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ABSTRACT OF THE DISSERTATION

Control of Néel Vector in Antiferromagnets

by

In Jun Park

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2020

Dr. Roger K. Lake, Chairperson

Control of the Néel vector in antiferromagnetic materials is one of the challenges preventing

their use as active device components. Several methods have been investigated such as

exchange bias, electric current, and spin injection, but little is known about strain-mediated

anisotropy. This study of the antiferromagnetic L10-type MnX alloys MnIr, MnRh, MnNi,

MnPd, and MnPt shows that a small amount of strain effectively rotates the direction of

the Néel vector by 90◦ for all of the materials. For MnIr, MnRh, MnNi, and MnPd, the Néel

vector rotates within the basal plane. For MnPt, the Néel vector rotates from out-of-plane

to in-plane under tensile strain. The effectiveness of strain control is quantified by a metric

of efficiency and by direct calculation of the magnetostriction coefficients. The values of

the magnetostriction coefficients are comparable with those from ferromagnetic materials.

These results indicate that strain is a mechanism that can be exploited for control of the

Néel vectors in this family of antiferromagnets.

CrSb is a layered antiferromagnet (AFM) with perpendicular magnetic anisotropy,

a high Néel temperature, and large spin-orbit coupling (SOC), which makes it interesting for
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AFM spintronic applications. To elucidate the various mechanisms of Néel vector control,

the effects of strain, band filling, and electric field on the magnetic anisotropy energy (MAE)

of bulk and thin-film CrSb are determined and analysed using density functional theory. The

MAE of the bulk crystal is large (1.2 meV per unit cell). Due to the significant ionic nature of

the Cr-Sb bond, finite slabs are strongly affected by end termination. Truncation of the bulk

crystal to a thin film with one surface terminated with Cr and the other surface terminated

with Sb breaks inversion symmetry, creates a large charge dipole and average electric field

across the film, and breaks spin degeneracy, such that the thin film becomes a ferrimagnet.

The MAE is reduced such that its sign can be switched with realistic strain, and the large

SOC gives rise to an intrinsic voltage controlled magnetic anisotropy (VCMA). A slab

terminated on both faces with Cr remains a compensated AFM, but with the compensation

occurring nonlocally between mirror symmetric Cr pairs. In-plane alignment of the moments

is preferred, the magnitude of the MAE remains large, similar to that of the bulk, and it is

relatively insensitive to filling.
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2 Strain control of the Néel vector in Mn-based antiferromagnets 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Effects of filling, strain, and electric field on the Néel vector in antiferro-
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Chapter 1

Rationale

1.1 Objectives

Since the metal-oxide-semiconductor field effect transistor (MOSFET) was in-

vented, conventional electronics has exponentially improved. The density of transistors

on integrated circuits has doubled every two years, and this trend is known as Moore’s law.

The increased density is the result of scaling, in which the the dimensions of MOSFETs are

reduced. However, continued scaling to nanometer dimensions is hindered by short channel

effects and quantum mechanical tunneling, and now scaling is reaching its physical limits

due to quantum effects. The field of study of spintronics or spin electronics [4, 5] has been

a promising direction increasing memory density and reducing power since the discovery of

giant magnetoresistance (GMR) [6,7]. The field aims to control electrons and spins in solid

state systems. Ferromagnetic (FM) materials have been widely used in the vast majority

of studies. In FM materials, the spin on each lattice site is parallel to that on the neigh-

boring lattice sites for temperatures below the Curie temperature (Tc), so that there exists
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a net magnetization. The magnetization gives rise to magnetic fields near the materials,

which allows them to be easily detected. Moreover, the spins in FM materials can be ma-

nipulated by an external magnetic field, exchange bias, electric current, electric field, and

strain. A different class of magnetic materials, antiferromagnets, was discovered by Louis

Néel in 1940’s. In collinear antiferromagnetic (AFM) materials, the magnetic moment of

one sub-lattice is anti-parallel to that of the neighboring one so that the net magnetization

is zero below the Néel temperature (TN ). Since there is zero net magnetization, there is an

absence of stray fields, which allows deep scaling of AFM spintronic devices without suf-

fering from cross-talk. Moreover, in comparison to FM materials, AFM materials exhibit

ultrafast dynamics [8, 9] and are able to provide large magnetotransport effects compared

to FM materials. Due to the appealing properties of AFM materials, extensive research

has been conducted on them, creating a new sub-field called AFM spintronics [8,10], aimed

at complementing or replacing FM materials in the active region of spintronic devices with

AFM materials. One of the challenges in AFM spintronics is to control the Néel vector.

There are several methods to control the Néel vector, such as with exchange bias, electric

current, and electric field. Although most of researchers focus on the switching the Néel

vector by electric current, using electric field has advantages in terms of power consump-

tion [11] and switching speed [12]. For future usage, it is important for AFM materials

to be compatible with CMOS technology. On-chip operation requires high Néel tempera-

tures. AFM materials discussed in this thesis, such as MnIr, MnRh, MnNi, MnPd, MnPt,

and CrSb, have high Néel temperatures [13–16], which makes them suitable candidates for

on-chip applications.
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1.2 Organization

The rest of the dissertation is organized as follows. Chapter 2 investigates the

magnetic anisotropy energy in Mn-based antiferromagnets as a function of strain. Chapter

3 analyzes how filling, strain, and electric field affect the magnetic anisotropy energy in the

antiferromagnetic CrSb. In Appendix A, the calculated lattice constants and magnetoelastic

anisotropy constants are plotted. Also, the determination of Young’s moduli of MnX alloys

is discussed. Appendix B privides Python scripts for calculations of the magnetic anisotropy

energy as a function of applied strain and electric field. In Appendix C, the calculation of

Bader charge, planar averaged Hartree potential, and charge density is discussed.
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Chapter 2

Strain control of the Néel vector in

Mn-based antiferromagnets

2.1 Introduction

There has been a rapidly increasing interest in the use of antiferromagnetic (AFM)

materials for use as active device elements [10, 17, 18]. AFMs are insensitive to parasitic

electromagnetic and magnetic interference. The dipolar coupling is minimal, since there is

no net magnetic moment. Their lack of macroscopic magnetic fields allows AFM devices and

interconnects to be highly scaled with reduced cross talk and insensitivity to geometrical

anisotropy effects. AFM resonant frequencies and magnon velocities are several orders of

magnitude higher than those in ferromagnetic materials, and these velocities correlate with

similarly higher switching speeds [8, 10, 19]. AFM metals and insulators are plentiful, and
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Figure 2.1: Antiferromagnetic L10-type Mn alloy structures. Mn atoms are the purple
spheres with the spin vectors, and the gold spheres indicate the Ir, Rh, Ni, Pd, or Pt atoms.
(a) In-plane equilibrium spin texture of MnIr, MnRh, MnNi, and MnPd. (b) Out-of-plane
equilibrium spin texture of MnPt.

many have Néel temperatures well above room temperature, a requirement for compatibility

with on-chip temperatures in current Si integrated circuits.

The high Néel temperatures of the Mn-based equiatomic alloys such as MnIr,

MnRh, MnNi, MnPd, and MnPt make them suitable candidates for on-chip applications

[17]. Extensive research has been conducted on the electronic [14, 20–23], magnetic [14, 15,

20, 23], and elastic properties [24, 25] of these materials. The spins on the Mn atoms are

antiferromagnetically coupled with each other in the basal plane, and each plane is coupled

ferromagnetically as shown in Fig. 3.1.

The positive attributes of speed, scaling, and robustness to stray fields are ac-

companied by the challenges of manipulating and detecting the antiferromagnetic states.

There are several methods to control the magnetic properties of AFM materials such as
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with exchange bias [17], the use of electric current [26], and strain induced by a piezoelec-

tric material [27–30]. The recent experimental demonstration of strain control of the Néel

vector in MnPt [30], provides timely motivation for a theoretical study of strain-meditated

magnetic anisotropy in the MnX AFM materials. Density functional theory (DFT) is used

to analyze the effect of strain on the magnetic anisotropy. The effectiveness of strain control

is quantified by a metric of efficiency and by calculation of the magnetostriction coefficients.

2.2 Method

Table 2.1: Calculated structure and local magnetic moment of the L10-type MnX alloys in
the absence of strain.

a (Å) b (Å) c (Å) µMn (µB)

MnIr 3.84 3.84 3.64 2.8

MnRh 3.85 3.85 3.62 3.1

MnNi 3.62 3.62 3.58 3.2

MnPd 3.99 3.99 3.69 3.8

MnPt 3.98 3.98 3.71 3.7

First principles calculations are performed as implemented in the Vienna Ab initio

Simulation Package (VASP) [31] to investigate the effect of strain on the magnetic anisotropy

of L10-ordered bulk MnIr, MnRh, MnNi, MnPd, and MnPt. Projector augmented-wave

(PAW) potentials [32] and the generalized gradient approximation (GGA) parameterized by

Perdew-Burke-Ernzerhof (PBE) were employed [33]. Depending on the materials, different

cut-off energies (typically ranging from 420 eV to 450 eV) and k-points grids were used
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in order to ensure the total energy converged within 10−7 eV per unit cell. The initial

equilibrium structure consists of a tetragonal unit cell where the fractional coordinates of

Mn atoms are (0, 0, 0) and (0.5, 0.5, 0), and those of the X atoms are (0.5, 0, 0.5) and (0,

0.5, 0.5). Compressive or tensile stress along the a axis is applied to each structure, and

the structure is fully relaxed along the b and c axes (biaxially) until all forces on each atom

are less than 10−4 eVÅ−1. The relaxed lattice constants for each applied strain are shown

in Appendix A Fig. A.1. The strain is defined as, strain = (a − a0)/a0 × 100%, where a

and a0 are the lattice constants with and without strain, respectively. With the relaxed

structure, the spin-polarized self-consistent calculation is performed to obtain the charge

density. Finally, the magnetic anisotropy energies are determined by calculating the total

energies for different Néel vector directions including spin orbit coupling. Table 2.1 shows

the lattice constants and the magnetic moments of the Mn site in MnX without strain.

All of the values are very close to those from previous results [24, 25]. The local magnetic

moments of the X site are zero for all materials.

2.3 Results and Discussion

Figures 2.2–2.6 show the differences in the total energies as a function of the strain

for MnIr, MnRh, MnNi, MnPd, and MnPt, respectively, where Eabc is the ground state

energy with the Néel vector along the [abc] direction. The reference energy levels from each

figure, which are indicated by the solid black lines, are E001 for MnPt and E110 for the other

materials. The reference energies are the lowest energy state, which means MnIr, MnRh,

MnNi, and MnPd have in-plane anisotropy and MnPt has out-of-plane anisotropy without

7
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Figure 2.2: MnIr energy differences Eabc −E110 for the 3 different orientations of the Néel
vector as indicated by the labels.

strain. This is consistent with experimental results [15]. To show the energy differences

more clearly as the strain changes, the reference level is taken at each value of the applied

strain. At zero strain, there is no energy difference between E100 and E010 because of the

symmetry of all of the materials.

Figures 2.2–2.5 show that sweeping the strain from negative (compressive) to pos-

itive (tensile) causes a 90◦ rotation of the Néel vector in the ab-plane for the four materials

MnIr, MnRh, MnNi, and MnPd. However, the alignment of the Néel vector with compres-

sive or tensile strain depends on the specific material. MnIr and MnRh behave like magnets

with a positive magnetostriction coefficient, since tensile strain along [100] causes the Néel

vector to align in the [100] direction. On the other hand, MnNi and MnPd behave like
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Figure 2.3: MnRh energy differences Eabc−E110 for the 3 different orientations of the Néel
vector as indicated by the labels.
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Figure 2.4: MnNi energy differences Eabc−E110 for the 3 different orientations of the Néel
vector as indicated by the labels.
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Figure 2.5: MnPd energy differences Eabc−E110 for the 3 different orientations of the Néel
vector as indicated by the labels.
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Figure 2.6: MnPt energy differences Eabc−E001 for the 3 different orientations of the Néel
vector as indicated by the labels.
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magnets with a negative magnetostriction coefficient, since tensile strain along [100] causes

the Néel vector to align in the [010] direction [34].

MnPt is unique among the 5 materials. In equilibrium, in the absence of strain,

the Néel vector has perpendicular anisotropy. Under compressive (negative) strain along

the [100] axis, the Néel vector remains out-of-plane. Under tensile strain along [100], the

Néel vector switches from out-of-plane [001] to in-plane aligning in the [010] direction.

To understand the physical origin of 90◦ rotation of the Néel vector in MnPt from

out-of-plane to in-plane under the tensile strain, the d-orbital resolved band structures with

and without strain are plotted in Figure 2.7. Under the second order perturbation theory,

the difference between two total energies with different Néel vector orientations can be

approximated as [35]

E010 − E001 ∝ ξ2
∑
o,u

∣∣∣〈Ψ↓
o

∣∣∣L̂z

∣∣∣Ψ↓
u

〉∣∣∣2−∣∣∣〈Ψ↓
o

∣∣∣L̂x(y)

∣∣∣Ψ↓
u

〉∣∣∣2
E↓

u−E↓
o

, (2.1)

where Ψo(Ψu), Eo(Eu), and ξ are the (un)occupied Bloch states, corresponding eigenval-

ues, and the spin-orbit coupling constant, respectively. L̂z and L̂x(y) are the out-of plane

and in-plane components of the orbital angular momentum operator, and ↑ and ↓ denote

spin-up and spin-down. The non-zero matrix elements in the Eq. (2.1) are 〈dxz|L̂z|dyz〉,〈
dx2−y2

∣∣L̂z∣∣dxy〉, 〈dz2 |L̂x|dyz〉, 〈dxy|L̂x|dxz〉, 〈dx2−y2∣∣L̂x∣∣dyz〉, 〈dz2 |L̂y|dxz〉, 〈dxy|L̂y|dyz〉,
and

〈
dx2−y2

∣∣L̂y∣∣dxz〉. The largest contributions to Eq. (2.1) come from pairs of occupied

and unoccupied states at the vicinity of the Fermi level. As shown in the Figure 2.7(a),

without strain, there are strong spin-orbit coupling between the occupied d↓yz and unoccu-

pied d↓xz orbitals through L̂z operator at the Z point. Since these orbitals almost touch the

Fermi level, the coupling between them gives rise to the strongest contributions to the first

11



Figure 2.7: The d-orbital resolved bandstructures of MnPt (a) without strain and (b)
with the applied strain of 4%. For both (a) and (b), the top and bottom panels represent
up-spin and down-spin band structures, respectively. The colors indicate the different d-
orbitals composition, as given by the legends. The line thicknesses indicate the relative
weights.
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Figure 2.8: MnIr strain energies and efficiency versus strain. (a) The energy difference
between two different Néel vector orientations (black) as shown by the left axis, and the
change in total energy (red) as shown by the right axis. (b) The efficiency as a function of
the strain.

term in the Eq. 2.1, which in this case is the perpendicular magnetic anisotropy. However,

as shown in the Figure 2.7(b), the tensile strain opens a gap of 100 meV between these or-

bitals so that the contributions from them reduce, which results in the in-plane anisotropy.

For applications, it is useful to quantify the efficiency with which strain rotates the

Néel vector and to determine the magnetostriction coefficient from the ab initio calculations.

The internal efficiency is defined as

Efficiency(%) =

∣∣∣∣ Eabc − Ea′b′c′
Etotal − Etotal(0)

∣∣∣∣× 100, (2.2)

where the total energies Eabc and Ea′b′c′ are defined in the same way as above, i.e. the

total energies in the presence of strain with the Néel vector oriented along [abc] or [a′b′c′],
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Figure 2.9: MnRh strain energies and efficiency versus strain. (a) The energy difference
between two different Néel vector orientations (black) as shown by the left axis, and the
change in total energy (red) as shown by the right axis. (b) The efficiency as a function of
the strain.

respectively. The denominator in the Eq. (2.2) is the total energy change induced by the

strain. For MnIr, MnRh, MnNi, and MnPd, Eabc and Ea′b′c′ are E100 and E010, respectively.

For MnPt, Eabc and Ea′b′c′ are E010 and E001, respectively. The numerator and denominator

of Eq. (2.2) are plotted as a function of strain in Figs. 2.8-2.12(a), and the resulting

efficiencies are plotted as a function of strain in Figs. 2.8-2.12(b). The changes in the

total energies, shown as red curves in Figs. 2.8-2.12(a), are parabolic so that they can be

considered as the strain energy proportional to the square of the applied strain. On the

other hand, the differences between two energies (the black curves in Figs. 2.8-2.12(a)) are

approximately linear under small strain (< 1%). Therefore, the efficiency decreases sharply

as the amount of strain increases. At 0.5% strain, the highest efficiency for 90◦ in-plane

rotation of the Néel vector is 20% for MnIr. For MnRh, MnNi, and MnPd, the efficiencies

are smaller and equal to 3.5%, 1.5%, and 1.4%, respectively. To rotate the Néel vector from
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Figure 2.10: MnNi strain energies and efficiency versus strain. (a) The energy difference
between two different Néel vector orientations (black) as shown by the left axis, and the
change in total energy (red) as shown by the right axis. (b) The efficiency as a function of
the strain.

out-of-plane to in-plane in MnPt, a positive, tensile strain must be applied. The efficiency

of this process at +0.5% strain is 6%.

Using the data above, the magnetostriction coefficients (λs), which are widely used

in ferromagnets, are calculated. The magnetostriction coefficient is defined as

λs(ppm) =
2Kme

3Y (εbb − εaa)
, (2.3)

where Y and (εbb − εaa) are Young’s modulus and strain, respectively [36]. Kme is the

magnetoelastic anisotropy constant, which is defined as the difference of the magnetic

anisotropy energies with and without strain, and the magnetic anisotropy energy is defined

as E100 − E010. Plots of E100 − E010 as a function of strain are shown in Appendix A Fig.

A.2. Young’s moduli for all MnX alloys except MnIr were adopted from previous calculation

results [24, 25], and the value for MnIr was determined as described in the Appendix A.

For simplicity, we disregard εbb which represents a negligible change in the lattice constant

along the b-axis caused by the applied strain along a. The results for λs are summarized in
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Figure 2.11: MnPd strain energies and efficiency versus strain. (a) The energy difference
between two different Néel vector orientations (black) as shown by the left axis, and the
change in total energy (red) as shown by the right axis. (b) The efficiency as a function of
the strain.

the Table 2.2. As expected, MnIr and MnRh have positive values of λs, and MnNi, MnPd,

and MnPt have negative values. Also, the magnitudes of the magnetostriction coefficients

follow the magnitudes of the efficiencies. The magnetostriction coefficients of the MnX

alloys are comparable with the ones from ferromagnets [37–41], which suggests that strain

can be used to control the magnetic anisotropy of these antiferromagnetic materials.

Table 2.2: Calculated magnetrostriction coefficients of the L10-type MnX alloys.

MnIr MnRh MnNi MnPd MnPt

λs (ppm) 241 43 -15 -17 -196

2.4 Summary and Conclusions

In summary, the Néel vectors of MnIr, MnRh, MnNi, and MnPd can be rotated

90◦ in the basal plane by applying in-plane strain. MnIr and MnRh behave like magnets
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Figure 2.12: MnPt strain energies and efficiency versus strain. (a) The energy difference
between two different Néel vector orientations (black) as shown by the left axis, and the
change in total energy (red) as shown by the right axis. (b) The efficiency as a function of
the strain.

with positive magnetostriction coefficients, since their Néel vectors align with tensile strain.

MnNi and MnRh behave like magnets with negative magnetostriction coefficients, since

their Néel vectors align with compressive strain. The internal efficiency of this process is

highest for MnIr and it is equal to 20% at 0.5% strain. MnPt is unique among the 5 alloys

in that its Néel vector aligns out-of-plane along the [001] axis in equilibrium. Applying a

tensile strain along [100] rotates the Néel vector from out-of-plane [001] to in-plane [010].

The efficiency of this process at 0.5% tensile strain is 6%. Under compressive strain along

[100], the Néel vector of MnPt remains out-of-plane [001]. The magnitudes of the calculated

magnetostriction coefficients are comparable with those of ferromagnets, and they follow

the same trends as the calculated efficiencies. For in-plane rotation of the Néel vector, MnIr

has the highest magnetostriction coefficient of 241 ppm. The magnetostriction coefficient

for out-of-plane rotation in MnPt is -196 ppm. These results suggest that strain can be an

effective mechanism to control the Néel vectors in this family of antiferromagnets.
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Chapter 3

Effects of filling, strain, and

electric field on the Néel vector in

antiferromagnetic CrSb

3.1 Introduction

Antiferromagnetic (AFM) materials are of great interest for future spintronics

applications [17]. Their resonant frequencies are much higher than those of ferromagnetic

(FM) materials, which allows them to be used in the THz applications [8–10] and ultrafast

switching [12]. However, it is challenging to control and detect the antiferromagnetic states.

There are several methods to control the spins in AFMs such as via exchange bias with a

proximity FM layer [42] and the use of electric current by Néel spin-orbit torque [26].

The latter method has been extensively studied, although the results have recently been
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questioned [43, 44]. Controlling the Néel vector without electric current is promising for

ultra low power applications, since it has been predicted that magnetization reversal can

be achieved with atto joule (aJ) level energy consumption [11]. Electric field control of

the magnetic properties of AFMs can be realized indirectly through the mechanism of

mechanical strain created from a piezoelectric substrate [1, 29, 30, 45–48] or a combination

of strain plus exchange spring [49]. It can also be realized directly through the mechanism of

voltage controlled magnetic anisotropy (VCMA). This mechanism has been experimentally

and theoretically studied for FMs [50–71], and the experimental results have been recently

reviewed. [72] Technological applications have been described and analysed [73–75]. More

recently, several theoretical studies of VCMA in the AFM materials FeRh, MnPd, and

MnPt have been reported [12,76–78].

CrSb crystallizes in the hexagonal NiAs-type structure, and the spins on the Cr

atoms couple ferromagnetically within the hexagonal plane and antiferromagnetically along

the hexagonal axis as shown in Fig. 3.1(a). In the ground state, the Néel vector aligns

along the hexagonal axis ([0001] direction), so that it has perpendicular magnetic anisotropy

(PMA). The bands near the Fermi energy are composed of the d-orbitals of the Cr atoms,

and these bands give rise to a large peak in the density of states near the Fermi energy.

[79–82] The Sb atoms provide significant SOC. CrSb has a high Néel temperature (705 K)

making it suitable for on-chip applications [16]. Recently, CrSb has been used to control

the magnetic textures and tune the surface states of topological insulators [83–85].

We examine three different physical mechanisms that alter the magnetic anisotropy

of bulk and thin-film CrSb: (i) strain, (ii) electron filling, and (iii) electric field. Density
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a b

Figure 3.1: (a) Bulk antiferromagnetic CrSb crystal structure and spin texture in the
ground state. Blue and brown spheres indicate the Cr and Sb atoms, respectively. (b) 1.1
nm thin film with a thickness of 2 unit cells. (c) The same thin film as in (b) but with
the top Sb layer removed. The numbers index the Cr atoms, and the arrow indicates the
direction of positive applied external electric field for VCMA calculations.

functional theory (DFT) calculations of the magnetostriction coefficient, strain coefficient,

filling coefficient, and VCMA coefficient characterize the effectiveness of the three methods

in modifying the MAE.

3.2 Methods

We perform first principles calculations as implemented in the Vienna Ab initio

Simulation Package (VASP) [31] to investigate the effects of strain, electric field, and band

filling on the magnetic anisotropy of CrSb. Projector augmented-wave (PAW) potentials

[32] and the generalized gradient approximation (GGA) parameterized by Perdew-Burke-

Ernzerhof (PBE) are employed [33]. A cut-off energy of 500 eV and 8 × 8 × 8 Γ-centered

k-point grid were used to make sure the total energy converged within 10−7 eV per unit

cell. A GGA+U implementation was also used to reproduce the magnetic moment on the
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Cr atom corresponding to the experimental values [86]. We used Ueff = 0.25 eV for the Cr

atom where Ueff = U − J .

From the initial bulk structure, uniaxial strain along the x-axis is applied and the

structure is fully relaxed along y and z axes until all forces on each atom are less than 10−3

eVÅ−1. Here, the x and z axes are parallel to the a and c lattice vectors of the hexagonal

unit cell shown in the Fig. 3.1. The strain is defined as ε = (a−a0)/a0×100% where a and

a0 are the lattice constants along x with and without strain, respectivley. The calculated

lattice constants without strain are a0 = 4.189 Å and c0 = 5.394 Å, which are close to those

from experiment [86].

To obtain the charge density, a spin-polarized self-consistent calculation is per-

formed with the relaxed structure for each strain. Using the obtained charge densities, E‖

and E⊥, are calculated in the presence of SOC where E‖ and E⊥ are the total energies per

unit cell with the Néel vector along [1000] and [0001] directions, respectively. The magnetic

anisotropy energy (MAE) is defined as EMAE = E‖ − E⊥. For uniformity of comparison

between bulk and thin-film structures, all values of EMAE are reported per bulk unit cell

(u.c.) (i.e. per two Cr atoms). For MAE calculations, a denser k-point grid (16 × 16 ×

16) is used for accuracy. The same procedures are performed to investigate the effect of

electron filling on the MAE, and the structures are optimized for each number of electrons

in the unit cell.

Charge transfer between the Cr and Sb ions is analyzed by calculating both the

Bader charges [87] and the planar averaged volumetric charge densities [88]. The “net

electronic charge” on each atom is defined as the number of valence electrons for a given
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atom minus the Bader charge on the atom in units of |e|. Thus, a depletion of electrons

is a positive electronic charge. The Bader charges are used to understand the effect of

truncation of the bulk to a slab and the application of an electric field. For thin-films,

the planar averaged volumetric charge densities at different electric fields are calculated by

averaging the three-dimensional charge density over the x− y plane for fixed positions z on

the c axis.

To investigate the effect of strain and electric field on the MAE of thin-film CrSb,

we consider slab structures consisting of 2 and 3 unit cells along the c-axis (∼ 1.1 nm and 1.6

nm). A 15 Å vacuum layer is included. The stability of two different surface terminations is

quantified by calculating the cohesive energy defined as Ecoh = (Ecrystal−Eisolated)/N where

N is the total number of atoms, Ecrystal is the total energy of the relaxed slab structure, and

Eisolated is the sum of the energies of the individual atoms. For the thin-film structures, a

23 × 23 × 1 Γ-centered k-point grid with a 500 eV cutoff energy is used to ensure the same

convergence criteria as the bulk structure. The structures are fully relaxed until all forces on

each atom are less than 10−3 eVÅ−1 without changing the volume. Vertical external electric

fields are applied to the slab by introducing a dipole layer in the middle of the vacuum layer.

The dipole layer also corrects for the built in dipole moment in the CrSb slab structures to

prevent interactions between the artificial periodic images [89, 90]. The equilibrium charge

density is obtained by performing a spin-polarized self-consistent calculation without the

electric field. Then, the charge densities with increasing applied electric fields along c-axis

are obtained by relaxing the charges from the calculation with the previous electric field.

For each electric field, the MAE is calculated using a 46× 46× 1 k-point grid.
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Figure 3.2: The d-orbital resolved bandstructures (without SOC) of bulk CrSb when the
electron number is (a) 22 (equilibrium) and (b) 21. For both (a) and (b), the top panel
is for spin up, and the bottom panel is for spin down. The colors indicate the different
d-orbitals, as indicated by the legends. The line thicknesses indicate the relative weights.
(c) The bandstructure of CrSb in equilibrium with SOC.
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3.3 Results and Discussion

In Fig. 3.2, the electronic bandstructure of bulk CrSb is shown. Fig. 3.2(a) is the

d-orbital resolved bandstructure for a Cr atom in equilibrium in the absence of SOC. The

colors denote different orbitals as indicated by the legends, and the line thicknesses denote

the relative occupations. The spin-up bands are shown in the top panel, and the spin-down

bands are shown in the bottom panel. Fig. 3.2(c) shows the equilibrium bandstructure in

the presence of SOC.
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Figure 3.3: MAE as a function of applied strain for (a) the bulk crystal and for the
asymmetric (b) 1.1 nm and (c) 1.6 nm thin films.
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The effect of spin-orbit coupling (SOC) on the bandstructure is relatively large.

A comparison of Fig. 3.2(a) to 3.2(c) shows that the SOC breaks the spin degeneracy

throughout much of the Brillouin zone and creates anti-crossings at a number of band-

crossing points. The largest band splitting occurs at Γ. The two bands that touch at 0.2 eV

in the absence of SOC are split by ∼ 0.5 eV and the hole like band is pushed down below

EF .

Fig. 3.3(a) shows EMAE plotted as a function of applied strain for bulk CrSb.

The value at zero strain is EMAE = 1.2 meV/u.c. The positive sign of the MAE means

that the Néel vector aligns along the c-axis (out-of-plane) independent of the strain. The

monotonic increase in the MAE indicates that CrSb behaves like a magnet with a negative

magnetostriction coefficient, since the tensile strain favors out-of-plane anisotropy. The

magnetostriction coefficient (λs) is defined as

λs(ppm) = −2Kme(1− v2)

3Eε
, (3.1)

where v, E, and ε are the Poisson’s ratio (0.288), Young’s modulus (78.3 GPa), and strain,

respectively [91]. The magnetoelastic anisotropy constant, Kme, is calculated from the

difference between two MAEs with and without strain (i.e., EMAE(ε) − EMAE(0)). The

parameters v and E are taken from a previous study [92]. The calculated λs for small

strain (between −1 % to 1 %) is −19.8 ppm. CrSb has a negative value of λs, and the

magnitude of λs is similar to that of MnNi and MnPd [1]. We also define a strain coefficient

as αε = dEMAE/dε evaluated at ε = 0. The value for bulk CrSb is αε = 0.013 meV/%strain.

The response of the bulk MAE as a function of the electron number in the unit

cell is shown in Fig. 3.4. In equilibrium, the unit cell has 22 valence electrons, which
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is denoted by the vertical line in the figure. The MAE decreases most rapidly when the

CrSb is depleted, and it changes sign when the hole doping reaches 0.75/u.c. For electron

depletion, the filling coefficient, defined as αn = dEMAE/dn, is 2.92 meV, where n is the

electron number per unit cell.
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Figure 3.4: MAE of bulk crystal versus the number of electrons in the unit cell.

To understand the physical origin of the transition due to charge depletion, we

consider the d-orbital resolved band structures for a Cr atom plotted for 2 different electron

numbers in the unit cell, 22 (equilibrium) in Fig. 3.2(a) and 21 in Fig. 3.2(b). Within

second-order perturbation theory, the MAE is approximately expressed as [35]

MAE ∝ ξ2
∑
o,u

∣∣∣〈Ψ↑
o

∣∣∣L̂z

∣∣∣Ψ↑
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(3.2)
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where (Ψu)Ψo, (Eu)Eo, and ξ are the (un)occupied states, (un)occupied eigenvalues, and

the spin-orbit coupling constant, respectively. L̂z and L̂x(y) are the out-of plane and in-

plane components of the orbital angular momentum operator, and ↑ and ↓ denote spin-

up and spin-down. The non-zero matrix elements in the Eq. (3.2) are 〈dxz|L̂z|dyz〉,〈
dx2−y2

∣∣L̂z∣∣dxy〉, 〈dz2 |L̂x|dyz〉, 〈dxy|L̂x|dxz〉, 〈dx2−y2∣∣L̂x∣∣dyz〉, 〈dz2 |L̂y|dxz〉, 〈dxy|L̂y|dyz〉,
and

〈
dx2−y2

∣∣L̂y∣∣dxz〉. The largest contributions to Eq. (3.2) come from pairs of nearly de-

generate occupied and unoccupied states near the Fermi level. In equilibrium (Fig. 3.2(a)),

the main contributions to the MAE come from the spin-orbit coupling between occupied d↑xz

and unoccupied d↑yz states at the K point and near the Γ point, and between occupied d↓xy

and unoccupied d↓
x2−y2 states near the Γ point. All of these states couple through the L̂z

operator, which results in the positive MAE value (out-of-plane anisotropy). When CrSb

is depleted (see Fig. 3.2(b)), the entire band structure moves upward so that the main

contributor states of the perpendicular anisotropy become unoccupied. This reduces the

value of the MAE, and eventually reverses the sign for n = 21.25.

Below, we will compare the sensitivity of the bulk crystal MAE to electron filling

with the sensitivity of the thin-film MAE to applied electric field. Such a comparison

requires a common metric based on a common physical quantity that governs the MAE.

Assuming that the common driving mechanism is the population change of the magnetic

Cr atoms [62], we determine a slightly different parameter,

αn̄Cr = dEMAE/dn̄Cr, (3.3)

where n̄Cr is the average electron number on the Cr atoms as determined from the Bader

charges. Due to the strongly ionic nature of the Cr-Sb bond, only ∼ 1/3 of the hole doping
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goes to the Cr sublattice. The equilibrium charge resulting from a transfer of ∼ 0.7 electrons

from the Cr atom to the Sb atom is shown in Fig. 3.5(a), and the change in charge at a

filling of -0.5 electrons / u.c. is shown in Fig. 3.5(b). The filling of -0.5 electrons / u.c.

corresponds to -0.07 electrons / Cr atom. Using the values from Fig. 3.5(b), for hole doping,

αn̄Cr = 16.2 meV.

We now consider thin-film slabs with thicknesses of 2 and 3 unit cells corresponding

to 1.1 nm and 1.6 nm, respectively. For the thinner slab, the cohesive energies are calculated

for a 7 atomic layer structure of alternating Cr and Sb layers terminated on both ends with

a Cr layer and for a 8 atomic layer structure (2 unit cells) terminated on one end with Cr

and on the other with Sb. The cohesive energies of the 7 and 8 atomic layer structures are

-3.328 eV and -3.517 eV, respectively. For the thicker slab, cohesive energies are calculated

for an 11 atomic layer structure and a 12 atomic layer structure, and the cohesive energies

are -3.522 eV and -3.636 eV, respectively. Thus, the slab strucures with an integer number

of unit cells such that one face is a Cr layer and the opposing face is an Sb layer are the most

stable, and they are the ones that we will consider first. We will refer to these structures

as asymmetric slabs.

In these asymmetric slabs, inversion symmetry is broken, since one end is termi-

nated with a Cr layer and the other end is terminated with a Sb layer. Thus, these thin films

are also Janus structures. The two unit cell asymmetric thin-film is shown in Fig. 3.1(b).

Below, results for strain and VCMA coefficients are presented for both the 2 and 3 unit

cell asymmetric thin-films, and the in-depth microscopic analysis of the charge, magnetic

moments, and electronic structure focuses on the 2 unit cell asymmetric thin-film.
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In the asymmetric thin films, there is a net polarization of electron charge between

the positively charged Cr layer on the bottom and the negatively charged Sb layer on the

top. The excess charges on each atom, as determined from the Bader charges, in the bulk

and in the 2 unit-cell slab are shown in Fig. 3.5(a,c), and it is clear that, in the slab, the

charge transfer is no longer balanced layer-by-layer. The net charge polarization gives rise

to a built-in electric field that alternates positively and negatively within the slab, but, its

average value points from the positive Cr layer on the bottom to the negative Sb layer on

the top. This built-in electric field results in a built-in potential across the slab of 1.7 eV

as shown by the plot of the equilibrium planar averaged Hartree potential in Fig. 3.5(d).
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Figure 3.5: The net electronic charges on the Cr and Sb atoms, calculated from the Bader
charges, in units of |e|, of (a) bulk and (c) 1.1 nm thin film CrSb in equilibrium. (b)
Change in net electronic bulk charge due to hole doping of 0.5 holes / unit cell. (d) The
planar-averaged Hartree potential of the 1.1 nm thin film CrSb in equilibrium. (e) Change
in the net electronic charges induced by the electric field (indicated in the legend) with
the reference charge taken from equilibrium charges shown in (c). Note that a net positive
electronic charge corresponds to a depletion of the electron density.

The truncation of the bulk to a finite slab results not only in a loss of local balance

between the positive and negative charges, but also in a global imbalance of the magnetic

moments of the Cr ions. In other words, the cancellation of magnetic moments between

alternating layers of Cr is no longer exact, and a small net magnetic moment exists in the
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slab. The magnetic moments on each Cr atom are listed in the ‘µCr,Sb’ column of Table

3.1 with the numbering of the Cr atoms corresponding to that shown in Fig. 3.1(b). The

magnitudes of the magnetic moments in the Cr layers monotonically decrease from bottom

to top as the Cr atoms approach the Sb terminated end of the slab. The breaking of the

spin degeneracy is readily apparent in the bandstructure of the slab shown in Fig. 3.6(a).

The degeneracy between the up-spin and down-spin bands is broken, and the CrSb slab

has become a ferrimagnet (FiM). The breaking of the spin degeneracy of the AFM states

in a finite slab of a layered AFM is explained by a simple chain model with different end

terminations described in [93]. The wavefunctions of a pair of degenerate AFM states are

weighted differently on alternate atoms of the magnetic lattice. Thus, the coupling of the

two states to an end atom is different, and this different coupling breaks the degeneracy of

the two states.

Table 3.1: Magnetic moment, in units of µB, for each Cr atom in the bulk and thin films of
Fig. 3.1 with spin-orbit coupling. The indices on the Cr atoms correspond to those in Fig.
3.1. µCr,Sb corresponds to the thin film of Fig. 3.1(b) with an integer number of unit cells,
and µCr,Cr corresponds to the thin film of Fig. 3.1(c) in which the top Sb layer is removed.

Atom µbulk µCr,Sb µCr,Cr

Cr1 3.035 3.763 3.905

Cr2 −3.035 −3.190 −2.994

Cr3 3.116 2.994

Cr4 −2.889 −3.904
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Figure 3.6: (a) Spin resolved bandstrucure of the 1.1 nm CrSb thin-film in equilibrium.
(b,c) The d-orbital resolved bandstructures of the 1.1 nm CrSb thin-film under electric fields
of (b) −1 V/nm and (c) 3.2 V/nm. The line colors indicate the d-orbital composition as
given by the legends, and the line thicknesses indicate the relative weights.
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A third result of truncating the bulk to a slab is that the MAE decreases. For the

1.1 nm slab, the MAE is reduced by a factor of 15 from 1.2 meV/u.c. to 0.079 meV/u.c.

(0.17 erg/cm2), and for the 1.6 nm slab, the MAE is reduced by a factor of 2.1 to 0.58

meV/u.c. (1.85 erg/cm2). Also, the sensitivity of the MAE to strain increases. The strain

coefficients of the 1.1 and 1.6 nm slabs (αε) increase from 0.013 meV/%strain in the bulk

to 0.068 meV/%strain and 0.062 meV/%strain, respectively, where the energies are per

bulk unit cell (2 Cr atoms). The combined result of the reduced MAE and increased strain

coefficient is that a 1.5% uniaxial compressive strain along [1000] direction in the 1.1 nm

thin film causes a 90◦ rotation of the Néel vector from out-of-plane to in-plane as shown in

Fig. 3.3(b).

A fourth result is that the MAE also becomes sensitive to an external electric field

as shown in Fig. 3.7. In other words, the thin slab exhibits intrinsic VCMA. Typically

VCMA is found when a magnetic layer is placed in contact with a heavy-metal layer that

provides SOC. However, the Sb layers provide large SOC, and the terminating Sb layer

serves as the HM layer, such that the CrSb slab has intrinsic VCMA. The MAE decreases

linearly as the electric field is increased, and, for the 1.1 nm slab, it changes sign at 3.2

V/nm, which indicates that the Néel vector rotates 90◦ from out-of-plane to in-plane.
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(a)

(b)

2L

3L

Figure 3.7: MAEs of (a) 1.1 nm and (b) 1.6 nm films as a function of applied electric field.
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(a)

(b)

Ɛext

Ɛext

-1 V/nm

3.2 V/nm

Figure 3.8: The change in the planar-averaged electronic charge (red) and planar-averaged
Hartree energy (black) of 1.1 nm thin film CrSb with an electric field of (a) -1 V/nm and (b)
3.2 V/nm. The arrow indicates the direction of applied electric field. Note that a positive
electronic charge corresponds to a depletion of the electron density.

The standard metric describing the sensitivity of the MAE to the applied electric

field is given by the VCMA coefficient defined as

β =
dEsMAE

dEI
=

dEsMAE

dEext/εI
, (3.4)

where EsMAE is the MAE per unit area of the slab, Eext is the external electric field and EI

and εI are the electric field and the relative dielectric constant in the insulator, repectively.
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In a typical experiment, the insulator would be an oxide layer with εI > 1. In our case,

the insulator is the vacuum, so that εI = 1 and EI = Eext. The values of β, evaluated at

Eext = 0 V/nm, are −76.4 fJV−1m−1 for the 1.1 nm film and −55.3 fJV−1m−1 for the 1.6

nm slab.

The calculated magnitudes of β are comparable with many of the experimentally

measured values of β from heavy metal/FM/MgO heterostructures, [55,57–59,61,63,65,66]

with magnitudes ranging from 65 fJV−1m−1 in a Ta/Co0.25Fe0.55B0.20/MgO structure [61]

to 139 fJV−1m−1 in a Ru/Co2FeAl/MgO structure. [63] However, they are considerably

smaller than the values of 370 fJV−1m−1 and 1043 fJV−1m−1 measured in Cr/Fe/MgO

and Ir/CoFeB/MgO structures, respectively. [64,67] A lengthy table of experimental values

compiled from the literature is provided in a recent review [72]. Theoretical studies of

AFM materials have calculated magnitudes of β both larger and smaller than the values for

CrSb. For a G-AFM FeRh/MgO bilayer, the magnitude of β was in the range of 130 to 360

fJV−1m−1 depending on the sign of the electric field, the strain, and the termination layer

of either Fe or Rh [76]. A value of 22.6 fJV−1m−1 was calculated for Pt/MnPd with vacuum

as the dielectric [77]. VCMA calculations of a MgO/MnPt/MgO slab found magnitudes of

170 fJV−1m−1 and 70 fJV−1m−1 depending on whether the MnPt layer was terminated on

both ends with either Mn or Pt, respectively [78].

To understand which Cr atoms contribute to the VCMA effect, we inspect the

change in charge of the Cr atoms in response to the applied field. The change in charge

with applied electric field, plotted in Figs. 3.5(e) and 3.8, shows that, among the Cr atoms,

the only significant change in charge occurs on Cr1. This is to be expected, since the electric
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field is screened by the first and last atomic layers from the interior of the CrSb metal. The

first atomic layer is Cr and the last is Sb, so that an applied field creates a net change in

charge on the Cr sublattice with the charge being transferred to the Sb sublattice.

The sensitivities of the MAE of the thin film slabs to the average charging of the

Cr atoms due to an applied electric field is comparable to the sensitivity of the bulk MAE

to the filling of the Cr atoms. The values of αn̄Cr evaluated at Eext = 0 are 19.7 meV and

13.9 meV for the 2 layer and 3 layer slabs, respectively. For comparison, the bulk value

for hole doping is αn̄Cr = 16.2 meV. Thus, the sensitivity of the MAE per unit cell to the

change in the average charge on the Cr atoms lies in the range of 13 - 20 meV for both of

the slabs and the bulk.

To elucidate the physical origin of switching mechanism in the two layer slab,

the d-orbital resolved band structures for the Cr1 atom under different electric fields are

plotted in Fig. 3.6(b,c). At the electric field of −1 V/nm, the major contribution of the

perpendicular anisotropy comes from the spin-orbit coupling between the unoccupied d↑xz

and occupied d↓
x2−y2 states through L̂y operator in the region 1. Although the states in the

region 1 are coupled through the in-plane angular momentum operator, the contribution

of the MAE is positive since they are from different spin channels. In the region 2, the

occupied d↑xy states are coupled with unoccupied d↑xz states through L̂x, which contributes

the in-plane anisotropy. As the external field increases (see Fig. 3.6 (c)), the unoccupied

d↑xz states in the region 1 move away from the Fermi level by 18 meV, which results in the

reduction of the out-of-plane anisotropy, since the denominator in the Eq. 3.2 increases. In
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addition, in the region 2, the occupied d↑xy states move closer to the Fermi energy by 67

meV as the electric field increases so that the in-plane anisotropy increases.

39



(d)

(a)

(b)

(c)

Figure 3.9: The net electronic changes on the Cr and Sb atoms from Bader charge cal-
culations in the units of |e| in the symmetric thin film. (b) Change in the net electronic
charges induced by different electric fields (indicated in the legend) with the reference charge
taken from equilibrium charges shown in (a). (c) The planar-averaged Hartree potential of
the symmetric thin film CrSb in equilibrium. (d) The spin-resolved bandstructure of the
symmetric thin film CrSb in equilibrium.

40



Previous studies have shown that the choice of surface termination of a FM layer

can alter, or even change the sign of the MAE [76,78,94,95]. Thin film CrSb is no exception.

The final structure that we consider is the slab shown in Fig. 3.1(c). It is identical to the

1.1 nm thin film analyzed above, except that the top Sb layer is removed so that the thin

film becomes mirror symmetric with respect to the x − y plane. As a result, there is no

net electrical dipole moment or built-in potential across the slab (see Fig. 3.9(a) and (c)).

The net magnetic moment of the slab remains zero, as shown in the last column of Table

3.1. The zero net magnetic moment manifests that the slab is antiferromagnet, which is

confirmed by the doubly degenerated bandstructure, as shown in Fig. 3.9(d). The magnetic

moment is no longer compensated locally in each unit cell; the compensation occurs between

the mirror symmetric pairs of Cr atoms. Furthermore, the magnitude of the MAE (−1.07

meV / u.c) is more than an order of magnitude larger compared to that of the asymmetric

slab (0.079 meV / u.c), and it changes sign, so that in-plane alignment of the magnetic

moments is preferred. The magnitude of the MAE is similar to that of the bulk (1.2 meV /

u.c), but with opposite sign. Note that the value of −1.07 meV / u.c. is obtained by taking

the total MAE of the slab and dividing by two, since it contains two unit cells of magnetic

ions even though the last Sb layer of the top unit cell is missing.
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(a)

(b)

(c)

Figure 3.10: The change in the planar-averaged electronic charge (red) and Hartree po-
tential (black) of the symmetric thin film CrSb at the electric field of (a) -1 V/nm and (b)
1 V/nm. (c) MAE as a function of electric field.
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Applying an electric field to this symmetric slab depletes electrons from the bottom

Cr layer and accumulates electrons on the top Cr layer, so that the net change in charge on

the Cr layers is zero as shown in Figs. 3.9(b) and 3.10 (a) and (b). This is in contrast to the

effect of an electric field on the antisymmetric slab where the applied field depletes electrons

from the bottom Cr layer and accumulates electrons on the top Sb layer, with the overall

effect being a net depletion of electrons on the Cr atoms. In the symmetric slab, with no net

change in charge on the Cr atoms, the MAE remains unchanged to 4 significant digits over

the range of −1 ≤ Eext ≤ 1 V/nm (see Fig. 3.10 (c)). This is consistent with results of prior

simulations of symmetric MgO / FM / MgO and MgO / AFM / MgO structures [50,78].

To estimate the sensitivity of the MAE of the symmetric slab to electron filling,

we alter the electron number of the slab by applying a compensating background charge,

as we did in the bulk. Since the background charge is uniformly distributed throughout the

simulation domain, which includes the vacuum region, the majority of the compensating

charge in the CrSb slab is located on the outer two Cr layers. Depleting 0.5 electrons from

the CrSb slab results in a total reduction of 0.32 electrons from the Cr sublattice with an

average reduction of 0.080 electrons from the Cr atoms. The MAE changes from −1.07

meV to −0.7 meV, so that αn̄Cr = −4.6 meV. The negative sign means that as electrons are

removed, the in-plane orientation of the Néel vector becomes less stable. The magnitude

of αn̄Cr is a factor of 4 less than that of the asymmetric slab, and the sign is opposite.

Thus, the mirror symmetric slab of just 4 Cr layers has a high in-plane MAE, similar in

magnitude to that of the bulk, and it is relatively insensitive to filling. Physically realizing

such a structure would be challenging.

43



In a typical physical structure, the CrSb slab will be sandwiched between a MgO

layer on one face and a grounded heavy-metal (HM) layer on the opposing face. The electric

field in the dielectric MgO will terminate at the CrSb where it will accumulate or deplete

charge on the first atomic layer of the CrSb as shown at the left of Fig. 3.8. In the physical

structure, there is no corresponding charge depletion or accumulation on the opposing face

of the CrSb slab, since the HM is grounded and supplies the charge required to screen the

electric field at the MgO/CrSb interface. Also, there will naturally be asymmetry and a

built in potential across the CrSb slab due to the proximity of MgO on one face and a HM

on the other. Since breaking the mirror symmetry of the slab breaks the degeneracy of the

AFM states, it is most probable that the CrSb in a MgO/CrSb/HM structure will be in

a FiM state. For the electric field in the MgO to significantly alter the charge on the Cr

sublattice, the CrSb should be terminated with a Cr layer at the MgO interface.

Finally, we note that the parameter αn̄Cr , which gives the sensitivity of the MAE

to the magnetic sublattice filling, is simply related to the conventional VCMA parameter β

by

αn̄Cr ≈ −
2|e|
ε
β, (3.5)

where ε = ε0εI , is the dielectric constant of the insulator, and the the negative sign is

consistent with the sign of the positive electric field and the orientation of the slab in

Fig. 3.1. The sign would reverse if either the field or the slab were reversed. Equation

(3.5) is derived by noting that the induced charge lies primarily on Cr1, and, therefore,

it can be approximated as a sheet density of an ideal metal given by ns = nCr1/Au.c. ≈

n̄CrN
Cr
L /Au.c. ≈ −εE where Au.c. is the area of the unit cell in the basal plane, and NCr

L is
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the number of Cr layers in the slab. Also, EsMAE = EMAENu.c./Au.c. where Nu.c. = NCr
L /2.

With these relations, we can write, dEMAE/dn̄Cr ≈ −2|e|
ε dE

s
MAE/dE , which is Eq. (3.5).

This expression slightly underestimates the magnitude of αn̄Cr , since the screening is not

ideal. For example, in the asymmetric 2-layer slab, β = −76.4 fJV−1m−1. Using this

value in Eq. (3.5), gives αn̄Cr = 17.3 meV, whereas the actual value is αn̄Cr = 19.7 meV.

This relationship between αn̄Cr and β assumes that the slab terminates with a magnetic

layer adjacent to the dielectric, and the one term specific to CrSb comes from the ratio

NCr
l /Nu.c. that was explicitly evaluated to give the factor of 2 in Eq. (3.5). This provides

a simple relationship between the conventional metric β and the sensitivity of the MAE to

the underlying driving mechanism of sublattice filling.

3.4 Summary and Conclusions

The effects of strain, band filling, and electric field on the MAE of bulk and thin-

film CrSb are determined and analysed. A new metric that describes the sensitivity of

the MAE to the filling of the magnetic sublattice provides a means to compare the effects

of electric field and band filling on the MAE. The magnitude of the bulk magnetostriction

coefficient is comparable with those from other antiferromagnets and ferromagnets, however

the MAE is large (1.2 meV/u.c.) and its sign cannot be changed by strain for bulk material.

For bulk CrSb, depleting the electron density by 0.75 electrons per unit cell depletes the

flat, nearly-degenerate d-orbital bands near the Fermi energy and causes a 90◦ rotation of

the Néel vector from out-of-plane to in-plane. Due to the significant ionic nature of the

Cr-Sb bond, finite slabs are strongly affected by end termination. Truncation of the bulk
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crystal to a thin film consisting of an even number of unit cells, such that one face is a

Cr layer and the opposing face is an Sb layer, breaks inversion symmetry, creates a large

charge dipole and potential difference across the slab, and breaks spin degeneracy such that

the CrSb slab becomes a ferrimagnet. For the 1.1 nm (1.6 nm) slab, the MAE is reduced

from 1.2 meV/u.c. to 0.079 meV/u.c. (0.58 meV/u.c) and the strain coefficient is increased

from 0.013 meV/%strain to 0.068 meV/%strain (0.062 meV/%strain). As a result of the

reduced MAE and increased strain coefficient, the sign of the MAE in the 1.1 nm slab can be

switched with 1.5% uniaxial compressive strain. The large SOC from the Sb combined with

broken inversion symmetry of the thin film results in an intrinsic VCMA. The calculated

VCMA coefficients for the free-standing 1.1 nm and 1.6 nm thin films with vacuum as

the insulator are −76.4 fJV−1m−1 and −55.3 fJV−1m−1, respectively. If the CrSb slab is

terminated with Cr layers on both faces, then it remains a compensated AFM, but with the

compensation occurring nonlocally between mirror symmetric Cr pairs. The MAE changes

sign so that in-plane alignment of the moments is preferred, the magnitude of the MAE

remains large similar to that of the bulk, and it is relatively insensitive to filling. Finally, in

a standard experimental configuration, the CrSb slab will have different end terminations

with MgO on one face and a HM on the other, so that the FiM state of the asymmetric

slab will be the most probable one observed experimentally.
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Transformations in Mn-Based CuAu-I Type Alloys.” Journal of Applied Physics, 39(2),
538–544 (1968).

[16] W. Takei, D. E. Cox, and G. Shirane. “Magnetic structures in the mnsb-crsb system.”
Physical Review , 129(5), 2008 (1963).

[17] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak. “Antifer-
romagnetic spintronics.” Rev. Mod. Phys., 90, 015005 (2018). URL dx.doi.org/10.

1103/RevModPhys.90.015005.

[18] O. Gomonay, T. Jungwirth, and J. Sinova. “Concepts of antiferromagnetic spintronics.”
Physica Status Solidi (RRL) Rapid Research Letters, 11(4), 1700022 (2017). URL
dx.doi.org/abs/10.1002/pssr.201700022.

[19] C. Grezes, F. Ebrahimi, J. G. Alzate, X. Cai, J. A. Katine, J. Langer, B. Ocker,
P. K. Amiri, and K. L. Wang. “Ultra-low switching energy and scaling in electric-field-
controlled nanoscale magnetic tunnel junctions with high resistance-area product.”
Appl. Phys. Lett., 108(1), 012403 (2016). URL dx.doi.org/10.1063/1.4939446.

[20] A. Sakuma. “Electronic structures and magnetism of CuAu-type MnNi and MnGa.”
Journal of Magnetism and Magnetic Materials, 187(1), 105–112 (1998).

[21] R. Y. Umetsu, K. Fukamichi, and A. Sakuma. “Electrical and calorimetric evidences
of a pseudo-gap in antiferromagnetic equiatomic MnPd alloy.” Journal of magnetism
and magnetic materials, 239(1-3), 530–532 (2002).

[22] R. Y. Umetsu, M. Miyakawa, K. Fukamichi, and A. Sakuma. “Pseudogap in the density
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Appendix A

Calculated lattice constants,

magnetoelastic anisotropy

constants, and determination of

Young’s moduli of MnX alloys

Figure A.1 shows the change in the lattice constants in MnX alloys as a function

of applied strain along the a axis. The a lattice parameter is linearly increased and the

b and c lattice constants are relaxed. In Fig. A.2, we show the calculated values of Kme

evaluated at all values of strain and make a linear fit to extract the slope, which is used

as the term Kme
εbb−εaa in the Eq. (2) in the main text. As mentioned in the main paper, the

Young’s moduli were taken from previous results. [24, 25] However, we were unable to find

any values for the Young’s modulus of MnIr. To calculate the magnetostriction coefficient
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for MnIr, we adopted the bulk modulus from the Materials Project [96] and used the the

relation Y (GPa) = 3K(1−2ν) where Y, K, and ν are the Young’s modulus, bulk modulus,

and Poisson’s ratio, respectively.

(a) (b)

(c) (d)

(e)

Figure A.1: The lattice constants versus applied strain in (a) MnIr, (b) MnRh, (c) MnNi,
(d) MnPd, and (e) MnPt.
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(a) (b)

(c) (d)

(e)

Figure A.2: The magnetoelastic anisotropy constants versus applied strain in (a) MnIr,
(b) MnRh, (c) MnNi, (d) MnPd, and (e) MnPt.
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Appendix B

Calculation of magnetic anisotropy

energy with strain and electric

field using ASE package

This section describes how to calculate the magnetic anisotropy energy as a func-

tion of applied strain and electric field using atomic simulation environment (ASE) package.

Details of the installation of the ASE package and how to use it are discussed in the ap-

pendix B of [97]. All the scripts used for calculations are inherrited from [97]. For MAE

calculation with respect to the strain, the first step is to apply a strain to the relaxed

structure and relax it again. Below is the python script for relaxation.

import numpy as np

import ase . i o . vasp as vp

from ase . i o import *
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from ase . c a l c u l a t o r s . vasp import Vasp

from s h u t i l import *

from os import path , remove , makedirs

from ase . opt imize import BFGS as b fg s

from ase . c o n s t r a i n t s import U n i t C e l l F i l t e r as uc f

from ase . i o . t r a j e c t o r y import Tra jec tory

np . s e t p r i n t o p t i o n s ( p r e c i s i o n =2)

# name o f input s t r u c t u r e

i n s p o s c a r=’ a s e Cr2Sb2 vo l r e l axed . vasp ’

# s t r a i n inputs ( in %)

min s t ra in = =2.00

max stra in = 2.00

num stra ins= 5

# i n i t i a l magnetic moments

mom=6

u va l =0.25

# mask f o r un i t c e l l r e l a x a t i o n

# Below , r e l a x a t i o n cond i t i on i s bi=a x i a l .

mask = [ False , True , True , False , False , Fa l se ]

# f o r c e th r e sho ld on atoms

fmax = 0.001

i s i f d i r=’ 0 . i s i f ’
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# LDA+U parameters

ldau param={ ’Cr ’ :{ ’L ’ : 2 , ’U ’ : u val , ’ J ’ : 0 . 0 } ,

’ Sb ’ :{ ’L ’ :=1 , ’U ’ : 0 . 0 , ’ J ’ : 0 . 0 } ,

}

# maximum number o f s t ep s f o r the minimizer

s t ep s = 150

# converged kpo int s f o r the s t r u c t u r e

kpt=8

# minimizer l og f i l e

l o g f i l e = ’ r e l a x . l og ’

i f not path . e x i s t s ( i s i f d i r ) :

makedirs ( i s i f d i r )

s t r a i n s = np . l i n s p a c e ( min s t ra in /100 , max stra in /100 , num strains ,

endpoint=True )

i n s= vp . read vasp ( i n s p o s c a r )

f o r s t r a i n in s t r a i n s :

s t r a i n p e r c = s t r a i n *100

t r a j s t r = ’ t r a j { : . 2 f } . t r a j ’ . format ( s t r a i n p e r c )

# vasp parameters

c a l c = Vasp ( prec = ’ Accurate ’ ,

pp = ’ pbe ’ ,

i s t a r t =0,
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i smear =0,

sigma =0.05 ,

l cha rg=False ,

lwave=False ,

l r e a l = False ,

l o r b i t =11,

ncore = 16 ,

i s p i n =2,

encut = 500 ,

a lgo=’ Normal ’ ,

nelm=200 ,

ldau=True ,

ldautype =2,

l d a u l u j=ldau param ,

e d i f f =1e=7,

i b r i o n ==1,

nsw=0,

nelmin =4,

e d i f f g ==0.01 ,

kpts = [ kpt , kpt , kpt ] ,

gamma=True )

i f path . i s f i l e ( l o g f i l e ) :
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remove ( l o g f i l e )

# Generate c e l l c o n f i g u r a t i o n s

in2 = i n s . copy ( )

c e l l i n 2 = in2 . g e t c e l l ( )

s t r a i n e d c e l l = c e l l i n 2 . copy ( )

# Here , s t r a i n i s app l i ed along x=d i r e c t i o n .

s t r a i n e d c e l l [ : , : 1 ] = c e l l i n 2 [ : , : 1 ] * (1+ s t r a i n )

in2 . s e t c e l l ( s t r a i n e d c e l l , s ca l e a toms=True )

i n i t i a l v o l = in2 . get volume ( )

# s e t magnetic moments

magmom=np . z e r o s ( l en ( in2 ) )

c r i n d=0

f o r idx , atom in enumerate ( in2 ) :

i f atom . symbol == ’Cr ’ and c r i n d==0 :

magmom[ idx ] = mom

c r i n d= c r i n d + 1

e l i f atom . symbol == ’Cr ’ and c r i n d==1 :

magmom[ idx ] = =mom

break

c a l c . s e t (magmom=magmom)

in2 . s e t c a l c u l a t o r ( c a l c )

s f = uc f ( in2 , mask=mask)
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bfg = bfgs ( s f , l o g f i l e=l o g f i l e )

t r a j = Tra jec tory ( t r a j s t r , ’w ’ , in2 )

bfg . attach ( t r a j )

bfg . run ( fmax=fmax , s t ep s=s t ep s )

f i n a l v o l = in2 . get volume ( )

l a b e l s t r = ’ volume re l axed with { : . 2 f}% s t r a i n ’

. format ( s t r a i n p e r c )

poscar name = ’CONTCAR { : . 2 f } . vasp ’ . format ( s t r a i n p e r c )

poscar path = path . j o i n ( i s i f d i r , poscar name )

vp . wr i t e vasp ( poscar path , in2 , l a b e l=l a b e l s t r ,

d i r e c t=True , s o r t=True , vasp5=True )

t r a j p a t h = path . j o i n ( i s i f d i r , t r a j s t r )

c o p y f i l e ( t r a j s t r , t r a j p a t h )

remove ( t r a j s t r )

l og cpy=’ r e l a x { : 0 . 2 f } . l og ’ . format ( s t r a i n p e r c )

l og path = path . j o i n ( i s i f d i r , l og cpy )

c o p y f i l e ( l o g f i l e , l og path )

c a l c . c l ean ( )

Listing B.1: Script for strain and relaxation

Once the relaxation process is completed, then the next step is to calculate charge

density from each strained structure as shown below.
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import ase . i o . vasp as vp

from ase . c a l c u l a t o r s . vasp import Vasp

from os import path , makedirs , rename , remove

from s h u t i l import *

import subproces s

import numpy as np

conv kpt =[8 , 8 , 8 ]

# s t r a i n inputs ( in %)

min s t ra in = =2.00

max stra in = 2.00

num stra ins= 5

i s i f d i r=’ 0 . i s i f ’

s c f d i r=’ 1 . s c f ’

# i n i t i a l moment

mag=6

u va l =0.25

ldau param={ ’Cr ’ :{ ’L ’ : 2 , ’U ’ : u val , ’ J ’ : 0 . 0 } ,

’ Sb ’ :{ ’L ’ :=1 , ’U ’ : 0 . 0 , ’ J ’ : 0 . 0 } ,

}

i f not path . e x i s t s ( s c f d i r ) :

makedirs ( s c f d i r )

i f path . i s l i n k ( ’CHGCAR’ ) or path . i s f i l e ( ’CHGCAR’ ) :
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remove ( ’CHGCAR’ )

s t r a i n s = np . l i n s p a c e ( min s t ra in /100 , max stra in /100 , num strains ,

endpoint=True )

f o r s t r a i n in s t r a i n s :

s t r a i n p e r c = s t r a i n * 100

p r in t ( ’ Running f o r { : . 2 f}% s t r a i n . . . ’ . format ( s t r a i n p e r c ) ,

end=’ ’ )

c a l c = Vasp ( prec = ’ Accurate ’ ,

pp = ’ pbe ’ ,

i s t a r t =0,

ismear =0,

sigma =0.05 ,

l cha rg=True ,

lwave=False ,

l r e a l=False ,

isym=0, #important to s e t as zero

ncore = 16 ,

l o r b i t =11,

i s p i n =2,

encut = 500 ,

a lgo=’ Normal ’ ,

nelm=200 ,
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ldau=True ,

ldautype =2,

l d a u l u j=ldau param ,

e d i f f =1e=7,

i b r i o n ==1,

nsw=0,

nelmin =4,

i s i f =3,

e d i f f g ==0.001 ,

kpts = conv kpt ,

gamma=True )

poscar name = ’CONTCAR { : . 2 f } . vasp ’ . format ( s t r a i n p e r c )

poscar path=path . j o i n ( i s i f d i r , poscar name )

i n s=vp . read vasp ( poscar path )

in2 = i n s . copy ( )

# s e t magnetic moments

magmom=np . z e r o s ( l en ( in2 ) )

c r i n d=0

f o r idx , atom in enumerate ( in2 ) :

i f atom . symbol == ’Cr ’ and c r i n d==0 :

magmom[ idx ] = mag

c r i n d= c r i n d + 1
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e l i f atom . symbol == ’Cr ’ and c r i n d==1 :

magmom[ idx ] = =mag

break

c a l c . s e t (magmom=magmom)

in2 . s e t c a l c u l a t o r ( c a l c )

energy = in2 . g e t p o t e n t i a l e n e r g y ( )

fpath1=’ {}/OSZICAR { : . 2 f } ’ . format ( s c f d i r , s t r a i n p e r c )

rename ( ’OSZICAR ’ , fpath1 )

fpath2 =’ {}/OUTCAR { : . 2 f } ’ . format ( s c f d i r , s t r a i n p e r c )

rename ( ’OUTCAR’ , fpath2 )

fpath3 =’ {}/CHGCAR { : . 2 f } ’ . format ( s c f d i r , s t r a i n p e r c )

rename ( ’CHGCAR’ , fpath3 )

Listing B.2: Script for charge density calculation

For each strain, OSZICAR, OUTCAR, and CHGCAR files will be saved under

‘1.scf’ folder after this step. Finally, the total energies for different Néel vector directions

including spin orbit coupling can be calculated using the script below.

import ase . i o . vasp as vp

from ase . c a l c u l a t o r s . vasp import Vasp

from os import path , makedirs , rename , remove

from s h u t i l import *

import subproces s
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import numpy as np

kpt=16

# s t r a i n inputs ( in %)

min s t ra in = =2.00

max stra in = 2.00

num stra ins= 5

# i n i t i a l moment

mm val=6

d i r s t r=’ z ’

p a r a l l e l f l a g=False

u va l =0.25

ldau param={ ’Cr ’ :{ ’L ’ : 2 , ’U ’ : u val , ’ J ’ : 0 . 0 } ,

’ Sb ’ :{ ’L ’ :=1 , ’U ’ : 0 . 0 , ’ J ’ : 0 . 0 } ,

}

i s i f d i r=’ 0 . i s i f ’

s c f d i r=’ 1 . s c f ’

s o c s c f d i r=’ 2 . ez . a x i s ’

out summary=’ summary strain . txt ’

s a x i s l s t = [ [ 1 , 0 , 0 ] ,

[ 0 , 0 , 1 ] ,

]

i f not path . e x i s t s ( s o c s c f d i r ) :
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makedirs ( s o c s c f d i r )

i f not path . i s f i l e ( out summary ) :

f l=open ( out summary , ’w ’ )

f l . wr i t e ( ’ {:>8} {:>10} {:>10} \n ’

. format ( ’ S t ra in (%) ’ , ’S=a x i s ’ , ’ Energy (eV) ’ ) )

f l . f l u s h ( )

e l s e :

f l=open ( out summary , ’ a ’ )

i f path . i s l i n k ( ’CHGCAR’ ) or path . i s f i l e ( ’CHGCAR’ ) :

remove ( ’CHGCAR’ )

s t r a i n s = np . l i n s p a c e ( min s t ra in /100 , max stra in /100 , num strains ,

endpoint=True )

f o r s t r a i n in s t r a i n s :

s t r a i n p e r c = s t r a i n * 100

f o r saxs in s a x i s l s t :

c a l c = Vasp ( prec = ’ Accurate ’ ,

pp = ’ pbe ’ ,

i s t a r t =0,

ismear =0,

sigma =0.05 ,

lwave=False ,

l r e a l = False ,
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l cha rg=True ,

isym=0,

encut = 500 ,

a lgo=’ Normal ’ ,

ldau=True ,

ldautype =2,

l d a u l u j=ldau param ,

i b r i o n ==1,

nsw=0,

nelmin =4,

i s i f =3,

e d i f f g ==0.001 ,

i cha rg =11,

ncore =16,

l s o r b i t=True ,

gga compat=False ,

e d i f f =1e=7,

l o r b i t =11,

kpts = [ kpt , kpt , kpt ] ,

gamma=True )

poscar name = ’CONTCAR { : . 2 f } . vasp ’ . format ( s t r a i n p e r c )

c a l c . s t r ing params . update ({ ’ s a x i s ’ : ’ {} {} {} ’ . format
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( saxs [ 0 ] , saxs [ 1 ] , saxs [ 2 ] ) } )

poscar path=path . j o i n ( i s i f d i r , poscar name )

c h g c a r d i r= ’ {}/CHGCAR { : . 2 f } ’ . format ( s c f d i r ,

s t r a i n p e r c )

c o p y f i l e ( chgcar d i r , ’CHGCAR’ )

in2=vp . read vasp ( poscar path )

in2 . s e t c a l c u l a t o r ( c a l c )

energy = in2 . g e t p o t e n t i a l e n e r g y ( )

s a x i s s t r = ’ {}{}{} ’ . format ( saxs [ 0 ] , saxs [ 1 ] , saxs [ 2 ] )

f l . wr i t e ( ’ { : 6 . 2 f } {} { : 7 . 6 f }\n ’ . format ( s t r a i n p e r c ,

s a x i s s t r , energy ) )

fpath1 =’ {}/OSZICAR {} { : . 2 f } ’ . format ( s o c s c f d i r ,

s a x i s s t r ,

s t r a i n p e r c )

rename ( ’OSZICAR ’ , fpath1 )

fpath2 =’ {}/OUTCAR {} { : . 2 f } ’ . format ( s o c s c f d i r ,

s a x i s s t r ,

s t r a i n p e r c )

rename ( ’OUTCAR’ , fpath2 )

fpath3 =’ {}/CHGCAR {} { : . 2 f } ’ . format ( s o c s c f d i r ,

s a x i s s t r ,

s t r a i n p e r c )
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rename ( ’CHGCAR’ , fpath3 )

f l . f l u s h ( )

c a l c . c l ean ( )

f l . c l o s e ( )

Listing B.3: Script for total energies calculations with different Néel vector orientations

After the script finishes running, OSZICAR, OUTCAR, and CHGCAR files will

be saved under ‘2.ez.axis’ folder. For summarizing results, the values of strain, directions of

Néel vector, and the corresponding total energies will be recorded in ‘summary strain.txt’

file as follows

St ra in (%) S=a x i s Energy (eV)

=2.00 100 =26.794439

=2.00 001 =26.795599

=1.00 100 =26.802454

=1.00 001 =26.803662

0 .00 100 =26.806066

0 .00 001 =26.807287

1 .00 100 =26.804936

1 .00 001 =26.806170

2 .00 100 =26.798950

2 .00 001 =26.800214
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To calculate the MAE as a function of electric field in thin films, creating a slab

geometry is the first step. It can be done by using a visualization software or writing a

python script as below.

import ase . i o . vasp as vp

bulk = vp . read vasp ( ’ CrSb bulk . vasp ’ )

s u r f a c e = bulk . copy ( )

s l ab = s u r f a c e * (1 , 1 , 2)

s l ab . c en t e r (vacuum=15.0 , a x i s =2)

vp . wr i t e vasp ( ’ CrSb 2L . vasp ’ , s lab , d i r e c t=False , s o r t=True ,

vasp5=True )

Listing B.4: Python scirpt for creating a slab

The next step is to relax the slab geometry with the dipole correction as below.

import numpy as np

import ase . i o . vasp as vp

from ase . i o import *

from ase . c a l c u l a t o r s . vasp import Vasp

from s h u t i l import *

from os import path , remove , makedirs , rename

np . s e t p r i n t o p t i o n s ( p r e c i s i o n =2)

# name o f input s t r u c t u r e

i n s p o s c a r=’ CrSb 2L . vasp ’
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# s t r a i n inputs ( in %)

min s t ra in = 0.00

max stra in = 0.00

num stra ins=1

# i n i t i a l magnetic moments

mom=6

def mom=0

u va l =0.25

i s i f d i r=’ 0 . i s i f ’

# LDA+U parameters

ldau param={ ’Cr ’ :{ ’L ’ : 2 , ’U ’ : u val , ’ J ’ : 0 . 0 } ,

’ Sb ’ :{ ’L ’ :=1 , ’U ’ : 0 . 0 , ’ J ’ : 0 . 0 } ,

}

# converged kpo int s f o r the s t r u c t u r e

kpt=23

i f not path . e x i s t s ( i s i f d i r ) :

makedirs ( i s i f d i r )

s t r a i n s = np . l i n s p a c e ( min s t ra in /100 , max stra in /100 , num strains ,

endpoint=True )

i n s= vp . read vasp ( i n s p o s c a r )

f o r s t r a i n in s t r a i n s :

s t r a i n p e r c = s t r a i n *100
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# vasp parameters

c a l c = Vasp ( prec = ’ Accurate ’ ,

pp = ’ pbe ’ ,

i s t a r t =0,

ismear =0,

sigma =0.05 ,

l cha rg=True ,

lwave=False ,

ncore = 16 ,

i d i p o l =3,

l d i p o l=True ,

i s p i n =2,

encut = 500 ,

a lgo=’ Normal ’ ,

e d i f f =1e=7,

i b r i o n =2,

nelm=700 ,

ldau=True ,

ldautype =2,

l d a u l u j=ldau param ,

nsw=200 ,

i s i f =4,
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nelmin =4,

e d i f f g ==0.001 ,

kpts = [ kpt , kpt , 1 ] ,

gamma=True )

# Generate c e l l c o n f i g u r a t i o n s

in2 = i n s . copy ( )

c e l l i n 2 = in2 . g e t c e l l ( )

s t r a i n e d c e l l = c e l l i n 2 . copy ( )

s t r a i n e d c e l l [ : , : 1 ] = c e l l i n 2 [ : , : 1 ] * (1+ s t r a i n )

in2 . s e t c e l l ( s t r a i n e d c e l l , s ca l e a toms=True )

i n i t i a l v o l = in2 . get volume ( )

# s e t magnetic moments

magmom=np . z e r o s ( l en ( in2 ) )

c r i n d=0

f o r idx , atom in enumerate ( in2 ) :

i f atom . symbol == ’Cr ’ and c r i n d==0 :

magmom[ idx ] = mom

c r i n d= c r i n d + 1

e l i f atom . symbol == ’Cr ’ and c r i n d==1 :

magmom[ idx ] = mom

c r i n d= c r i n d + 1

e l i f atom . symbol == ’Cr ’ and c r i n d==2 :
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magmom[ idx ] = =mom

c r i n d= c r i n d + 1

e l i f atom . symbol == ’Cr ’ and c r i n d==3 :

magmom[ idx ] = =mom

break

c a l c . s e t (magmom=magmom)

in2 . s e t c a l c u l a t o r ( c a l c )

energy = in2 . g e t p o t e n t i a l e n e r g y ( )

fpath1 = ’ {}/CONTCAR { : . 2 f } . out ’ . format ( i s i f d i r ,

s t r a i n p e r c )

c o p y f i l e ( ’CONTCAR’ , fpath1 )

fpath2 =’ {}/OSZICAR { : . 2 f } ’ . format ( i s i f d i r , s t r a i n p e r c )

rename ( ’OSZICAR ’ , fpath2 )

c a l c . c l ean ( )

Listing B.5: Strain and relaxation for the slab structure

Here, strain is still included since it might be useful for the future study on strain-

meditated VCMA. If strain is included, one of the vasp parameters, isif, should be set as

2, and the strain should be applied to the relaxed structure by the script above. Once the

relaxed structure is obtained, the charge density needs to be calculated without electric

field. The python scipt for this step is below.

import ase . i o . vasp as vp
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from ase . c a l c u l a t o r s . vasp import Vasp

from os import path , makedirs , rename , remove

from s h u t i l import *

import subproces s

import numpy as np

conv kpt =[23 , 23 , 1 ]

# s t r a i n inputs ( in %)

min s t ra in = 0.00

max stra in = 0.00

num stra ins= 1

# i n i t i a l moment

mag=6

def mom=0

u va l =0.25

ldau param={ ’Cr ’ :{ ’L ’ : 2 , ’U ’ : u val , ’ J ’ : 0 . 0 } ,

’ Sb ’ :{ ’L ’ :=1 , ’U ’ : 0 . 0 , ’ J ’ : 0 . 0 } ,

}

i s i f d i r=’ 0 . i s i f ’

s c f d i r=’ 1 . s c f ’

i f not path . e x i s t s ( s c f d i r ) :

makedirs ( s c f d i r )

i f path . i s l i n k ( ’CHGCAR’ ) or path . i s f i l e ( ’CHGCAR’ ) :
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remove ( ’CHGCAR’ )

s t r a i n s = np . l i n s p a c e ( min s t ra in /100 , max stra in /100 , num strains ,

endpoint=True )

f o r s t r a i n in s t r a i n s :

s t r a i n p e r c = s t r a i n * 100

c a l c = Vasp ( prec = ’ Accurate ’ ,

pp = ’ pbe ’ ,

i s t a r t =0,

ismear =0,

sigma =0.05 ,

l cha rg=True ,

lwave=False ,

isym=0,

ncore = 16 ,

l o r b i t =11,

i d i p o l =3,

l d i p o l=True ,

i s p i n =2,

encut = 500 ,

a lgo=’ Normal ’ ,

e d i f f =1e=7,

i b r i o n ==1,
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nelm=700 ,

ldau=True ,

ldautype =2,

l d a u l u j=ldau param ,

nsw=0,

kpts = conv kpt ,

gamma=True )

poscar name = ’CONTCAR { : . 2 f } . vasp ’ . format ( s t r a i n p e r c )

poscar path=path . j o i n ( i s i f d i r , poscar name )

i n s=vp . read vasp ( poscar path )

in2 = i n s . copy ( )

# s e t magnetic moments

magmom=np . z e r o s ( l en ( in2 ) )

c r i n d=0

f o r idx , atom in enumerate ( in2 ) :

i f atom . symbol == ’Cr ’ and c r i n d==0 :

magmom[ idx ] = mag

c r i n d= c r i n d + 1

e l i f atom . symbol == ’Cr ’ and c r i n d==1 :

magmom[ idx ] = mag

c r i n d= c r i n d + 1

e l i f atom . symbol == ’Cr ’ and c r i n d==2 :
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magmom[ idx ] = =mag

c r i n d= c r i n d + 1

e l i f atom . symbol == ’Cr ’ and c r i n d==3 :

magmom[ idx ] = =mag

break

c a l c . s e t (magmom=magmom)

in2 . s e t c a l c u l a t o r ( c a l c )

energy = in2 . g e t p o t e n t i a l e n e r g y ( )

fpath1 =’ {}/OSZICAR { : . 2 f } ’ . format ( s c f d i r , s t r a i n p e r c )

rename ( ’OSZICAR ’ , fpath1 )

fpath2 =’ {}/OUTCAR { : . 2 f } ’ . format ( s c f d i r , s t r a i n p e r c )

rename ( ’OUTCAR’ , fpath2 )

fpath3 =’ {}/CHGCAR { : . 2 f } ’ . format ( s c f d i r , s t r a i n p e r c )

rename ( ’CHGCAR’ , fpath3 )

c a l c . c l ean ( )

Listing B.6: Script for charge density calculation of the slab

After the charge density calculation, the charge density has to be relaxed with

different electric fields. To do it, another self-consistent calculation is required. In this step,

icharg has to be set as 1 to read the CHGCAR file from the previous step and the electric

field is set by using efield tag as shown below.

import ase . i o . vasp as vp
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from ase . c a l c u l a t o r s . vasp import Vasp

from os import path , makedirs , rename , remove

from s h u t i l import *

import subproces s

import numpy as np

conv kpt =[23 , 23 , 1 ]

# f i e l d inputs ( in eV/A)

m i n f i e l d = 0 .0

max f i e ld = 0 .0

num f i e ld s= 1

mag=4

u va l =0.25

ldau param={ ’Cr ’ :{ ’L ’ : 2 , ’U ’ : u val , ’ J ’ : 0 . 0 } ,

’ Sb ’ :{ ’L ’ :=1 , ’U ’ : 0 . 0 , ’ J ’ : 0 . 0 } ,

}

i s i f d i r=’ 0 . i s i f ’

s c f d i r=’ 1 . s c f ’

s c f f i e l d d i r=’ 2 . s c f f i e l d ’

i f not path . e x i s t s ( s c f f i e l d d i r ) :

makedirs ( s c f f i e l d d i r )

i f path . i s l i n k ( ’CHGCAR’ ) or path . i s f i l e ( ’CHGCAR’ ) :

remove ( ’CHGCAR’ )
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f i e l d s = np . l i n s p a c e ( m in f i e l d , max f i e ld , num f ie lds ,

endpoint=True )

f o r f i e l d in f i e l d s :

c a l c = Vasp ( prec = ’ Accurate ’ ,

pp = ’ pbe ’ ,

i s t a r t =0,

ismear =0,

sigma =0.05 ,

l cha rg=True ,

lwave=False ,

isym=0,

ncore = 16 ,

l o r b i t =11,

i d i p o l =3,

l d i p o l=True ,

lvhar=True ,

e f i e l d=f i e l d ,

i cha rg =1,

i s p i n =2,

encut = 500 ,

a lgo=’ Normal ’ ,

e d i f f =1e=7,
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i b r i o n ==1,

nelm=700 ,

ldau=True ,

ldautype =2,

l d a u l u j=ldau param ,

nsw=0,

e d i f f g ==0.001 ,

kpts = conv kpt ,

gamma=True )

#POSCAR(CHGCAR) name=’CONTCAR(CHGCAR) s t r a i n ’#

poscar name = ’CONTCAR 0. 0 0 . vasp ’

poscar path=path . j o i n ( i s i f d i r , poscar name )

c h g c a r d i r= ’ {}/CHGCAR 0.00 ’ . format ( s c f d i r )

c o p y f i l e ( chgcar d i r , ’CHGCAR’ )

i n s=vp . read vasp ( poscar path )

in2 = i n s . copy ( )

magmom=np . z e r o s ( l en ( in2 ) )

c r i n d=0

f o r idx , atom in enumerate ( in2 ) :

i f atom . symbol == ’Cr ’ and c r i n d==0 :

magmom[ idx ] = mag

c r i n d= c r i n d + 1
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e l i f atom . symbol == ’Cr ’ and c r i n d==1 :

magmom[ idx ] = mag

c r i n d= c r i n d + 1

e l i f atom . symbol == ’Cr ’ and c r i n d==2 :

magmom[ idx ] = =mag

c r i n d= c r i n d + 1

e l i f atom . symbol == ’Cr ’ and c r i n d==3 :

magmom[ idx ] = =mag

break

c a l c . s e t (magmom=magmom)

in2 . s e t c a l c u l a t o r ( c a l c )

energy = in2 . g e t p o t e n t i a l e n e r g y ( )

fpath1 =’ {}/OSZICAR { : . 2 f } ’ . format ( s c f f i e l d d i r , f i e l d )

rename ( ’OSZICAR ’ , fpath1 )

fpath2 =’ {}/OUTCAR { : . 2 f } ’ . format ( s c f f i e l d d i r , f i e l d )

rename ( ’OUTCAR’ , fpath2 )

fpath3 =’ {}/CHGCAR { : . 2 f } ’ . format ( s c f f i e l d d i r , f i e l d )

rename ( ’CHGCAR’ , fpath3 )

c a l c . c l ean ( )

Listing B.7: Script for charge relaxation with electric field

Finally, the total energies with different orientations of Néel vector as a function

of electric field can be calculated by running the following python script.
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import ase . i o . vasp as vp

from ase . c a l c u l a t o r s . vasp import Vasp

from os import path , makedirs , rename , remove

from s h u t i l import *

import subproces s

import numpy as np

conv kpt =[46 , 46 , 1 ]

# f i e l d inputs ( in eV/A)

import ase . i o . vasp as vp

from ase . c a l c u l a t o r s . vasp import Vasp

from os import path , makedirs , rename , remove

from s h u t i l import *

import subproces s

import numpy as np

conv kpt =[46 , 46 , 1 ]

# f i e l d inputs ( in eV/A)

m i n f i e l d = 0.00

max f i e ld = 0.00

num f i e ld s= 1

d i r s t r=’ z ’

p a r a l l e l f l a g=False

u va l =0.25
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i s i f d i r=’ 0 . i s i f ’

s c f d i r=’ 2 . s c f f i e l d ’

s o c s c f d i r=’ 3 . ez . a x i s ’

out summary=’ summary strain . txt ’

ldau param={ ’Cr ’ :{ ’L ’ : 2 , ’U ’ : u val , ’ J ’ : 0 . 0 } ,

’ Sb ’ :{ ’L ’ :=1 , ’U ’ : 0 . 0 , ’ J ’ : 0 . 0 } ,

}

s a x i s l s t = [ [ 1 , 0 , 0 ] ,

[ 0 , 0 , 1 ] ,

]

i f not path . e x i s t s ( s o c s c f d i r ) :

makedirs ( s o c s c f d i r )

i f not path . i s f i l e ( out summary ) :

f l=open ( out summary , ’w ’ )

f l . wr i t e ( ’ {:>8} {:>10} {:>10} \n ’

. format ( ’ E f i e l d (eV/A) ’ , ’S=a x i s ’ , ’ Energy (eV) ’ ) )

f l . f l u s h ( )

e l s e :

f l=open ( out summary , ’ a ’ )

i f path . i s l i n k ( ’CHGCAR’ ) or path . i s f i l e ( ’CHGCAR’ ) :

remove ( ’CHGCAR’ )

f i e l d s = np . l i n s p a c e ( m in f i e l d , max f i e ld , num f ie lds ,
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endpoint=True )

f o r f i e l d in f i e l d s :

f o r saxs in s a x i s l s t :

c a l c = Vasp ( prec = ’ Accurate ’ ,

pp = ’ pbe ’ ,

i s t a r t =0,

ismear =0,

sigma =0.05 ,

lwave=False ,

l cha rg=True ,

l r e a l = False ,

encut = 500 ,

i d i p o l =3,

l d i p o l=True ,

lvhar=True ,

e f i e l d=f i e l d ,

a lgo=’ Normal ’ ,

i cha rg =11,

lorbmom=True ,

ncore =16,

l s o r b i t=True ,

nbands=60,
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isym=0,

ldau=True ,

ldautype =2,

l d a u l u j=ldau param ,

gga compat=False ,

e d i f f =1e=7,

l o r b i t =11,

kpts = conv kpt ,

gamma=True )

poscar name = ’CONTCAR 0. 0 0 . vasp ’

c a l c . s t r ing params . update ({ ’ s a x i s ’ : ’ {} {} {} ’ . format

( saxs [ 0 ] , saxs [ 1 ] , saxs [ 2 ] ) } )

poscar path=path . j o i n ( i s i f d i r , poscar name )

c h g c a r d i r= ’ {}/CHGCAR { : . 2 f } ’ . format ( s c f d i r , f i e l d )

c o p y f i l e ( chgcar d i r , ’CHGCAR’ )

in2=vp . read vasp ( poscar path )

in2 . s e t c a l c u l a t o r ( c a l c )

energy = in2 . g e t p o t e n t i a l e n e r g y ( )

s a x i s s t r = ’ {}{}{} ’ . format ( saxs [ 0 ] , saxs [ 1 ] , saxs [ 2 ] )

f l . wr i t e ( ’ { : 6 . 2 f } {} { : 7 . 6 f }\n ’

. format ( f i e l d , s a x i s s t r , energy ) )

fpath1 =’ {}/OSZICAR {} { : . 2 f } ’ . format ( s o c s c f d i r ,
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s a x i s s t r ,

f i e l d )

rename ( ’OSZICAR ’ , fpath1 )

fpath2 =’ {}/OUTCAR {} { : . 2 f } ’ . format ( s o c s c f d i r ,

s a x i s s t r ,

f i e l d )

rename ( ’OUTCAR’ , fpath2 )

fpath3 =’ {}/CHGCAR {} { : . 2 f } ’ . format ( s o c s c f d i r ,

s a x i s s t r ,

f i e l d )

rename ( ’CHGCAR’ , fpath3 )

f l . f l u s h ( )

c a l c . c l ean ( )

f l . c l o s e ( )
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Appendix C

Tutorial for the Bader charge and

Hartree potential calculation

The Bader charge [87], planar averaged Hartree potential, and charge density are

useful for analyzing the charge transfer, potential distribution under electric field. Here, the

details of calculations of them will be discussed. The required scripts or progams to analyze

them are ‘bader’, ‘chgsum.pl’, and ‘vaspkit’. These codes are available at http://theory.

cm.utexas.edu/henkelman/code/bader/, http://theory.cm.utexas.edu/vtsttools/scripts.

html, and https://vaspkit.com/, respectively. The first step for the Bader charge analy-

sis is to relax the structure and get the charge density distribution file (CHGCAR), which

can be done by using the python script in the previous appendix. For a bulk structure,

bader charge calculation can be done by using the command as follows

path1/ bader CHGCAR =b weight
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where ‘path1’ is the directory that contains executable file ‘bader’. After executing the

file, it generates three output files named ‘ACF.dat’, ‘BCF.dat’, and ‘AtomVolumes.dat’

Among these files, ‘ACF.dat’ file contains the information of the coordinates of each atom,

the charge on each atom, the volume, and the minimum ditance to the surface. For a slab

structure, the procedure is different from the bulk since the vacuum region needs to be

included. As the same for bulk, the first step is to perform the self-consistent calculation

after the relaxation. In this step, one needs to add the tag ‘LAECHG=.TRUE.’ in the

INCAR file. Once the calculation is done, VASP will write AECCAR0 and AECCAR2

which contain the core charge and valence charge, respectively. After that, to write the

total charge from the generated files, execute the following from the command

path2/chgsum . p l AECCAR0 AECCAR2

where the ‘path2’ is the full path of the directory where the script is. Finally, the calculation

of the Bader charge in a thin film can be done by executing.

path1/ bader =vac auto CHGCAR =r e f CHGCAR sum

The calculations of planar averaged Hartree potential and charge is relatively sim-

pler than the Bader charge calculation. Assuming the relaxed structure is already obtained,

the first step is to perform self-consistent calculation with the tag ‘LVHAR=.TRUE.’ be-

ing included in the INCAR file to write the Hartree potential in the LOCPOT file. After

that, use the ‘vaspkit’ [88] to calculate the planar averaged potential and charge from the

LOCPOT and CHGCAR files, respectively, by executing the command

path3/ vaspk i t
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where the path3 is the full path of the directory where the excutable ‘vaspkit’ is. The code

will ask the user to specify the calculation from the command, which is straighfoward to

do. Once the user runs the function correctly, the code will gernerate the ‘CHGPAVG.dat’

file from CHGCAR and ‘POTPAVG.dat’ from LOCPOT. The ‘CHGPAVG.dat’ and ‘POT-

PAVG.dat’ files contain the planar averaged charge density in units of e and potential in

units of eV, respectively. The common information in the files is the planar distance in

units of Å.
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