Rethinking Transparency: Corruption in Local Public Office in India

Dahyeon Jeong, Ajay Shenoy, and Laura V. Zimmerman

This paper is posted at the eScholarship Repository, University of California. http://escholarship.org/uc/cega_wps Copyright © 2021 by the author(s).

The CEGA Working Paper Series showcases ongoing and completed research by faculty affiliates of the Center. CEGA Working Papers employ rigorous evaluation techniques to measure the impact of large-scale social and economic development programs, and are intended to encourage discussion and feedback from the global development community.

Recommended Citation:

Rethinking Transparency: Corruption in Local Public Office in India

Dahyeon Jeong*
Ajay Shenoy†
Laura V. Zimmermann‡ §

June 14, 2021
First Version: 8 November 2018

Abstract

Governments and NGOs have invested heavily in fighting corruption by designing anti-poverty programs that maximize transparency and accountability. We analyze whether corruption is still widespread in the context of one such program, a massive make-work scheme in India where every job spell is posted publicly online. Linking millions of administrative job records to local election outcomes, we measure how many jobs they self-deal. In the year after the election, winners of close elections receive 3 times as many workdays as losers and typical villagers, a sum equal to two-thirds their official stipend. We find that corruption persists because of a gap between de jure and actual transparency. Only when citizens have tools to access information in a timely manner does corruption eventually vanish.

JEL Codes: D72, D73, H53, H75, I38
Keywords: corruption, self-dealing, transparency, local politicians, anti-poverty programs, greasing the wheels

*World Bank; email at dahyeonjeong@worldbank.org. Website: www.dahyeonjeong.com
†University of California, Santa Cruz; email at azshenoy@ucsc.edu. Phone: (831) 359-3389. Website: http://people.ucsc.edu/~azshenoy. Postal Address: Rm. E2455, University of California, M/S Economics Department, 1156 High Street, Santa Cruz CA, 95064.
‡University of Georgia; email at lvzimmer@uga.edu. Phone: (706) 542-1311. Website: https://sites.google.com/site/lauravanessazimmermann. Postal Address: Rm. B410 Amos Hall, University of Georgia, 620 South Lumpkin Street, Athens GA, 30602.
§Financial support from the UCSC Committee on Research 2018-19 Special Research Grant/Collaborative Research is gratefully acknowledged. Laura Zimmermann also acknowledges financial support through the Terry-Sanford and Bonbright Center Research Award at the University of Georgia. Declaration of interest: None. We are grateful to Benjamin Ewing, Ran Xu, Yiyun Zheng, Ravijna Amlani, and Anuja Patel for excellent research assistance. We also acknowledge valuable suggestions from T. Robert Fetter, Farzana Afridi, Peter Brummund, Robert Garlick, Meera Mahadevan, Abhiroop Mukhopadhyay, Jeffrey Smith, Sudipta Sarangi, and participants at seminars at U.C. Santa Cruz, U. of Georgia, the Indian School of Business, and the Indian Statistical Institute-Delhi, as well as the ACEGD, SIDEW, PACDEV, and MWIEDC conferences. The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
1 Introduction

Policymakers, non-profit organizations, and academics typically suggest that embracing transparency and accountability is the best solution for fighting corruption (Avis et al., 2018; Bertrand et al., 2007; Campante and Do, 2014; Di Tella and Schargrodsky, 2003; Ferraz and Finan, 2008; Niehaus and Sukhtankar, 2013b; Olken, 2007; Reinikka and Svensson, 2004). Citizens must have both information on where entrusted power is being misused, and ways to hold the corrupt accountable.

However, this seemingly straightforward solution implicitly assumes that citizens have the necessary tools to access the available information and have the desire to punish corruption, neither of which may be true. For example, even if a government discloses public spending on its website, this information will be of little value if citizens do not have access to the internet and do not know when the information will be posted. This example highlights the difference between *de jure* transparency and true transparency, which arises only if the information is being accessed and understood by citizens. Moreover, having the information and the power to punish the corrupt does not always mean citizens *want to*. Citizens may be supportive of their leader's corruption if they believe that corruption is a good incentive for the leader's performance in serving their needs.

In this paper, we investigate these rarely discussed assumptions on transparency and accountability, and their role in reducing corruption. We study how local politicians in the Indian state of Uttarakhand implement the world's largest anti-poverty program, where considerable effort by governments, NGOs, and social activists has produced an administrative system designed to curb corruption. The National Rural Employment Guarantee Scheme (NREGS) funds short-term make-work jobs building public works within the village. Village council presidents play a key role in both bringing jobs to their villages and in allocating these jobs between constituents. One measure of corruption in this context is the number of jobs presidents allocate to their own households. While this behavior is not illegal, such self-dealing meets the most common definition of corruption as the misuse of public office for private gain (Svensson, 2005).

The program's unusual level of transparency allows us to create a unique dataset that directly captures presidents' self-dealing of NREGS benefits, as well as their performance in generating
NREGS employment for the village. Each employment spell is published on a publicly available government website and identifies the recipient by name and location. We scrape millions of these reports, covering over 90 percent of rural households in Uttarakhand.\footnote{Households can be registered for the program without ever having worked on it.} We match these NREGS reports to the election returns for candidates competing in thousands of village council elections. The merged dataset shows how winning candidates allocate NREGS jobs to their own household as compared to those of typical villagers. Since election winners are likely to differ from typical villagers on a number of observable and unobservable characteristics, we compare the labor allocations of winners and runners-up in close elections decided by a few votes. Our regression discontinuity design ensures that the labor quota of the runner-up is a good counterfactual for that of the winner had they remained out of office. We also observe the NREGS employment the winner subsequently creates for the entire village, a direct measure of program performance.

The very website used to construct our data also creates a level of \textit{de jure} transparency that might be considered sufficient to reveal corruption. Figure 1 provides an example. It shows the job card record for the council president alongside the closest runner-up in the election with household location down to the village level and a list of all adult household members. Below that information the website provides employment and wage details on all job spells under the program with their exact dates and the project name. All NREGS projects are hyperlinked. One click on the link will turn up more information about the project, including a list of all of the other workers assigned to the same project, which in turn links to their job card profiles. This means that even if workers start out as just being interested in accessing their own information, they can quickly compare their records to those of others with a few clicks. In the example, Figure 1 shows that the household of the council president has received dozens of days of labor, whereas the runner-up—who lost by just 3 votes—has received no jobs at all. While voters in other contexts may be generally aware that money for welfare benefits goes missing, voters in Uttarakhand can directly observe how much money flows into the president’s own bank account.

The officials who administer these programs also face a level of local accountability that is unusual in a developing country. Village council presidents in Uttarakhand are directly elected through competitive local elections, and by design our sample focuses on close elections de-
Figure 1
Comparing Close Winners and Losers on the Official NREGS Site

<table>
<thead>
<tr>
<th>Won by 3 votes</th>
<th>Lost by 3 votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job card</td>
<td>Job card</td>
</tr>
<tr>
<td>Office</td>
<td>Office</td>
</tr>
<tr>
<td>Date of Birth</td>
<td>Date of Birth</td>
</tr>
<tr>
<td>Gender</td>
<td>Gender</td>
</tr>
<tr>
<td>Age</td>
<td>Age</td>
</tr>
<tr>
<td>Village</td>
<td>Village</td>
</tr>
<tr>
<td>Block</td>
<td>Block</td>
</tr>
<tr>
<td>District</td>
<td>District</td>
</tr>
<tr>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>Applicant</td>
<td>Applicant</td>
</tr>
<tr>
<td>Gender</td>
<td>Gender</td>
</tr>
<tr>
<td>Age</td>
<td>Age</td>
</tr>
<tr>
<td>Village</td>
<td>Village</td>
</tr>
<tr>
<td>Block</td>
<td>Block</td>
</tr>
<tr>
<td>District</td>
<td>District</td>
</tr>
<tr>
<td>Address</td>
<td>Address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period and Work on which Employment Given</th>
<th>Period and Work on which Employment Given</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>Name of Applicant</td>
</tr>
<tr>
<td>----</td>
<td>--------------------</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Note: From the publicly accessible official NREGS website at nrega.nic.in. Identifying information has been redacted for this image. The record of Employment Given is blank for the job card on the right because none was given.

termined by a small number of votes. This restriction excludes villages where elite capture or nonexistent political opposition have rendered the president unaccountable to voters. Villages in Uttarakhand are small, with 80 percent of villages having fewer than 1000 inhabitants. This means that villagers are very likely to know the council president personally and, unlike in larger polities, can make their complaints known in person. If villagers find presidents too odious to wait for the end of the term, they can recall them by petition.

We find a sizeable amount of corruption among local politicians. The winners of close elections receive nearly 3 times as many days of labor as losers in the year after the election. Indi-
viduals who visit the website would therefore see that the list of job spells received by the president is three times longer than that of a typical villager in the year after the election, an easily detectable difference even when just casually comparing job card records. The amount of additional jobs going to the presidents is economically meaningful. In monetary terms, these excess NREGS returns equal nearly two-thirds of the official salary of presidents in our sample. This sizable payment may or may not represent actual work done by the president. The president or a member of the president’s household might receive payments even without having to perform any manual labor if a worksite manager or technical assistant is complicit.\(^2\)

Why does corruption persist despite the transparency and accountability measures in place in our context? We scrutinize three assumptions of transparency and accountability that are typically overlooked in the literature, each of which could plausibly fail in this context. The first assumption, that citizens have access to infrastructure for information, may fail because internet access was far from standard in many rural areas in Uttarakhand during our study period. Even today most of rural Uttarakhand lacks reliable cellular data networks, forcing poorer households to rely on cyber cafes that may or may not be present in every village. The second assumption, that information is recorded in a timely manner, was equally questionable at the beginning of our study period. An audit by the central government flagged Uttarakhand as one of the worst-performing states for inputting records into the online management system on time (Comptroller and Auditor General of India, 2013). Though the average delay was 30 days, any particular spell could take far longer to ultimately appear. Villagers who paid the cost of internet access (at a cyber cafe, for example) might discover they had wasted their money because the official record for a job spell had not been posted days or even weeks after the spell had concluded.

The third assumption, that citizens always want to punish corrupt officials, also may not hold in our context. In an original survey of roughly 200 village council presidents in Uttarakhand, we ask a number of questions about their work and how they run NREGS. They report that NREGS takes a lot of effort to implement, and more than half of survey respondents claim that presidents who create more NREGS jobs for the village would be expected to also take more NREGS

jobs for themselves (despite being unaware that we are studying self-dealing or monitoring their labor allocation). The majority of village council presidents therefore rationalize self-dealing by claiming villagers accept corruption as compensation.

We test which of these assumptions might not have held in the immediate aftermath of the election by exploiting three features of the context. First, there is substantial variation in the distance to the nearest cyber cafe, which we use as a proxy for access to infrastructure. Second, in mid-2016 the government imposed a major new regulation requiring all job spells to be posted within 48 hours of their conclusion, resolving all uncertainty about when villagers could expect to find the record. Third, we construct a direct measure of the president's performance in managing NREGS, the average days of labor provided to households in the village. This measure lets us observe whether any decline in corruption caused by the cyber cafes and the 2016 regulation are followed by a decline in performance as predicted by the corruption-as-compensation hypothesis.

We estimate the difference in discontinuities between areas close and far to a cyber cafe and over time. We find that the levels of self-dealing were similar for both types of villages before the 2016 regulation. After 2016, corruption declines substantially in villages close to cyber cafes, but there was no similar decline in performance. Our measure of job performance, the number of NREGS days generated for households, is similar across both types of villages both before and after the reform.

Our results suggest that a failure in both the first and second assumption explains why the online system was initially unable to curb corruption. Had it been only a failure in the first assumption, access to infrastructure, we would have seen lower corruption in areas near a cyber cafe from the very beginning. But since corruption only falls after the reform, it suggests the second assumption, the timeliness of information availability, is important and unmet at baseline. This assumption proves especially relevant in our setting where the cost of obtaining information is high. By contrast, the third assumption, that villagers want to punish corruption, is likely met despite contrary claims by presidents responding to our survey. Our finding that performance remains high even as corruption falls is consistent with this assumption.

Our biggest contribution is to make the practical requirements for transparency explicit and to demonstrate their importance for reducing corruption empirically. An extensive literature
has documented that transparency and accountability measures can curb corruption (Avis et al., 2018; Bertrand et al., 2007; Campante and Do, 2014; Di Tella and Schargrodsky, 2003; Ferraz and Finan, 2008; Niehaus and Sukhtankar, 2013b; Olken, 2007; Reinikka and Svensson, 2004). But our results add an important nuance to those findings by revealing the practical requirements needed to turn de jure transparency and accountability into an actual change in governance. This new result has direct policy implications beyond our study context. The decision by the Indian government to post individual payments on the internet far exceeds the transparency measures implemented in other developing countries. To curb corruption, governments and non-profit organizations should therefore not just consider ways of making information available, but should also work on coordinating when it is available and ensuring citizens have the means to access it. This may entail investing in technology and infrastructure as well as a careful tweaking of program design features.

The existing literature also tends to focus on “leakages,” where program funds go missing but it is unclear where exactly the money goes. Measuring leakages can reveal the size of corruption, but not the source—for example whether bureaucrats or politicians take the biggest cut. One strength of our context is that we observe that payments from NREGS land directly in the bank account of the politician, making it unusually clear where exactly it goes. This means that specific NREGS benefits can be directly attributed to an individual politician, and are therefore plausibly taken as a direct indication of the politician’s greed. Given the nature of the self-dealing, it should also be unusually salient that the NREGS jobs that the president received could have gone to other villagers. These features also allow us to contribute to the literature on unofficial returns to office in developing countries.

3 For a literature overview see Aidt (2003); Bardhan (1997); Olken and Pande (2012); Svensson (2005).
4 We do not find any evidence that politicians are misusing NREGS to provide preferential access to their extended family or other members of the village council. While we cannot rule out that some of the NREGS benefits politicians allocate themselves are used to pay off supporters or other officials in the system, directly providing them with NREGS benefits would seem to be an easier way of making those payments in many cases.
5 Existing studies typically focus on constructing broad measures of wealth changes for politicians in developed countries since direct information on self-dealing is often unavailable (Albertus, 2019; Baturo, 2017; Diermeier et al., 2005; Eggers and Hainmueller, 2009; Klašnja, 2015; Querubín and Snyder, 2013; Reinikka and Svensson, 2004). But those returns could come from a variety of sources. The prestige of public office can bring customers to a politician’s side business or yield invitations for paid speeches, for example, which are less inherently unethical income opportunities than self-dealing welfare benefits. For the small literature on developing countries see Asher and Novosad (2018); Fisman et al. (2014); Foltz and Opoku-Agyemang (2015).
Our results also contribute to the ‘greasing the wheels’ literature on corruption. Several theoretical models predict that corruption may be a second-best solution (Huntington, 1968; Leff, 1964; Lui, 1985). Typically, these models focus on interactions between firms and bureaucrats, showing that corruption can increase allocation efficiency if the most efficient firms are willing to pay the highest bribes. But while these models focus on the interactions between actors at the micro level, the existing empirical evidence has mostly been confined to analyzing their predictions at the macro level using cross-country datasets (Fisman and Svensson, 2007; Méon and Sekkat, 2005; Méon and Weill, 2010; Wei, 2000). We provide new micro-level evidence on the topic to a very small empirical literature. In contrast to Weaver (2018) and despite politicians’ claims in our original survey, we find little evidence for a corruption-as-compensation channel in the empirical analysis. Our paper is also novel in extending the hypothesis to interactions between citizens and local politicians, and focuses on service delivery rather than allocative efficiency.

Lastly, our results contribute to a better understanding of the remaining challenges to implementing NREGS. As one of the largest and most ambitious welfare programs worldwide, there is considerable policy interest in identifying the impact of its design features. While Muralidharam et al. (2016) have shown that the reforms that linked NREGS benefits to a biometric identity card has improved targeting substantially, we show that self-dealing drops substantially after a digitization mandate requiring the electronic management information system to be updated in close to real time.

2 Background

6 Two rare exceptions are Mironov and Zhuravskaya (2016) and Weaver (2018). Mironov and Zhuravskaya (2016) reject a ‘greasing the wheels’ explanation, since procurement contracts in more corrupt Russian localities are allocated to less efficient rather than more efficient firms. Weaver (2018), on the other hand, finds that the allocation of health bureaucracy jobs to the person willing to pay the highest bribe leads to higher-quality hires than decisions based on a knowledge test.

7 This makes our results more consistent with the macro literature, which overwhelmingly finds no support for the hypothesis.

8 Consistent with an improvement in the implementation of NREGS, our estimates of self-dealing in a context with plausibly high levels transparency and accountability are substantially lower than the Niehaus and Sukhtankar (2013a) estimates from the early days of NREGS implementation when off-the-books corruption was much easier to pull off.
2.1 Elections and Accountability in Rural Uttarakhand

Village council presidents in Uttarakhand are directly elected every five years. Local elections are run by the State Election Commission of Uttarakhand, an independent body that sets the election date and monitors nominations and campaigns. Elections are widely perceived to be free and fair. Roughly 90% of elections for council president are contested, and over 90% of respondents to the 2006-2008 Rural Economic Development Survey say they feel free to vote as they desire. Uttarakhand is also somewhat uniquely free of the “politics of fear” (as modeled by Padró i Miquel, 2007) that arises in other parts of India from caste and religious conflict. The state only has a tiny population of the so-called Other Backward Classes, and there have not been large attempts to create a unified political identity among more disadvantaged castes or the relatively small Muslim community. The support of an ethnic community is thus less likely to insulate the president in Uttarakhand than elsewhere. We focus on the 2014 election, the first after the NREGAs soft system was created.

Aside from elections, presidents face checks on their authority while in office. They are in theory monitored by the other members of the village council (gram panchayat), who are independently elected. The voters themselves can by law file a no-confidence motion against the president if one-quarter of adults in the village sign a petition against the politician. A district bureaucrat then convenes a village meeting where the president can be removed from office if a majority of villagers favors this.

2.2 National Rural Employment Guarantee Scheme

NREGS, the National Rural Employment Guarantee Scheme, is the world’s largest public-works program. The primary goal of the scheme is to provide a flexible safety net for rural households.

9 A directly elected president is the norm across most of northern and central India. Rajasthan, Uttar Pradesh, and Bihar are just a few other examples of states that have a non-partisan directly elected president. There are a few states, notably West Bengal and Kerala, that instead hold explicitly partisan indirect elections.

10 See e.g. The Indian Express, ‘Uttarakhand elections: Across the border; next door to UP, new caste calculus’, February 15, 2017.

11 In our survey of village council presidents in Uttarakhand, very few presidents report that they relied on a particular caste, party or religious group in their election campaign. This is in stark contrast to India as a whole, where large fractions of candidates for the council presidency report in the 2006-2008 Rural Economic Development Survey (REDS) that they relied on a caste group for support.
in times of need by offering an income transfer conditional on the willingness to perform manual labor at the minimum wage (Zimmermann, 2018). There are no further means tests (Dey et al., 2006; Government of India, 2018). Most projects are routine tasks, such as clearing bushes or digging holes, that do not create substantial public investment.

In theory, NREGS guarantees every rural household up to 100 days of public employment per year at the minimum wage, on demand whenever requested by the household. But in practice there is often a shortage of NREGS jobs. Households can only get employment when it is made available, rather than taking up work when they may need it most (Dutta et al., 2012; Mukhopadhyay et al., 2015). For example, many households report having to wait passively for jobs to be provided rather than actively applying for work.

The necessary rationing of employment due to excess demand gives village council presidents a key role in the allocation of jobs among households in the area they govern (which is also called the gram panchayat, or panchayat for short). Aside from registering households and proposing local projects to block and district officials, the president also effectively controls the allocation of jobs. A worker who wants NREGS labor must apply at the village council office. Though in theory a joint decision by the entire council, our survey of council presidents finds that they make the decisions either themselves or jointly with their spouse. These allocations are then submitted to higher-level officials, who approve the wage payments. Since there are never enough jobs to meet villagers’ needs, the council can exercise discretion in how jobs are allocated.

2.3 NREGS Transparency Measures as of the 2014 Election

Compared to other government schemes, both in India and elsewhere, NREGS includes unusually many design features intended to minimize corruption. They were added in response to

12 See Berg et al. (2018), Imbert and Papp (2015) and Zimmermann (2018) for analyses of the economic impacts of the program.

13 Newspaper coverage on Uttarakhand is typically very negative, noting the low job availability and the absence of a well-functioning planning process at gram panchayats. Both are symptoms of a supply-driven NREGS implementation with a centralization of decision-making power in the village council president. Only 3 to 5 percent of households in Uttarakhand get the full 100 days of employment. See e.g. Live Mint, ‘MGNREGA, a cash transfer scheme?’, March 18, 2013; Mainstream Weekly, ‘Working of NREGA Voices from Panchayats’, April 2, 2009; Financial Express, ‘The state of MGNREGA performance: If inefficient states perform at par, huge gains are possible’, March 14, 2017. See also India Spend, ‘The Whys and Whats of India’s Rural Jobs Scheme’, November 4, 2014.
pressure from NGOs and social activists, who were strongly interested in creating a welfare safety net for the rural poor, but worried about corruption.14 The program contains safeguards such as social audits, which are supposed to be carried out regularly by villagers; a mandated 60:40 percent ratio of wage payments to materials; and a ban on employing contractors for NREGS projects. This is meant to maximize the jobs created for workers in simple manual tasks.

But the main transparency feature is the publicly available website, which we also use as our data.15 From the beginning, the NREGS website was paired with the management information software NREGASoft. The system contains multiple modules to track different aspects of the scheme, such as employment demanded by workers and jobs allocated, proposed and approved works projects, as well as modules for managing funds and labor budgets (Government of India, 2013). After a 2011 update, the software application allowed local government officials to update workers’ bank account information in the system, meant to further speed up and digitize the process, but also included automatic flags for suspicious actions. Violations of the wage to material expenditure ratio are automatically monitored in the system, and there were caps on one-time administrative actions and transactions with vendors. Muster rolls from NREGS projects could also not be entered with a delay of more than two months.

Despite these provisions, a central government audit for the financial year 2012-13 documented that the state of Uttarakhand was one of the worst performers on using the entirety of NREGASoft’s capabilities (Comptroller and Auditor General of India, 2013): Only 1607 of 7577 village councils implemented so-called e-MRs, entirely electronically generated muster rolls of workers at NREGS work sites. Instead, muster rolls were typically filled out on paper at the work sites, and later manually entered into NREGASoft, generating a delay of information available on the public website of about 30 days. Additionally, only one of Uttarakhand’s 13 districts had implemented the e-FMS (electronic fund management system), which meant that most workers were not paid electronically through direct bank transfers from the central government to bene-

14 A first draft of an employment guarantee act, similar to the final provisions of NREGS and written by researchers and social activists Nikhil Dey and Jean Drèze, was circulated in the fall of 2004. As they note in their booklet ‘Employment Guarantee Act – A Primer’ from October 2004: ‘Workers’ organisations have been demanding a national Employment Guarantee Act (EGA) for many years. This ‘primer’ was prepared to facilitate public discussion of this issue at all levels – from remote villages to the national capital.’ See http://www.sacw.net/Labour/EGAprimer.html

15 https://nrega.nic.in
ficiaries’ bank accounts. The state was told to quickly ramp up the real-time use of the electronic system and, along with all other Indian states, was required to make all payments for materials through e-FMS starting in January 2014.16 This meant that central government funds would be directly transferred to vendors’ bank accounts, making corruption in the materials budget much more challenging. Direct payments of NREGS wages into beneficiary bank accounts was still far from common, however: All over India, only 37 percent of wages were being paid directly electronically in the financial year 2013-14.17

Overall, by the time of the 2014 panchayat election, village council presidents in Uttarkhand were therefore subject to substantially more monitoring by the higher levels of the administration through NREGASoft than in the early days of the program, making off-the-books corruption more difficult.18 But while NREGS job allocations and wage payments were eventually reflected on the official website, digitization delays led to uncertainty about the exact time at which the information was available online. This in turn limited the ability of villagers, local media, NGOs or political challengers in Uttarakhand to monitor the council president in real time.

3 Data and Research Design

3.1 Data

We use publicly available administrative data on NREGS employment that we scraped from the official NREGS website, which is maintained by the Government of India. The dataset contains digital versions of the paper trail that is mandated by the scheme, which provides us with data on NREGS employment at a highly disaggregated level. Every registered job card has an online record with the details of the job card holder, typically the household head, and all other adult family members. The household’s district, block, panchayat, and village are recorded. The record also includes the name, gender, and age of every household member registered to work, as well as the start date and length of each job spell, wages paid, and the name of the project they worked on. Additionally, we have information on the name of the household head’s father

16 See https://nrega.nic.in/netnrega/releases.htm
18 See Afridi and Iversen (2014) and Niehaus and Sukhtankar (2013a,b) for earlier analyses.
or husband, the household’s broad caste category, and the date of initial registration for the job card that made the household eligible to work under NREGS.

We merge the NREGS data to publicly available information on local elections for the president from June 2014.19 The election dataset contains the name, closest male relative, and vote count of the winner and runner-up of each gram panchayat election. This information allows us to match the winner and runner-up to their NREGS job card profiles. We attempt to match these top-two candidates for all elections decided by a margin of 7.5% or less, dropping any cases in which there is no unique match. We link this dataset to the 2011 Indian Census by collapsing statistics measured by census village to the level of the panchayat. We draw several variables from the Census, most importantly a categorical variable that reports whether the distance of the village to the nearest cyber cafe is less than 5 kilometers, more than 10 kilometers, or somewhere in between. Other variables include the distance to the nearest post office, major road, bank and market.20 We aggregate the census data to the level of the panchayat, then merge to our linked job card-election dataset.

To better understand the wages and motives of council presidents, we surveyed a sample of them by phone. We matched the winning candidates in our sample to contact information posted on the website of the Uttarakhand Ministry of Panchayati Raj. We assigned a random ordering to this sample and hired contractors in India to work down the list making calls in the month just before the 2018 monsoon season. The contractors made as many calls as possible in this period, yielding a final sample of 207 complete or partial interviews.21 The response rate was roughly 30 percent, where nonresponse arose mainly because our interviewer could not connect (likely because the phone was off or out of cell phone range). Conditional on someone picking up the response rate was close to 100 percent. The connection issues seem transient—several of those who could not be initially contacted were successfully interviewed when called later. We

19 While the next local election took place in 2019, consistent detailed data on election results is not yet available. We therefore cannot analyze whether the presidents in our dataset participated in the 2019 election.

20 In the appendix we also use as controls the Census reports of distance to the district and sub-district headquarters, the literacy rate, and the fraction of the population classified as scheduled caste or tribe. We also use village geo-coordinates to measure the distance to the state capital, the distance to the state’s border with Uttar Pradesh, and 2011 night-time light emissions.

21 During the first phase of the survey we had to modify the wording of some questions after our interviewers reported that respondents did not understand the original wording. As a result we do not have 207 responses for some questions.
detect no statistically significant difference on observables between our survey sample and the presidents who were not surveyed, making differential non-response less likely to be a concern.

Table 1 reports summary statistics for four samples: all candidates that were successfully matched to their NREGS records, the subset within the bandwidth used to estimate our main specification, the set of presidents within the full matched sample, and the subset in our survey sample. The samples are broadly similar on all characteristics except those that differ by construction (e.g. all winning candidates have a positive vote margin). As noted above there are no significant differences between the survey sample and the unsurveyed presidents in the matched sample. In particular, the two samples earn almost identical amounts of NREGS labor in the year after they become president (2015).

The one difference between samples that is both clear and not mechanical is that winning candidates worked somewhat more days of labor in 2015 (after the election) than the samples that include both winners and runners-up. This difference foreshadows our main result that winners receive more labor than losers.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Descriptive Statistics and Sample Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winners and Runners-Up</td>
</tr>
<tr>
<td></td>
<td>Full Matched Sample</td>
</tr>
<tr>
<td>Winner</td>
<td>0.54 (0.50)</td>
</tr>
<tr>
<td>Female</td>
<td>0.47 (0.50)</td>
</tr>
<tr>
<td>Scheduled Caste/Tribe</td>
<td>0.21 (0.40)</td>
</tr>
<tr>
<td>Vote Margin</td>
<td>0.85 (19.77)</td>
</tr>
<tr>
<td>In Bandwidth</td>
<td>0.67 (0.47)</td>
</tr>
<tr>
<td>Surveyed</td>
<td>0.13 (0.33)</td>
</tr>
<tr>
<td>Days of labor (2015)</td>
<td>40.10 (40.66)</td>
</tr>
<tr>
<td>Days of labor (2013)</td>
<td>23.13 (34.55)</td>
</tr>
<tr>
<td>Observations</td>
<td>1650</td>
</tr>
<tr>
<td>Panchayats</td>
<td>1148</td>
</tr>
</tbody>
</table>

Note: Each cell gives the mean and standard deviation of a characteristic of candidates for council president (rows) when conditioned on a specific subsample (column). “Full Matched Sample” is the set of all candidates we are able to find in the job card data. “In Bandwidth” is the subset whose vote margin falls within the bandwidth of our main specification. “All” is the subset of winning candidates within the full matched sample. “Surveyed” is the subset we were able to interview for our survey of council presidents.
3.2 Research Design

We estimate the causal effect of being the council president using the regression discontinuity induced by close elections. We restrict our sample to the winner and runner-up in each election. Let i be one of these two candidates in the election for panchayat p. Our running variable is the vote margin, which we define as

$$\text{[Margin]}_{ip} = \begin{cases}
\text{[Winner Votes]} - \text{[Runner-Up Votes]} & \text{if } i \text{ won election in } p \\
-(\text{[Winner Votes]} - \text{[Runner-Up Votes]}) & \text{if } i \text{ lost election in } p
\end{cases}$$

This definition generates a discontinuity at zero.22 For our research strategy to identify a causal effect, any unobserved factors that are correlated with being council president must be continuous in the margin of votes. We therefore zoom in on a small window around the cutoff and control for a linear spline in the vote margin.

The continuity assumption holds if political candidates standing for election cannot perfectly manipulate the number of votes they receive. We verify the assumption with placebo tests using pre-determined outcomes that cannot be changed by the election.

We estimate:

$$\text{[Outcome]}_{ip} = \pi_0 + \pi_1 \text{[Margin]}_{ip} + \pi_2 (\text{Margin})_{ip} \times \text{[Win]}_{ip} + \beta \text{[Win]}_{ip} + \nu_{ip}$$

(1)

where [Win]_{ip} is a dummy for whether $\text{[Margin]}_{ip} > 0$ and [Margin]_{ip} is restricted within a bandwidth centered on 0. We use the method suggested in Calonico et al. (2014) to choose the optimal bandwidth for our main specification, but also explore the robustness of our results to a wide range of alternative bandwidths.

4 Main Results: There is Self-Dealing

22 In practice, the official election law for Uttarakhand breaks ties by randomly drawing the name of the winner among candidates with the same number of votes and then adding a vote to the winner's vote count in the election records.
4.1 How Much of Compensation Comes from Self-Dealing?

We estimate Equation 1 on candidates whose vote margin is within a bandwidth of 15 votes.23 As the election was in mid-2014 we initially test for a discontinuity in the total days of labor allocated to the household of the candidate in 2015. The left-hand panel of Figure 2 shows the regression line of best fit alongside the average days of labor earned by households whose candidate had each possible winning margin. The figure shows a large discontinuity when the margin switches from negative to positive—that is, when a candidate switches from barely losing to barely winning. Winners receive an extra 37 days of labor—nearly 3 times as many as the losers—suggesting they heavily favor their own households over others. This does not necessarily mean the presidents are literally working these jobs, only that they are being paid for the work. It is entirely possible that no member of the president’s household ever sets foot on the work site. We have no means of directly assessing whether the president is actually providing any labor for the pay received.

23 Unless otherwise specified we use this same bandwidth as we test other outcomes or specifications to avoid conflating the effect of changing specifications with the effect of changing the bandwidth. But the results are qualitatively similar when we vary the bandwidth.
Panel A of Table 2 shows this estimate (in Column 1) together with several robustness checks. In some panchayats we were unable to match both the winner and runner-up to their job card record. These observations are included in the main specification, but in Column 2 we verify that the result is robust to including only panchayats for which we are able to match both candidates. As noted in Section 3.2 we generally define the running variable as the margin of votes in levels. Column 3 verifies that defining the margin as a proportion of all votes cast does not qualitatively change the results. Columns 5—7 estimate Equation 1 for other outcomes. Column 5 shows that winners receive 3 more jobs than losers (who receive 2). Column 6 shows that winners are 37 percentage points more likely to have gotten a job at all in 2015. Column 7 shows that their NREGS payments are nearly 6000 rupees higher on average. According to both our survey of council presidents and newspaper reports from Uttarakhand, the median annual salary is 9000 rupees. Column 7 thus implies the president earns excess NREGS returns equal to nearly two-thirds of the official salary. Finally, as we show in Appendix A.2.2, we cannot reject that presidents elected in constituencies reserved for women or members of lower castes (Scheduled Castes and Scheduled Tribes) self-deal the same amount as presidents elected in unreserved seats.

4.2 Are the Identification Assumptions Valid?

Our main result shows that the winner of the election gets more days of labor than the loser, but is it possible the difference arises only because the loser is given fewer days of labor than other households? Though punishing a political rival is clearly misconduct, it does not earn any financial return for the president. In jargon the question is whether the Stable Unit Treatment Value Assumption is violated. We test for a violation by reassigning every winning candidate the number of days earned by the average household in the panchayat (excluding both winner and loser). If our estimates are driven by harm to the loser rather than benefit to the winner, this estimate should be similar to the estimate in Column 1 of Table 2.A. But Column 4 shows that the

24 Since this new running variable is on a completely different scale we calculate a different optimal bandwidth using the method of Calonico et al. (2014).

26 We also do not find evidence that presidents allocate excess NREGS benefits to extended family or other village council members (Appendix A.2.1).
Table 2

Main Results

Panel A: Main Results

<table>
<thead>
<tr>
<th></th>
<th>Days of Labor</th>
<th>Other Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Basic</td>
<td>(2) Dual Matches</td>
</tr>
<tr>
<td>RD Estimate</td>
<td>37.402(*)</td>
<td>39.935(*)</td>
</tr>
<tr>
<td></td>
<td>(4.464)</td>
<td>(5.635)</td>
</tr>
<tr>
<td>Outcome at Disc.</td>
<td>20.99</td>
<td>21.17</td>
</tr>
<tr>
<td>Observations</td>
<td>1105</td>
<td>696</td>
</tr>
<tr>
<td>Panchayats</td>
<td>757</td>
<td>348</td>
</tr>
</tbody>
</table>

Panel B: Placebo and Specification Tests

<table>
<thead>
<tr>
<th></th>
<th>Labor (2013)</th>
<th>SCT Cand.</th>
<th>Female Cand.</th>
<th>Name Length</th>
<th>Name Length (M. Rel.)</th>
<th>Matched?</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD Estimate</td>
<td>-3.761</td>
<td>0.012</td>
<td>0.010</td>
<td>-0.287</td>
<td>0.216</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(4.262)</td>
<td>(0.042)</td>
<td>(0.044)</td>
<td>(0.312)</td>
<td>(0.409)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>Outcome at Disc.</td>
<td>26.85</td>
<td>0.18</td>
<td>0.47</td>
<td>10.46</td>
<td>8.61</td>
<td>0.32</td>
</tr>
<tr>
<td>Observations</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>2400</td>
</tr>
<tr>
<td>Panchayats</td>
<td>757</td>
<td>757</td>
<td>757</td>
<td>757</td>
<td>757</td>
<td>1200</td>
</tr>
</tbody>
</table>

Panel C: Robustness to Bandwidth

<table>
<thead>
<tr>
<th></th>
<th>h = 25</th>
<th>h = 22.5</th>
<th>h = 20</th>
<th>h = 17.5</th>
<th>h = 15</th>
<th>h = 12.5</th>
<th>h = 10</th>
<th>h = 7.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD Estimate</td>
<td>36.565(*)</td>
<td>36.094(*)</td>
<td>34.875(*)</td>
<td>36.583(*)</td>
<td>37.402(*)</td>
<td>37.615(*)</td>
<td>36.110(*)</td>
<td>32.689(*)</td>
</tr>
<tr>
<td>Observations</td>
<td>1467</td>
<td>1380</td>
<td>1336</td>
<td>1216</td>
<td>1105</td>
<td>898</td>
<td>752</td>
<td>472</td>
</tr>
<tr>
<td>Panchayats</td>
<td>1009</td>
<td>949</td>
<td>916</td>
<td>834</td>
<td>757</td>
<td>623</td>
<td>518</td>
<td>331</td>
</tr>
</tbody>
</table>

Note: "Outcome at Disc." gives the estimate of the counterfactual outcome at the cutoff in the absence of treatment (that is, the left limit at the cutoff). Standard errors are clustered by panchayat. See text for description of each specification.

*p=0.10 **p=0.05 ***p=0.01

estimate is close to zero, suggesting losers are treated no differently than the typical household. This implies that one year of self-dealing by the politician amounts to roughly the same amount of NREGS benefits a typical villager receives in three years.

We then test the key assumption behind the regression discontinuity design, that the households of candidates who barely lose are similar to those who barely win in all ways except that they lost the election. Like much of the literature, we test the assumption by testing for discontinuities in pre-determined outcomes. Since the election was in 2014, winning or losing should not affect outcomes determined before 2014—for example, the number of days of labor allo-
cated in 2013. Any discontinuity would suggest the type of household that received more labor in 2013 was able to sort itself onto the winning side of the cutoff (say, by manipulating the vote count).

The right-hand panel of Figure 2 estimates and plots Equation 1 in exactly the same way as was done to construct the left-hand panel, but using as the outcome the days of labor in 2013. There is no sign of a discontinuity. Columns 1—5 of Table 2.B report applying the same procedure to several other pre-determined outcomes. Column 1 is the same as Panel B of Figure 2. Column 2 tests for differences in whether the winner is a member of a scheduled caste or tribe (SCT), both historically disadvantaged groups. Column 3 tests for whether the winner is more or less likely to be a woman. Ideally we would also test other measures of income or social status, but the job card data are relatively sparse. One very rough measure of social status is the length of the candidate’s name, as higher caste candidates are likely to have a last name related to their caste (e.g. Kothari) whereas lower caste candidates tend to have “default” names that hide their caste (e.g. Devi). Columns 4 and 5 test for differences in the length of the winner’s own name and that of the closest male relative (husband or father). None of these placebo tests show a difference that is statistically or economically significant.

It is also common in the literature to apply a test for discontinuities in the empirical density of the running variable. But the density of vote margins is continuous (and actually symmetric) because every winner to the right of the cutoff has a loser to the left. Then a discontinuity in our matched dataset can only arise if it is systematically easier to make a match between the election records and the job card data for winners. That is especially a concern if losers are less likely to get a NREGS job card, without which they would not even appear in the job card data. We test for whether there is a discontinuity in the match rate by taking the full set of candidates we attempted to match, restricting to the bandwidth of our main specification, and estimating Equation 1 on a dummy for whether the candidate was matched. Reassuringly, Column 6 suggests there is no discontinuity.²⁷

Finally, we verify that the results are not sensitive to the choice of bandwidth. Table 2.C

²⁷ Though this is the most direct test for the underlying source of any discontinuity in the density, we also find no evidence of bunching in the final matched running variable (results available on request).
estimates Equation 1 for bandwidths ranging from as wide as 25 votes to as narrow as 7.5. The estimates are all similar.

4.3 Is it Necessarily Self-Dealing?

Is it possible that there is a more innocent explanation for why the president gets more days of NREGS labor than anyone else? For example, the president might be supervising the projects to make sure they are completed properly, and thus needs to be on nearly every project. But each NREGS project has an official work site supervisor, the “Mate,” and thus does not need an unofficial supervisor. The Mate is supposed to be chosen based on technical expertise that most presidents lack. Over 80 percent of presidents who answered our survey confirm that neither they nor any member of their household has served as a mate since the election. In any case, mates are paid directly for their labor through the project budget, not through NREGS labor.

The other innocent explanation is that the president is stepping in to keep work on NREGS projects continuing at times of the year when no one else needs employment. As noted in Section 2, demand for NREGS jobs generally far outstrips what is available. It is unlikely that there would have been a lack of interest in NREGS labor in 2015 when Uttarakhand suffered poor rainfall. But we can test this hypothesis directly by checking whether presidents take less excess labor during the season when NREGS demand tends to be highest. Not surprisingly, the overwhelming majority of presidents (83 percent) report that NREGS demand is highest during the dry season (rabi). But when we estimate Equation 1 separately on labor in the dry season and labor during the monsoon season, we find very similar estimates that lie within a single standard error of one another. There is no evidence to suggest the president’s own NREGS allocation varies by season.

Finally, one might worry that the result is driven not by self-dealing but, in panchayats with multiple villages, by favoritism for the president’s own village. Then it might appear that the president is working more jobs than the runner-up simply because all households in the presi-

\[^{28}\text{Since the number of votes is discrete a fractional bandwidth is effectively rounded down.}\]

\[^{29}\text{Uttarakhand experienced a 71 percent deficit of post-winter rainfall in 2015. See e.g. Hindustan Times, ’9 Uttarakhand Districts Declared Drought Affected’, April 15, 2016.}\]

\[^{30}\text{For the monsoon season the discontinuity is 17.9 days with a standard error of 2.6, and for the dry season it is 16.0 with a standard error of 2.6. Regression output is available on request.}\]
dent’s village work more jobs than households in other villages. We rule out this explanation by running an even more restrictive version of the Dual-Match specification in Column 2 of Table 2 where we use only observations where we match both winner and runner-up, and where both live in the same village within the panchayat. The size and significance of the result is identical. More generally over 60 percent of panchayats comprise only a single village, leaving no room for geographic favoritism.

5 Potential Mechanisms

Self-dealing persists despite an online system that provides accurate information about how government funds are spent, and a political system of democratic accountability. While in principle the system seems ideal, in practice it falls short. The \textit{de jure} transparency of entering and posting information through NREGASoft and the \textit{de jure} accountability created by fiercely competitive local elections are not enough to curb corruption if they are not actively used by local stakeholders. We consider three additional assumptions that may be necessary to turn \textit{de jure} transparency and accountability into actual transparency and accountability:

1. \textbf{(Convenient) access to technology}: Local stakeholders such as voters, NGOs, or the media have the ability to access the required infrastructure or technology to view the available information.

2. \textbf{Timeliness of information}: Stakeholders know when they can expect the information to be available.

3. \textbf{Desire for accountability}: Stakeholders have the desire to act on the information to punish politicians for their self-dealing.

Only if all 3 assumptions hold will corruption be effectively reduced. In the following three sub-sections, we focus on each of the three assumptions in turn. We briefly lay out whether...
the assumptions could fail in our context and how we can test the importance of the different channels empirically.

5.1 (Convenient) Access to Technology? Variation in Internet Access

Local stakeholders cannot use a website to monitor their leader if they lack access to the internet or can only access it at a very high time or monetary cost. According to multiple large household surveys, internet access was low in Uttarakhand at baseline and during the time covered in our main analysis. The 2011/12 Indian Human Development Survey (IHDS) reveals that only 7% of Uttarakhandis used email or the internet on a computer. Almost no one had internet access on their mobile phone, either. Only 8% of Uttarakhandis report using internet or email on a mobile phone. The low internet penetration rates are similar when using more recent household data sets. According to the 2014 National Sample Survey (NSS Round 71) Social Consumption Survey, only 6% of households have a computer at home, while 15% of households reported having access to the internet.\(^33\) Overall, this suggests that internet access may have been a substantial barrier for monitoring NREGS allocation in many parts of Uttarakhand.

The 2011/12 IHDS also asked individuals who know how to use a computer where they typically have access to one. Nearly 25% of respondents report visiting a cyber cafe, making this the second most popular option after having a computer at home.\(^34\) While we have no village-level data on internet access, the 2011 Census provides information on the distance to the closest internet cafe. We use this variable as a proxy for access to internet under the assumption that being close to a cyber cafe allows at least some individuals to monitor NREGS allocations, who could then spread awareness of any suspicious allocations. This could include villagers themselves or other actors like local media, NGOs or the political opposition.

A potential concern with using 2011 Census information as a proxy for monitoring capacity is that internet access and the availability of smart phones could have expanded substantially by the end of our analysis period in 2018. Figure 3 plots the quality of 3G/4G phone data cover-

\(^{33}\) This is consistent with the NSS 2015 Consumer Expenditure Survey where we find that only 7% of households in Uttarakhand pay for “internet, fax, e-mail” (not including mobile data), with a median expenditure of Rs100/month.

\(^{34}\) Households who have a computer at home tend to have higher than average household income, making them less likely to seek NREGS jobs than our target population.
Figure 3
Mobile Network Coverage in Uttarakhand in 2021

Note: Red dots indicate villages that are less than 5 kilometers from the nearest internet cafe, whereas green dots are villages more than 5 kilometers from a cyber cafe.
age in the state of Uttarakhand as of 2020, based on information from the company Airtel (the main cellular data provider in Uttarakhand). The dashed line indicates the state border to the neighboring state of Uttar Pradesh. As can be seen from the figure, network coverage is only excellent in Uttarakhand around the state capital of Dehradun and a few other cities close to the southwest border, a stark contrast to the much better network density in the neighboring state (Uttar Pradesh). Most rural areas have spotty network coverage, although there is substantial local variation. The map therefore shows that access to data and the internet was still far from universal in 2020, but with highly localized heterogeneity. We overlay this plot with information on the location of panchayats in our analysis sample. Red dots indicate villages that are less than 5 kilometers from the nearest internet cafe, whereas green dots are villages more than 5 kilometers from a cyber cafe. As the map shows, cellular access is spotty for most of the panchayats in our sample, making cyber cafes a potentially important source of access even as late as 2020.

Overall, the assumption of convenient access to technology may therefore fail in our context, but we can use substantial local variation in the plausible cost of accessing the internet, proxied by distance to the nearest cyber cafe, to test its importance for explaining the persistent corruption of local politicians.

5.2 Timeliness of Information and the 2016 Digitization Requirement

If accessing the internet is costly, it is important that locals know when NREGS updates are likely to be available. Long delays and uncertainty might force stakeholders to incur large costs only to find out that information on employment spells and payments had not yet been posted. This lowers the incentive to regularly check the website, making it difficult for *de jure* transparency measures to translate into practical and widely available information about NREGS allocations.

As mentioned in Section 2, there is reason to believe that this assumption may have failed in Uttarakhand. At baseline there was an average delay of 30 days of inputting records into the online management system. The delay on individual employment spells could take far longer.

But this changed in the middle of our analysis period. In late May of 2016, the central government notified 10 states, including Uttarakhand, that local governments would henceforth be re-

quired to use the electronic fund management system (e-FMS) for all NREGS wage payments.36 The explicit goal was to lower corruption by making the transfer of funds more transparent, while simultaneously improving implementation quality for the workers.37 The new process would allow wage payments to be made electronically within 48 hours after the last day of work, substantially lowering delays in wage payments. Since any information entered in NREGASoft automatically feeds into the public website, a faster and more electronic process that abolished physical paper trails also meant that information on NREGS allocations, project muster rolls, wage payments and payment delays would be available online in close to real time.

According to the central government’s Ministry of Rural Development, the e-FMS reform was a success. The proportion of wage payments made electronically directly into beneficiaries’ bank accounts reached 96 percent nationally a year after the reform, and was almost universal at 99 percent in 2018.38 This was a quick change from very low baseline levels of e-FMS usage in Uttarakhand. The central government also reports a large improvement in NREGS wage payments made on time (i.e. within two weeks after a worker’s last day on a project) from 42 percent in the reform year 2016-17 to about 85 percent a year later and 92 percent in 2018.

For NREGS beneficiaries as well as other stakeholders like media outlets, NGOs, or the political opposition, the 2016 reform likely provided a large positive shock to the value of the NREGS website. This provided a much higher incentive to check the website regularly for updates.

5.3 Desire for Accountability? The Plausibility of Corruption as Compensation

The last assumption is that local stakeholders want to hold politicians accountable for their self-dealing. Otherwise the \textit{de jure} accountability mechanisms and all of the available information would nevertheless be ineffective in curbing corruption. If voters believe, for example, that talented politicians are more likely to stand for office because they can compensate themselves through NREGS, then citizens may be willing to accept corruption to attract leaders with the administrative skill needed to create NREGS projects and jobs for the village. There is reason

36 Guidelines on National Electronic Fund Management System (Ne-FMS) - reg.’ Department of Rural Development, Government of India. Available at https://nrega.nic.in/netnrega/writereaddata/Circulars/1655Guidelines_on_NeFMS.pdf

37 Using this system for expenditures on materials had already been mandatory for a year and a half at this point.

Figure 4
Presidents Believe their Performance Matters and that Villagers Agree It Should Be Compensated with More NREGS Jobs

<table>
<thead>
<tr>
<th>President can make special efforts to create more jobs for the village</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes to a Corruption-as-Compensation Question</td>
</tr>
</tbody>
</table>

Note: Each bar shows the fraction of respondents who agree (as per the survey of council presidents). See text for details on the Corruption-as-Compensation Questions.

to believe the desire-for-accountability assumption fails in our context. Observers like Ravallion (2018) have suggested that given its many administrative challenges, NREGS may in part be sustained by the prospect of corruption. He sketches a model in which “There is a pecuniary benefit to the official that naturally depends on the level of employment. We can think of this as the official’s cut on the wages paid.”

In our context, it might be plausible that competent administrators will forego public office in the absence of such a cut. According to media reports and responses from our own survey, the median official full-time salary for village council presidents in Uttarakhand is 9000 rupees per year. This is less than 25 percent of the median income of rural households in Uttarakhand.\(^39\) Well over 80 percent of council presidents in our survey report landholdings that are lower than or equal to most households in the village. Assuming this is true, it is unlikely anyone could support a household solely through the official salary. It is thus not surprising that nearly every president in our sample continues working in the private sector (typically farming for men and domestic work for women). Every hour spent on official duties is an hour taken away from private work, so the opportunity cost of carrying out their duties as village council president may be high. Nearly three-quarters of presidents claim that they would have more money if they had not become president. So while the payouts from self-dealing NREGS benefits are large relative to their official salary, they are too small to raise the typical president’s total compensation to even

\(^{39}\) We compute the median from the 2012 Integrated Household Development Survey.
half the median. Knowing this, voters might be sympathetic to council president who self-deal NREGS benefits as long as they deliver good performance.

We also ask the presidents themselves about the plausibility of ‘performance pay.’ We first asked whether a president can make special efforts to “bring back more jobs for their constituents.” As the top bar of Figure 4 shows, nearly all presidents agree with that statement. Consistent with the anecdotal accounts from Section 2, village council presidents are the key player in the allocation of NREGS. To measure whether these efforts should be rewarded, we measure whether a president answers yes to either of two “Corruption-as-Compensation” questions:

Do you believe a typical person in a village in your block would agree that a Gram Pradhan [Village Council President] who makes those efforts deserves a few more NREGS jobs than the typical household in the village?

and

Suppose a Gram Pradhan in a typical village in your block manages to get a new worksite approved for his village. Would people in the village expect the Pradhan’s household to do NREGS labor on the newly approved worksite?

The bottom bar shows that a majority of council presidents agree with one or both of these statements. While politicians may of course rationalize their actions in this way even if they are driven by other motivations, these responses are consistent with self-dealing as a reward for program performance. If voters know and approve of this process since they benefit from the jobs the politicians create, they may lack the desire to punish politicians for their self-dealing. Empirically, corruption as compensation implies that the presidents’ cut should be proportional to the NREGS jobs created for the village. We explore whether this is true below.

6 Testing the Mechanisms

6.1 Specifying the Test of Each Set of Assumptions

We exploit spatial variation created by distance to a cyber cafe, and temporal variation created by the post-2016 NREGASoft upgrade, to test which of the three assumptions fails.
Only Assumption 1 (Access to Technology) fails: We should find no evidence of corruption in areas near cyber cafes at any point.

Only Assumption 2 (Timeliness of Information) fails: We should find a decline in corruption everywhere in the years after 2016.

Assumptions 1 and 2 fail: We should find a decline in corruption in the years after 2016, but only in areas near cyber cafes.

Assumption 3 (Desire for accountability) fails: We should find that any decline in corruption is accompanied by a decline in “performance,” measured as the average number of NREGS jobs for households other than the president.

We test between these scenarios by comparing regression discontinuity coefficients and average non-president NREGS jobs over time across areas near and far from a cyber cafe. Suppose $NREGS_{ip,t}$ is the days of labor allocated to candidate i in panchayat p in year t. Assume $\mathbb{I}(t = s)$ is a year dummy and c is an index that equals 1 if p is near a cyber cafe, and 0 otherwise. Define

$$\Omega_c(x) = \pi_{0,x}^c + \pi_{1,x}^c[Margin]_{ip} + \pi_{2,x}^c[Margin]_{ip} \times [Win]_{ip}$$

where c is either 0 or 1

where as before $[Margin]$ is the vote margin of the candidate and $[Win]$ is a dummy for whether they won the election.

Then our first specification is

$$NREGS_{ip,t} = \Omega_c(0) + \pi_{3,0}^c[Win]_{ip} + \sum_{s \neq 2013} \mathbb{I}(t = s) \times (\Omega_c(s) + \beta_s^c[Win]_{ip}) + \nu_{ipt}$$

The coefficients $\{\beta_s^c\}$ give the size of the discontinuity between winners and losers in year s relative to its size in 2013, the year before the election. For example, β_{2015}^c would, for the subsample c, be the discontinuity in the left-hand panel of Figure 2 minus the discontinuity in the right-hand panel. We estimate (3) and a simple year-by-year average of performance separately in the subsample of panchayats near and far from a cyber cafe ($c = 1, 0$).

The estimates of performance come from a regression

$$PERF_{pt} = \sum_{s=2011}^{2018} \theta_s \mathbb{I}(t = s) + \nu_{pt}.$$

For all estimates of performance we restrict the sample to panchayats where we matched the president (rather than only the runner-up) because otherwise we cannot identify and exclude the president, whose allocation is large enough to actually skew the average.
Though comparing (3) for areas close and far from a cyber cafe will give visual evidence of a difference (or lack thereof), it cannot show whether the difference is significant. For that we estimate a dynamic difference-in-discontinuities:

\[
N\text{REGS}_{ip,t} = \Omega^0(0) + \pi^0_{3,0}[Win]_{ip} + \sum_{s \neq 2013} \mathbb{I}(t = s) \times \left(\Omega^0(s) + \pi^0_{4,s}[Win]_{ip} \right)
+ \mathbb{I}(c = 1) \times \left[\Omega^1(0) + \pi^1_{3,0}[Win]_{ip} + \sum_{s \neq 2013} \mathbb{I}(t = s) \times \left(\Omega^1(s) + \zeta_s[Win]_{ip} \right) \right] + \nu_{ipt}
\]

where \(\mathbb{I}(c = 1)\) be a dummy for whether the panchayat is near a cafe. The dynamic difference-in-discontinuity \(\zeta_s\) estimates the difference \(\beta^1_s - \beta^0_s\).

We make a similar comparison for performance, as defined above. Since performance is estimated as a simple mean, we use a simple difference-in-differences to estimate the dynamic comparison of areas close to a cyber cafe with those that are far:

\[
PERF_{p,t} = \pi^0_{0,0} + \sum_{s \neq 2013} \pi^0_{1,s}\mathbb{I}(t = s) + \mathbb{I}(c = 1) \times \left[\pi^1_{0,0} + \sum_{s \neq 2013} \theta_s\mathbb{I}(t = s) \right] + \nu_{ipt}
\]

where the coefficients \(\{\theta_s\}\) give the change in performance since 2013 in areas near a cafe relative to those far from a cafe.

6.2 Results of the Tests: Assumptions 1 and 2 Fail, but Assumption 3 Holds

Panel a of Figure 5 plots estimates of Equation 3 in areas far from a cyber cafe and near a cafe. The estimates make it clear that corruption takes an entirely different course in places near a cafe. While corruption remains positive and significant in areas far from a cyber cafe, it is effectively gone in areas near a cyber cafe by 2018. The year-by-year RD discontinuity graphs (Appendix Figures A1 and A2) confirm that these estimates are not a fluke. The visual pattern of the raw data implies the discontinuity remains positive and largely unchanged among panchayats far from a cyber cafe, but closes among those close to one.

But though the point estimates in areas near a cafe are smaller, they are nevertheless positive and actually increasing until after the post-2016 upgrade. That suggests it cannot be only
Figure 5
Dynamic Effects by Internet Cafe Distance

a) Corruption Declines in Areas Near a Cyber Cafe After the Direct Routing Requirement

b. There is no Commensurate Decline in Performance

Note: All standard errors are clustered by panchayat. a) We estimate Equation 3 separately for areas far from and near a cyber cafe. The graphs plot estimates and confidence intervals the discontinuity between close election winners and losers relative to its size in 2013. b) Graphs show simple means of NREGS days provided to non-candidate households.
Assumption 1 (Access to Technology) that fails. Likewise, the fact that the post-2016 decline in corruption happens only in areas near a cafe suggests it is also not merely Assumption 2 (Timeliness of Information) that fails. The pattern is only consistent with initial failures in Assumptions 1 and 2.

What about Assumption 3? Panel b of Figure 5 plots our measure of performance, the average NREGS benefits among non-candidates. The averages are similar in villages close to and far from a cyber cafe even after the post-2016 NREGASoft upgrade. The pattern is inconsistent with a failure of Assumption 3, which would have caused performance to decline with corruption in areas near a cyber cafe.

We test whether the difference in corruption and performance between areas with and without cafes are statistically significant by estimating Equations 4 and 5. Figure 6 plots both sets of estimates with 90 and 95 percent confidence intervals. The upper part of the figure shows that although the point estimates are negative after the election—meaning areas near a cafe have lower corruption—they do not become statistically significant until after 2016 when the direct routing requirement begins. The reduction in corruption becomes marginally significant in 2017 and highly significant by 2018. The lower half of the figure confirms there is no similar decline in performance. If anything, average allocations for non-candidate households are actually higher in areas near a cyber cafe, and the trends are unchanged under the direct routing requirement.

Overall, our results provide an interesting empirical pattern: Implementation quality as measured by the average days of NREGS labor citizens receive is unaffected by the distance to the nearest cyber cafe and is about the same in 2015 and 2018, i.e. before and after the NREGASoft reform. Self-dealing, on the other hand, is lower in villages close to a cyber cafe, with village council presidents allocating themselves fewer days of NREGS labor by 2018 than the typical villager receives. In contrast, the reform appears to not have any lasting effect in villages far from a cyber cafe. These results are not consistent with a corruption-as-compensation explanation, since there is no reason why an increased incentive to visit the NREGS website should lower self-dealing if it is accepted by villagers in return for more generated NREGS jobs. We also do not find a similar decline in performance, so presidents are not just lowering their own compensation because they provide less NREGS employment than before.

Instead, the results are consistent with imperfect monitoring being the main obstacle. In ar-
Figure 6
Difference in Estimates: Near Cafe versus Others

Note: All standard errors are clustered by panchayat. a) The dots and lines show estimates and confidence intervals from Equation 4. These difference-in-discontinuity estimates are essentially the difference between the estimates in the right-hand versus left-hand panel of Figure 5a. These estimates use the same bandwidth as the main specification in Section 4.1, but Appendix A.4 shows that the results are not sensitive to bandwidth. b) Graphs show estimates of Equation 5, which are difference-in-differences estimates of the average allocations to non-candidate households in areas near versus not near a cafe. It is essentially the difference between the estimates in the right-hand versus left-hand panel of Figure 5a.
Table 3
Difference-in-Discontinuity Estimates: Change in Self-Dealing from 2015 to 2018

<table>
<thead>
<tr>
<th>Change in NREGS Allocation, 2015 to 2018</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD Est.</td>
<td>-13.138**</td>
<td>-8.275</td>
<td>1.296</td>
<td>5.451</td>
<td>8.352</td>
<td>-0.076</td>
<td>-0.924</td>
</tr>
<tr>
<td></td>
<td>(5.745)</td>
<td>(7.041)</td>
<td>(7.568)</td>
<td>(8.907)</td>
<td>(10.812)</td>
<td>(7.510)</td>
<td>(8.544)</td>
</tr>
<tr>
<td>RD Est. X Near Post Office</td>
<td></td>
<td></td>
<td>-14.761</td>
<td></td>
<td>(14.449)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Major Road</td>
<td></td>
<td></td>
<td></td>
<td>-14.522</td>
<td>(14.634)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.889</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(24.370)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.321</td>
<td>(15.831)</td>
</tr>
<tr>
<td>Observations</td>
<td>1071</td>
<td>663</td>
<td>663</td>
<td>663</td>
<td>663</td>
<td>663</td>
<td></td>
</tr>
<tr>
<td>Panchayats</td>
<td>742</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
</tr>
</tbody>
</table>

Note: We present difference-in-discontinuity estimates (Equation 6). Standard errors are clustered by panchayat. Each estimate is given the size of the discontinuity within the subset of panchayats near the specified facility (relative to panchayats not near it). Column 2 runs the same specification as Column 1 but after restricting the sample to observations that we can match to the 2011 Census.

* p=0.10 ** p=0.05 *** p=0.01

Eas far from cyber cafes, technical difficulties in accessing the NREGS website lower monitoring capacity, and the 2016 reform to the website therefore has little effect on self-dealing or program performance. In areas that are closer to an internet cafe, the increased incentive to regularly visit the NREGS website appears to be effective for eradicating self-dealing within two years. But the decline in self-dealing does not translate into a large increase in NREGS jobs to other villagers.

6.3 Addressing Lingering Concerns about the Mechanisms

6.3.1 Are Cyber Cafes Just Proxying for Something Else?

One natural concern about the results is that the presence of a cyber cafe is likely correlated with the presence of any number of other facilities. Though it is not possible to control for every possible confounder, we can run a simple “horse race” specification that modifies Equation 4 to measure only how the RD estimate changes from 2015 to 2018, but allowing us to “net out” the effect of being near other infrastructure.

Let $z = 0, 1$ index whether the panchayat is near some “control” piece of infrastructure other
than a cyber cafe, and let all other terms be as defined in Equation 4. We estimate

\[
NREGS_{ip,2018} - NREGS_{ip,2015} = \Omega^0(0) + \beta^m[Win]_{ip} + \mathbb{I}(c = 1) \times \left[\Omega^c(0) + \beta^c[Win]_{ip} \right] + \mathbb{I}(z = 1) \times \left[\Omega^z(0) + \beta^z[Win]_{ip} \right] + \nu_{ip}
\]

(6)

where \(\Omega \) is as defined in Equation 2. This specification tests for how the change in NREGS allocations from 2015 to 2018 is different for winners versus losers. As before, \(\mathbb{I}(c = 1) \) is a dummy for whether the panchayat is near a cafe. We analogously define \(\mathbb{I}(z = 1) \) as a dummy for whether the panchayat is near the “control” infrastructure. These two dummies are not mutually exclusive.

The coefficient \(\beta^c \) tests whether the reduction for winners is greater in panchayats near a cyber cafe, and \(\beta^z \) does likewise for panchayats near some other facility (e.g. a bank or a post office). Estimating these discontinuities simultaneously lets us test whether the differential impact of being near a cyber cafe remains even after controlling for these other factors. Meanwhile, \(\beta^m \) tests for whether there is a reduction in corruption among panchayats far from all of these facilities.

Table 3 estimates Equation 6 using several different facilities for the “control” infrastructure. As above, we mark a panchayat as “close” to a cafe or control infrastructure if any of the constituent villages lies within 5 kilometers (which is the same definition as Figure 5). Table A5 in the appendix confirms that the results are robust to using 10km as the cutoff.

Column 1 shows the pooled regression discontinuity estimate across all panchayats. The point estimate is negative, suggesting that on average there is a reduction in self-dealing across all panchayats. The estimate remains negative in Column 2, which restricts to the subsample of panchayats successfully matched to the 2011 Census, though the estimate loses statistical significance. Column 3 simultaneously estimates the differential size of the discontinuity among panchayats near cyber cafes. The estimates in Panel A suggest that panchayats near a cyber cafe see a highly significant reduction in self-dealing of 45 days, while there actually an increase in self-dealing of 1 day among those away from a cyber cafe (though the increase is not statistically
Columns 4—7 show how the impact of being near a cyber cafe changes when we “net out” the effect of also being near a post office, major roadway, bank, or market. The way to interpret the “RD Est. × Near Cyber Cafe” estimates in these columns is as the size of the discontinuity among panchayats that are near a cyber cafe but not near a post office, etc. The impact of being near a cyber cafe remains significant and lies within the 90 percent confidence interval of the estimate in Column 2. Finally, although for consistency the estimates in Table 3 use the same bandwidth as the main specification in Section 4.1, Appendix A.4 shows that the results are essentially unchanged when we calculate the Calonico et al. (2014) optimal bandwidth.

Table 3 implies that cyber cafes are not merely proxies for being near a transportation or commercial center. We cannot rule out that being near a cyber cafe is a proxy for some less easily observed institution—for example, the presence of journalists and local activists who can monitor a president’s behavior and publicize their findings among the village population and beyond. We also cannot prove that common citizens are literally going to the cyber cafe to look up NREGS records. But since many rural Uttarakhandis rely on cyber cafes for internet access, it is reasonable to take the cyber cafe as a proxy for easier access to the NREGS reporting website. This could also allow other stakeholders to look up the information: A challenger to the president who does have internet access at home, for example, would find it easier to scrutinize the president’s behavior in office.

6.3.2 Is it Petty Self-Dealing, or Patronage?

Another concern is that the excess allocations to the president are not individual self-dealing but a systematic campaign of patronage by a political machine. A political machine might be able to sustain corruption in the face of scrutiny because it can undermine checks by voters or independent institutions. But as described in Appendix A.2.1, the most obvious tests are inconsistent with patronage. We show that members of the president’s extended family (job card holders with the same father or closest male relative) do not receive excess jobs. We also collected the NREGS allocations of the most senior members of the panchayat council other than the presi-

41 The reduction for panchayats near a cyber cafe is calculated as the difference-in-discontinuity coefficient - 46.417 plus the main discontinuity 1.296.
dent. We find that these senior members—who in theory should play a key role in checking the president—are no more likely to receive large NREGS allocations than a typical villager. 42

6.3.3 Could the Results Be Driven by Social Audits?

One might be concerned that the policy change that we exploit happens to coincide with other changes to the implementation of NREGS. The other big change to NREGS in the same year was an attempt by the central government to improve the effectiveness of social audits in Indian states.43 Concerned with the low number of social audits of NREGS happening in most Indian states, the central government mandated a more top-down organization of NREGS audits. If social audits of NREGS increased massively in the following years, or if village council presidents reduced their self-dealing in anticipation of an audit, this could be driving our results.

In practice, we find no evidence that this is the case. Uttarakhand had not carried out any social audits of NREGS before the mandate and was slow to get started afterwards. We scrape the entire social audit calendar for Uttarakhand from the NREGS website, which contains information on the exact dates a village carried out a social audit. Matching this to our main dataset, we find that audits in Uttarakhand ramped up mostly after the end of our analysis period. In Appendix Figure A5, we repeat our analysis from Figure 6 but control for whether the panchayat was audited in the year of observation and its interaction with the indicator variable for winning the presidency. Our results are almost unchanged. In Appendix Figure A6, we instead drop all panchayats that were ever audited during our sample period or that were audited in the year after our analysis period ends, which tests whether anticipation of a future audit might be leading to reductions in corruption. Again, our results are qualitatively similar to Figure 6, suggesting that social audits are not driving our results.

42 These results are in contrast to those of Shenoy and Zimmermann (2021), who find evidence in West Bengal of coordinated corruption by a political machine. The difference in results likely arises from a difference in context. West Bengal runs explicitly partisan elections, where most candidates are backed by a political party. Council presidents in West Bengal are also indirectly elected by the rest of the council, making their power contingent on the support of their party. By contrast, presidents in Uttarakhand are directly elected and may not declare a party affiliation. Given that panchayats in Uttarakhand are an order of magnitude smaller than those in West Bengal, it less likely they need the help of a political organization to contest the election. Indeed, our survey of presidents in Uttarakhand shows that the most popular method of campaigning is to invite voters for dinner.

43 For research focusing on the impact of NREGS social audits see e.g. Afridi and Iversen (2014).
6.3.4 Why Does the Reform Affect Self-Dealing More Heavily than Program Performance?

Interestingly, the reform affects self-dealing more heavily than program performance. Why might this be the case? Average NREGS employment may be similar in villages both close and far from cyber cafes because it is easier to monitor than self-dealing. Households perfectly observe their own NREGS allocation and can observe total employment by visiting physical worksites and talking to other villagers. Even without easy access to the NREGS website, voters can observe performance. But self-dealing may be harder to observe if the presidents do not actually work the jobs they are paid for and hide or manipulate the physical muster rolls. Then it would be hard to detect self-dealing without accessing the NREGS website.

While the NREGASoft reform should increase any risk of being reprimanded for self-dealing by the higher administration equally in both types of villages, it plausibly provides citizens in areas with easier internet access an increased incentive to check the website for real-time information about NREGS allocations and the status of wage payments. From there, it is only one click to learn more about who else is working on a particular project, where self-dealing will become more easily apparent. While this was possible before, the 30 day delay between the date when work was carried out on a project and when it was reflected in the online system required much better recollection of the people assigned to a project than checking the NREGS allocations in real time as workers have just completed their employment spell and are very likely to remember who was present at the worksite. Similarly, other stakeholders like NGOs, the political opposition or the media are able to monitor politicians’ self-dealing in close to real time after the reform. The capacity to monitor politician behavior via the public website in conjunction with improvements to the provided value of visiting the website regularly is therefore most consistent with the empirical results.

6.3.5 Why is Self-Dealing Not Higher in Villages with Worse Internet Access?

We find that an average president’s own job allocation is approximately 58 days, while a typical villager is allocated 21 days. In areas with lower monitoring capacity, presidents allocate up to 70-80 days to their own household. It may be surprising that self-dealing is not higher than it actually is, given the annual legal limit of 100 days. One might expect that presidents would
maintain a good enough performance of NREGS implementation for their villagers while self-dealing as much as possible. The automatic checks for suspicious activity built into NREGASoft could provide a potential explanation for this. Presidents have to create NREGS projects, assign workers to those projects, and then feed all of this information to the NREGASoft software that generates the information published on the website. Politicians can self-deal by adding their household to the muster rolls, but they can only add their household once, especially in the post-2016 world where payments are directly linked to a beneficiary’s bank account. The detection probability may then increase rapidly when one worker, the president, is allocated more NREGS days than everyone else assigned to the same project, and the expenditure management software automatically flags unusually large one-time expenditures or households exceeding the annual NREGS quota of 100 days. In such a scenario, the excess allocations presidents make to themselves could well be a form of second-best corruption rather than being completely wasteful. Even in areas far away from cyber cafes, institutional constraints could make it too costly for presidents to be able to create more self-dealing opportunities for themselves in the process.

7 Conclusion

Using a unique dataset, our paper tests whether local politicians allocate themselves excess welfare benefits and explores potential explanations for such self-dealing. We find that village council presidents receive three times the benefits of a typical villager in the year after the election. While village-level jobs under NREGS remain constant or even rise over time, a better monitoring capacity in villages close to an internet cafe combined with an increased incentive to visit the website due to a digitization reform appears to lead to the eradication of self-dealing. In contrast, self-dealing remains high in areas where monitoring is plausibly more difficult, although most presidents do not exploit all corruption possibilities. Our results are most consistent with an explanation in which the built-in institutional constraints imposed on village council presidents by the fund management software limit corruption, but where self-dealing can only be completely eradicated if villagers or other stakeholders have the capacity and incentive to monitor presidents’ behavior. This is in sharp contrast to the explanation provided by the politicians themselves, who claim that their self-dealing is acceptable compensation for putting in the ef-
fort of implementing the program.

Our results highlight discrepancy between *de jure* and actual transparency and identify potential barriers. Completely eliminating corruption may require additional investments in monitoring capacity such as access to technology as well as in creating the socio-economic conditions that allow citizens to use those tools to effectively hold politicians accountable. Transparency and accountability are already unusually high in our context when compared to other contexts in developing countries. This is the combined result of large-scale reforms to the implementation of NREGS by the Indian government, Uttarakhand’s local institutions and geographical position which creates small villages, and our focus on competitive elections determined by a few votes. But even here, the simple availability of information and the ability to hold a politician accountable alone do not seem to be enough to eradicate corruption. Citizens and other players like the media or local NGOs may also have to be better enabled to pro-actively monitor program implementation.
References

A Empirical Appendix (For Online Publication)

A.1 Additional Graphs and Tables

The results in this sub-section provide additional results or robustness checks for the results presented in the main paper.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days of Labor for President</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.203)</td>
<td>(4.270)</td>
<td>(4.312)</td>
<td>(4.401)</td>
<td>(4.657)</td>
</tr>
<tr>
<td>Avg. Days</td>
<td>1.199***</td>
<td>1.175***</td>
<td>1.188***</td>
<td>1.192***</td>
<td>1.457***</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.111)</td>
<td>(0.112)</td>
<td>(0.110)</td>
<td>(0.139)</td>
</tr>
<tr>
<td>2011 Night Lights</td>
<td>-0.672</td>
<td>-0.539</td>
<td>-0.540</td>
<td>-1.102*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.409)</td>
<td>(0.429)</td>
<td>(0.467)</td>
<td>(0.642)</td>
<td></td>
</tr>
<tr>
<td>Distance to Border</td>
<td>-0.089</td>
<td>-0.099</td>
<td>-0.324</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.094)</td>
<td>(0.418)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to Dehradun</td>
<td>0.104***</td>
<td>0.110***</td>
<td>0.278</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.041)</td>
<td>(0.377)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to Sub-Dist HQ</td>
<td>0.108</td>
<td>0.103</td>
<td>0.199</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.097)</td>
<td>(0.097)</td>
<td>(0.129)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to District HQ</td>
<td>-0.013</td>
<td>-0.021</td>
<td>-0.187*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.052)</td>
<td>(0.109)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literacy</td>
<td>5.642</td>
<td>11.268</td>
<td>11.268</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(29.014)</td>
<td>(35.173)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCT Fraction</td>
<td>-12.179</td>
<td>-4.814</td>
<td>-4.814</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10.405)</td>
<td>(10.058)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>25.218***</td>
<td>27.722***</td>
<td>17.598**</td>
<td>17.260</td>
<td>11.147</td>
</tr>
<tr>
<td></td>
<td>(2.933)</td>
<td>(3.343)</td>
<td>(8.911)</td>
<td>(22.129)</td>
<td>(51.200)</td>
</tr>
<tr>
<td>Observations</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
</tr>
<tr>
<td>Block FEs</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Cafe refers to the nearest internet cafe according to Census data. Standard errors are robust to heteroskedasticity.
*p=0.10 **p=0.05 ***p=0.01
Figure A1
RD Results for Long Internet Cafe Distance

a. Cafe Far Away (>5km)

Note: Figure shows the RD discontinuity graphs for each calendar year starting with the election year (2014). Standard errors are clustered by panchayat.
Figure A2

RD Results for Short Internet Cafe Distance

b. Cafe Nearby (<5km)

Note: Figure shows the RD discontinuity graphs for each calendar year starting with the election year (2014). Standard errors are clustered by panchayat.
A.2 Extensions of the Analysis

A.2.1 Greed or Patronage?

Since political factions in India often coalesce around powerful families (George and Ponattu, 2019), we test whether presidents reward their extended family. For each president's household, we know the name of the household head, who is almost always a man. The household head could be a male president himself, a female president’s husband, the president’s father, or the president’s father-in-law. For all other households, we know the closest male relative of the household head, which we use as a proxy for extended family. We define a household as extended family to the president’s household if it lists the president’s household head as closest male relative. We assign these family members the vote margin of their contesting relative (excluding cases where the winner and runner-up are part of the same extended family).

![Figure A3](image)

Extended Family Does Not Get Any Extra NREGS Labor

Note: Standard errors are clustered by panchayat.

Figure A3 is drawn analogously to Figure 2, but showing NREGS days allocated to extended family. These estimates are more sensitive to the choice of bandwidth than our estimates from Figure 2, so we present the same regression for three different choices of bandwidth. Though at the widest bandwidth (left panel) the estimate is positive, it is clearly an artifact of a bandwidth that is too wide. The estimate shrinks to insignificance at narrower choices of bandwidth (center and right panel), and the magnitude of the estimated discontinuity shrinks to almost zero.
Table A2
Regression Specifications Shown in Figure A3

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BW=15</td>
<td>BW=12.5</td>
<td>BW=10</td>
</tr>
<tr>
<td>RD Estimate:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–Candidate</td>
<td>35.607***</td>
<td>35.790***</td>
<td>33.999***</td>
</tr>
<tr>
<td></td>
<td>(4.662)</td>
<td>(5.382)</td>
<td>(5.729)</td>
</tr>
<tr>
<td>–Family</td>
<td>14.623**</td>
<td>9.635</td>
<td>2.625</td>
</tr>
<tr>
<td></td>
<td>(6.423)</td>
<td>(6.332)</td>
<td>(6.974)</td>
</tr>
<tr>
<td>Outcome at Disc.</td>
<td>22.257</td>
<td>22.430</td>
<td>24.180</td>
</tr>
<tr>
<td>Observations</td>
<td>2422</td>
<td>1914</td>
<td>1521</td>
</tr>
<tr>
<td>Panchayats</td>
<td>725</td>
<td>595</td>
<td>494</td>
</tr>
</tbody>
</table>

Note: “Outcome at Disc.” gives the estimate of the counterfactual outcome at the cutoff in the absence of treatment (that is, the left limit at the cutoff). Standard errors are clustered by panchayat.

*p=0.10 **p=0.05 ***p=0.01

Table A2 shows the regression estimates of Figure A3—estimates of excess labor for the extended family—alongside the estimates for the household of the candidates themselves (analogous to the estimates in Panel C of Table 2). We estimate both discontinuities simultaneously to correct for correlation in the coefficients. The estimates confirm that excess payments to family members shrink to insignificance as we shrink the bandwidth while those for the candidate remain unchanged. That suggests it is only the council president who receives extra NREGS labor, not her extended family.

Another form of patronage is to buy the complicity of officials who could otherwise check the president’s power. Since the village council is in principle the most likely check, we asked each president in our survey to name the three most senior members of the council to test whether these members are disproportionately likely to receive large NREGS transfers. But we find no evidence that the council members are more likely to appear among the biggest NREGS recipients than would be expected by chance. In summary, there is no evidence that presidents reward supporters or form conspiracies with other politicians to self-deal NREGS jobs.
A.2.2 Does Reservation Affect Self-Dealing?

Some prior work has proposed that between-group conflict can allow rent-seeking leaders to remain in power because their group fears that removing them will allow the other group to take power (Padró i Miquel, 2007). Conversely, some studies have found that reducing between-group conflict through caste reservation can induce better political selection (Munshi and Rosenzweig, 2008). Meanwhile, there is a body of work suggesting that female leaders in India govern better on some measures, but that the traditionally male-dominated system of politics in India effectively selects out these female leaders (Clots-Figueras, 2011; Chattopadhyay and Duflo, 2004).

Our data lets us test for whether villages selected for caste or gender reservation attract leaders who extract fewer excess days of NREGS labor. Table A3 shows that although this interaction term is negative for both forms of reservation, it is small and statistically insignificant. Self-dealing is 35 days under Female Reservation versus 39 days in panchayats not reserved for women (Column 1), and 36 days under Caste Reservation versus 37.5 days in other panchayats (Column 2).

Table A3
Reservations and Self-Dealing

<table>
<thead>
<tr>
<th></th>
<th>(1) Female Reservation</th>
<th>(2) Caste Reservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD Estimate</td>
<td>39.298***</td>
<td>37.412***</td>
</tr>
<tr>
<td></td>
<td>(6.320)</td>
<td>(4.910)</td>
</tr>
<tr>
<td>RD Estimate (Interaction)</td>
<td>-4.342</td>
<td>-1.580</td>
</tr>
<tr>
<td></td>
<td>(8.883)</td>
<td>(11.230)</td>
</tr>
<tr>
<td>Outcome at Disc.</td>
<td>19.726</td>
<td>20.010</td>
</tr>
<tr>
<td>Observations</td>
<td>1105</td>
<td>1105</td>
</tr>
<tr>
<td>Panchayats</td>
<td>757</td>
<td>757</td>
</tr>
</tbody>
</table>

Note: “Outcome at Disc.” gives the estimate of the counterfactual outcome at the cutoff in the absence of treatment (that is, the left limit at the cutoff). The “Interaction” estimate gives the difference in RD estimates between reserved panchayats and other panchayats. Standard errors are clustered by panchayat.

*p=0.10 **p=0.05 ***p=0.01

The dynamics of corruption are likewise no different in reserved seats. Table A4 shows difference-in-discontinuity estimates similar to those estimated for cyber cafes in Table 3. There is no evidence that the reduction in self-dealing is any bigger or smaller in female-reserved or caste-
reserved seats. This result differs from Afridi et al. (2017), who find that female politicians in Andhra Pradesh initially have worse NREGS implementation quality and higher program leakages, but catch up to male politicians during their term.

Table A4
Reservation and the Change in Self-Dealing from 2015 to 2018

<table>
<thead>
<tr>
<th></th>
<th>Change in NREGS Allocation, 2015 to 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(5.745)</td>
</tr>
<tr>
<td>RD Est. X Female Reservation</td>
<td>4.563</td>
</tr>
<tr>
<td></td>
<td>(11.366)</td>
</tr>
<tr>
<td>RD Est. X Caste Reservation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1071</td>
</tr>
<tr>
<td>Panchayats</td>
<td>742</td>
</tr>
</tbody>
</table>

Note: “Outcome at Disc.” gives the estimate of the counterfactual outcome at the cutoff in the absence of treatment (that is, the left limit at the cutoff). Standard errors are clustered by panchayat.
*p=0.10 **p=0.05 ***p=0.01
A.2.3 Does Self-Dealing Vary with Season?

We interpret excess jobs allocated to the president as self-dealing, but a more charitable interpretation is that presidents are working to keep projects running during times when regular households do not need NREGS labor. If that interpretation were valid, we would expect most of the excess labor allocated to the president’s household to come during the monsoon season (kharif) when most households are busy with farm work. We would likewise expect little or no excess during the dry season (rabi) when most farmers cannot grow crops and need government support.

Figure A4 shows no evidence of such a pattern. Both the level of the president’s labor allocation and the gap with the runner-up is largely unchanged between the two seasons. This pattern is inconsistent with the idea that presidents take jobs only when no one else wants them.

Figure A4
Self-Dealing is Similar During Kharif (Monsoon Season) and Rabi (Dry Season)

Note: Standard errors are clustered by panchayat.
A.2.4 Definition of “Near”

Table A5
Results of Table 3 are Robust to Using 10km as the Cutoff for Being “Near” a Cafe or Other Piece of Infrastructure

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in NREGS Allocation, 2015 to 2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Cyber Cafe</td>
<td>-40.984</td>
<td>-36.144</td>
<td>-34.846</td>
<td>-41.560</td>
<td>-39.276</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(14.176)</td>
<td>(14.681)</td>
<td>(15.849)</td>
<td>(15.652)</td>
<td>(15.922)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8.208</td>
<td></td>
<td>(14.721)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Post Office</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Major Road</td>
<td></td>
<td></td>
<td></td>
<td>-19.732</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(18.151)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.618</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(15.460)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-5.265</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(15.260)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1071</td>
<td>663</td>
<td>663</td>
<td>663</td>
<td>663</td>
<td>663</td>
<td>663</td>
</tr>
<tr>
<td>Panchayats</td>
<td>742</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
<td>460</td>
</tr>
</tbody>
</table>

Note: We present difference-in-discontinuity estimates (Equation 6). Standard errors are clustered by panchayat. Each estimate gives the size of the discontinuity within the subset of panchayats near the specified facility (relative to panchayats not near it). *p=0.10 **p=0.05 ***p=0.01
A.2.5 The Results Are Not Driven by Social Audits

Figure A5
Difference-in-Discontinuity Results Are Unchanged When We Control for [Winner] X [Audit]

Note: This figure is identical to Figure 6a except that we control for the dummy for whether the panchayat was audited in the year of the observation, as well as its interaction with the [Win]_y dummy for whether the candidate won the presidency. Audit periods are based on fiscal years rather than calendar years. We allow for either disciplining or anticipatory effects by defining our audit dummy in based on either the beginning or end of the fiscal year.
Figure A6

Difference-in-Discontinuity Results Are Unchanged When We Drop GPs That Were or Would Be Audited

Note: This figure is identical to Figure 6a except that we drop panchayats that were audited during our sample period (in fiscal year 2017 or 2018), or just after (fiscal year 2019). The latter ensures our results are not driven by anticipation of a future audit.
A.3 Density Tests

As noted in the second-to-last paragraph of Section 4.2, the standard density tests are less useful for our running variable because the vote margin of the winner equals the margin of the loser with the sign flipped. In the full set of winners and runners-up, the density of the running variable is symmetric in the neighborhood of the cutoff. In practice any asymmetry or discontinuity can only arise in our final sample if we are systematically more likely to match winning (or losing) candidates to their job card records. Column 6 of Table 2.B tests this directly and finds no evidence of a discontinuity in the match rate.

Figure A7
No Evidence of a Discontinuity in the Density

Nevertheless we present density tests in Figure A7 below. The first panel shows a simple histogram where each bin shows the fraction of observations with a vote margin equal to the discrete number of votes on the horizontal axis. As explained in the main text (Footnote 22) there is no mass at zero because election officials are instructed to break ties randomly and add one to the winners official vote total (State Election Commission of Uttarakhand, 2008). To be precise the presiding officer will write each candidate’s name on a slip of paper and draw one at random in the presence of the candidates, recording the drawn slip as though it were a vote.44

44 There are a handful of cases where an officer nevertheless recorded a tie. These observations are removed before any further analysis.
There is no evidence of higher mass on either side of the cutoff, as confirmed by local polynomial fits represented as dark curves overlaying the histogram.

The second panel shows a McCrary (2008) density test on the margin of votes (again in levels), and the last panel runs the same test on the margin as a proportion of total votes. In neither case is there evidence of a discontinuity.
A.4 Optimal Bandwidth for the Difference-in-Discontinuity Results

The main text used the same bandwidth for the difference-in-discontinuity estimates of Section 6.3 as the basic regression discontinuity in Section 4. That choice was mainly for the sake of consistency. But this appendix shows that the results are nevertheless not sensitive to the choice of bandwidth.

To our knowledge there is no consensus on how to choose the optimal bandwidth of the difference-in-discontinuity specifications of Table 3 (Columns 3—7). But we can apply the method of Calonico et al. (2014) to calculate the optimal bandwidth of

\[NREGS_{ip,2018} - NREGS_{ip,2015} \]

and use that bandwidth for the other specifications. Table A6 uses this bandwidth, which in practice is almost identical to the bandwidth used in the main text (14 versus 15). The results are largely unchanged.

In the case of the year-by-year difference-in-discontinuity results shown in Figure 6 there is no obvious way to calculate the optimal bandwidth, but Figure A8 shows that the results are similar for a range of bandwidths as wide as 22 and as narrow as 8.
Table A6
The Results of Table 3 are Robust to Using the Calonico et al. (2014) Optimal Bandwidth

Panel A: Dummies for Facility within 5 Kilometers of Any Village in the Panchayat

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(5.999)</td>
<td>(7.304)</td>
<td>(7.858)</td>
<td>(9.301)</td>
<td>(11.313)</td>
<td>(7.797)</td>
<td>(8.912)</td>
</tr>
<tr>
<td>RD Est. X Near Cyber Cafe</td>
<td>-40.886**</td>
<td>-34.087*</td>
<td>-38.161*</td>
<td>-50.928**</td>
<td>-44.858**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Post Office</td>
<td>-14.684</td>
<td>(14.800)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Major Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-15.053</td>
<td>(15.246)</td>
</tr>
<tr>
<td>RD Est. X Near Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.176</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(25.655)</td>
</tr>
<tr>
<td>RD Est. X Near Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.021</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(16.282)</td>
</tr>
<tr>
<td>Observations</td>
<td>1008</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
</tr>
<tr>
<td>Panchayats</td>
<td>703</td>
<td>439</td>
<td>439</td>
<td>439</td>
<td>439</td>
<td>439</td>
<td>439</td>
</tr>
</tbody>
</table>

Panel B: Dummies for Facility within 10 Kilometers of Any Village in the Panchayat

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD Est. X Near Post Office</td>
<td>-5.069</td>
<td>(15.089)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RD Est. X Near Major Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-19.351</td>
<td>(19.150)</td>
</tr>
<tr>
<td>RD Est. X Near Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.960</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(16.090)</td>
</tr>
<tr>
<td>RD Est. X Near Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.402</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(15.772)</td>
</tr>
<tr>
<td>Observations</td>
<td>1008</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
<td>627</td>
</tr>
<tr>
<td>Panchayats</td>
<td>703</td>
<td>439</td>
<td>439</td>
<td>439</td>
<td>439</td>
<td>439</td>
<td>439</td>
</tr>
</tbody>
</table>

Note: This table is identical to Table 3 except that this table uses the optimal bandwidth for the change in the labor allocation from 2015 to 2018 (as opposed to the level of the 2015 allocation).

*p=0.10 **p=0.05 ***p=0.01
Figure A8
The Year-by-Year Difference-in-Discontinuity Results are Robust to the Choice of Bandwidth

Note: Each regression retains observations such that the vote margin is less than or equal to “BW.” All standard errors are clustered by panchayat.
B Data Appendix (For Online Publication)

B.1 Matching Candidates to NREGS Job Card Records

Our two key sources of data are the 2014 gram panchayat election results (scraped from the website of the State Election Commission of Uttarakhand) and the NREGS records for Uttarakhand (scraped from the central government’s public NREGS portal). The election results record the name of each candidate and the name of their closest male relative (husband for married women, and father otherwise). The NREGS job card record contains the name of the head of household as well as the names of all other members of the household. The name of the closest male relative is directly recorded for the head of household. For all other members we infer that the head of household (if male) is their closest male relative.

Figure A9
Candidates Are Matched to Job Card Records Using Own Name and Name of Closest Male Relative

As Figure A9 suggests, we restrict the set of potential matches to those that live within the same panchayat and match candidates to their job card records if and only if both pieces of data match. We restrict attention to the winner and runner-up in each race (discarding uncontested
races) and focus on the set of panchayats where the margin between them was less than 7.5 percent of the total votes cast. As nearly all of the records in both election and job card data are in Devanagari script, we hired native Hindi speakers to manually match records. For each panchayat we hired two people to independently identify matches and investigated any cases of disagreement. We considered a match to be valid only in cases where a candidate was matched to a unique household within the panchayat.

B.2 Matching Panchayats to Census Data

We draw information on panchayat facilities (cyber cafes, banks, etc.) from the 2011 Census Village Directory. To investigate job allocations by village characteristics, we match the 2011 Census and the job card data at the panchayat-village level. In most cases, one data source was in Hindi while the other data source was phonetically spelled in English. We hired two native Hindi speakers to independently match Devanagari script and the Latin alphabet. Some matchings of panchayats-villages did not agree between the two people, and we hired a third person to reconcile those unmatched results for further reconciliation.

Over 60 percent of panchayats contain only a single village. For the rest we aggregated village-level outcomes to the panchayat. Most aggregate to the panchayat naturally (e.g. populations are summed). When calculating distances, we assumed that the distance of a facility (cyber cafe or school) to the gram panchayat was the distance to its closest constituent part (in other words, the minimum among its villages).

B.3 Surveying Council Presidents

Out of 887 presidents (winning candidates) within the bandwidth of our regression discontinuity analysis, 89 percent of them (n=790) had phone numbers from the public website of the State Election Commission of Uttarakhand. Enumerators called all 790 presidents as many as five times unless the numbers were wrong or invalid (n=76) or presidents refused to participate in the survey (n=11). We hired a professional English-Hindi translator to create scripts for the enumerators. All calls were recorded to verify that the enumerator’s survey entries were based on the actual interview.