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Perceptual learning, the improvement of perceptual
judgments with practice, occurs in many visual tasks.
There are, however, relatively fewer studies examining
perceptual learning in spatial frequency judgments. In
addition, perceptual learning has generally been studied
in two-alternative tasks, occasionally in n-alternative
tasks, and infrequently in identification. Recently,
perceptual learning was found in an orientation
identification task (eight-alternatives) and was well
accounted for by a new identification integrated
reweighting theory (I-IRT) (Liu et al., submitted). Here,
we examined perceptual learning in a similar
eight-alternative spatial frequency absolute
identification task in two different training protocols,
finding learning in the majority but not all observers. We
fit the I-IRT to the spatial frequency learning data and
discuss possible model explanations for variations in
learning.

Introduction

Visual spatial patterns vary in many ways, but
among the most salient features are their orientation
and spatial frequency. Perceptual learning—the
improvement in performance with practice or
training—has been extensively studied in many
visual tasks, including orientation (Crist, Kapadia,
Westheimer, & Gilbert, 1997; Fiorentini & Berardi,
1997; Dosher & Lu, 1998; Dosher & Lu, 1999;
Liu, 1999; Lu & Dosher, 2004), motion (Zhou et
al., 2006), texture (Karni & Sagi, 1991; Ahissar &
Hochstein, 1997), and hyperacuity (Poggio, Fahle,
& Edelman, 1992; Fahle, Edelman & Poggio, 1995;

Saarinen & Levi, 1995; Young, Li, Levi, Klein, &
Huang, 2004; Fahle, 2005), usually in the context of
two-alternative judgments. Less is known, however,
about perceptual learning in the spatial frequency
domain than in orientation or many other aspects
of pattern stimuli. Similarly, perceptual learning
in absolute identification tasks, or indeed in other
n-alternative identification tasks, has been studied in
only selected tasks. In identification tasks, a single
stimulus is presented, and the observer classifies it
into one of n responses. In absolute identification,
stimuli vary along a single sensory dimension and there
typically are four or more stimuli. In discrimination
tasks, stimuli from all potential categories—usually
two—are presented on each trial (either simultaneously
or successively) and the observer chooses the response
by the order of the presentation. In identification
the observer must develop multiple internal stimulus
representations (or multiple criteria), and the task
may be more demanding. In contrast, discrimination
tasks can directly compare the available stimuli, and
so they are often thought to yield more precise fine
discrimination performance (Stewart, Brown, & Chater,
2005). Given the lack of learning often reported in
absolute identification (but see Rouder, Morey, Cowan,
& Pealtz, 2004; Dodds, Donkin, Brown, & Heathcote,
2011) and the small number of studies about learning
spatial frequency in any paradigm, the ability to
learn absolute identification of spatial frequency is a
comparatively open question.

Recently, we documented robust learning in an
orientation absolute identification task with eight
alternatives (Liu, Lu, & Dosher, submitted). We found
that learning was strongly influenced by the nature
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Figure 1. (a) The experimental stimuli – noisy Gabor images with eight possible spatial frequencies. (b) A simplified task paradigm:
every trial only one stimulus was presented, and observers made a response. A visual feedback (white square) and audio feedback
(beep if the response was correct) followed.

of feedback and that learning was well accounted
for by a new identification integrated reweighting
model (I-IRT), based on the original IRT model of
perceptual learning in binary tasks (Dosher, Jeter, Liu,
& Lu, 2013). The I-IRT learns through experience by
improving the weights between stimulus representations
and decision units – optimizing judgments through
reweighting of evidence. The pattern of activations
in stimulus representations is the encoding, and
the weighting to decision is the decoding. Learning
improves the decoding. Using this neural network
framework, with the same early visual representations,
the model predicts that perceptual learning should also
occur for a corresponding absolute identification of
spatial frequency. It is this prediction that we examine
in this paper.

Perceptual learning in the spatial frequency
identification task studied here (see Figure 1) touches
on several literatures. We start by reviewing the previous
examples of perceptual learning related to spatial
frequency, the literature in visual perceptual learning
in general, including multidimensional n-alternative
identification, and finally the learning in absolute
identification of unidimensional stimuli—including our

prior study of learning in eight-alternative orientation
identification, and predictions of the I-IRT framework.
We then tested these predictions related to spatial
frequency learning in two experiments.

Perceptual learning in spatial frequency tasks

Perceptual learning occurs in many tasks (see Fine
& Jacobs, 2002; Sagi, 2011; Watanabe & Sasaki, 2015;
Dosher & Lu, 2020; Lu & Dosher, 2022; for reviews),
and, in some cases, learning of other judgments such
as contrast discrimination has been specific to the
spatial frequency of the stimuli (Yu, Klein, & Levi,
2004). Learning related to spatial frequency judgments
has been examined in a few studies testing difference
thresholds (Meinhardt, 2001; Meinhardt, 2002) and
in several others identification or discrimination
of compound spatial patterns have been studied
(Fiorentini & Berardi, 1980; Fiorentini & Berardi,
1981; Fine & Jacobs, 2000). These studies demonstrated
improved threshold differences in yes/no or two-interval
binary comparisons, or improved binary discrimination
using more complex compound stimuli (where learning
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may have capitalized on changes in diagnostic spatial
pattern features, such as changes in visible bands or in
plaid stimuli).

In the earliest studies of perceptual learning of
spatial frequency judgments, observers learned to
identify two spatial patterns with varying spatial
frequency components: a standard composed of 1f
and 3f vertical sine wave components with 0 degree
phase offset and lower contrast in the 3f component;
observed learning was largely specific to orientation
and viewing distance (Fiorentini & Berardi, 1980).
A follow-up study showed learning to discriminate
patterns in which the 3f component shifted phase or
contrast, or by the addition of a higher 5f harmonic,
using two-interval forced choice in which the observer
selected the standard versus a variant in blocked
tests (Fiorentini & Berardi, 1981). Discriminating the
compound patterns improved over 200 trials, whereas
discriminating frequency differences in simple gratings
did not. A related study showed perceptual learning
in a four-interval odd-out discrimination 5qwk for
composite “wicker” or plaid pattern stimuli with added
noise components using two stimuli, a standard and
the odd out pattern (Fine & Jacobs, 2000). In all these
cases, judgments potentially related to spatial frequency
were improved by training, but the improvements may
have involved learning to extract emergent spatial
patterns in the stimulus compounds (see also Bennett &
Westheimer, 1991). Both cases involved discrimination
between two patterns presented in successive temporal
intervals within each trial.

Other relevant studies measured learning in spatial-
frequency difference thresholds. In one, threshold
frequency differences (�ft) at d′ = 1.5 were trained in a
yes/no task (standard versus other discrimination using
the method of constant stimuli, where the standard was
presented on half the trials). Observers showed modest
improvements (Meinhardt, 2001), which occurred
even when other features of the stimuli were varied
(Meinhardt, 2002). Unlike many cases that exhibit
long retention, the task needed to be re-learned at
10 months delay (Meinhardt, 2001). Another study
showed that training improved performance in both
normal and amblyopic observers in a two-interval
forced choice spatial frequency discrimination task
using standards at two, four, or eight cycles per degree in
separate groups (Astle, Webb, & McGraw, 2010). These
studies used high contrast stimuli without external
noise and showed that spatial frequency judgements
could improve over training in binary discrimination
tasks.

The current study aims to evaluate perceptual
learning in the potentially more challenging spatial
frequency judgments with more alternatives and in
external noise.

Perceptual learning in n-alternative
identification

Object identification in the world often requires
discriminating between many possibilities. Yet,
perceptual learning research has overwhelmingly
focused on simpler two-alternative binary choice tasks,
with fewer studies on learning in n-alternative (n > 2)
tasks. In one of these (Gold, Bennett, & Sekuler, 1999;
Gold, Sekuler, & Bennett, 2004), observers learned to
identify stimuli from a set of either 10 faces or 10 filtered
“blob-like” texture patterns embedded in external noise
by clicking on the corresponding stimulus in a palette
of thumbnail images (see also Hussain, Sekuler, &
Bennett, 2009; Hussain, Sekuler, & Bennett, 2011).
In another study, observers learned to label multiple
artificial creatures (greebles), created from selections of
embellishment features, together with names and gender
designations (Gauthier, Williams, Tarr, & Tanaka,
1998). In another, improvements in eight-alternative
motion direction identification were used to index
the effects of exposure to a single “trained” motion
direction in the task-irrelevant perceptual learning
literature (e.g. Watanabe et al., 2002; Tsushima, Seitz,
& Watanabe, 2008). Except for the task-irrelevant
learning in motion direction, all these studies almost
surely involve multidimensional, not unidimensional,
stimulus variations. Here, multidimensional refers to
the stimulus variations presented to the observer (e.g.
eyes, mouth, and shape variations for faces) and not of
the stimulus encodings in the visual system. Absolute
unidimensional identification is defined by stimulus
variations in one dimension.

In contrast, performance in absolute identification
tasks was initially thought to be relatively unaffected
by practice (see Dodds et al., 2011 for a review of the
prior literature), although sometimes with fewer trials
than typically used in perceptual learning studies. The
identification literature has predominantly focused
instead on performance limits of near three bits of
information or seven or fewer categories (the “magical
number 7”; Garner & Hake, 1951; Hake & Garner,
1951; Miller, 1956; Shiffrin & Nosofsky, 1994). Still,
learning has been reported in a number of cases:
identification of line lengths (Rouder, et al. 2004), for
angle of inclination of lines, and for dot separation
(Dodds et al., 2011). Stimuli were of high contrast and
clear visibility. In some of these studies, the number
of alternative stimuli n was as high as 30, whereas the
maximum information transmitted reliably was about
3 to 3.2 bits, or eight to nine responses. Another study
trained identification of nine dot separations for 450
trials while varying the distribution of tested stimuli,
reporting stimulus distribution context effects and
modest learning (Petrov & Anderson, 2005).
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N-alternative identification is also an important form
of perceptual learning to investigate for several reasons.
First, there are many instances in real world applications
in which we identify things from larger numbers of
alternatives, such as identifying an image as a particular
fruit or animal. Second, it is likely to be more efficient
in improving the identification of the n items than
training identification through training stimulus pairs
from the set. Third, n-alternative identification is more
efficient for measuring performance and so for training
responses. The guessing rate is quite low compared to
two-alternative tasks, so each response (and so each
response feedback) offers more learning signal.

Recently, we demonstrated perceptual learning in
an absolute orientation identification task tested in
visual periphery with external noise and showed how
learning depended on different forms of feedback
(Liu, Lu, & Dosher, submitted). The accuracy of
orientation identification improved substantially over
training sessions with full response feedback (providing
the correct response), some learning occurred with
weaker accuracy feedback (indicating only whether
the response is correct or not), and a small amount
of learning occurred even in the absence of feedback.
Learning in these eight-alternative absolute orientation
judgments in all three feedback conditions was well
accounted for by the identification – integrated
reweighting model (I-IRT; Liu, Lu, & Dosher,
submitted). The I-IRT model in analogous simulations
also predicts learning in spatial frequency judgments in
similar conditions.

The identification - Integrated reweighting
theory

To account for perceptual learning in absolute
identification, we extended the original IRT model of
perceptual learning that had been developed for binary
discrimination (Dosher et al., 2013). The original
IRT model accounted for many perceptual learning
phenomena, including learning, aspects of transfer,
feedback-induced bias, and some failures to learn
when stimuli are varied (roved) (see Dosher & Lu,
2017, for a review). Inspired by the neurophysiology,
the representation module (signal-processing front
end) computes gain-control normalized activity in
a set of spatial frequency and orientation sensitive
units—the sensory evidence (Petrov, Dosher & Lu,
2005; Petrov, Dosher, & Lu, 2006; Dosher et al., 2013).
This representation front end accounts for the effects of
contrast and external noise stimulus manipulations on
performance.

In the new I-IRT, the observer learns which sensory
representation activations to weight toward each
identification response. To do this, the model uses

a set of mini-decision units, one for each potential
response (eight in the current experiments). Figure
2 schematically illustrates this for spatial frequency.
As in the earlier IRT, the visual processing “front
end” encodes the stimulus as activations in spatial-
frequency and orientation-tuned representations at a
location-specific level and a location-invariant level
that pools over spatial locations. The location-specific
representations in the IRT account for specificity
of some learning to spatial locations and the
location-invariant representations mediate transfer
or generalization over spatial testing locations and
interactions of learning in multiple locations, both of
which occur in perceptual learning tasks (see Dosher et
al., 2013; Dosher, Liu, Chu, & Lu, 2020, for reviews).
The activations in all these stimulus representations
are then weighted to the n mini-decision units (one
mini-decision unit per response), with the most active
mini-decision unit on each trial determining the
simulated response (max rule).

After the identification response and any feedback,
the weights connecting the sensory evidence (activations
in the representation units) to each of the n mini-
decision units are updated (reweighted) using an
augmented Hebbian learning rule. Response feedback
(the correct response, the form of feedback used in the
current study) shifts activation in each mini-decision
unit toward the correct answer for that mini-unit, either
match or mismatch, before the weight update. Learning
over trials tends to up-weight evidence from its most
relevant stimulus representations to each mini-decision
unit and down-weight evidence from noisy or irrelevant
representations. Performance and learning in the model
are controlled by parameters for internal noises, scaling,
and nonlinearity, and a single learning rate parameter.
The details of the implementation of the I-IRT
are briefly described in Appendix A. Using similar
parameter values as for orientation identification,
the model predicts that learning spatial frequency
identification is not only possible but likely.

Perceptual learning in a range of tasks has been
modeled using the IRT framework, accounting for many
phenomena in perceptual learning in two-alternative
tasks (see Dosher & Lu, 2017; Dosher & Lu, 2020 for
reviews). In each case, response selection in the model
uses the appropriate signal detection analysis for the
task. In multi-category identification, a single stimulus
is presented, and the max rule is often used, selecting
the strongest activation or match. Comparisons of
performance across tasks is naturally carried out in the
signal detection domain; see Lu and Dosher (2013)
section 8.4.

It should also be noted that several cognitive
models of absolute identification have been developed
previously to account for other aspects of performance
that the I-IRT is not designed to account for—such
as assimilative or contrastive sequential dependencies
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Figure 2. The I-IRT model. A stimulus is first processed into both location-specific and location-independent representations, which
are fed forward to nmini-decision units. A max rule decides the actual response. Feedback (information about which response is
desired) and bias (to balance response frequency for each response) are fed into the mini-decision units, which drive the learning of
the model. Learning is achieved through updating weights between representations and mini-decision units.

between trials (Luce, Nosofsky, Green, & Smith,
1982), end-anchor effects (e.g. Ward & Lockhead,
1970; Luce et al., 1982), and response times (see
Petrov & Anderson, 2005; Brown, Marley, Donkin, &
Healthcote, 2008 for excellent examples). The I-IRT
focuses on learning, and it accounts for effects of visual
variables in the stimuli, such as contrast, external noise,
and stimulus similarity that these earlier cognitive
models do not address (the I-IRT does account for
some end-anchor effects, see below). Some comparisons
to these other models are considered in the Discussion.

Current project

Simulations of the I-IRT predict that learning in
spatial frequency identification could occur in many
conditions. This hypothesis is tested in two experiments.
Experiment 1 examines learning using a mixed-contrast
design and measuring accuracy; Experiment 2 examines
learning at threshold, in which practice occurs while
adaptive measures hold accuracy constant by adjusting

stimulus contrast. Both experiments test learning and
performance in the presence of modest external noise
in the periphery.

Experiment 1

Observers were trained in eight-alternative absolute
spatial frequency identification in the periphery at a
mixture of target contrasts (0.3, 0.6, and 1.0) using
response feedback. Proportion correct is the dependent
measure. This design followed the mixed-contrast design
used in training absolute orientation identification
(Liu, et al., submitted). Previous results in perceptual
learning suggested that including higher-contrast
trials during training can promote learning, at least in
two-alternative tasks (e.g., Petrov et al., 2005; Petrov,
Dosher, & Lu, 2006; Liu, Lu, & Dosher, 2010; Liu,
Lu, & Dosher, 2012). Although some psychophysical
tests of detection for spatial frequency stimuli vary
the overall stimulus size (number of cycles constant;
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e.g. Lesmes et al., 2010), here, we kept the physical size
of the Gabor patch the same to minimize the use of
stimulus size as a proxy cue for learning, so stimuli for
different frequencies show different numbers of spatial
cycles.

Methods

Observers
Six observers with normal or corrected-to-normal

vision completed the experiment, with written consent
under a protocol approved by the Institutional Review
Board of the University of California Irvine. Observers
participated in eight 960-trial sessions on different
days, usually within a 2-week period, for 7680 trials
per observer, or 46,080 trials over all the observers.
These sessions were run on consecutive days except on
weekends, holidays, or occasional scheduling conflicts
with observers. They included six sessions of training
in external noise and then two sessions in zero external
noise to collect data to help constrain the I-IRT model
(Observers S1 and S5 performed one or more additional
sessions, not analyzed here).

Stimuli and apparatus
A Gabor (windowed sine wave) pattern was

presented on each trial at one of the two corners
(e.g. top left or bottom right) around fixation with
Gaussian noise; its spatial frequency was chosen
at random from eight possible values, all shown at
orientation θ (see Figure 1 for sample stimuli and an
outline of the procedure). The Gabor pattern, defined
in a 64 × 64 pixel patch, is described by: l (x, y) =
l0(1.0 ± c sin(2π f (y sin(θ ) ± x cos(θ ))) × exp( x

2+y2
2σ 2 )),

with angle θ = 22.5 degrees (relative to vertical) and
one of eight spatial frequencies spaced in half-octave
intervals (f = 1/45, 1/32, 1/23, 1/16, 1/11, 1/8, 1/5.7,
and 1/4 cycles/pixel, corresponding with 0.43, 0.62,
0.87, 1.23, 1.74, 2.46, 3.48, or 4.92 cycles/degree at
the viewing distance), and standard deviation of
the Gaussian envelope σ = 0.8 degrees (16 pixels),
maximum contrast c (of 0.3, 0.6, or 1.0), and l0 is
the mid-grey background luminance, with phase as
described. Each external noise image, newly generated
for each trial and location, was composed of 2 × 2 pixel
noise elements with contrasts randomly chosen from a
Gaussian distribution with mean value 0 and standard
deviation 0.24, and then band-pass filtered (1/16-1/4
cycles/pixel). External noise images and signal Gabor
images were displayed sequentially at the frame rate of
60 Hz (see procedure) (NNSSNN). Illustrations of the
stimuli (and procedure) are shown in Figure 1.

The images subtended 2.8 degrees × 2.8 degrees
visual angle, located at 5.3 degrees eccentricity, at

a viewing distance of 83 cm stabilized with a chin
rest. Stimuli were generated in MATLAB with
PsychToolbox 3 on a Dell PC computer and displayed
on a 20-inch Viewsonic color monitor with a refresh
rate of 60 Hz and resolution of 640 × 480 pixels in
pseudo-monochrome. A lookup table, generated by a
psychophysical calibration procedure and validated by
photometric measurement, linearized the luminance
range into 127 levels from 1 cd/m2 to 67 cd/m2; the
mid-grey background luminance was 34 cd/m2.

Design
Observers discriminated the eight spatial frequencies

of a Gabor patch in the retinal location (of two
locations) indicated by a pre-cue (presented shortly
before the Gabor) and a response post-cue. Response
feedback (i.e. the correct answer), was provided after
each keypress. The Gabor contrast, c, was 0.3, 0.6, or
1.0 (the full contrast range of the display). The number
of trials per session (960) was divided equally between
the two locations and three contrasts, intermixed
randomly within four blocks of 240 trials, yielding 20
tests per stimulus per location per contrast in each
session. Because the focus of our experiments and
the model was on performance accuracy, instructions
emphasized accuracy, and response times were not
recorded.

Procedure
Following general instruction on the task, observers

were shown examples of the stimuli and performed
a small number of practice trials before beginning
experimental testing. The goal of the task was to
identify the spatial frequency of each image as
accurately as possible, and make the best guess when
not sure. The instructions explained spatial frequency
and that the task was to identify each image as one
of eight possible images along a low to high spatial
frequency axis. Observers were shown images of the
eight spatial frequency stimuli (as in Figure 1) in both
zero and high external noise. There were 32 practice
trials, two trials per location per spatial frequency,
with noise-free stimuli. The practice trials were used
to familiarize observers with the experimental set-up,
presentation of stimuli, and key presses. Any questions
were addressed during the practice.

Each trial started with a central fixation mark and
two sets of location markers; 500 ms later the stimulus
sequence (external Gaussian noise or blank frames,
signal, external Gaussian noise or blank frames)
appeared for two refresh counts per frame, with a
central pre-cue arrow appearing 100 ms prior to the
signal indicating the testing location for that trial. Blank
frames replace external noise frames for the two last
sessions of testing without external noise. Observers
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pressed one of the “a/s/d/f/j/k/l/;” keys, one for each
possible spatial frequency, and received response
feedback, consisting of a display indicating the correct
response, as well as a brief beep if the observer’s
response was correct. See Figure 1b for an illustration
of the trial sequence.

Proportion-correct, psychometric functions, and learning
curves

We analyzed the proportion correct data with analysis
of variance, as well as on arcsin√p and the logit (ln(p/(1
− p)), transformations often used to equate the variance
and normalize proportions. We also calculated the effect
size (η2

p) and the Bayesian Information Criterion (BIC).
The η2

p is an effect size measure expressed as proportion
variance accounted for after removing the variance
of other factors (Bakeman, 2005) and pBIC(D|H1) is
the probability of the BIC given the hypothesis of
the effect, H1, derived from statistics of the analysis
of variance (Masson, 2011). In addition, Weibull
functions were used to characterize the underlying
psychometric functions (proportion correct measured
at three contrasts): p̂correct = pmax − pmin × 2−(c/τ )η ,
where pmax is the upper asymptote of the function, pmin
= 1/8 = 0.125, c is the Gabor contrast, τ is the location
(threshold), and η is the slope of the psychometric
function. Systems of such functions, one for each
session, were fit to the average data, with an assumption
of equal slope and equal maximum (1 pmax, 1η, 6 τ ),
using maximum likelihood methods (Wichman &
Hill, 2001) and nonlinear minimization routines in
Matlab (2019; MathWorks, Natick, MA, USA). The
assumption of constant slope is reasonably standard
(e.g. Legge, Kersten, & Burgess, 1987; Lu & Dosher,
1999; Hou, Lesmes, Bex, Dorr, & Lu, 2015). The
contrast thresholds at a proportion correct of 0.30 were
interpolated from the fitted functions for each practice
session. Learning curves were then graphed as contrast
threshold versus practice session and fit by a power
function (Heathcote, Brown, & Mewhort, 2000; Dosher
& Lu, 2007): C(t) = λt−β + α, with initial threshold
of λ + α, asymptotic threshold of α (or a reduced
form with α = 0), learning rate β, and training block t
(least squares methods using nonlinear minimization in
Matlab). The proportion of variance accounted for by
the power function is r2:

r2 = 1.0 −
∑[

xtheory − xobserved
]2

∑[
xobserved − x̄

]2 .

The � is over all N observations and x̄ is the mean
of the observed values. The learning curves were
also tested for significance of learning using F-tests
comparing the fits of a fuller model (non-zero learning
rate, three parameters) and the nested reduced model
(no learning, one parameter equal to the mean):

F (d f1, d f2) = (r2f ull−r2reduced )/d f1
(1−r2f ull )/d f2

, where df1 = kfull −
kreduced, and df2 = N − kfull − 1, where the k’s are the
number of parameters. The F-test computes the ratio of
the improvement in error variance for each additional
parameter in the fuller model to the error variance per
degree of freedom.

Confusion matrices and weighted-κ
In addition to accuracy and thresholds, an eight

by eight confusion matrix was tabulated for each
session: CM(i, j) is the frequency of response j to
spatial-frequency stimulus i, i, j ∈ {1, 2, …8}.
Confusion matrices reveal stimulus confusions,
response biases, and improvements across the training
process that reduce errors. A Cohen’s weighted kappa
(κ) was computed from the confusion matrices, which
gives full credit to correct responses (“hits”), but also
partially credits adjacent responses (a correct response
received a weight of 1; the two neighboring responses
received a weight of 0.15; and the next more distant two
neighboring responses received a weight of 0.05) and
corrects for guessing (Cohen, 1968).

Results

Performance accuracy and learning

Figure 3 shows proportion correct as a function of
practice session for each of the three contrasts, averaged
over observers (panel A). As described in Methods,
we performed analysis of variance on arcsin√p, a
measure which approximately equates the variance
and normalizes proportions, to analyze learning over
sessions in external noise (sessions 1–6). (Analyses on
proportion correct and the logit (ln(p/(1 − p)) led to
essentially equivalent results.) There were significant
effects of practice session (F(5, 25) = 2.830, p < 0.0370,
η2
p = 0.361, pBIC(D|H1) > 0.999), contrast (F(2, 10) =

142.697, p < 0.0001, η2
p = 0.966, pBIC(D|H1) > 0.999),

but not of test location or any interactions. Average
performance accuracy improved from 31.16 ± 2.22%
to 38.72 ± 2.49% across contrast levels and locations,
and average accuracies for the three contrast levels were
33.39 ± 1.49%, 39.63 ± 1.56%, and 42.68 ± 2.10%,
across sessions and locations.

Learning effects of individual observers, often
unreported in the perceptual learning literature, are
increasingly being considered. Such analysis can shed
light on different learning trajectories and potential
causes of failed learning. In this study, perceptual
learning was individually significant in four of the six
observers (see Appendix B for details). A related study
using a somewhat different design found a similar
proportion (22 of 30) observers exhibited individually
significant learning in spatial frequency identification
over five sessions (Liu, Lu, & Dosher, in preparation).
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A comparison of the last two high external noise
sessions and the two subsequent zero external noise
sessions yielded significant effects of external noise
(F(1, 5) = 20.302, p < 0.0065, η2

p = 0.8024, pBIC(D|H1)
> 0.999), contrast (F(2, 10) = 27.517, p < 0.0001, η2

p =
0.8462, pBIC(D|H1) > 0.999), and their interaction (F(2,
10) = 26.375, p < 0.0001, η2

p = 0.8408, pBIC(D|H1) >

0.999), for arcsin√p (with equivalent results for analyses
of proportion correct and the logit transformed
proportions). The interaction reflects diminished
effects of contrast in zero external noise because of
the leftward shift of the psychometric function toward
lower contrasts.

Psychometric functions and contrast threshold learning
curves

We also estimated the impact of learning on the
average psychometric functions (proportion correct
as a function of stimulus contrast) by fitting Weibull
functions, and a contrast threshold at p = 0.3 (d′ = 0.73)
for each session was estimated by interpolation and
then fit with a power function (see Methods). Figure 3b
shows the Weibull fits to the average proportion correct
data from which contrast threshold estimates were
derived. Figure 3c shows the threshold data together
with a learning curve from the best-fitting reduced
power function, with parameters γ = 0.5897 ± 0.1240;

Figure 3. Results of Experiment 1. (a) The average proportion correct in three contrast levels over eight sessions, first six sessions in
high noise and last two sessions in zero noise for all observers. Observed proportion correct improved for all contrast levels over the
sessions. (b) The Weibull function fit for average data in each high noise session. (c) The 30% correct threshold from the Weibull fit in
b. The red line is a power function fit of the threshold data. The reduction of thresholds over sessions demonstrates learning.
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β = 0.2897 ± 0.1529; α = 0. Learning curves for data
averaged over observers generally take the power form
even if the learning curve for individuals is exponential
(e.g. Heathcote et al., 2000; Dosher & Lu, 2007; Zhang,
Zhao, Dosher, & Lu, 2019a; Zhang, Zhao, Dosher, &
Lu, 2019b) because the average curve reflects varied
learning parameters. Here, setting α = 0 does not reduce
the quality of power fit, and when free to vary, the best
estimate of α was 0; the value of α (the best contrast
threshold achieved after very extensive learning) should
be greater than 0, but more data including much longer
training would be required to estimate it. The F-test
shows the learning fit is marginally better than the
no-learning fit (β = 0): F(1, 3) = 7.53, p = 0.0711.

Confusion matrices and weighted-κ
The confusion matrix of the eight-alternative task

provides complementary information that reveals the
similarity structure of the stimuli. Figure 4 shows the
aggregate confusion matrices as heatmaps for each
training session. Each cell of the heatmap codes the
frequency of the response (x-axis, low to high from left
to right) for each stimulus (y-axis, low to high from top
to bottom). Lighter colors (higher frequencies) on the
diagonal show reasonable response tuning in the first
session that improves with training. The improvement
with training (fi,j (6) − fi,j (1)), right column, shows
increased responses on or near the accurate diagonal
and decreased responses away from the diagonal. The

figure also shows the average confusion matrices from
the observers whose performance improved (“learner,”
S1–S4) and those who did not (“non-learner,” S5–S6)
in Figure 4b. Compared to the improved responses
along the accurate diagonal in learners, non-learners
showed more biases – predominantly responding
“2” and “7” for most stimuli. Appendix C shows the
confusion matrices for each observer.

Correspondingly, the weighted-κ improved from 0.24
to 0.33 over the six training sessions in these average
confusion matrices (weighted-κ gives partial credit for
near misses and corrects for guessing, with minimum of
0). The confusion matrices in the zero noise sessions on
average led to higher weighted-κ (0.43) than in the two
previous high external noise sessions, as expected. The
statistical details for weighted-κ and for information
transmitted (It) scores, a common measure of accuracy
from the absolute identification literature, are described
in Appendix C, and yield similar results as the analysis
of the percent correct data. The appendix also considers
the slight end-anchor effects, a common observation in
the absolute identification literature (see e.g. Ward &
Lockhead, 1970; Luce et al., 1982).

Fits of the I-IRT model
We fit the I-IRT model to proportion correct data in

the three contrast conditions over training sessions, and
the same model and parameters also make predictions
about the average confusion matrix data.

Figure 4. The confusion matrices heatmap in each session, and the change in confusion matrices from session 1 to session 6. The
diagonal shows the correct responses. (a) Confusion matrices averaged across all observers for each contrast level. Performance was
better in higher contrast, in low noise, and in later sessions, seen as cleaner diagonal frequency data. The difference between session
6 and session 1 showed the improved performance. (b) Confusion matrices averaged across contrast levels for the average of learners
(S1–S4, top), and non-learners (S5–S6, bottom). The difference between session 6 and session 1 showed clear biases in non-learners –
who disproportionately responded “2” and “7” for the lower and higher spatial frequencies, respectively.
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Figure 5. The I-IRT model fit to the experimental data in Experiment 1. (a) Model fit to the average of all observers (top), of learners
(middle), and of non-learners (bottom). In each case the I-IRT fit the data quite well (see main text for statistics). (b) The response
function of data (blue) and model predictions (red), averaged over stimulus contrasts, organically emerge from the fit of the model to
the proportion correct data in a. Each line of the response function shows the frequency of responses to a given stimulus. The model
captures the data in non-learners reasonably well even without introducing response biases (see main text for discussion). (c) The
response function of data (blue) and model (red) for the average of all observers in three contrast levels. The model captures the data
in different contrast and external noise levels well.
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Parameters Parameter values

Parameters set a priori
Orientation spacing �θ 15 degrees
Spatial frequency spacing �f 0.5 octave
Maximum activation level Amax 1
Weight bounds wmin wmax ±1
Activation function gain γ 3.5
Location-specific orientation bandwidth hθ 30 degrees
Location-independent orientation bandwidth hθ I 60 degrees
Location-specific frequency bandwidth hf 1 octave
Location-independent frequency bandwidth hfI 2 octaves
Radial kernel width hr 2 dva

Parameters adjusted for the data Average Learner Non-learner
Normalization constant k 0 0 0
Scaling factor a 0.1 0.08 0.08
Location-specific internal additive noise, σ a 5e-7 2e-7 0
Location-independent internal additive noise 2* σ a 1e-6 4e-7 0
Location-specific internal multiplicative noise, σm 0.1 0.1 0.16
Location-independent internal multiplicative noise 2* σm 0.2 0.2 0.32
Decision noise σ d 0.2 0.2 0.1
Learning rate η 1e-4 2e-4 0
Bias weight wb 0.75 0.75 0.75
Feedback weight wf 0.75 0.75 0.75
Initial weights scaling factor winit 0.05 0.05 0.05

Table 1. IRT parameters for Experiment 1 (proportion correct).

Figure 5a shows the predictions of the best fitting
I-IRT for the average proportion correct data for the
three contrast conditions (0.3, 0.6, and 1.0) for the first
six training sessions in external noise, and the next two
sessions without external noise (line and shaded region
at ± 1σ from the simulations, n = 100 simulations; see
Appendix A for fitting methods). The model provided
an excellent fit (r2 = 0.951) for proportion correct to the
effects of learning, contrast, and the interaction with
external noise. (Including data both with and without
external noise helps constrain internal noise parameters
in the model.) The parameters of the fitted model to
the average data are listed in Table 1. In addition to
fitting the average data across all observers, we also
divided the observers into learner and non-learner and
fit the average data from both groups (see Appendix B
for analyses and discussion of individual observers).
The fit of the model to the learner data was excellent (r2
= 0.964 for proportion correct). The fit to non-learner
data was also reasonable (r2 = 0.822 for proportion
correct) as it still accounts for the effects of contrast,
external noise, and their interaction (the lower model
r2 partly reflects the smaller range of data without
learning).

Figure 5b shows the confusion matrices, averaged
over stimulus contrasts, as response functions –
frequencies of responses given a stimulus – for both
data and model predictions. Figure 5c shows the

response functions for the three contrasts separately for
the average of all learners data to illustrate the ability
of the model to account for the effects of contrast in
the targets and the external noise and the effects of
learning, and their interaction (also well accounted for
in the learners and non-learners data; r2 = 0.820 for the
aggregate data; and r2 = 0.843 for the learner data; r2 =
0.536 for non-learner data).

The predicted response functions of the model
were derived from the corresponding model fit to the
proportion correct data. That is, the parameters of the
model were set to optimize the fit to overall proportion
correct, and the predictions for the confusion data
emerged organically from that fit. There were no
additional parameters for the fit to the confusion
matrices.

We offer several comments about the model
predictions of confusion matrix data. First, as
shown in Figure 5, the model does an excellent job
of accounting for the effects of stimulus contrast,
external noise, and the improvements over sessions
in the response confusion functions. The similarity
of the stimuli emerges from the spatial-frequency
and orientation-tuned units, and the contrast
normalization/gain control in the signal processing
front-end.

Second, our observers were generally sensitive
to the spatial frequency of the test stimuli in a
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task-appropriate way, as seen in the clustering around
the correct response diagonal even near the beginning
of training (see the heat diagrams for the first session
in Figures 4 and 5). This behavioral fact requires
partially informative initial starting weights in the
model, based on general knowledge of spatial frequency.
To implement this, each of the mini-decision nodes was
supported by initial positive weight connections from
the three most closely matched sets of representation
units to the target spatial frequency, with zero initial
weights connecting the representation units tuned to
other spatial frequencies. Activation in representation
units tuned to spatial frequencies above the highest
spatial frequency stimulus and below the lowest
spatial frequency stimulus naturally combined to
predict some of the “end-anchor” effects seen in
these data and in other absolute identification data.
Still, visual inspection of the data here shows some
underperformance relative to the model predictions
for the spatial frequency stimuli in the middle of the
set and some overproduction of responses at the end
points relative to the predicted values, especially in
the zero external noise sessions. This may partially
reflect response biases especially in non-learners.
We explored introducing response biases into the
model, either by having different initial weights for
different mini-decision units, or having higher response
preferences for certain responses (e.g. “2” and “7” as
in the non-learners), and these improved the fit to the
confusion matrices while yielding a similar fit to the
proportion correct data. If the behavioral performance
shows a bias profile, it is likely specific to an observer.

Last, we also considered potential corrections for the
contrast-sensitivity function on either scaled activation
or varied internal noises in the representation units.
However, these exploratory simulations had little effect
on the fit since all our stimuli were within the more
visible central range of spatial frequencies. If stimuli
in the reduced sensitivity limbs (high or low) of the
contrast sensitivity function were tested, it might require
the integration of the contrast-sensitivity function
into the I-IRT. Although we investigated introducing
response biases or spatial frequency contrast sensitivity
corrections in exploratory fits and simulations, we
report the fits of the simpler I-IRT.

Figure 6 shows the initial and final (after
training) weights from the location-specific and
location-invariant representations to each of the eight
mini-decision units for fits to all observers and to
learners only. Weights of non-learners do not change.
As described earlier, initial weights accounted for initial
above chance behavioral performance. During learning,
reweighting increased the weights on representations
most closely tuned to the stimulus represented by
that mini-decision unit and reduced the weights
on others. The magnitude of the weight changes
was higher for learner’s data than for the fit to all

observers. For mini-decision units representing stimuli
in the mid-range of the stimuli, weights increased
for units most closely tuned to the corresponding
spatial frequency stimulus, and shifted negative for
units for nearer competitors—in a classic excitatory
center, inhibitory surround pattern. Those units tuned
to spatial frequencies yet farther away tended to be
slightly negative because the external (white) noise
adds distracting activation in all representation units.
The mini-decision units for the lowest (or highest)
spatial frequency stimuli positively weight units tuned
below (or above) which produces the end effects in
the predicted response confusion functions. Decision
weights on the location-specific and location-invariant
representation units were relatively similar although
those units are tuned more narrowly and more
broadly, respectively (1 and 2 octaves, for full width
at half height). Learned weights on location-invariant
representations impact performance on (and are trained
by) trials in both locations and would be the basis of
transfer to untrained locations.

The weights for the fit to non-learners remained
unchanged (model learning rate of zero). An alternative
fit to non-learners that ignored feedback (feedback
weight set to 0) yielded small effects of unsupervised
learning and correspondingly small changes in weights.
(See the General Discussion for more details.)

Discussion

The I-IRT model predicted that, with response
feedback, learning could occur in absolute spatial-
frequency identification task with eight alternatives.
Behaviorally, we found relatively robust perceptual
learning in spatial-frequency identification task in
the average data in the intermixed-contrast training
paradigm of this experiment. Response confusion data
showed substantial sensitivity to the spatial frequency of
the stimuli even in the first session that was then further
fine-tuned with subsequent training. Robust learning
occurred for four of the six observers (each statistically
significant individually), whereas the remaining two
observers instead developed biased shortcuts counter
to the task demands, likely for reasons outside the
model framework (see Appendix B for a discussion of
individual differences). Even so, the confusion matrices
of the non-learners indicate that they were performing
some (possibly biased) approximation of the task, as
responses continued to carry information about the
spatial frequency of the stimulus.

The I-IRTmodel provided an excellent account of the
effects of training, stimulus contrast, and interaction of
contrast with external noise on the proportion correct
data. It also provided a good account of the confusion
data without added model parameters, including
the effects of contrast, external noise, learning, and
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Figure 6. The initial (circles) and final (crosses) weights from representation units to each mini-decision unit for location-specific and
location-invariant units for all observers (top panels), and for learners (bottom panels), tuned to the trained orientation. Each color
represents one mini-decision unit, and arrows are eight spatial frequencies in the stimuli. Initial weights are set positively for
representation units tuned for the spatial frequencies near the stimulus for each mini-decision unit and set to zero for others,
corresponding with initial above-chance performance. After learning, the weights of the relevant representation units increased,
whereas the weights on other units decreased. For middle spatial frequency stimuli, the pattern shows an excitatory center, inhibitory
surround patter to suppress the input from response competitors; for end point stimuli, evidence from representations tuned just
outside the range retain positive weights. The weight changes in fits to learners are more robust than for the average of all observers.
The weights do not change from initial values in fits to non-learners data. (See text for explanation.)

the degree of confusion between adjacent stimuli.
Exploratory fits adding response biases improved the
fits to the confusion data slightly but did not alter any
conclusions. The learned improvements in performance
were the result of dynamic changes in weights on
evidence from sensory representations tuned for each
mini-decision unit, corresponding with the absolute
identification response choices. The I-IRT model can
only suggest possible mechanisms for why learning
is more robust in some observers (see the General
Discussion for further discussion).

Experiment 2

Experiment 2 evaluated learning in spatial frequency
identification while training at threshold by adaptively

modifying Gabor contrast to track an accuracy
of 54%. Practice included six sessions of absolute
identification of spatial frequency stimuli in external
noise, and an additional two sessions without external
noise.

Methods

Observers
Seven observers with normal or corrected-to-normal

vision completed the experiment, with written consent
under a protocol approved by the Institutional Review
Board of the University of California Irvine. Observers
participated in 960 experimental trials per session for
eight sessions, except for one observer, who completed
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only six sessions. Sessions occurred on different days,
usually within a 2-week period, for 7680 trials (or
5760 trials) per observer, yielding 51,840 trials over all
observers. These sessions were run on consecutive days
except on weekends, holidays, or occasional scheduling
conflicts with observers. One other observer withdrew
after two sessions for scheduling reasons (data not
reported).

Stimuli, design, and procedure
The stimuli, design, and procedure were identical

to that of Experiment 1, except that the contrasts of
the stimuli were set by the accelerated approximation
staircase (Kesten, 1958) to track 54% correct (see
below) and contrast threshold was the dependent
measure. The contrast of the stimulus on the next trial
in a test location depended on the accuracy of the prior
response in that location through the adaptive staircase.
Each 960-trial session was divided into four blocks of
240 trials (120 per location), between which observers
could take a short break; new adaptive staircases were
restarted using the last contrast tested in the prior
block. Observers were encouraged to focus on accuracy
and response times were not collected.

Adaptive threshold measurement
The Gabor (signal) contrast on each trial was selected

to track a target performance φ of 54% correct (∼ d ′ =
1.47 for eight alternatives, standard conversion) using
the accelerated stochastic approximation algorithm
(Kesten, 1958). In the first two trials, contrasts were
determined by the stochastic approximation procedure
(Robbins & Monro, 1951): Xn+1 = Xn − s

n (Zn − φ),

where n is the trial number, Xn is the stimulus contrast
in trial n, Zn = 0 or 1 is the response accuracy in trial
n, Xn+1 is the contrast for the next trial, and s is the
pre-chosen initial step size. From the third trial on, the
sequence is “accelerated”: Xn+1 = Xn − s

2+mshi f t
(Zn − ∅),

where mshift is the number of shifts in response category
(from correct response to incorrect response and
vice versa). See also Treutwein (1995) and Lu and
Dosher (2013) for discussions of the algorithm. We
selected φ = 54% correct based on pilot data and
some simulations. In retrospect a lower value, such as
47% correct (∼ d ′ = 1.25), might have avoided some
ceiling effects. The results are unlikely to be changed,
however, since reducing the target accuracy reduces
contrast and so the stimulus evidence during training.
Simulations using target accuracies of both 54% and
47% led to comparable results, whereas a simulation
reducing target accuracy to 30% indicated less
learning.

Results

Learning functions
The average contrast-threshold learning curve is

shown in Figure 7. Contrast thresholds in the first six
sessions showed learning in the presence of external
noise, whereas the last two sessions were tested with no
external noise. An analysis of variance was performed
on the thresholds of the first six sessions, with training
session and location as experimental factors and
observers as the random factor. The main effect of
training session was significant (F(5, 30) = 3.126, p
< 0.025, η2

p = 0.3425, pBIC(D|H1) > 0.999), as was

Figure 7. Results for Experiment 2 (contrast threshold version). Left: Contrast thresholds decreased across sessions, showing
perceptual learning. Right: Proportion correct over the sessions approximated the 54% target accuracy of the adaptive staircase,
although it was somewhat below especially in the first sessions due to ceiling effects in some observers. (See Appendix B for
individual observer data.)
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location, (F(1, 6) = 6.259, p < 0.05, η2
p = 0.5161,

pBIC(D|H1) > 0.999). The contrast thresholds decreased
from 0.914 ± 0.020 to 0.733 ± 0.099 over the six
training sessions, showing learning. The performance
in the two locations should be similar – the average
thresholds across sessions in two locations are 0.764 ±
0.069 and 0.816 ± 0.057, slightly favoring the upper left
location for unknown reasons. The best-fitting power
function learning curve for the initial training data
(sessions 1–6, in external noise) for the average of the
observers with an r2 = 0.8625 (initial threshold, λ + α =
0.9063 ± 0.0252, β = 0.1280 ± 0.0707, α set = 0, p <
0.022) is shown as the smooth curve. (Setting α =0 did
not reduce the quality of the fit in a nested model test;
as discussed previously, α should be above 0 but more
data from extended training would be necessary to
estimate it.) The two sessions in the absence of external
noise led to lower thresholds (better performance) than
the last two high external noise sessions: 0.584 ± 0.141
vs. 0.747 ± 0.094 (F(1, 5) = 12.802, p < 0.016 , η2

p =
0.7191, pBIC(D|H1) > 0.999).

As in Experiment 1, there was individual variation
in perceptual learning. Some observers showed clear
learning (S1-S3), or near-ceiling learning (S4, with
near-ceiling contrast thresholds with significant
improvements in percent correct and in κ), whereas
others showed little systematic learning (S5–S7).
Learning curves from individual observers are discussed
in Appendix B.

Confusion matrices and weighted-κ
Figure 8 shows the average confusion matrices over

sessions as a series of heat diagrams. Although the

overall accuracy was held approximately constant by
the adaptive staircase, and learning was primarily
expressed in lowered contrast thresholds, the heat
diagrams still showed some improvements in responses
near the correct-response diagonal. Weighted-κ,
which is calculated from confusion matrices and gives
partial credit for close guesses, also increased slightly
over the six training sessions in external noise, with
means of 0.396, 0.452, 0.443, 0.468, 0.444, and 0.453,
(typical standard error ± 0.02) (F(5, 30) = 3.328, p
≈ 0.017, η2

p = 0.3568, but pBIC(D|H1) = 0.481, with
subjects as the random factor). As in Experiment
1, there were end anchor effects, with the accuracy
of responses highest (brightest) at the end points of
the stimuli. See Appendix C for the corresponding
It information-transmitted scores and individual
differences in the confusion matrices.

Fits of the I-IRT model
We fit the I-IRT model to contrast thresholds over

training sessions, which also generated predictions
about the response confusion data. The parameters of
the best-fitting model are listed in Table 2. In addition
to fitting to the average data across all observers,
we also performed fits to three classes of observers:
learner, ceiling learner, and non-learner. I-IRT fits
to data for these three sets of learners are shown
in Figure 9. Learning is the natural prediction of the
model. The best fitting model to the average data led
to an r2 = 0.872 to the thresholds, and r2 = 0.751
for the confusion matrix. The best fitting model to
the learner threshold data led to an r2 = 0.946. The
same parameters predicted the weighted-κ data with

Figure 8. Confusion matrices for Experiment 2 across sessions shown as heatmaps. Confusion matrices are expected to be roughly the
same across sessions since the adaptive estimates of contrast threshold sought to hold proportion correct performance at 54%. The
data show some improvement over sessions in the confusion matrices because of one near-ceiling observer (see text).
(See Appendix B for individual observer data.)
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Parameters Parameter values

Parameters set a priori
Orientation spacing �θ 15°
Spatial frequency spacing �f 0.5 octave
Maximum activation level Amax 1
Weight bounds wmin wmax ±1
Activation function gain γ 3.5
Location-specific orientation bandwidth hθ 30 degrees
Location-independent orientation bandwidth hθ I 60 degrees
Location-specific frequency bandwidth hf 1 octave
Location-independent frequency bandwidth hfI 2 octaves
Radial kernel width hr 2 dva

Parameters adjusted for the data Average Learner Ceiling learner Non-learner
Normalization constant k 0 0 0 0
Scaling factor a 0.1 0.1 0.05 0.1
Location-specific internal additive noise, σ a 1.5e-5 2e-6 1e-6 5e-7
Location-invariant internal additive noise 2*σ a 3e-5 4e-6 2e-6 1e-6
Location-specific internal multiplicative noise, σm 0.1 0.1 0.1 0.1
Location-invariant internal multiplicative noise 2*σm 0.2 0.2 0.2 0.2
Decision noise σ d 0.09 0.12 0.12 0.08
Learning rate η 3e-5 1e-4 1e-4 0
Bias weight wb 0.75 0.75 0.75 0.75
Feedback weight wf 0.75 0.75 0.75 0.75
Initial weights scaling factor winit 0.05 0.05 0.05 0.05

Table 2. IRT parameters for Experiment 2 (threshold) for average, learner, ceiling learner, and non-learners.

r2 = 0.723, and the confusion matrix data with r2 =
0.843. The question is how parameters differ in the
ceiling learner and non-learner to account for those
data sets. One fit to the ceiling learner threshold data
tracked a change in proportion correct (r2 = 0.885),
which improved while contrast thresholds were close
to ceiling (1.0) across sessions; the same model fit
predicted the weighted-κ data, with r2 = 0.896, and
predicted the response confusion data with r2 = 0.655.
(Note that we are not suggesting that individuals are
non-learners in general, but only in this experiment.)

On the other hand, there are many ways to produce
little or no learning in the model—failure to use
feedback, high internal noises, poor selection of
nonlinearity parameter in the decision units, imprecise
use of feedback, or the simplest—setting the learning
rate to zero. Simulations of several of these explanations
were incompatible with some aspect of the data: setting
decision noise very high led to changes in the weights
that, while they did not yield threshold improvements,
still disturbed the default knowledge incorporated in
initial weights, disarranging the response confusion
matrix in ways not seen in the data. Setting the
feedback weight to zero yielded some small amount of
unsupervised learning that seemed inconsistent with
the data (but showed nearly as good an r2 compared
to no learning, described next). Setting the learning

parameter to zero for non-learners led to r2 = 0.491
for threshold data (which has a small range over
session since there is little learning yet does express
an effect of external noise that the model accounts
for), and r2 = 0.789 for the confusion matrix data.
However, these simulations are exploratory rather than
conclusory.

Figure 10 shows the changes in weights between
representation units and each mini-decision unit
corresponding to a response. As reported in Experiment
1, weights of the more relevant tuned representation
units for each mini-decision unit increased while those
of less relevant or most distracting units decreased.
This led to an excitatory center and inhibitory surround
pattern for mini-decision units associated with
mid-range spatial frequency stimuli, and the positive
weights pattern for end point units outside the stimulus
range (see discussion in Experiment 1). Weight changes
in fits to learners were of higher magnitude than in
the fits to all observers which included non-learners.
Crucially, weights for the ceiling learner (S4) also
improved (like the average change of weights), even
though the contrast thresholds stayed around the
ceiling (1.0) for most of the training period which
can be modeled with a lower scaling factor (as in the
current simulation) and/or high internal noise than
learners.
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Figure 9. The I-IRT model fit to the experimental data in Experiment 2. (a) Model fit to the average across all participants (top), to
learners (second row), to the ceiling learner (third row) and to non-learners (bottom). In each case, the I-IRT fit the data quite well
(see main text for statistics). (b) The response functions of the data (blue) and model (red) based on the fit to threshold data in a.
Each line of the response function shows the frequency of responses to a given stimulus. The model captures the response function
data reasonably well without adding new parameters.
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Figure 10. The initial and final weights from representation units to the mini-decision units for location-specific (left) and
location-invariant (right) units for the fit to all observers (top panels); for learners only (middle panels); and for the ceiling learner
(bottom panels). Learning increased the weights on representations tuned to near-spatial frequencies and decreased the weights on
representations tuned to other spatial frequencies, especially those for competing responses. Weights from the fits of the I-IRT
simulations changed the most for the learners, slightly less for the ceiling learner, less for the average of all observers, and remained
unchanged simulation for non-learners (see text).

Discussion

Perceptual learning occurred in absolute spatial-
frequency identification even as learning takes place
at near threshold performance levels (φ targeting
54% correct). Learning occurred for some, but not
all, observers. Three of seven observers showed
robust learning, one showed learning at near-ceiling
thresholds along with improvements in percent correct

and weighted-κ, and three showed either no learning
or declines in performance (see Appendix B). All
observers, however, demonstrated sensitivity to the
stimulus in their confusion matrices (clustering around
the correct response diagonal), indicating that they
were performing the task, and this was true even at
the beginning of training. From this we conclude
that perceptual learning in absolute spatial frequency
identification is more likely than not to occur in this
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paradigm, even when practicing at threshold accuracies
and when there are no high-accuracy conditions to
improve the rate of learning.

General discussion

Summary

Perceptual learning in spatial frequency tasks has
been relatively infrequently studied, and in several cases
perceptual learning might have capitalized on emergent
spatial pattern features in compound stimulus tasks (see
Introduction). In this project, we show that perceptual
learning can occur in a challenging absolute spatial
frequency identification task with response feedback
(full supervision). This is consistent with a related
demonstration of perceptual learning in absolute
identification of orientation (Liu, Lu, & Dosher,
submitted). We tested learning of spatial frequency
identification in two experiments, one measuring
percent correct for stimuli at three contrast levels
(including high contrast), and one tracking a threshold
proportion correct throughout training by changing
the contrast. Robust statistically significant perceptual
learning occurred in two-thirds of the observers in the
first, and for more than half of the observers in the later.
Learning to identify spatial frequency does appear less
robust than the learning found in the analogous study
of perceptual learning of orientation identification. In
that orientation study (Liu, Lu, & Dosher, submitted),
almost all observers showed substantial learning
with response feedback (as used in the current
study).

Perceptual learning of spatial frequency

The current study contributes to the modest literature
on perceptual learning of spatial frequency judgments,
in a task more demanding than yes/no estimates of
threshold difference (Meinhardt, 2001; Meinhardt,
2002) or binary identification of compound patterns
(Fiorentini & Berardi, 1980; Fiorentini & Berardi, 1981;
Fine & Jacobs, 2000). Although there is no perfect test
design for investigating spatial frequency discrimination
over large ranges, our choice to equate the size of the
spatial window of the Gabor patches was necessary
to eliminate patch size as a confounded cue during
learning. Factors such as differential contrast sensitivity
in higher or lower spatial frequencies appeared to have
a limited effect in these experiments but might be quite
important if stimuli spanned a larger range of spatial
frequencies (Campbell, Nachmias, & Jukes, 1970;
Campbell & Maffei, 1974).

Perceptual learning of absolute identification

The current study adds another example to
the literature demonstrating learning in absolute
identification tasks, in which stimuli vary along a
single dimension. Previous examples trained features
such as line length and line slant or dot distances (e.g,
Rouder et al., 2004; Petrov & Anderson, 2005; Dodds
et al., 2011) using long stimulus displays. Perceptual
learning has been reported in several other n-alternative
identification tasks involving external noise, such as
10-alternative face/blob identification (Gold, Bennett,
& Sekuler, 1999; Gold, Sekuler, & Bennett, 2004),
and 10-alternative letter identification (Liu, Lu, &
Dosher, 2020). These latter cases, however, surely
involve multidimensional stimulus representations,
which in principle could provide more opportunities to
partitioning the representation space during learning.
Several also involve choosing a response by matching
to a present template of stimuli, which may serve
as another route to a response not typically used in
absolute identification tasks.

As discussed above, n-alternative identification
may be closer to many real-world situations in which
visual inputs are identified among a larger number of
alternatives. We suggest it is likely more efficient than a
training paradigm that reduces the problem to training
stimulus pairs from the set. Theoretically, n-alternative
identification is also more efficient because it offers
more learning signal on every trial than two-alternative
tasks, due to the much lower guessing rate.

The n-alternative absolute identification tasks here
trained weights that showed a classical excitatory center,
inhibitory surround structure that seeks to optimize
identification in the set in a way that pairwise stimulus
training would not. Using different pairs to train
weights in a series of binary tasks are likely to be slower,
or to show the weight-structure disruptions of “roving”
paradigms in which the stimuli in binary choice vary
(Dosher et al., 2020).

Individual differences in perceptual learning

Individual differences can occur in perceptual
learning studies, perhaps more so in certain task
domains. The reasons for this include task factors such
as task difficulty (Liu et al., 2010; Liu et al., 2012), but
may also involve individual differences in underlying
abilities as suggested by some researchers (Yang et al.,
2020; Dale, Cochrane & Green, 2021).

In our spatial frequency identification experiments,
observers were classified as learners or non-learners
based on individual-observer significance tests, with
consistent converging evidence from response confusion
matrices. Our experiments were not designed to probe
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the factor(s) that promoted or prevented learning in
individuals. Some non-learners developed non-optimal
response biases (Experiment 1) while others did
not (Experiment 2). All observers carried out the
instructed task, in the sense that response confusion
data showed some systematic relationship with the
stimuli (higher scores along the correct response
diagonal), in both learners and non-learners. The
distinction between learners and non-learners applies
only to the current experiments, and is not intended as a
general classification of these individuals. Non-learner
individuals here might have learned if trained for a
longer time, or under different protocol designs, or in
different tasks.

The mix of learners and non-learners in the two
experiments reported here was similar to that in other
experiments in our laboratory using eight-alternative
absolute spatial frequency identification (see Appendix
B for details), yielded approximately two-thirds learners.
Again, non-learners classified in these studies might not
learn in other circumstances, and vice versa.

Identification - Integrated reweighting theory

Learning in the spatial frequency task was predicted
by the new I-IRT, initially developed to account
for perceptual learning in absolute orientation
identification with several forms of feedback (Liu,
Lu, & Dosher, submitted). The I-IRT as applied to
spatial frequency identification is based on the same
front-end representation module of orientation- and
spatial-frequency tuned representations used to account
for perceptual learning in many binary discrimination
tasks, as well as the perceptual learning of absolute
identification in orientation. To model orientation
identification and spatial frequency identification we
set up the decision rules for the respective task-relevant
judgments. In both cases, learning reweights activation
evidence in spatial-frequency and orientation-tuned
representations of the input stimuli, making use of
feedback supervision during learning (if it is available,
as in the current studies). Whether in the three-contrast
paradigm, or the threshold learning paradigm, the
model provided a good account of the primary indices
of learning (increasing proportion correct or decreasing
contrast threshold), as well as providing a good account
of weighted-κ data and response confusion data with
the same parameters. Indeed, the absolute identification
paradigm has information advantages relative to
simpler binary discrimination tasks in reducing the
guessing rate and in providing rich crosschecks on the
model, especially the stimulus representations, from
confusion matrix data.

In this model, weights connecting to each mini-
decision unit start with coarse mapping of spatial
frequency information, and these preferences are refined

by learning. The use of informed initial weights is
consistent with better-than-random initial performance
in observers. Starting the model simulations with zero
or random weights also yields learning under some
training circumstances but predicts close-to-random
performance in the beginning and requires quite lengthy
training.

Starting from initial weights, learning increases the
weights of relevant channels and decreases those of
irrelevant channels. The effects of learning were shown
in the weight diagrams for the best fitting models.
The weights on activation in encoded representation
units most closely matched to each spatial frequency
response (mini-decision unit) increased; the weights
on units supporting adjacent responses (where most
errors are made) decreased; and the weights on more
distantly tuned units decreased slightly to exclude the
external noise response of those units. The initial weight
profile incorporated coarser knowledge of spatial
frequency corresponding with above chance behavioral
performance and structured confusion matrices even
at the beginning of training. The weight profiles
after training essentially embodied the “template”
that has developed for each of the eight response
categories.

These weights dynamics are the basis for performance
improvements in both low and high external noise,
although we primarily examined learning in high
external noise in this study. We ran additional
simulations to illustrate this point. First, we modeled
whether the weight changes from high noise learning
would have also benefitted the zero noise stimuli. By
freezing initial weights and final weights after training
with high external noise, the model estimated contrast
thresholds on the same task with zero external noise
stimuli “pre-test” and “post-test” and found that the
contrast thresholds for zero noise stimuli were reduced
after learning with high external noise. So, training
in external high noise also benefits the task in zero
external noise. Second, we simulated an experiment in
which the “pre-” and “post-tests” were done in high
external noise, with training with zero external noise,
and the model predicts perhaps even more performance
improvement in high external noise tests following
zero external noise training. Both sets of simulations
indicate that learning in the current study is more than
just filtering out external noise.

The I-IRT makes predictions about the role of
certain task factors in successful learning of absolute
identification. For example, it predicts the graded
dependence of the amount of learning on the form of
feedback: response feedback (as used in the current
experiments) is better than accuracy feedback or no
feedback (Liu, Lu, & Dosher, submitted). The IRT
(and the I-IRT) predict the requirement for feedback
to enable learning in threshold paradigms tracking
lower accuracy levels (Liu et al., 2010; Liu et al., 2012).
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The model also predicts the effects on performance of
contrast in the signal and in the external noise. Indeed,
the IRT framework accounts for many phenomena in
perceptual learning.

In the I-IRT, there are several ways for learning to fail
in the model. These include ignoring feedback, inability
to accurately implement feedback, very high internal
noises, inappropriate nonlinearity parameters and
response biases, and so on. Each of these mechanisms
may yield predicted features in overall performance
data or in the confusion data. For example, high
internal noise yields overall poor performance and
relatively weak behavioral learning, while disarranging
the weight structures and confusion data. Choice of
atypical nonlinearity parameters in the decision unit
may punish performance at different contrast levels
differently. Response biases show distinct patterns in
the confusion data, and corresponding reductions in
performance that mitigate against learning. Imperfect
or inappropriate implementation of feedback (in which
the information is misapplied to certain mini-decision
units) may also result in increased biases and failure
to improve performance. Ignoring feedback (by
assigning it zero weight) is predicted to potentially
yield slight unsupervised learning (depending on initial
performance levels, and the presence of high-contrast
trials) that could yield some possibly weak learning
in an individual observer. We performed several
exploratory simulations of these different mechanisms
to understand how observers may fail to learn in the
model. In the end, there was some feature of the data
that eliminated several of these mechanisms, and we
elected to model non-learners with a learning rate of
zero. A serious investigation of reasons for failure to
learn requires further research.

Relation to prior models

Absolute identification has been studied since the
1950s (e.g. Garner, 1953; Miller, 1956), and over that
period multiple formal theories have been developed
(e.g. Luce et al., 1982; Braida et al., 1984; Petrov &
Anderson, 2005; Stewart et al., 2005; and many others).
The empirical work (almost always involving clearly
visible stimuli and long inspection periods) and the data
of these more cognitive theories focused on a variety
of behavioral phenomena, including information
limits as a function of set size, so-called bow or
end-anchor effects on response accuracy, sequential
trial effects on errors (either assimilative or contrastive),
and the response time of the judgments—with the
former two reflecting absolute processing in relation
to reference points, and sequential effects reflecting
relative processes based on recent trial history. One
very nice modeling treatment appears in the SAMBA
model (Brown et al., 2008), which integrates aspects of

several prior models. It assumes internal distributions
of evidence along an abstract representation of the
dimension, end anchor effects, relevant decision
rules, short-term memory effects, and a ballistic
accumulator model of response time and accuracy.
That model emphasizes response time data and
sequential dependencies and is not focused on modeling
learning or the physical stimulus variables of stimulus
contrast or external noise. One model (Stewart et al.,
2005) assumes that identification is carried out by
comparison of the current and prior stimulus and
the previous response feedback; a mechanism for
learning and of the stimulus contrast and external noise
variables would need to be added to explain our effects.
Another model (ANCHOR; Petrov & Anderson, 2005)
examined some local learning and context effects in
addition to these other phenomena and is based on
internal codes or anchors for the response categories;
this models local learning but not the stimulus
variables.

In short, the I-IRT focuses on complementary aspects
of performance than these models. It primarily aims to
account for learning in absolute identification within a
model framework—the integrated reweighting theory
(IRT)–that also predicted many of the other phenomena
in visual perceptual learning in binary discrimination
tasks. That is, the I-IRT has theoretical continuity with
the general literature on visual perceptual learning (see
Dosher & Lu, 2020, for a review).

There are several points of contrast and comparison
to earlier models. (a) The signal-processing front-end of
the I-IRT accounts for the effects of stimulus contrast
and the effect of external noise, including processes of
contrast normalization and internal noise. The nature
of the representations also accounts for the response
confusion data based on encoding the actual stimulus
images into representation activations with intrinsic
similarity structure. The assumed spatial-frequency
and orientation tuning of the representation units
and the (partial optimization of) the weight structure
determine the information limits in the task. Within
its own domain of visual judgments, the I-IRT could
be elaborated to incorporate corrections for the
contrast sensitivity function, which might improve
the account of the response frequency data across
the full visible spatial frequency range. In contrast,
the earlier models of absolute identification generally
account for complementary phenomena using abstract
representations as distributions along the variable
dimension and estimate variances of the distributions
as parameters (and would require separate set of
parameters for each visual condition). (b) The structure
of the decision space in the I-IRT accounts for the
end-anchor (or bowing) effects of accuracy at the
ends of the tested stimulus space and explains why
they may not occur in circular dimensions such as
orientation. As in those models, the I-IRT could
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be extended to incorporate a short-term memory
function for recent stimuli to account for potential
trial sequential effects. (c) The activation score in
each sub-decision unit (corresponding to the possible
decisions) could be entered into a competitive system
of ballistic accumulators to make the choice, very
similar to the implementation for response times
in the Brown et al. (2008) model. Any one of these
elaborations would involve significant modeling work,
as well as new data to constrain them. The I-IRT
model as described provided quite a good account
of the details of perceptual learning in the current
studies.

Conclusions

Significant perceptual learning was demonstrated in
a challenging task of absolute identification of spatial
frequency with eight alternatives, adding to the small
literature on learning in the spatial frequency domain.
The existence of learning in an accuracy paradigm and
a contrast threshold paradigm, as well as the response
frequency distributions (confusion matrices), were both
predicted and well-fit by an identification - integrated
reweighting theory (I-IRT) simulation model. How the
model would predict individual differences between
observers remains to be considered. The n-alternative
identification provides a more efficient paradigm for
training expertise and is more representative of some
real-world identification tasks.

Keywords: perceptual learning, spatial frequency,
absolute identification, learning models
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Appendix A: The identification -
Integrated reweighting theory

The original integrated reweighting theory (IRT)
(Dosher et al., 2013) was developed to account for
perceptual learning and transfer over changes in
stimulus (e.g. changed orientation) or changed spatial
location in two-alternative pattern discrimination
tasks. The I-IRT model (Liu, Lu, & Dosher, submitted)
extends predictions to identification by introducing n
mini-decision units, one for each possible response. The
final response on a trial is based on the mini-decision
unit with the highest activation. As with the original
IRT, the input stimulus is encoded as a pattern of
activity in spatial-frequency and orientation tuned
representation units at both location-specific and
location-independent levels. The model uses hybrid
learning rules: unsupervised Hebbian learning
augmented by feedback supervision when available
(from the augmented Hebbian reweighting model, or
AHRM; Petrov et al., 2005; Petrov et al., 2006), which
accounts for learning outcomes with and without
feedback. The simulations mimic exactly the details of
the experiments, using the same program to generate
stimulus images, numbers of trials and randomization,
etc. and the simulated data are then processed as in
the behavioral experiment (here, as proportion correct
or threshold, and confusion matrices). The model
is implemented in Matlab (The MathWorks, Inc.,
Torrance, CA, USA). We briefly summarize the model
here, including equations and descriptions found in
the original IRT papers (Dosher et al., 2013; Liu et
al., 2014; Liu, Dosher, & Lu, 2015). The descriptions
of model equations below are necessarily similar to
treatments in Dosher et al. (2013), and other papers
using the two-alternative IRT.

The I-IRT, like the IRT, has a representation
module, a decision module, and a learning module.

The representation module processes the stimulus
images from the experiment to compute the activities in
location-specific and location-invariant representations
(sometimes cited as analogous to the visual areas V1
and V4 or IT). The input image, I(x, y), is defined as
the sum of the signal and noise images for a given trial,
corresponding with an integration of noise and signal
frames through temporal integration by the visual
system. The input image is then convolved with the filter
characterizing each spatial-frequency/orientation tuned
representation unit using a fast Fourier transform,
followed by half-squaring rectification, to produce
phase-sensitive activation maps analogous to “simple
cells”:

S (x, y, θ, f , φ) = [RFθ, f ,φ (x, y) ⊗ I (x, y)]2+.

In this implementation the orientation/spatial-
frequency filters at each spatial point sample 12
spatial frequency bands (every 1/2 octave) centered
at [0.22 0.31 0.43, 0.62, 0.88, 1.23, 1.75, 2.46, 3.51,
4.92, 7.01, and 9.85 cycles/degree] × 12 orientation
bands (every 15 degrees) centered at [0°, ±15°, ±30°,
±45°, ±60°, ±75°, and +90° (=−90°)] × four spatial
phases [0°, 90°, 180°, and 270°]. In the location-specific
representations, the spatial frequency tuning is set at
hf = 1 octave and the orientation tuning is set at hθ

= 30 degrees (half-amplitude full-bandwidth), based
on cellular physiology in primary visual cortex. In the
location-invariant representations, bandwidths were set
at twice those of the location-specific units since cells
in higher visual areas are more broadly tuned to spatial
frequency and orientation; they also may have more
internal noise. (These representation module parameter
values have been used in many model applications in
the IRT framework.) The phase-sensitive maps S(x,
y, θ , f, φ) are pooled over spatial phases to create
phase-invariant energy maps: E(x, y, θ , f) = �S(x, y, θ ,
f, φ) + ε1, where ε1 is an internal Gaussian noise (mean
0, standard deviation σ 1). These maps include nonlinear
inhibitory normalization:C(x, y, θ, f ) = aE (x,y,θ, f )

k+N( f ) . The
normalization pool N(f) sums over all orientations,
with slight tuning for similar spatial frequencies,
consistent with physiological and psychophysical
evidence. The saturation constant k avoids division
by zero at very low contrasts when the normalization
pool is very small, and can be set to 0 in the current
experiment which uses medium-to-high contrasts. The
parameter a is a scaling factor that can shift the range
of the final activation values.

To compress the number of representations, the
normalized phase-insensitive maps C(x, y, θ , f)
are pooled over space around the target stimulus
with a Gaussian kernel of radius Wr, and Gaussian
additive noise is added to the system (mean 0 and
standard deviation σ 2): A′(θ, f ) = ∑

x,yWr(x, y)
C(x, y, θ, f ) + ε2. Then, a nonlinear function with
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a gain parameter γ limits the activations of each
representation to the range of (0, Amax):

A(θ, f ) =
{

1−e−γA′

1+e−γA′ Amax, i f A′ ≥ 0
0, otherwise.

Large caches of activation patterns over these
representations are computed for different contrasts
and samples of external noise for use in the trial-by-trial
simulations of the experiments.

The decision module uses eight mini-decision units,
one for each spatial-frequency response. On every
trial, each mini-decision unit is driven by the weighted
activation from the representation units, input from a
bias unit, and internal noise, leading to a noisy decision
variable: ui = ∑96

j=1 w jiA(θ ji, f ji ) − wbbi + εd . The wji
values are the current weights connecting representation
units to sub-decision unit i, b is a bias term weighted by
wb and εd (Gaussian, mean 0, standard deviation σ d)
is the (same) decision noise for each sub-decision unit
i. A sigmoidal function with parameter γ transforms
this into the “early” post-synaptic decision activation:
oi ′ = G(ui) = 1−e−γ ui

1+e−γ ui Amax. A maximum rule selects the
final response.

The learning module updates the weights between
the representation units and the mini-decision units on
every trial. The decision variable in each mini-decision
unit ui is shifted towards the correct response (provided
by the response feedback in the experiments) to
generate the “late” post-synaptic activation: oi = G(ui
+ wfF), which moves the weights in the right direction.
With a high feedback weight wf , the “late” decision
activation approaches the correct output (±Amax = ±1),
which in turn improves learning. (If no feedback signal
is available, which never occurred in the experiments
here, F = 0, and learning relies on the unsupervised
early decision value (o = o′), which can often be less
efficient.) Feedback was implemented at each of the
mini-decision units. Because the feedback provided
the correct response, the algorithm always sets F =
1 for the mini-decision corresponding to the correct
response and F = −1 for all the other mini-decision
units, regardless of whether the observer’s response is
correct or not.

Weight changes are determined by: �wi = (wi − wmin)
[δi]− + (wmax − wi)[δi]+ , whereas δi = ηA(θi, fi)(o− ō) ,
where A(θ , f) is the pre-synaptic activation, and (o− ō)
is the difference between the post-synaptic activation
and its long-term average ō weighted exponentially
over the last 50 trials: ō(t + 1) = ρ o(t) + (1 − ρ )ō(t),
ρ = 0.02, wmin and wmax are the lower and upper
bounds of weights (to prevent weights exploding).
Each mini-decision unit also receives input from a
bias term b to balance the response frequencies, also
exponentially time-weighted with a time constant 0.02:
r(t + 1) = ρ R(t) + (1 − ρ )r̄(t), b(t + 1) = r(t). Here,
R(t) is 1 for the actual response, and −1/7 for the

other potential responses. The bias input works against
unbalanced response frequencies.

The I-IRT model was fit to the data, whether
proportion correct or threshold, by varying key
parameters of the model, simulating the model 100
times, carrying out the same data analysis as for
the behavioral data, and then comparing the mean
simulated outcomes with the data. Most of the
parameters were set a priori from prior applications of
the IRT model, originally motivated by the physiology.
A grid of parameter values (noise terms, scaling factor,
model learning rate, and initial weights) was evaluated,
centered around values from previous fitted applications
of the model and spanning around a 10 times to 100
times range. Then the parameter space was heuristically
searched in a finer grid in the regions yielding higher
quality of fit (least squared errors). Occasionally, when
multiple parameter combinations yielded satisfactory
fits (equivalent r2), the one most consistent with prior
applications was selected. The simulated results are
shown in as a region with ± 1 standard deviation of
the mean prediction computed from the 100 learning
curves simulated from the set of best-fitting parameter
values, with the quality of the fit summarized by the r2.

Appendix B: Individual observer
data

Experiment 1

Experiment 1 demonstrated solid perceptual learning
in the 8-alternative spatial frequency task using a three
contrast (0.3, 0.6, and 1.0) design. As is common in
perceptual learning, there was also some evidence
for individual variation. Analyses of individual data
revealed that four observers (S1–S4) showed robust
learning while two (S5–S6) did not (see Figure B1).
To assess this for each observer individually, we
compared the proportion correct in the first (p̂1) and
the last (p̂6) training sessions as a measure of learning
for each contrast condition (pooled over location)
(z = ( p̂6 − p̂1)/

√
p̂(1 − p̂)( 1

n1
+ 1

n6
), where p̂ is the

average proportion correct, n1 = n6 = 320). Consistent
with the visual impression, learning was significant for
four of the six observers, for all contrasts (0.3, 0.6, and
1.0, respectively) (S1: z = 3.032, p < 0.0012; z = 3.143,
p < 0.0008; z = 5.8327, p < 0.00001; S2: z = 3.360, p <
0.0004; z = 4.693, p < 0.0001; z = 3.515, p < 0.00002;
S3: z = 3.033, p < 0.001; z = 1.302, p < 0.096; z =
4.045, p < 0.00001; S4: z = 4.636, p < 0.0001; z = 3.508,
p < 0.0002; z = 4.394, p < 0.00001; S5: z = −1.032,
p ≈ 0.849; z = −1.696, p ≈ 0.955; z = −0.882, p ≈
.0.811; S6: z = −0.747, p > 0.7; z = −2.066, p > 0.9;
z = −1.809, p > 0.9). (Consistent results were found
using analysis of variance for individual observers using
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Figure B1. Individual observer data in Experiment 1 (proportion correct version). Observers S1–S4 showed improvement, while
observers S5–S6 did not.

blocks within session as the random variable, which is
conservative; see Experiment 2 below.) In short, four
observers (S1–S4) showed robust learning while the
other two (S5–S6) got worse with practice, and these
statistical conclusions were consistent with the analysis
of the confusion matrix data (see Appendix C). Note
that the non-learners here might learn in other or
related paradigms.

For each observer, we also fit Weibull functions to the
contrast psychometric functions (with three contrasts)
for each session to estimate the contrast threshold
learning curves (see Experiment 1, main text, for
details) (r2 = 0.8275 ∼ 0.9473). The resulting learning
curves for individual observers are shown in Figure
B2 with the best-fitting exponential learning function
(S1–S4): cτ (t) = λ′e−βt + α′, where cτ (t) is the threshold
at time (session) t, λ′ + α′ is the initial threshold, α′ is
the asymptotic threshold after learning, and β is the
learning rate. For non-learners (S5 and S6), the system
of exponentials defaulted to the mean. The best-fit
parameters are listed in Table B1 (top), along with r2s.
We chose the exponential form as it best characterized
individual observers in previous investigations (Zhang
et al., 2019a; Zhang et al., 2019b; Heathcote et al.,
2000; Dosher & Lu, 2007). (Power function fits led
to equivalent conclusions; statistically discriminating
the exponential and power forms would require more
extended training data.)

Changes in the confusion matrices (see Appendix C)
provided information unavailable in the mere failure to
improve proportion correct: the non-learners shifted
tactics towards stereotyped responses clustered around
a few responses for low and others for high spatial

frequency stimuli. Confusion matrices made it possible
to observe non-optimal changes in response patterns
even as accuracy of performance was unchanged or
even worsening somewhat with additional practice, see
Appendix C.

Experiment 2

There was also strong overall evidence in Experiment
2 of learning in spatial frequency identification, as seen
in the directly measured contrast threshold learning
curves (see Figure B3, main curve. The inset is the
proportion correct across sessions for each observer).
Some observers (S1–S3) showed clear learning (decrease
of thresholds), one (S4) showed learning albeit near
ceiling thresholds (together with increases in weighted-κ
despite the adaptive staircase efforts to hold accuracy,
see the inset of subfigure), whereas others (S5–S7)
showed little systematic learning. To assess learning
for each observer individually, an analysis of variance
was performed on contrast thresholds with blocks
within session as the random factor. This may be
somewhat conservative, as any systematic effects of
block within session appear in the error term. The
main effect of training session was significant in three
learners (S1: F(5, 15) = 15.11, p < 0.0001; S2: F(5, 15)
= 10.10, p ≈ 0.002; S3: F(5, 15) = 4.56, p ≈ 0. 0.01,
respectively); marginally significant in the near-ceiling
learner (S4: F(5, 15) = 2.80, p ≈ 0.055); and not
significant in the other three (S5: F(5, 15) = 1.11 p ≈
0.396; S6: F(1, 15) = 0.73, p ≈ 0.6137; S7: F(1, 15)
= 2.21, p ≈ 0.108; respectively). Substituting blocks
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Figure B2. Weibull-fit thresholds from each observer in Experiment 1, and the exponential fit to the threshold learning curves.
Thresholds from observers S1–S4 decreased, while thresholds for observers S5–S6 did not.

for observers in the pBIC(D|H1) computation led to
values consistent with these conclusions: S1: p > 0.999;
S2: p > 0.999; S3: p > 0.999; S4: p > 0.992; S5: p =
0.071; S6: p = 0.001; S7: p > 0.934 (for deterioration
rather than improvement in performance for S7). The
smooth curves in Figure B3 are the best-fit exponential
learning functions to the five sessions of learning in
external noise, with parameters and r2 listed in Table
B1 (bottom). (Again, power functions provided a
similar analysis, with a reduced form with α = 0.)
Note that the proportion of four of seven learners
(and ceiling learners) was similar to, if slightly lower
than, the two-thirds proportion of learners observed
in Experiment 1 and the related experiments in our
laboratory.

Appendix C: Confusion matrices,
weighted-κ, and information
transmitted (It)

Experiment 1

Confusion matrices reveal the similarity structure
limiting absolute identification. As described in the
main text, training improved the average confusion
matrices as measured by weighted-κ scores. Analyses
of variance were performed on the weighted-κ scores
for each individual observers (block within session as
the random factor). In all observers, the performance
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Figure B3. Thresholds and proportion correct (inset) for each observer in experiment 2. Learners, (S1–S3) showed learning in the
decrease of thresholds (fit with exponential curves), and accuracy performance that approached the target 54% correct. The ceiling
learner (S4) continued over sessions to perform near the threshold ceiling (1.0 contrast), but their performance accuracy improved.
The non-learners (S5–S7) also showed closer to ceiling thresholds with little improvement in performance accuracy. Note that while
falling short of the target accuracy of the adaptive staircase, the performance nonetheless preserves significant information about the
stimulus (see Figure C1 below). See the text for explanations.

Subject λ′ β α′ r2

Experiment 1
S1 (learner) 2.5069 0.2668 0 0.4096
S2 (learner) 0.8203 0.2185 0 0.9019
S3 (learner) 0.6903 0.2100 0 0.9517
S4 (learner) 1.6585 1.2839 0.2497 0.9715
S5 (non-learner)* 0.4282 – – 0
S6 (non-learner)* 0.5470 – – 0
Experiment 2
S1 (learner) 0.9609 0.4648 0.3347 0.9153
S2 (learner) 0.8979 0.3412 0.2287 0.9336
S3 (learner) 0.9454 0.0582 0 0.5720
S4 (ceiling learner) 0.1049 0.3086 0.9204 0.4283
S5 (non-learner)* 0.9127 – – 0
S6 (non-learner) 0.9302 – – 0
S7 (non-learner)* 0.8130 – – 0

Table B1. Exponential fits to the thresholds of individual
subject. (Top: Experiment 1; Bottom: Experiment 2).
*For non-learners, the thresholds did not improve or even
deteriorated. The exponential fit was essentially a flat line,
which we show as a submodel consisting of the average
threshold, listed under λ. Note that the non-learners in these
experiments might learn successfully in other paradigms or
tasks.

is better for higher contrast levels, but over sessions the
weighted-κ scores only improved for the four learners,
while showing deterioration for the two non-learners.
The statistics are as follows: perceptual learning
improved weighted-κ for four observers (S1: F(5, 15)
= 7.727, p < 0.0009 for session, F(2, 6) =15.651, p =
0.0042 for contrast, and F(10, 30) = 3.260, p < 0.006
for the interaction; S2: F(5, 15) = 13.731, p < 0.0001 for
session, F(2, 6) = 56.238, p < 0.0001 for contrast; S3:
F(5, 15) = 2.254, p < 0.10 for session, F(2, 6) =34.413, p
= 0.0005 for contrast; S4: F(5, 15) = 11.151, p < 0.0001
for session, F(2, 6) =55.585, p < 0.0001 for contrast).
Weighted-κ deteriorated over sessions for two observers
(S5: F(5, 15) = 4.711, p < 0.009 for session, F(2, 6) =
91.954, p < 0.001 for contrast; S6: F(5, 15) = 3.949, p
< 0.02 for session and F(2, 6) = 34.462, p < 0.0005 for
contrast). The corresponding pBIC(D|H1) computation
were consistent with these results: S1: p > 0.998; S2: p
> 0.856; S3: p > 0.999; S4: p > 0.999; S5: p > 0.998; S6:
p > 0.867 (for deterioration rather than improvement in
performance for S5 and S6). Analyses of information
transmitted values (It) were similar (because these
scores are transformations of proportion correct, on
the accurate response diagonal).
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Figure C1. Confusion matrices shown as heatmaps for individual observers. (a) In Experiment 1, the confusion matrices showed
improvements for learners whereas non-learners developed biases. (b) In Experiment 2, consistent with the use of an adaptive
staircase to target 54% correct, most confusion matrices remained similar while the ceiling learner showed most improvement.
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Examination of the heatmaps for individual
observers (Figure C1a) shows that the latter two
individuals began with reasonable performance
early and for whatever reason developed biases to
concentrate responses around one low and one high
spatial frequency category label. This is a situation in
which the confusion matrices provide information over
and above the general accuracy of performance that
reveal the underlying behavior.

Finally, the confusion matrices revealed some modest
end-anchor effects (bright cells for responses 1 and
8, or the lowest and highest spatial frequency stimuli,
respectively) (for other cases in the literature, see e.g.
Ward & Lockhead, 1970; Luce et al., 1982). End-anchor
effects also emerge from the model, where they emerge
naturally from contributions of activation in sensory
representations centered beyond the range of the tested
stimuli (see model).

Experiment 2

Because, in this experiment, observers were trained at
threshold by adaptively changing contrast to achieve the

target 54% correct, changes in the confusion matrices
were expected to be more subtle. Confusion matrices
are shown for individual observers in Figure C1b.
These look like the aggregate data for the four learners
(S1–S4), but quite different for the non-learners. These
latter observers (S5–S7) initially performed the task
approximately as well as other observers, and simply
did not learn; visual examination of the non-learner
heatmaps showed no obvious increase in biases.
Changes in weighted-κ were subtle in this experiment
due to the adaptive staircase controlling accuracy. As
cited in the main text, in the average data weighted-κ
to increased from 0.396 to 0.453 over sessions. For
individual observers: S1: 0.424 to 0.526; S2: 0.460 to
0.528; S3: 0.393 to 0.483; S4: 0.259 to 0.426; S5: 0.415
to 0.399; S6: 0.361 to 0.434; S7: 0.463 to 0.374. Analyses
of information transmitted values (It) were similar. The
learners (S1–S4) showed the subtle improvements of
the aggregate data, as expected. Whether performance
in non-learners (S5–S7) reflected a tactical decision
to drift or inattention in the more difficult task or
inefficient learning at the performance level enforced
by the adaptive procedure (54%, or d′ = 1.47) is not
clear.




