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REVIEW
 CURRENT
OPINION Generating and measuring effective vaccine-elicited

HIV-specific CD8þ T cell responses
1746-630X Copyright © 2023 The A
Gina M. Borgo and Rachel L. Rutishauser
Purpose of review

There is growing consensus that eliciting CD8þ T cells in addition to antibodies may be required for an
effective HIV vaccine for both prevention and cure. Here, we review key qualities of vaccine-elicited CD8þ

T cells as well as major CD8þ T cell-based delivery platforms used in recent HIV vaccine clinical trials.

Recent findings

Much progress has been made in improving HIV immunogen design and delivery platforms to optimize
CD8þ T cell responses. With regards to viral vectors, recent trials have tested newer chimp and human
adenovirus vectors as well as a CMV vector. DNA vaccine immunogenicity has been increased by
delivering the vaccines by electroporation and together with adjuvants as well as administering them as
part of a heterologous regimen. In preclinical models, self-amplifying RNA vaccines can generate durable
tissue-based CD8þ T cells. While it may be beneficial for HIV vaccines to recapitulate the functional and
phenotypic features of HIV-specific CD8þ T cells isolated from elite controllers, most of these features are
not routinely measured in HIV vaccine clinical trials.

Summary

Identifying a vaccine capable of generating durable T cell responses that target mutationally vulnerable
epitopes and that can rapidly intercept infecting or rebounding virus remains a challenge for HIV.
Comprehensive assessment of HIV vaccine-elicited CD8þ T cells, as well as comparisons between different
vaccine platforms, will be critical to advance our understanding of how to design better CD8þ T cell-based
vaccines for HIV.
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INTRODUCTION

The majority of vaccines being developed for HIV
prevention aim to elicit antibody responses against
the virus, ideally broadly neutralizing antibodies
(bNAbs) that can recognize diverse Env sequences
[1]. Although there is strong evidence that bNAbs
can protect from neutralization-sensitive viral infec-
tion in preclinical and clinical studies [2], and while
there has been considerable progress towards this
goal in recent years, no HIV vaccine strategy to date
has successfully generated high titers of HIV bNAbs.
T cells, specifically CD8þ T cell responses, can con-
tribute to control of HIV infection [3–5] and there-
fore may be useful to target in the context of both
preventive and therapeutic HIV vaccines. Unlike
neutralizing antibodies, virus-specific CD8þ T cells
can directly kill infected cells [6]. Additionally, they
may offer an added layer of immunity in cases where
antibodies are not fully protective [7

&&

,8], they may
provide more robust protection against antigen
escape (i.e., broader antigen coverage) [9–11], and
uthor(s). Published by Wolters Kluwe
they may amplify activation and recruitment of
other cell types to sites of infection [12].

In this review, we will describe our understand-
ing of ideal features required for HIV vaccine-
elicited CD8þ T cells and what is known about
the CD8þ T cell immunogenicity of current vaccine
platforms that seek to elicit robust virus-specific
CD8þ T cell responses. We will not focus on immu-
nogen design, as that has been covered in depth in
recent reviews [13,14

&

,15
&

]. We will discuss methods
r Health, Inc. www.co-hivandaids.com



KEY POINTS

� Features that define highly functional HIV-specific CD8þ

T cell responses in elite controllers (e.g., long-lived,
tissue resident phenotype, memory capacity -- high
proliferative capacity and sustained secondary effector
functions) may inform what is required for vaccine-
elicited T cell responses to be protective, and these
features should be measured in HIV vaccine trials.

� Delivery platform, administration route, adjuvants, and
heterologous vaccine schedules can all influence the
magnitude and phenotype of vaccine-elicited CD8þ T
cell responses.

� Viral vectors: numerous human and chimp adenovirus
vector platforms that have been developed to address
concerns about antivector immunity; a CMV-vectored
HIV vaccine is currently being tested in a Phase I
human study.

� Nucleic acid platforms: modifications to DNA and RNA
platforms have improved T cell immunogenicity; in
preclinical models, self-amplifying mRNA HIV vaccines
show some ability to generate durable, tissue-localized
HIV-specific CD8þ T cell responses.

� Preclinical studies suggest that synergy between B and
T cell responses can occur and potentially be leveraged
to improve HIV vaccine strategies.

Is an HIV vaccine still achievable?
to comprehensively measure the quality of vaccine-
elicited CD8þ T cell responses and, finally, we will
consider lessons from HIV therapeutic vaccine stud-
ies that may inform prevention strategies.
THE ULTIMATE GOAL: WHAT FEATURES
DEFINE AN EFFECTIVE HIV-SPECIFIC
CD8R T CELL RESPONSE?

Although most individuals with HIV generate HIV-
specific CD8þ T cell responses early in infection
[3,5,6,16,17], themajority of peoplewithHIV cannot
control viremiawithout antiretroviral therapy (ART).
Rare individuals known as elite controllers [<1% of
people with HIV (PWH)] do control viremia to unde-
tectable levels in the absence ofART, and several lines
of evidence suggest a role for CD8þ T cells in estab-
lishing and maintaining this control [3,4,18

&&

,19–
21]. Direct control of infection by CD8þ T cells has
been demonstrated by experiments in simian immu-
nodeficiency virus (SIV)- or simian-human immuno-
deficiencyvirus (SHIV)-infectednonhumanprimates
(NHPs) in which CD8a or CD8b depletion led to an
increase in viral load [22–27]. Finally, a rhesus cyto-
megalovirus (RhCMV)-vectored vaccine that elicits
CD8þ T cells but no antibody responses has been
shown to prevent the establishment of chronic SIV
332 www.co-hivandaids.com
infection in nearly 60% of vaccinated animals
[28,29

&&

,30,31
&

]. Therefore, CD8þ T cells can, at least
in some settings, contribute to control of
retroviral infection.

Basedon studies innaturalHIV/SIV infectionand
from preclinical testing of HIV vaccine candidates,
we believe that successful control of HIV by vaccine-
elicited CD8þ T cells will likely require that the CD8þ

T cells have the following features (see Fig. 1):
(1)
 target viral epitopes that are less likely/unable to
be mutated and likely target a broad range of
these epitopes across HLA types [13,14

&

,15
&

,
32,33

&

],

(2)
 expressTcell receptors (TCRs)withbroadepitope

reactivity [34,35] and optimal avidity (in some
settings, low avidity may enable cross reactivity
[36], while in others high avidity may be impor-
tant for T cell cytotoxic function [34,37]),
(3)
 are durably maintained at a high magnitude at
relevant sites of infection (e.g., gut, rectal, and
vaginal mucosa, as well as lymphoid tissue)
[18

&&

,38,39], and

(4)
 occupy a memory-like differentiation state that

allows them to robustly proliferate [40
&

] and
acquire effector functions (e.g., cytotoxicity,
cytokine production) upon encountering anti-
gen [20,21,38,41,42].
While many of these features are well defined in
the setting of natural HIV infection or preclinical
animal models, less is known about how they
actually relate to the protective capacity of HIV-
specific CD8þ T cells elicited byHIV vaccines admin-
istered in people. One clinical trial, HVTN 505
(DNA/Ad5), did report a correlation between Env-
specific CD8þ T cell magnitude and polyfunction-
ality and decreased infection risk (hazard
ratio¼0.51 and 0.47, respectively) [43,44]. With
regards to epitope targeting, earlier HIV vaccine
inserts typically encoded full-length viral proteins,
but it is now clear that more narrowly targeting
evolutionarily conserved and/or structurally con-
strained epitopes/regions more efficiently elicits
CD8þ T cell responses that are predicted to be less
likely to be evaded by viral mutation [13,14

&

,15
&

,
32,33

&

,45,46
&&

,47]. Some specific HLA class I alleles
have been associated with elite controller status or
altered rates of disease progression [19,48–50].
Mamu type-specific effects on vaccine protection
have been observed in NHPs [51,52] and HLA-
adaptation of T cell epitopes may impact vaccine-
elicited T cell responses in people [53

&&

]. In terms of
differentiation state, it is unclear which specific
differentiation state(s) will be most beneficial/
critical to elicit in the context of a preventive
Volume 18 � Number 6 � November 2023



FIGURE 1. Ideal qualities of vaccine-elicited CD8þ T cell responses (in blue) and assays to comprehensively measure these
qualities (purple box). LN, lymph node; TCM, central memory; TCR, T cell receptor; TEM, effector memory.

Vaccine-elicited HIV-specific CD8R T cells Borgo and Rutishauser
vaccine for HIV. Virus-specific memory CD8þ T cells
in elite controllers express high levels of the T cell
memory-associated transcription factor, TCF-1,
and are highly proliferative upon antigen encounter
[40

&

,54,55]. On the other hand, SIV-specific MHC-E
restricted CD8þ T cells with an effector memory
phenotype are the predominant subset elicited
by protective RhCMV-vectored vaccines [29

&&

,30,
31

&

,56
&

]. As we discuss in the latter section of this
review, comprehensive evaluation of all of the HIV-
specific CD8þ T cell properties depicted in Fig. 1 will
be required to meaningfully compare how different
CD8þ T cell-based HIV vaccine platforms elicit them
and how they in turn relate to immune protection.
T CELL-BASED VACCINE DELIVERY
PLATFORMS

The choice of vaccine delivery platform (e.g., pro-
tein, nucleic acid, viral vector) and route of admin-
istration determines how immunogens are
presented, in what tissues, and for how long, and
thus significantly impacts the immunogenicity and
durability of vaccine-elicited immune responses
1746-630X Copyright © 2023 The Author(s). Published by Wolters Kluwe
[57,58,59
&

]. Vaccine platforms that use protein/sub-
unit (AIDSVAX), viral vector (Ad5, ALVAC-HIV,
Ad26, MVA), and plasmid DNA (DNA-HIV-PT123,
VRC-HIVDNA009-00-VP) have been used in HIV
vaccine efficacy trials. Because viral vector and
nucleic acid-based delivery platforms can elicit
robust T cell responses (unlike protein-based vac-
cines) [60], we will review what is known about the
antigen-specific CD8þ T cell responses elicited by
these different vaccine approaches based on recent
human HIV vaccine clinical trials in HIV (see
Table 1) and other contexts.
Viral vector vaccines

Viral vectors have been a consistent part of the HIV
vaccine pipeline including in the RV144 trial [61–
64], designed to elicit antibody responses, and STEP/
Phambili trials, designed to elicit CD8þ T cell
responses [65–67]. Viral vectors can generate durable
T cell responses without the need for an adjuvant
[68,69] and can be administered intranasally and
orally to specifically target mucosal responses
[68,70–74]. Recent and currently active HIV
r Health, Inc. www.co-hivandaids.com 333
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preventive vaccine trials utilize poxvirus viral vectors
[modified vaccinia virus Ankara (MVA)], human
(Ad4, Ad26) and chimp (AdC6, AdC7, ChAdOx1)
adenoviruses, and human cytomegalovirus. Addi-
tional viral vectors have been used in other vaccine
settings, with the most detailed description of the
magnitude, durability, and memory-like qualities of
the response being described for the live-attenuated
Yellow Fever Vaccine [75–77].

In general, human adenovirus vectors can elicit
robust CD8þ T cell responses [68,69]. The human
adenovirus vector, Ad5, was the first viral vector to
be tested in efficacy trials for HIV (STEP trial/MRKAd-
5 HIV), specifically with the goal of eliciting CD8þ T
cell responses that target Gag/Pol/Nef [65]. In this
trial, nearly 75% of vaccinated participants tested
formed detectable HIV-specific T cell responses in
response to vaccination as measured by interferon
gamma (IFNg) ELISpot4weeks after the last dose [67].
Although the vaccine did not generally elicit a broad
CD8þ T cell response [78] and was not protective
(vaccinated men who were Ad5 seropositive and
uncircumcised had transient increased rates of infec-
tion [65,67]), there was an association between vac-
cine-generated responses to three or more Gag
epitopes and reduced viral loads [43]. Much follow-
up work has been done to understand the increased
risk and overall outcomes of the STEP trial
[53

&&

,79,80]. Ad5 continues to be used in heterolo-
gous vaccine approaches [81–85]. Other human
adenoviruses, Ad26 and Ad35, have also been used
due to lower preexisting immunity [86–88]. Preclin-
ical studies in the context of HIV and other settings
demonstrate that, compared with Ad5, these vectors
generate CD8þ T cell responses at lower magnitude
[68,69,86–89], but theymay generate responses with
improved T cell memory properties (e.g., long-lived
Ad26-elicited CD8þ T cells have a more terminally
phenotype compared toAd5-elicited T cells) [87–90].
Ad26 expressing mosaic Gag/Pol/Env immunogens
with bivalent Env (clade C/mosaic gp140) protein
boostwas recently tested in theMosaicophase III trial
(HVTN 706/NCT03964415). Previous trials that uti-
lized earlier iterationsof the vaccinesused inMosaico
elicited Gag-specific CD8þ T cell responses in 32%
(tetravalent [Gag/Pol/Env1/Env2] Ad26 mosaic
design) 6months after the last dose [91]. Mosaico
was stopped in early 2023 due to lack of efficacy at
preventing HIV infection.

Chimp adenovirus vectors have also been devel-
oped to avoid preexisting vector immunity to
human adenovirus vectors [92,93] and two chimp
adenovirus vectors, ChAdOx1 and AdC6/AdC7, are
currently being utilized in phase I clinical trials for
HIV (via intramuscular injection; NCT04553016,
NCT05182125). In a side-by-side comparisons of
1746-630X Copyright © 2023 The Author(s). Published by Wolters Kluwe
chimp to human adenovirus vectors in mice,
human Ad5 and chimp Ad3 showed equivalent
Gag-specific CD8þ T cell response magnitude (as
measured by MHC class I tetramer staining) and
protective capacity upon challenge with Listeria
monocytogenes expressing SIV Gag [87]. HIV-CORE-
002 examined the use of heterologous combinations
of ChAdOx63, DNA, and MVA to deliver the Gag/
Pol/Vif/Env-containing HIVconsv immunogen in
volunteers without HIV and found that 100% of
participants generated HIVconsv-specific T cell
responses following boost as detected by IFNg ELI-
Spot for all heterologous vaccine schedules tested
[47]. Although relatively new to the HIV vaccine
pipeline (HIV-CORE-006, HIV-CORE-051), the ChA-
dOx1 vector developed by Oxford University/Astra-
Zeneca has recently been widely tested and
deployed for SARS-CoV-2 (AZD1222) [94]. After a
single dose of the ChAdOx1 vaccine, SARS-CoV-2-
specific CD8þ T cells expressing any combination of
the cytokines IFNg, IL-2, and/or TNFa, as identified
by intracellular cytokine staining (ICS), were present
at approximately 0.1% of total CD8þ T cells 14days
following the vaccine [95]. Compared with lipid
nanoparticle (LNP)-formulated mRNA or heterolo-
gous (mRNAþChAdOx1) vaccine approaches, two
doses of the ChAdOx1 vaccine elicited a lower over-
all magnitude of total T cell responses as measured
by IFNg ELISpot [96

&&

,97,98].
The first phase I trial using a human CMV

(hCMV) viral vector was recently completed by Vir
Biotechnology (NCT04725877), with initial reports
indicating that the vaccine is well tolerated [99].
There are several potential advantages of using a
CMV vector-based platform to elicit HIV-specific
CD8þTcell responses [29

&&

]. First, basedonextensive
work on rhCMV strain RhCMV68-1, vaccines with
RhCMV68-1 expressing SIV immunogens elicited
high magnitude, broad effector memory (TEM)-
skewed CD8þ T cell responses in the absence of an
antibody response in 100% of animals, and demon-
strated arrest and clearance of SIV in nearly 60% of
vaccinated rhesus macaques, with similar efficacy
maintained in CMV seropositive animals [28,29

&&

,
30,31

&

,56
&

,100]. Second, the RhCMV68-1 vaccine
generates unconventional MHC-E-restricted HIV-
specific CD8þ T cells [31

&

,56
&

,101]. MHC-E is highly
conserved and has limited polymorphism compared
to classical MHC-I, thus potentially increasing the
likelihood that conserved epitopes could be found
when adapting the CMV platform for use in humans
[29

&&

,102]. One outstanding question is whether a
human CMV vector containing HIV immunogens
has the same capacity to generate unconventional
MHC-E-restricted responses, and, ultimatelywhether
these responses can prevent the establishment of
r Health, Inc. www.co-hivandaids.com 335
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chronic HIV infection in humans. Furthermore,
while MHC-E-restricted responses can be primed in
vitro [103], it is unknown how they may synergize
with conventional MHC class I-restricted CD8þ T
cell responses and/or other cell types in mediating
protection.
Nucleic acid based vaccines

Nucleic acid-based delivery systems (DNA and RNA)
offer distinct advantages over viral vectors: they are
less expensive and easier to design/manufacture and
they circumvent issues with vector immunity and
vector backbone immunogenicity [59

&

,60,104].
Whereas hundreds of millions of doses of mRNA
vaccines for SARS-CoV-2 have now been adminis-
tered in humans, DNA vaccines remain in more
limited use, despite extensive testing in clinical
trials for both cancer and HIV [60,105,106].

Since the time of the first clinical trial to test a
DNA vaccine in humans (an HIV therapeutic vac-
cine) [107], the immunogenicity of DNA-based vac-
cines has improvedwith delivery via electroporation
and design of regimens that include boosting with a
viral vector [104,108,109

&&

,110–113]. Using inserts
targeting Gag and Pol consensus sequences, the
PENNVAX-GP DNA vaccine (HVTN 098) demon-
strated the ability of a DNA vaccine alone [delivered
via intramuscular (i.m.) or intradermal injection
with plasmid IL-12 adjuvant] to elicit CD4þ (96%)
and CD8þ (44% i.m., 64% intradermal) T cell
responses as well as antibody responses (14% i.m.,
56% intradermal) 2weeks after the final dose
[109

&&

]. When comparing different delivery plat-
forms/vaccination schedules utilizing the HIVconsv
vaccine insert, DNA prime plus ChAdV63/MVA
boost compared with ChAdV63 prime plus MVA,
all vaccinees from both vaccine schedules main-
tained T cell responses as detected by ELISpot two
years postvaccination and the magnitude of these
responses was not significantly different between
the two vaccine schedules [13,114].

mRNA/LNP-based vaccines saw widespread
administration for SARS-CoV-2 and two active phase
1 trials are examining the ability of mRNA vaccines
to generate bNAbs to HIV Env (NCT05217641,
NCT05001373). In the context of SARS-CoV-2,
mRNA/LNP vaccinees elicit memory CD8þ T cell
responses in approximately 40–60% of vaccinees
6months after the second dose [11,115,116], and
Spike-specific CD8þ T cells are predominantly TEM
phenotype, although a stable pool of polyfunctional
stem-like memory cells (CD45RAþ CD27þ CD28þ
CCR7þCD95þ) with high proliferative capacity can
also be detected at long as 9months after the second
dose [11,117

&

,118
&&

,119]. For individuals who were
336 www.co-hivandaids.com
vaccinated with mRNA/LNP or ChAdOx1 and who
subsequently experienced breakthrough infection,
the frequency of activated SARS-CoV-2 Spike-spe-
cific CD8þ T cells at symptom onset inversely corre-
lated with viral clearance [118

&&

]. In addition to
SARS-CoV-2 vaccines, cancer therapeutic vaccines
have specifically sought to optimize CD8þ T cell
responses using mRNA platforms [120,121]). Recent
preclinical studies are utilizing mRNA as a heterol-
ogous boost with DNA [122], and self-amplifying
RNA (saRNA) [123

&&

] and circular RNA [124] also
demonstrate the potential of RNA-based platforms
in eliciting CD8þ T cell responses. Specifically,
saRNA delivery of the tHIVconsvX immunogen gen-
erated both effector and central memory phenotype
CD8þ T cells responses that maintained polyfunc-
tionality and proliferative capacity for 22 weeks
postvaccination in mice [125], suggesting that this
platformmay be an effective approach to improving
the durability of tissue-localized responses.
LABORATORY ASSESSMENT OF
VACCINE-ELICITED CD8R T CELLS

Aside from what we have discussed above, relatively
little is known about how different vaccine
approaches (for HIV or in other contexts) influence
the quality of the vaccine-elicited T cell responses on
people. This gap in our knowledge exists for many
reasons, including the fact that very few controlled
studies have been designed to test different vectors
[47,126,127], adjuvants [128], and/or immunogens
[46

&&

] side-by-side in well matched populations of
study participants, and, in general, T cell-based
assays, which require viably cryopreserved periph-
eral blood cells, are more labor and resource-inten-
sive and can be more complex to interpret due to
global HLA diversity. In order to address this gap,
HIV vaccine trials would ideally measure and report
the key features that define the quality of an HIV-
specific T cell response (Fig. 1).

Of all these features, assessing T cell proliferative
capacity and the ability to sustain killing of target
cellsmay be thehighest yield, as these qualities have
been the most reliably associated with control in
natural infection [21,41,42,54]. Beyond character-
izing proliferation and killing capacity, key features
of vaccine-elicited CD8þ T cells can be measured by
performing deep phenotyping of vaccine-elicited
HIV-specific CD8þ T cells by intracellular cytokine
staining (ICS) and/or ofMHC class I multimer stain-
ing by high-dimensional phenotyping and in-situ
characterization of tissue-based vaccine-elicited
CD8þ T cell responses. Furthermore, integrated sys-
tems immunologic assessments of cellular and
plasma-based broad immune responses to different
Volume 18 � Number 6 � November 2023
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vaccine delivery systems can provide insight into
the mechanisms by which each vaccine platform
promotes the formation of CD8þ T cell responses.
Capturing this comprehensive picture of vaccine-
elicitedCD8þT cellswould allow for a deeper under-
standingofwhat type of T cell response eachvaccine
approach can elicit, it would enable much-needed
cross-platform comparisons, and it would also
potentially allow for the discovery of novel corre-
lates of protection.
LESSONS FROM HIV CURE STUDIES

While historically most preventive vaccine
approaches forHIVhave focusedonelicitingantibody
responses, CD8þ T cell-based vaccines have been a
more central focus of HIV cure efforts due to their
potential to elicit an immune response capable of
clearing established infection. Most of the qualities
desired for a preventive vaccine are similar to those
desired in the cure setting (e.g., high magnitude and
breadth, robust proliferative and killing capacity).
Although mucosal-based immune responses may be
more important for prevention and lymphoid tissue-
based responses are essential for cure, because HIV
disseminates so rapidly across lymphoid tissues in the
bodyafter infection,preventivevaccineswill alsoneed
to elicit immune responses that have the capacity to
eliminate infected cells in these tissues. Similarly,
therapeutic vaccines would also ideally prevent re-
infection, and thus should elicit strong immunity at
mucosal barriers.

Recent advances in developing CD8þ T cell-
based vaccines for HIV cure have been extensively
reviewed recently elsewhere [13,14

&

,15
&

,33
&

], and
vaccine designs being tested in both the prevention
and cure settings are noted on Table 1. A recent
study using a heterologous approach with DNA,
MVA, ChAd vaccinations and a conserved mosaic
insert given to people living with HIV on suppres-
sive ART (AELIX-002) demonstrated robust T cell
immunogenicity and a relationship between T cell
responses and lower viral loads after ART was dis-
continued [129]. Data being generated from
ongoing therapeutic vaccine studies with vaccines
given alone or in combination with other immuno-
therapeutic modalities, and often with the inclusion
of an ART treatment interruption, will therefore
directly inform the design of studies for prevention.
COMBINING B AND T CELL RESPONSES

As discussed at a recentNIH-sponsoredmeeting on ‘T
and B cell synergy for HIV vaccines’, an effective
vaccine strategy to prevent and/or cureHIV infection
will likely require induction of both an effective
1746-630X Copyright © 2023 The Author(s). Published by Wolters Kluwe
antibody response (i.e., bNAbs elicited and main-
tained at a high titer) as well as a potent CD8þ T cell
response. To achieve optimal B cell and CD8þ T cell
responses, a heterologous approach may be required
[7

&&

,130]. Most HIV vaccine approaches described
above and listed in Table 1 do not elicit both anti-
bodies and CD8þ T cell responses at a high magni-
tude/breadth/durability. This is in part due to the
different cytokines likely required for optimal germi-
nal center versusmemoryCD8þ T cell differentiation
(i.e., IL-4 versus IL-12/IFNg, respectively) [131]. In
addition, immunogensdesigned toelicit Env-specific
antibody responsesmay stimulate less effective T cell
responses that target nonconserved T cell epitopes.
For example, in both a prevention and therapeutic
vaccine setting, inclusion of Env sequences has been
shown to impair the generation of T cell responses
against more conserved regions in Gag and Pol
[132

&&

,133].Going forward, itwill be critical todesign
carefully controlled studies in humans and animal
models to systematically evaluate the additive effects
and trade-offs of altering vaccine platform or immu-
nogen on the quality of both the antibody andCD8þ

T cell response in order to understand how to elicit
optimal responses in both arms.
CONCLUSION

In recent years, newer vaccine platforms aimed at
eliciting robust CD8þ T cell responses have been
tested in the context of HIV, SARS-CoV-2, and can-
cer, in both preclinical and clinical settings. Going
forward, we believe that addressing the following
outstanding questions will be critical to move us
closer to finding an optimal CD8þ T cell-based
vaccine design for HIV prevention and/or cure:
(1)
r Hea
How does vaccine delivery system influence key
qualities of the HIV-specific CD8þ T cell
responses, such as magnitude (across diverse
HLA types), durability, breadth of overall
response and specific TCR epitope recognition,
TCR avidity, polyfunctionality, proliferative
and killing capacity, and homing potential?
(2)
 Is there a minimum breadth/number of T cell
responses required to provide protection? How
does immunogen design (and HLA background)
affect this number?
(3)
 Can a single vaccine elicit mucosal-based T cell
immunity and also minimize recruitment of
activated CD4þ T cells that may be prime target
cells for HIV infection?
(4)
 Can antibody and T cell responses synergize
with one another, and are different vaccine
platforms and inserts required to elicit optimal
antibody versus T cell responses?
lth, Inc. www.co-hivandaids.com 337
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120. Lorentzen CL, Haanen JB, Met Ö, Svane IM. Clinical advances and ongoing
trials of mRNA vaccines for cancer treatment. Lancet Oncol 2022; 23:
e450–e458.

121. Chen J, Ye Z, Huang C, et al. Lipid nanoparticle-mediated lymph node-
targeting delivery of mRNA cancer vaccine elicits robust CD8þ T cell
response. Proc Natl Acad Sci U S A 2022; 119:e2207841119.

122. Valentin A, Bergamaschi C, Rosati M, et al. Comparative immunogenicity of
an mRNA/LNP and a DNA vaccine targeting HIV gag conserved elements in
macaques. Front Immunol 2022; 13:945706.

123.
&&

K€unzli M, O’Flanagan SD, LaRue M, et al. Route of self-amplifying mRNA
vaccination modulates the establishment of pulmonary resident memory CD8
and CD4T cells. Sci Immunol 2022; 7:eadd3075.

This study demonstrates that intramuscular vaccination with a self-amplifying
mRNA vaccine can generate tissue resident memory that can be further expanded
with intranasal administration, a concept relevant to HIV vaccine design.
124. Amaya L, Grigoryan L, Li Z, et al. Circular RNA vaccine induces potent T cell

responses. Proc Natl Acad Sci U S A 2023; 120:e2302191120.
125. Moyo N, Vogel AB, Buus S, et al. Efficient induction of T cells against

conserved HIV-1 regions by mosaic vaccines delivered as self-amplifying
mRNA. Mol Ther Methods Clin Dev 2019; 12:32–46.

126. Barouch DH, Tomaka FL, Wegmann F, et al. Evaluation of a mosaic HIV-1
vaccine in a multicentre, randomised, double-blind, placebo-controlled,
phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13–
19). Lancet Lond Engl 2018; 392:232–243.

127. Mutua G, Farah B, Langat R, et al. Broad HIV-1 inhibition in vitro by vaccine-
elicited CD8(þ) T cells in African adults. Mol Ther Methods Clin Dev 2016;
3:16061.

128. Xu S, Carpenter MC, Spreng RL, et al. Impact of adjuvants on the biophysical
and functional characteristics of HIV vaccine-elicited antibodies in humans.
NPJ Vaccines 2022; 7:90.

129. Bailón L, Llano A, Cede~no S, et al. Safety, immunogenicity and effect on viral
rebound of HTI vaccines in early treated HIV-1 infection: a randomized,
placebo-controlled phase 1 trial. Nat Med 2022; 28:2611–2621.

130. Wee EG, Moyo NA, Saunders KO, et al. Parallel induction of CH505 B cell
ontogeny-guided neutralizing antibodies and tHIVconsvX conserved mosaic-
specific T cells against HIV-1. Mol Ther Methods Clin Dev 2019;
14:148–160.

131. Cohen KW, Tian Y, Thayer C, et al. Th2-biased transcriptional profile predicts
HIV envelope-specific polyfunctional CD4þ T cells that correlated with
reduced risk of infection in RV144 Trial. J Immunol Baltim Md 1950
2022; 209:526–534.

132.
&&

Kallas EG, Grunenberg NA, Yu C, et al. Antigenic competition in CD4þ T cell
responses in a randomized, multicenter, double-blind clinical HIV vaccine
trial. Sci Transl Med 2019; 11:eaaw1673.

This study reports on results from the HVTN 084 trial, investigating whether
inclusion of Env detracts from the magnitude and breadth of T cell responses to
Gag/Pol. The authors found that inclusion of Env reduced breadth of T cell
responses and specifically reduced response rate, magnitude, and cytokine
expression in CD4þ T cells.
133. Chew KW, Reuschel E, Purwar M, et al. Including Env in an HIV therapeutic

vaccine blunts Gag/Pol-specific T cell responses [Internet]. Conf Retro-
viruses Opportun Infect 2022; Virtual. https://www.croiconference.org/ab-
stract/including-env-in-an-hiv-therapeutic-vaccine-blunts-gag-pol-specific-t-
cell-responses/

134. Churchyard GJ, Morgan C, Adams E, et al. A phase IIA randomized
clinical trial of a multiclade HIV-1 DNA prime followed by a multiclade
rAd5 HIV-1 vaccine boost in healthy adults (HVTN204). PLoS One 2011;
6:e21225.

135. Casazza JP, Bowman KA, Adzaku S, et al. Therapeutic vaccination expands
and improves the function of the HIV-specific memory T-cell repertoire. J
Infect Dis 2013; 207:1829–1840.
Volume 18 � Number 6 � November 2023

https://www.croiconference.org/abstract/including-env-in-an-hiv-therapeutic-vaccine-blunts-gag-pol-specific-t-cell-responses/
https://www.croiconference.org/abstract/including-env-in-an-hiv-therapeutic-vaccine-blunts-gag-pol-specific-t-cell-responses/
https://www.croiconference.org/abstract/including-env-in-an-hiv-therapeutic-vaccine-blunts-gag-pol-specific-t-cell-responses/


Vaccine-elicited HIV-specific CD8R T cells Borgo and Rutishauser
136. KalamsSA,ParkerSD,ElizagaM,et al.Safety andcomparative immunogenicity
of anHIV-1DNAvaccine in combinationwith plasmid interleukin 12 and impact
of intramuscular electroporation for delivery. J Infect Dis 2013; 208:818–829.
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148. Mothe Pujades B, Curran A, López JC, et al. A placebo-controlled
randomized trial of the HTI immunogen vaccine and VESATOLIMOD
[Internet]. Conf Retroviruses Opportun Infect 2023; 19 February 2023;
Seattle, Washington. https://www.croiconference.org/abstract/a-place-
bo-controlled-randomized-trial-of-the-hti-immunogen-vaccine-and-vesa-
tolimod/

149. Hu X, Valentin A, Cai Y, et al. DNA vaccine-induced long-lasting cytotoxic T
cells targeting conserved elements of human immunodeficiency virus Gag
are boosted upon DNA or recombinant modified Vaccinia Ankara vaccina-
tion. Hum Gene Ther 2018; 29:1029–1043.
r Health, Inc. www.co-hivandaids.com 341

https://www.croiconference.org/abstract/a-placebo-controlled-randomized-trial-of-the-hti-immunogen-vaccine-and-vesatolimod/
https://www.croiconference.org/abstract/a-placebo-controlled-randomized-trial-of-the-hti-immunogen-vaccine-and-vesatolimod/
https://www.croiconference.org/abstract/a-placebo-controlled-randomized-trial-of-the-hti-immunogen-vaccine-and-vesatolimod/



