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Abstract

Purpose: Many computer aided diagnosis (CADx) tools for breast cancer begin by fully or semi 

automatically segmenting a given breast lesion and then classifying the lesion’s likelihood of 

malignancy using quantitative features extracted from the image. It is often assumed that better 

segmentation will result in better classification. However, this has not been thoroughly evaluated. 

The purpose of this study is to evaluate the relationship between computer segmentation 

performance and computer classification performance.

Method: We used 85 breast lesions (32 benign, 56 malignant) from breast computed tomography 

(CT) cases of 82 women. We prepared one smooth and one sharp iterative image reconstructions 

(IIR) and a clinical reconstruction for each of the 82 breast CT scans. For each reconstruction, we 

created 15 segmentation outcomes by applying 15 different segmentation algorithms. Specifically, 

we simulated 15 segmentation algorithms by changing parameters in a single segmentation 

algorithm. We then created 15 classification outcomes by conducting quantitative image feature 

analysis on the segmented image results. Using a 10 fold cross-validation, we evaluated the 

relationship between segmentation and classification performances.

Result: We found a low positive correlation between segmentation and classification 

performances for the smooth IIR (median Pearson’s rho = 0.18), while a moderate positive 

correlation (median Pearson’s rho = 0.4 – 0.43) was found between the two performances for the 

sharp IIR and clinical reconstruction. However, we found large variations in both segmentation 

and classification performances for the sharp IIR and clinical reconstruction. There were cases 

where segmentation algorithms resulted in similar segmentation performances, but the 

corresponding classification performances were different. These results indicate that an 

improvement in segmentation performance does not guarantee an improvement in the 

corresponding classification performance.

Corresponding Author: Juhun Lee, Department of Radiology, University of Pittsburgh, 3362 Fifth Ave., Pittsburgh PA 15213, Office: 
1-412-641-2365, FAX: 1-412-641-2582. 
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Conclusion: Computer segmentation is an indirect variable affecting the computer classification. 

As better segmentation does not guarantee better classification, we should report both 

segmentation and classification performances when comparing segmentation algorithms.

Keywords

Breast CT; Computer segmentation; Computer classification; computer-aided diagnosis

1 Introduction

Many computer-aided diagnosis (CADx) procedures for breast cancer include lesion 

localization, lesion segmentation, feature extraction from the lesion, and lesion classification 

via training a classifier using the extracted features. The common belief in the above 

procedures is that an improvement in each step will improve the CADx algorithm’s 

performance. The first step, i.e., lesion detection, is the least related to the CADx 

algorithm’s performance, as correct lesion locations are typically provided to the CADx 

algorithm. The last two steps, i.e., feature extraction and lesion classification, are easy to 

validate; one can conduct receiver operating characteristic (ROC) curve analysis to check if 

the improvement in feature extraction (e.g., finding new/better features) and classification 

(e.g., finding new/better classifiers) lead to improving CADx. However, whether an 

improvement in lesion segmentation will result in better performance of the CADx 

algorithm has not been thoroughly studied.

Many previous studies on developing computer segmentation algorithms (to name a few1–4) 

of lesions limited their reporting to the segmentation performance of their algorithms and 

comparing them to other state of the art algorithms. The core assumption of these previous 

studies was that better segmentation will lead to better computer lesion classification (i.e., 

lesion diagnosis). They often considered whether their lesion segmentation algorithm will 

lead to better lesion diagnosis as out of the scope of their study. However, it is possible that 

the improvement in segmentation may not improve lesion diagnosis. Thus, we argue that 

research on computer segmentation algorithms of lesions for CADx tools should report if 

their algorithms improve classification performance.

Two other studies5, 6 showed both segmentation and classification performances. For 

example, Kuo et al.5 introduced a new segmentation algorithm for dedicated breast 

computed tomography (CT). They showed that their segmentation algorithm resulted in 

better segmentation, as well as better classification, than the segmentation outcomes and 

corresponding classification outcomes of an existing segmentation algorithm for breast 

CT7, 8, using features extracted from a segmented breast lesion. From these results, however, 

it is difficult to generalize that improved segmentation leads to improved lesion 

classification.

This study examined how computer segmentation performance is related to computer 

classification performance. Specifically, we tried to answer the following question: does 

better segmentation performance lead to better classification performance in dedicated breast 

CT? To do so, we needed breast CT cases with different segmentation outcomes. We 

simulated 15 different segmentation algorithms by changing internal parameters in a single 
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segmentation algorithm. We applied 15 segmentation algorithms on breast lesions to create 

15 segmentation outcomes per each lesion. We then trained and tested a classifier to create 

15 classification outcomes per each lesion. Using 15 segmentation and classification 

outcomes, we checked how these changes in computer segmentation performance affected 

computer classification performance. In addition, we repeated the analysis for three different 

reconstructions to examine how the relationship between computer segmentation and 

classification differs for different image qualities.

2 Methods

2.1 Dataset

For this study, we used a total of 88 biopsy proven breast lesions (56 malignant and 32 

benign lesions) in 82 non-contrast breast CT images of women aged 18 or older. Under an 

institutional review board (IRB) approved protocol, the prototype dedicated breast CT 

system at the University of California at Davis9 was used to acquire all breast CT images of 

recruited women. We describe the details of the cases elsewhere10.

2.2 Image reconstructions

We considered three reconstructions in this study using an iterative image reconstruction 

(IIR) algorithm11 and a clinical reconstruction algorithm (Feldkamp-Davis-Kress (FDK) 

reconstruction12). The IIR algorithm consists of two sub reconstruction algorithms11. The 

first sub reconstruction algorithm provides smooth gray-scale information, the second sub 

algorithm adds sharp edge information. By combining these two sub reconstruction results 

with different weights, one can create breast CT cases with different image qualities or 

appearances. We prepared one smooth and one sharp reconstruction by changing parameters 

in the IIR algorithm. Specifically, we placed zero weight for the second sub algorithm to 

create the smooth IIR reconstruction. For the sharp IIR, we gave a three times higher weight 

to the second sub algorithm compared to the first sub algorithm. Figure 1 shows the image 

qualities, or appearances, of the three reconstructions considered in this study.

2.3 Computer segmentation of breast lesions

We first selected a cubic shaped volume of interest (VOI) with sides of 35 mm, where its 

center is located at a lesion center. These VOIs in IIR were isometric, while those in FDK 

were not isometric, since they had a different slice thickness in the z-direction. Then, we 

utilized a semi-automated segmentation algorithm7, 8 , called RGI segmentation, to segment 

breast lesions of all reconstructions. The segmentation algorithm was originally developed 

for mammograms7 and extended for tomosynthesis and bCT8. The algorithm is semi-

automatic and requires a seed point (i.e., lesion center) only to automatically segment a 

given lesion volume. A research specialist, with over 15 years of experience in 

mammography, provided the seed point for the algorithm. As segmenting a 3D lesion is 

time-consuming and laborious, the research specialist manually segmented three cross-

sectional views of the lesion at its center (i.e., coronal, transverse, sagittal views). This was 

done only for the FDK reconstruction. We then applied this segmentation to the IIR 

reconstructed images, as all the reconstructed images are co-registered by default.
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The RGI segmentation algorithm regulates the search boundary for a lesion by applying 

predefined weights on the bCT image. One can change the shape and type of weights to 

change the segmentation outcomes and therefore simulate different segmentation algorithms. 

For this study, we used seven 3D normal Gaussian weights with standard deviations (SD) of 

4 to 10 mm with 1 mm increments, and seven 3D cube shapes with widths of 4 to 10 mm 

with 1 mm increments, where the weight gets higher in the center and gradually fades out to 

the edge, and one cone shape weight, where its weight is the highest at the center and 

gradually fades out to the end of the VOI (Table 1). Note that we did not consider weights 

with SDs or widths less than 4 mm, as they are too small to segment large lesions. Likewise, 

we did not consider weights with SDs or widths larger than 10 mm, as they can be too large 

to effectively capture small lesions. Figure 2 illustrates the coronal view at the center for a 

few selected weight types. Note that the example in Figure 2 contains normal breast 

parenchyma located outside of the green lesion border outlined by the expert. In addition, it 

should be noted that Figure 2 illustrates the range of segmentation qualities by changing the 

weights applied to the algorithm. Specifically, the weights shown in Figure 2, except the 

cone weight, are at two extreme points of the range of widths and standard deviations that 

we considered, which was [4mm, 10mm]. Since the given lesion is large, some weights, 

especially cone weights and Gaussian weights, with a 10 mm standard deviation provided 

good segmentation outcomes, while some, especially square and Gaussian weights, with a 4 

mm width or standard deviation did not.

We used the DICE coefficient13 to evaluate segmentation results by comparing the 

algorithm’s output to the lesion border manually drawn by the research specialist. We 

averaged DICE values from cross-sectional views of each case. Then, we computed the 

mean of those averaged (cross-sectional view) DICE values of cases as the measure of the 

segmentation performance of each segmentation algorithm.

2.4 Computer classification of breast lesions

Computer classification requires a choice of a statistical classifier and input features. We 

considered a total of 23 quantitative image features from the segmentation results (Table 2, 

adopted from10). Previous studies utilized these features for lesion detection and 

classification5, 10, 14–19.

The 23 quantitative image features included four histogram (feature #1-#4), seven shape 

(feature #5-#11), five margin (feature #12-#16), four texture (feature #17-#20), and three 

surface curvature descriptors (feature #21-#23). Histogram descriptors characterize the gray-

scale information within the lesion and its relationship to the surrounding background. 

Shape and margin descriptors represent the morphological information of the segmented 

lesions. Texture descriptors are a 3D version of the 2D gray-level co-occurrence matrix20, 

which quantify the characteristics of the segmented lesion texture. Curvature descriptors 

summarize the local lesion surface variations of the segmented lesion. All features were 

obtained from the 3D volumes.

Under a 10 fold cross-validation, we selected the best features (via sequentialfs function in 

MATLAB) and trained an LDA classifier using the selected features and a training set, and 
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evaluated their classification performances on 15 segmentation outcomes for each of the 

three reconstructions on a held out testing set.

Using the area under the receiver operating characteristic curve (AUC) of the resulting final 

classifiers, we compared the relationship between the classification and segmentation 

performances. For each test set in the 10 fold cross-validation, we computed the AUC value 

and the averaged DICE value (averaged over the lesions in the test set). Then, we conducted 

a correlation analysis (Pearson correlation coefficients) between the AUC value and the 

averaged DICE value for 15 segmentation outcomes, and repeated 10 times for each test set.

3 Results

The segmentation performances in terms of the averaged DICE coefficient under the 10 fold 

cross-validation of 15 different segmentation algorithms for smooth IIR, sharp IIR, and FDK 

reconstruction cases ranged from [0.63, 0.73], [0.63, 0.75], and [0.66, 0.82], respectively. 

Corresponding classification performances in terms of the averaged AUC under the 10 fold 

cross-validation ranged from [0.64, 0.81], [0.61, 0.88], and [0.66, 0.81], respectively.

Figure 3 shows the feature selection frequency under the 10 fold cross-validation for each 

segmentation outcome and each reconstruction. Feature #13, radial gradient index, was 

consistently selected by all three reconstructions. Although there were variations in selection 

frequency among segmentations, the feature sets of [#8, #10, #21], [#10, #21], [#10, #17, 

#21] were also frequently selected by smooth IIR, sharp IIR, and FDK reconstructions, 

respectively.

Figure 4 shows the correlation coefficient values between the segmentation and 

classification performances under the 10 fold cross-validation. Note that each correlation 

coefficient value was based on 15 AUC and averaged DICE data point pairs per each held-

out cross-validation portion. The median correlation coefficient values for the IIR smooth, 

the IIR sharp, and the FDK reconstruction under the 10 fold cross-validation were 0.18 with 

median absolute deviation (MAD) of 0.24 and (min, max) = [−0.53, 0.69], 0.43 with MAD 

of 0.22 and (min, max) = [−0.18, 0.57], and 0.4 with MAD of 0.33 and (min, max) = [−0.56, 

0.74], respectively. The median correlation coefficient values show that there was a low 

correlation (according to Cohen21 as the correlation coefficient value < 0.3) between the 

segmentation performance and the classification performance for the smooth IIR 

reconstruction, while moderate correlations (according to Cohen21 as the correlation 

coefficient values were between 0.3 and 0.5) were found for the sharp IIR and FDK 

reconstructions. Thus, one can generally expect that better segmentation results in better 

classification for sharper reconstructions, (i.e., sharp IIR and FDK reconstruction), than for 

smoother reconstructions, (i.e., smooth IIR reconstruction).

However, we observed the large variability in both DICE and AUC values for sharp 

reconstructions (i.e., sharp IIR and FDK reconstructions). Figure 5 shows the scatter plot of 

the AUC and DICE coefficient value pairs averaged over 10 held-out cross-validation sets 

for each reconstruction. Two segmentation algorithms for the sharp IIR reconstruction, 

marked as a filled square in Figure 5.B, resulted in similar segmentation performances, but 
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their corresponding classification performances are statistically different to each other (Table 

3). Similarly, another two segmentation algorithms for the FDK reconstruction cases, 

marked as a triangle in Figure 5.C, resulted in statistically different segmentation 

performances (Table 3), but their corresponding classification performances were similar to 

each other.

These results show that segmentation outcomes and classification outcomes are positively 

correlated, but there is large variability between the two performances. Thus, we cannot 

reliably predict that an improvement in segmentation performance will always result in an 

improvement in classification performance.

4 Discussion

Segmentation outcome may be one of many indirect variables that can affect the 

classification performance of CADx tools. Changes in DICE values indicate changes in 

segmentation outcomes. In this study, it was observed that changes in segmentation 

outcomes resulted in changes in quantitative image features in classifiers such that their 

effects dominate changes in classification performance. In fact, most frequenly selected 

features quantify the morphological information of the lesion; two shape (features #8, #10), 

one margin (feature #13), and one surface curvature (feature #21) descriptors, except one 

texture (feature #17) for the FDK reconstruction. Thus, changes in weight for the RGI 

segmentation algorithm resulted in the variations in segmentation and these variations 

resulted in changes in classification outcomes.

Our findings suggest that any lesion segmentation algorithm should be evaluated not only 

for its segmentation performance, but also for the resulting classification performance from 

features extracted from the segmented outcomes. This is because a wide range of 

classification outcomes can be obtained from similar segmentation outcomes, and the similar 

segmentation outcomes can yield statistically different classification performance. This 

confirms the conclusion of the previous study by Kuo et al.5; the DICE coefficient, as well 

as other similar measures, such as overlap ratio, is not a sufficient evaluation metric for 

segmentation algorithms for bCT images.

A possible limitation of the study is that segmentation performances are based on manual 

segmentations made by a single research specialist. A future study with additional manual 

segmentations is required in order to test if our finding will hold on the updated 

segmentation performances by the new manual segmentations.

5 Conclusion

In this study, we found that computer segmentation is an indirect variable affecting the 

computer classification. As better segmentation does not guarantee better classification, it is 

important to report both segmentation and classification performances for any segmentation 

algorithms to properly show the usefulness of the algorithms.
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Figure 1. 
This figure shows an example case with different image reconstructions in coronal view. 

First two columns represent the smooth and sharp reconstructions by the IIR algorithm, 

respectively. The last column is the case reconstructed by the FDK algorithm.
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Figure 2. 
The first row shows the some examples of various types and ranges of weight, which were 

applied to each breast CT image before applying the RGI segmentation algorithm. Images in 

last three rows represent the resulting segmentation outcomes in the coronal view at the 

lesion center, using the weights shown in the first row. Outlines in green represent the lesion 

outline drawn by a human expert. Note that the lesion is partially embedded in 

fibroglandular tissue. Outlines in red are the cross-sectional border from the segmented 

lesion volume by the RGI segmentation algorithms using the weights in the first row.
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Figure 3. 
This figure shows the feature selection frequency for each segmentation outcomes in the 

three reconstructions under 10 fold cross-validation. Feature #13 was frequently selected by 

most segmentations in all reconstructions. Although there are some variations in selection 

frequency among segmentations, feature sets of [#8, #10, #21], [#10, #21], and [#10, #17, 

#21] were frequently selected in addition to feature #13 by IIR smooth, IIR sharp, and FDK 

reconstructions, respectively.
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Figure 4. 
This figure shows the correlation coefficient values between the segmentation performance 

(averaged DICE) and the classification performance (AUC) 10 fold cross-validation for each 

reconstruction. There were 15 segmentation and classification data point pair for each 10 

held-out cross validation set. The segmentation and classification performances for all 

reconstructions were positively correlated, as their median correlation coefficient values 

were 0.18, 0.43, and 0.4 for the IIR smooth, the IIR sharp, and the FDK reconstruction, 

respectively. However, we found considerable variations in correlation coefficient values 

among 10 held-out sets; their median absolute deviation values were 0.24, 0.21, and 0.33, 

for the IIR smooth, the IIR sharp, and the FDK reconstruction, respectively.
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Figure 5. 
Scatter plots for the segmentation and corresponding classification for the LDA classifiers 

under the 10 fold cross-validation. 95% confidence intervals of a few selective segmentation 

algorithms are shown. The list of selected segmentation algorithms are the RGI 

segmentation algorithm with 3D cube weight with 4 – 7, 9 – 10 mm width and 3D Gaussian 

weight with 5 and 9 mm width. Segmentation algorithms with narrow weight width, e.g., 

less than 7 mm, resulted in lower segmentation performance than wider weight width, e.g., 

equal to or larger than 7 mm. We compared a few selected segmentations, with square and 

triangle markers, in Table 3.
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Table 1.

List of predefined weights for the sementation algorithm

Segmentation number Weights

1 3D Cube shape with width of 10 mm

2 3D Cube shape with width of 9 mm

3 3D Cube shape with width of 8 mm

4 3D Cube shape with width of 7 mm

5 3D Cube shape with width of 6 mm

6 3D Cube shape with width of 5 mm

7 3D Cube shape with width of 4 mm

8 Cone shape weights

9 3D normal Gaussian with SD of 4 mm

10 3D normal Gaussian with SD of 5 mm

11 3D normal Gaussian with SD of 6 mm

12 3D normal Gaussian with SD of 7 mm

13 3D normal Gaussian with SD of 8 mm

14 3D normal Gaussian with SD of 9 mm

15 3D normal Gaussian with SD of 10 mm
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Table 2.

List of image features used in this study

Feature # Feature Type Definition*

Histogram descriptors

1 Average region gray value [HU] μ (Gray value in V)

2 Region contrast [HU] F1 - μ (Gray value outside of V)

3 Region gray value variation [HU] σ (Gray value in V)

4 Margin gray value variation [HU] σ (Gray value in M)

Shape descriptors

5 Irregularity 2.2 * V1/3 / M1/2

6 Compactness % of volume of V included in SP

7 Ellipsoid axes min-to-max ratio Min to max ratio of semi-axes of the ellipsoid fitted to V

8 Margin distance variation [mm] σ (distances from the center of V to the margin of V)

9 Relative margin distance variation F8 / Mean(distances from the center of V to the margin of V)

10 Average gradient direction μ (gradient direction of each voxel in M)

11 Margin volume [mm3] Σ (voxels in M)

Margin descriptors

12 Average radial gradient [HU] μ (radial gradient of each voxel in M)

13 Radial gradient index (RGI) F12 / μ (magnitude of image gradient of each voxel in M)

14 Margin strength 1 μ (magnitude of image gradient of each voxel in M) / F2

15 Margin strength 2 σ (magnitude of image gradient of each voxel in M) / F2

16 Radial gradient variation σ (radial gradient of each voxel in M)

Texture descriptors

17 GLCM|Energy 3D version of 2D gray-level co-occurrence | Energy

18 GLCM|Contrast 3D version of 2D gray-level co-occurrence | Contrast

19 GLCM|Correlation 3D version of 2D gray-level co-occurrence | Correlation

20 GLCM|Homogeneity 3D version of 2D gray-level co-occurrence | Homogeneity

Surface Curvature descriptors

21 Total Curvature μ (|p1| + |p2| over S) / σ (|p1| + |p2| over S)

22 Mean Curvature μ ( 0.5 × (p1 + p2) over S) / σ (0.5 × (p1 + p2) over S)

23 Gaussian Curvature μ ( p1 × p2 over S ) / σ ( p1 × p2 over S )

*
V refers to the segmented lesion volume.M refers to the margin of the lesion volume. SP refers to the minimum sphere including V. S refers to the 

surface of V. p1 and p2 refer to the first and second principal component of S. μ and σ indicate mean and standard deviation.
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Table 3.

Segmentation and classification performance comparison among selected segmentation algorithms for sharp 

reconstructions

Performance statistics for selected two segmentation algorithms Difference

Comparable segmentation performance but different classification performance (square marker in 
Figure 5.B) Figure of merit: AUC

Recon. Seg # AUC [95% CI] Seg # AUC [95% CI]
AUCDiff. [95% 

CI]
p-value

IIR sharp 2 0.88 [0.78, 0.97] 10 0.73 [0.65, 0.81] 0.15 [0.07, 0.23] 0.0003
†

Comparable classification performance but different segmentation performance (triangle marker in 
Figure 5.C) Figure of merit: DICE

Recon. Seg # DICE [95% CI] Seg # DICE [95% CI]
DICEDiff. [95% 

CI]
p-value

FDK 14 0.82 [0.8, 0.83] 5 0.77 [0.75, 0.79] 0.05 [0.03, 0.07] <0.0001
†

†
Statistically significant at the corrected significance level α = 0.05/2 = 0.025.
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