan to use SHIFT as a mechanism for defining the Automated Highway
System Tool Interchange Format (AHSTIF). An automated highway system is a hybrid system
with specific characteristics and restrictions. SHIFT supports the definition and enforcement of
AHSTIF-specific semantics.

Thisisareference manua for SHIFT. It presentsits material in alogical order, but it aimsto be
concise and has no pretense to be a SHIFT tutorial. Section 2 describes the model, and section 3 the
language.

The name SHIFT is a permutation of HSTIF (Hybrid System Tool Interchange Format).

2 TheModed

2.1 Componentsand Worlds

A component is a part of a system, or aworld. The behavior of a component (its time evolution)
depends on its state, and its environment (the visible part of other components).

A worldis an evolving set of components. During the evolution of the world new components
may be created, and the manner in which they interact may change. At dl timesthe behavior of the
world is self-contained, that is, it depends only on the state of its components.

2.2 Component Model

A component is defined by its state, inputs, outputs, and exported events; its continuous time
evolution; and its discrete event evolution.

At timet, the component’s state s(¢) isthetuple (z(t), ¢(¢),{(¢)). Thevector z(t) € R™ isthe
continuous state. The discrete state ¢(¢) is a state in afinite state machine. Thelink state/(¢) isa
vector of references to other components.

Links describe both physical (e.g., wires and mechanica actuators) and logica (e.g., sensors
and communication channels) interconnections between components. Links are dynamic: the
components they reference may changein time.

A component’sinputs, outputs, and exported events define the component’sinterface to the rest
of theworld. Outputs are variables whose val ues are accessible (for reading) by other components.
Exported events are state machine transitions which can be synchronized to those of other compo-
nents. Inputs are variables whaose values (during both continuous and discrete phases) are defined
externally to the component.

The continuoustime evolution of the continuous state x is defined by differential equations and
algebraic expressions. The differential equationsare in the form

ii= (), u(t), w(t))

where u () istheinput of the component, and w(t) the output of linked components. The algebraic
definitions are in the form

vy = g (e(t), u(t), w(1)),

with the restriction that a gebraic equations are not allowed—that is, there may not be loopsin the
dependency graph of algebraically-defined states. In a given discrete state ¢, a state variable must
be defined either algebraically or differentialy. However, the mode of definition for avariable may
change with the discrete state.

The discrete event evolution of a component is defined by afinite state machine. Edgesin the
state machine are labeled with guards, events and actions. A guard is a predicates on the state of
the component, its inputs, and the outputs of other components. A transition on an edge may be
taken only whenitsguard istrue. Eventsare pointsof synchronizations between components. State
machines in linked components synchronize according to event correspondence rules, discussed in
section 3.12. A transition may trigger the execution of actions, which change the state and output
of the component, and create new components.

Associated to each discrete state is an invariant: a predicate on the states of a component and
the output of linked components, which constrains their region of feasibility. The behavior of the
system is undefined outside thisregion.

2.3 World Modd

The world is a directed graph of components, where the labeled edges are links. The graph is
encoded by the links /(¢) of components. Let a, b be componentswith b € [,(¢), then thereis an
edge from a to b.

Thel(t) evolvesintime. A component may change!(t) throughlink or unlink actions associ ated
with atransition.

3 ThelLanguage

SHIFT isatextua notation for the abstractionsin section 2.

3.1 Notation

Non-terminalsareinitalics. Keywordsand other literal tokensarein typewriter. Bracesindicate
repetition: { X }* means zero or more repetitions of X, { X }* means one or more repetitions.
Brackets indicate optional parts, that is[X] standsfor zero or one instances of X. The vertical bar
(‘") denotes alternation.

3.2 Lexical conventions

A SHIFT specificationisaseguence of printable ASCII characters, including space, tab, and newline.
The characters are separated into tokens according to the rules given below (the rules are similar,
but not identical, to those of the C programming language).

¢ Anidentifier isasequenceof charactersfromtheset{ ‘a’...'z’,"A’.. .'Z’,0"...'9",*_" }. The
sequence must start with an alphabetic character or *_". Certain identifiers, called keywords,
arereserved by SHIFT, meaning they are not available as user-defined names. Table 1 listsall

the keywords.
all do if minel state
array else in number symbol
continuous exists input one then
create export invariant output transition
define flow logical set type
discrete function maxel setup when
Table 1: List of SHIFT keywords.
e Anoperator isasequence of characters fromtheset { ‘+', ‘¥’, =", /", ‘<’ *>", ‘=" ‘&', ' |7,

©7 t¢ 1 possibly enclosed in abalanced pair of parentheses, ‘(" and ‘)", ‘{" and ‘}’, or ‘ [’
and ‘]1’. Forinstance: (+). (Thisis different from C: for instance, the character sequence
‘x+-3’ containsthetokens‘x’, ‘+-', and ‘3’.)

e A numeric-constant consists of a mantissa followed by an optional exponent. The mantissa
consists of one or more digits and optionally a single *.” (period) in any position. The
exponent isin theform ‘e|E[+|-]{digit}*".

A symbolic-constant is a sequence of characters starting with $ followed by an identifier
(examples: $0NE, $_TW0).

A sequence of characters starting with ‘ /*’ and ending at thefirst occurrence of the pair ‘*/
(included) is acomment.

e A sequenceof charactersstartingwith‘//’ and ending at thefirst occurrence of theend-of-line
character is a comment.

e Tabs, spaces, newlines, and comments terminate tokens but otherwise have no meaning.

e Thecharacters ‘""", V', ‘\’, "', and ' 7’ arereserved and may be used internally by SHIFT.

e Thecharacters‘@’, ‘#’, ‘%’ are guaranteed never to be used by SHIFT (thus they may be given
special meanings by a preprocessor).

e The remaining characters are used as specified by the grammar rules in the rest of this
document.

3.3 Scopes

Several SHIFT constructs establish a relationship between an identifier (for instance, ‘x’) and an
entity (for instance, a variable, or atype). The section of text for which the relationshipisvaidis
called the scope of the identifier. SHIFT has nested scopes; a scope aways starts and ends within
another scope. When referring to two such scopes, the former is called the inner scope, the latter
the outer scope. The outermost scope is aso called the global scope.

Thismanual defines scoping rules a ong with each construct which defines ascope. Somerules
arevalid for al scopes.

e Itisillegal to define an identifier twice in the same scope.
e Itispermitted to redefine an identifier in an inner scope.

e Scopes are transparent: all meanings of identifiers from the outer scope are also valid in an
inner scope, except those of identifiers which are redefined.

Most constructs associating identifiers to entities are caled declarations. Unlike other languages,
SHIFT has no ‘declaration-before-use’ rule. A declaration is vaid for its entire scope, no matter
where it appears.

3.4 Preprocessing

SHIFT uses the same preprocessing as the ANSI C language, for the purpose of macro substitution
(#define), fileinclusion (#include), and al other available facilities.

35 Overall structure

A SHIFT specification is a sequence of definitions.

specification = { definition }
definition = component-type-definition
| global-variable-decl
| external-function-decl

3.6 Component types

A component type definition describes a set of componentswith common behavior.

component-type-definition = type type-name[: parent] { { type-clause ; }* } [;]
type-name = identifier
parent = identifier
type-clause = state state-declarations
| input input-declarations
| output output-declarations
| export export-list
| setup action-clause
| setup{{action; }*32
| flow flow-list
| discrete discrete-state-list
| transition transition-list
state-declarations =- declaration-list
input-declarations = declaration-list
output-declarations =- declaration-list
export-liss = local-event { , local-event }*
local-event = identifier

Thedefinition ‘type X : Y { ... } defines acomponent type named X in the globa scope.
The body of the definition (all text between { and }) isthelocal scopefor X .

Y, if present, must be the name of another component type caled the parent type of X. The
function P maps atypeto its parent: inthiscase, Y = P(X). Type A isasupertype of B when
A = P(B) or Aisasupertypeof P(B). Insuchacase, B isasubtypeof A.

A type represents a set of components. The statements ‘ component = hastype X' and ‘'z € X’
are equivaent.

The parent/child relationship implies certain constraints between the input, output, and export
lists of the involved types. These are described in section 3.16.

In a type definition there can be multiple clauses of each kind. Theitemsin al clauses of like
kinds are concatenated in the order in which they appear, asif there were a single clause containing
al of them.

3.7 Declaration lists

declaration-list = declaration { ; declaration }*
declaration = typevariable-clause{ , variable-clause }*
variable-clause = variable-name[init]
type = simpletype
| set (type)
| array (type)
variableename = identifier
init = :=expression
simpletype = number
| continuous number
| symbol
| type-name

Input, output, and state declarations declare local variables in the scope of a component type.
Variable-name identifies a variable, and type isits type. The initiaizing expression is evaluated at
component creation time, and must be of a compatibletype. If avariable is defined algebraically,
itsinitializationisignored. Variables are initialized to zero or nil unless otherwise specified.

3.8 Types

Numbers. Variables of number type hold real numbers, such as 1 or 2.72. Scalar variables
whosetypeis continuous number may be used in the definition of the continuous evolution of a
component, as shown in section 3.9.

Symbols. Variables of type symbol hold symbolic constants (section 3.2), such as $G0 or $STOP.
Every different symbolic constant represents a distinct value. The only operations available for
symbols are assignment and comparison.

Component types. A variable of type X, where X is a component type, is a reference to an
element in T'x, that is a component whose typeis X or any of its descendants.

Sets. A variable of typeset (F) contains a set of elements of type F. The set might be empty.

Arrays. A variable of type array (F) contains a one-dimensiona array of elements of type F.
The same variable may hold arrays of different lengthsat different times. The elements of the array
are numbered consecutively starting from 0. An array might be empty.

3.8.1 Links

When the typein adeclaration isacomponent type, or aset or array whose element is a component
type, the declared variable is a reference to another component (or a set of components). Such
variable, called link variable (or simply link), identifies edges in the link graph.

Let type X definealink variable ¢ with type Y. Then each z € X hasan edgeto somey € Y,
or to the special component nil. The edgeisidentified by the pair (z, ¢). In thelocal scope of X,
cisavaidexpression, and it refersto y. Thisisasingle-valued link.

6

If c hastypeset (Y) orarray (Y, ...),eachz € X hasaset of edgesto distinct components
inY . In the case of a set the edges cannot be individually named. Thisisamulti-valued link.

For simplicity, this manual often uses ¢ to refer to the element, or set of elements, currently
linked by (z, c).

conti nuous-number-output
variable-name
variable-name

continuous-number-state
conti nuous-number-output

3.9 Flows
flow-list = flow{ , flow }*
flow = flow-name{ equation-list }
flon-name = identifier
equation-liss = flow-or-equation {, flow-or-equation}*
flow-or-equation = differential-equation
| algebraic-definition
| flow-name
differential-equation = lhs’ = expression
algebraic-definition = Ihs= expression
lhs = continuous-number-state
|
=
=

A flowisanamed set of differential equationsand algebraic definitions, used to define the continuous
evolution of one or more variables in the component. Flow-name refers to the set of equationsin
equation-list. Its scopeisthe body of the enclosing component type definition.

Flows define the behavior of state or output variables of typenumber. The left-hand side of an
algebraic definition, or a differential equation, is, respectively, one such variable or its derivative.
(For convenience, these rules are more relaxed than those of the standard input-output-state model .
The only difference between states and outputsis that outputs are visible on the outside, states are
not.)

Theright-hand sides of both kinds of equationsare expressionsof al variables of thiscomponent
(states, inputs, and outputs) and the outputs of linked components.

There may be no circular dependenciesin algebraic definitions.

When aflow-name appearsin place of an equation, it standsfor all equationsinthe corresponding
equation-list. If aflow defines variable = more than once, al definitionsof = except thelast one are
ignored.

Howsare used in the definition of discrete states, as shown in the next section. Two flow names
have special meanings.
e Theflow named default isthe default flow for all statesthat do not explicitly specify one.

e Theflow named stop setsthe derivative of all variablesto zero.

3.10 Discrete states

discrete-state-liss = discrete-state-clause{ , discrete-state-clause }*
discrete-state-clause =- state-name|[{ equation-list }] [invariant expression]
state-name = identifier

A state-nameis the name of the state. There must be at |east one state in each machine. The first
statein thelist isthe initia state for a newly-created component.

Flow specifiesthecontinuousbehavior at the corresponding discrete state, asgiveninsection 3.9.
Theoptiona invariant expressionisexpected to be alwaystrue.

3.11 Transtions

transition-list = transition { , transition }*
transition = from-set -> to-state event-list transition-clauses
fromset = set-of-states
set-of-states = expression
to-state = state-name
event-liss = {[event{, event}*]%
event = local-event
| external-event
local-event = identifier
external-event = link-var : exported-event [(set-sync-rule) |
exported-event = identifier
set-sync-rule = one [: temporary-link]
| all
link-var = identifier
temporary-link = identifier
transition-clauses = [when-clause] [action-clause]
when-clause = when expression

A transition defines one or more edges in the finite state machine of a component type: one edge
from each state in the from set to the to-state state. Set-of-states is a constant expression which
evaluates to a set of states, or asingle state. In this context, the identifier a1l isthe set of al states
for thismachine. See section 3.17 for acompletelist of set functions and constructors.

Event is the event associated with this transition. It must appear in the export-list of the
component. Exported-event isaloca event in alinked component. Thelink variablein an exported
event may not be algebraically defined. When a transition contains exported events, the state
machine of this component potentially synchronizes with the state machines in other components.
The synchronization rules are given in section 3.12.

Theoptional guard-clause containsalogical agebraic expression called theguard. A transition
may be taken only if the guard istrue.

If theguard containsan expression with thequantifiersexists, minel, or maxel, thequantified
variable defines atemporary link whose scopeisthe action list for the transition (see section 3.17).

Theaction-clause specifies actionswhich are taken concurrently with thetransition, as described
in section 3.14.

3.12 Synchronization rules

A component synchronizes its state machine with other state machines by labeling its own edges
with local -events and exter nal-events. Local events are exported; they can be used as external events
by other components, and they can appear in setup-only actions (section 3.14.3). Each label of an
edge F establishes conditions under which atransition may be taken along F.

8

When dl conditionsare satisfied, and the guard, if present, evaluatesto true, and the component
isinastatethat has F' as an outgoing edge, then thetransition along F istaken simultaneously with
other transitions as required by the conditions.

The conditions associated with each label are asfollows. Let 2 and y be components, and 7 a
set of components. Let ¢ beasingle-valued link, and C a set-valued link. Let e, bealocal event for
y,and e, aloca event for all componentsin 7.

o If c evaluatestonil, an edge labeled c:e,, may not be taken.

e If c evaluatesto y, an edge E labeled c:e,, must be taken simultaneously with an edge E’
labeled e, iny; and, conversely, £’ must be taken simultaneously with £.

o If C evaluatesto the empty set, the edge labeled C:e, may not be taken if set-sync-ruleisone.
Otherwiseit may be taken.

e If C evaluatesto 7 then an edge labeled e, inany =z € Z may only be taken simultaneously
with an edge labeled C:e... The following also applies.

— If the synchronization rule is one, then an edge labeled C:e, may only be taken simul-
taneously with an edge labeled e, in asingle component = € 7. If atemporary link is
specified, it is assigned the component z. The scope of the temporary link is the action
list for the transition.

— Otherwisg, if theruleis all, an edge labeled C:e, must be taken simultaneously with
anedgelabeled e, inevery z € 7.

3.13 Evolution of a SHIFT system

A SHIFT system starts by executing al initializations of global variables, at timet = 0. Then the
system evolves by alternating discrete and continuous phases, starting with a discrete phase.

In the discrete mode, al possible transitions are taken, in some serial order unless explicitly
synchronized. Time does not flow in the discrete mode. The system switches to continuous mode
when no more transitions are possible.

The system evolves in continuous mode according to the flow associated to the discrete state
of each component. As soon as it becomes possible for one or more components to execute a
transition, time stops again.

create-action
setup-only-action

3.14 Actions
action-clause = [define-clause] do-clause
define-clause = define { { local-definition ; }* }
local-definition = temp-var := expression
temp-var = identifier
do-clause = do{{action; }*}
action = reset-action
|
|

Actions are used to change the continuous state, create or destroy components, and change the
way in which components are linked. Setup-only actions may only be used in a setup clause and
establish 1/0O connections and synchronization of exported events.

A local-definition declares and initializes a variable whose scope is the following local defini-
tions, and the actions in the do-clause.

3.14.1 Resets

reset-action = selector := expression

Sdlector refers to a state or output variable of this component, or an input variable of a linked
component (it is defined in section 3.17). Expression is an expression of the old values (that
is, before they are reset) of all variables (input, state, and output) of this component, and output
variables of linked components. Resets have no effect on variables which are algebraicaly defined
in thefinal state of the associated transition.

Noteon ‘:="vs. ‘=", Thenotation‘l :=r’ represents a one-time assignment which occurs during
the discrete phase. The notation ‘I = r’ in certain contexts establishes equality of the left and
right-hand sides as time flows. In other contexts, ‘x =y’ isalogica expression which evaluates to
true when xisequal toy.

3.14.2 Creation

create-action = create-expression
create-expression = create (type-name{ , initializer }*)
initializer = variable : = expression
variable = identifier
The action create (C, ...) creates a new component of type C'. The left-hand side of an

initializer isavariable (not just an input) in the new component. The initializer setsthisvariableto
the value of the right-hand side, overriding the initial value of the variable in the declaration of the
new component.
The scopes of the left and right-hand sides of an initializer differ. Thusthe action create(C,
v := v) setsvariable v in the new component to the value of variablev in the creating component.
The setup actions of the new component are executed after completion of the transition that
created it.

3.14.3 Setup-only actions

setup-only-action = external-event <-> external-event { <-> external-event }*
| connection
connection = input (link-var) = expression
input = identifier
link-var = identifier

Setup-only actions are only allowed in the setup phase of acomponent’slife. They establish static
event synchronization and /O connections for components without their direct involvement.

10

A connection makes the value of the left-hand side be that of the right-hand side at all times.
If the right-hand side of a connection is not a continuously-varying number, the left-hand side may
not contain continuously-varying numbers. In theinput definition «(a) = £, v must be an input of
component a. The connectionisstatic: if « later changes, the input definition refers to the value of
a a setup time. [What happens when a flow conflicts with a connection?]
The event synchronization
ae <=> b.f

specifies that event e in e and event f in b may only occur simultaneously. Event synchronizations
are also static, and the synchronized components forever remain those reached through « and b at
setup time.

Some useful forms of connections are I/O connections (u(a) = y(b), where y is an output of
linked component b), I/l connections (u(a) = v, where v is an input of this component), O/ and
O/O connections.

There may not be circular dependenciesin discrete definitions.

3.14.4 Linking and unlinking

Links are established and removed by resets (section 3.14.1) of link variables.
In a link statement of the form X := Y, X refers to a single or multi-valued link in this
component. The action modifies the edge, or edges, named by X .

When X isasingle-valued link, the action removes the existing link and adds a new one, from
this component to the component obtained by evaluating Y (possibly to thenil component).

When X is amulti-valued link, the action can add or remove edges from the set, or leave it
unchanged.
3.145 Execution of actions

The order in which actions are specified is inconsequential. Actions are executed in phases as
follows.

1. All components specified by create-expressions are created.

2. Theright-hand sides and the destinations of resets are evaluated, and so are the component
initializers.

3. The previously computed values for resets and link actions and component initial values are
assigned to their destinations.

4. Setup-only actions are executed.

Definitions in the define-clause are evaluated in the order in which they are given. The execution
sequence for the create-expression is: initia values, passed in arguments, define/do actions.

11

3.15 Setup clause

If asetup clauseispresent, itsactions are executed before the finite-state machine enters theinitial
state. If the initia state is Sp, thisis equivalent to creating an additional state S_;, making it the
initial state, and placing an unguarded edge from .S_1 to .S with the setup actions. Section 3.14
lists all possible actions. Some actions (the setup-only actions of section 3.14.3) may only appear
inthe setup clause.

3.16 Input, output, and export declarations

Variables declared in an output list may be used outside a component. They may not be reset or
defined outside the component.

The input list declares local variables which can only be defined and reset from outside the
component.

The export declares local events of atype. They are dl visible to other components.

If X istheparent of Y, theexport, input, and output listsof Y must be supersets of, respectively,
the export, input, and output lists of X. The same name in two input or output lists must refer to
the same kind of object.

12

3.17 Expressions

expression = selector

numeric-constant

symbolic-constant

true

false

nil

expression binary-operator expression
prefix-operator expression

expression postfix-operator

expression ([expression-list])

expression [expression]

(expression)

type

{ [expression-list] }

[[expression-list]]

all

self

state-name

if expression then expression else expression
exists identifier in expression : expression
minel identifier in expression : expression
maxel identifier in expression : expression

selector continuous-sel ector
link-sel ector
continuous-se ector number-var
number-var (link-selector)
link-sel ector link-var

link-var (link-selector)
expression [, expression-list]
operator

operator

expression-list
prefix-operator
postfix-operator

D

Theindexing expression a [i] accesses the (i + 1)-th element of array «.
Theexpression { ey, . . ., e, } evaluatesto aset containingthe elementse, . . ., e,, which must
al be of the sametype. Similarly, the expression [eg, . . ., ,_1 1 evaluatesto an array of length n.
The expression all evauates to the set of al statesin the state machine of thistype.
Theexpression self isasdlf-link, that isareference to the component contai ning theexpression.

The expression nil is a special component whose behavior is absolutely boring: it has no
inputs, outputs, or exported events. It may be assigned to links of any type.

Thelogica expression if = then y else z evaluatestoy if z istrue, elseit evaluatesto z.
Grammar ambiguities are resolved by operator precedence. [need precedence table here]

13

3.18 Predefined functionsand operators

The predefined functions and operators are listed and explained in tables 2—4. Table 2 gives
the standard functions on sets and logical values. Table 3 gives the arithmetic and mathematical
operators. Table 4 lists miscellaneous operators.

Meaning
A logical expression which evaluatesto true if and only if the
set S contains at least one element which, when bound to z,
causes the expression F' to be true. If an exists expression
appearsin aguard, the scope of = includes the actions for that
transition, where it is bound to one of the components which
satisfy the guard.

Expression \

existszin S : F

maxel z in S : F
minel z in S : F

The element of S which, when bound to z, respectively maxi-
mizes or minimizes expression F.

S1+ .52, 51%.52,51-52

Respectively the union, intersection, and difference of sets .S;

and So.

zin S A logica expression whichistrue if isamember of S'.

reduce(S, f) If S = {e1,...,e,}, reduce(S, f) returns

reduce(S, f, o) flen, f(..., f(ez,€1)...)),and reduce(S, f, eg) returns
flen, f(..., fle1,€e0) ...)). fisabinary function or abinary
operator enclosed in double quotes (e.g., "*").

size(9) The number of elementsin set S.

and, or, xor, not The standard logical connectives.

Table 2: Set and logical operators.

3.19 External functions

external-function-decl = function function-name ([arg-list]) -> return-type
arg-liss = declaration-list
return-type = type

SHIFT does not have functions, but a SHIFT program can refer to externa functions, whose imple-
mentation must be provided for the purpose of simulation. External functionsarewrittenin C. The
implementation of the simulator may impose further restrictions (for instance, it may require that
thetype of all arguments and return values be number), and a so defines a correspondence between
SHIFT typesand C types (for instance, it may specify that the SHIFT number type correspondsto the
C double type).

3.20 Global variables

global-variable-decl = global declaration-list

Global variables have global scope, can be used in expressions, and can be set by any component.

14

Expression

\ M eaning

+1 _1 *1 /1 **
<>, <=, 5=, =, /=

The standard arithmetic and relational operators (/= is “not
equa.”)

exp(z),1n(x), logl0(x)
sin(xz), cos(x), tan(x)
sqrt(z)

atan(z), atan2(z,y)

The standard elementary mathematica functions.

abs(z)

Absolute value.

floor(z), trunc(x),
round(z),

Coercion to integers. Floor, trunc, and round produce results
rounded toward —oo, toward O, and toward nearest.

max(zq1,...,2,) Maximum and minimum.

min(aq,...,2,)

signum(z) Returns -1, O, or 1, depending on whether = is negative, zero,
or positive.

random() random requires no arguments and returns a random number
uniformly distributed in [0, 1].

Table 3: Arithmetic Operators and Elementary Functions
Expresson | M eaning

The compile-timetype of narrow (X, y) isX. LetY bethe
compile-time type of y. If Y is X or a supertype of X, and
the run-time value of y has type X or a subtype of X, then
narrow (X, y) returnsy, otherwiseitisan error.

narrow(X, ¥)

Table 4: Miscellaneous Operators

4 Acknowledgements
Most of theideas in this manual are the result of discussionsinvolving the authors and other PATH

members. In particular we have greatly benefited from discussions with Datta Godbole, Rgja
Senguptaand Pravin Varaiya

15

