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Drug transporters OAT1 and OAT3 
have specific effects on multiple 
organs and gut microbiome 
as revealed by contextualized 
metabolic network reconstructions
Neema Jamshidi1,2* & Sanjay K. Nigam3

In vitro and in vivo studies have established the organic anion transporters OAT1 (SLC22A6, NKT) 
and OAT3 (SLC22A8) among the main multi-specific “drug” transporters. They also transport 
numerous endogenous metabolites, raising the possibility of drug-metabolite interactions (DMI). 
To help understand the role of these drug transporters on metabolism across scales ranging from 
organ systems to organelles, a formal multi-scale analysis was performed. Metabolic network 
reconstructions of the omics-alterations resulting from Oat1 and Oat3 gene knockouts revealed 
links between the microbiome and human metabolism including reactions involving small organic 
molecules such as dihydroxyacetone, alanine, xanthine, and p-cresol—key metabolites in independent 
pathways. Interestingly, pairwise organ-organ interactions were also disrupted in the two Oat 
knockouts, with altered liver, intestine, microbiome, and skin-related metabolism. Compared 
to older models focused on the “one transporter-one organ” concept, these more sophisticated 
reconstructions, combined with integration of a multi-microbial model and more comprehensive 
metabolomics data for the two transporters, provide a considerably more complex picture of how 
renal “drug” transporters regulate metabolism across the organelle (e.g. endoplasmic reticulum, 
Golgi, peroxisome), cellular, organ, inter-organ, and inter-organismal scales. The results suggest that 
drugs interacting with OAT1 and OAT3 can have far reaching consequences on metabolism in organs 
(e.g. skin) beyond the kidney. Consistent with the Remote Sensing and Signaling Theory (RSST), the 
analysis demonstrates how transporter-dependent metabolic signals mediate organ crosstalk (e.g., 
gut-liver-kidney) and inter-organismal communication (e.g., gut microbiome-host).

Abbreviations
ABC  ATP binding cassette
ADME  (Drug) Absorption, distribution, metabolism and elimination
ANOVA  Analysis of variance
BCRP  Breast cancer resistance protein
CKD  Chronic Kidney Disease
COBRA  Constraint-based reconstruction analysis
Da  Dalton
DMI  Drug-metabolite interactions
FBA  Flux balance analysis
FDA  Food and Drug Administration
FVA  Flux variability analysis
HIV  Human Immunodeficiency Virus
KO  Knockout
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MOMR  Multi-organ metabolic reconstructions
MATE2  Multidrug and toxin extrusion protein 2
MRP2  Multidrug resistance related protein 2
NKT  Novel kidney transcript
NSAID  Non-steroidal anti-inflammatory drugs
OAT1  Organic anion transporter 1
OAT3  Organic anion transporter 3
OCTN2  Organic cation/carnitine transporter 2
QSP  Quantitative systems pharmacology
RSST  Remote sensing and signaling theory
SLC  Solute carrier family
TCA   Tricarboxylic acid
TSEA  Tissue specific expression analysis
WT  Wildtype
4CRSOLt_mb  P-cresol transport (microbiome)
ADD_mb  Adenine deaminase (microbiome)
ADE  Adenine
ADMDC_mb  Adenosylmethionine decarboxylase (microbiome)
AKG  Alpha ketoglutarate
ALATA_L  l-Alanine transaminase
ALKP_mb  Alkaline phosphatase (microbiome)
ATPS4r_mb  ATP synthase (microbiome)
DHA  Dihydroxyacetone
DHAP  Dihydroxyacetone phosphate
DHAPtr  Dihydroxyacetone phosphate transport
DHAt_mb  Dihydroxyacetone transport (microbiome)
FBA_mb  Fructose-bisphosphate aldolase (microbiome)
G3P  Glyceraldehyde 3-phosphate
GAPD_mb  Glyceraldehyde-3-phosphate dehydrogenase (microbiome)
GLU-L  L-glutamate
GLYALDDr  d-Glyceraldehyde dehydrogenase
HPYRRy  Hydroxypyruvate reductase (NADPH)
HXAND_mb  Hypoxanthine dehydrogenase (microbiome)
Met-L  l-methionine
MTAN_mb  Methylthioadenosine nucleosidase (microbiome)
PAPS  3-Phosphoadenylyl sulfate
PCRESOLup  P-cresol uptake
PCS  P-cresol sulfate
PCSF  P-cresol sulfation
PFK_mb  Phosphofructokinase (microbiome)
PGCD  Phosphoglycerate dehydrogenase
PGK_mb  Phosphoglycerate kinase (microbiome)
PPM_mb  Phosphopentomutase (microbiome)
PPM  Phosphopentomutase
PSERT  Phosphoserine transaminase
PSP_L  Phosphoserine phosphatase (l-serine)
PYK_mb  Pyruvate kinase (microbiome)
PYR  Pyruvate
r0242  Glycerone phosphate phosphohydrolase
r0249  d-Ribose-5-phosphate ketol-isomerase
r0840  R5P ER to cytosol transport
r0841  RU5P ER to cytosol transport
R1P  Ribose-1-phosphate
RPE_mb  Ribulose 5-Phosphate 3-Epimerase (microbiome)
RPEc  Ribulose 5-Phosphate 3-Epimerase
RPI_mb  Ribose phosphate isomerase (microbiome)
SPMS_mb  Spermidine synthase (microbiome)
TALA_mb  Transaldolase (microbiome)
TKT1_mb  Transketolase (microbiome)
TKT1  Transketolase
TKT2_mb  Transketolase (microbiome)
TKT2  Transketolase
TPI_mb  Triose-phosphate isomerase (microbiome)
TPI  Triose-phosphate isomerase
TRIOK  Triokinase
TYMSULT  Tyramine sulfotransferase,
Tyr-L  l-tyrosine
TYRL_mb  Tyrosine lyase (microbiome)
XAN  Xanthine
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XANt  Xanthine reversible transport
XANt2_mb  Xanthine transport (microbiome)

A fundamental challenge in medicine is the interpretation of systemic responses to perturbations of individual 
genes or sets of genes (or gene products). In particular, so-called drug transporters are understudied from a 
systems biology perspective. Along with mono-specific and oligo-specific transporters, these multi-specific SLC 
and ABC drug transporters are now known to have important roles in endogenous metabolism. Thus, trans-
porters are increasingly considered to be therapeutic targets for treatment of metabolic diseases. For example, 
the targeting by gliflozins of the sodium-glucose transporter SGLT2 (SLC5A2) is becoming a widely utilized 
therapy for Type 2  diabetes1.

Multi-specific transporters (e.g. Organic anion transporter 1, OAT1 or SLC22A6, originally identified as 
NKT; Organic anion transporter 3, OAT3 or SLC22A8; Breast cancer resistance protein, BCRP or ABCG2) 
handle a remarkably wide range of  drugs2–4. The Food and Drug Administration (FDA) has emphasized the 
clinical importance of understanding whether newly approved drugs are transported by these and a few other 
multi-specific SLC and ABC  transporters5, 6. Although they have immense pharmacokinetic importance, there 
is a growing appreciation of their endogenous roles in the transport of key metabolites and signaling  molecules5. 
Many of the metabolites handled by “drug” transporters originate in the gut microbiome in physiological and 
pathophysiological  circumstances7. Therefore, understanding the local and systemic metabolic consequences of 
disruption of multi-specific drug transporters (as well as oligo-specific and mono-specific SLC and ABC trans-
porters)—including metabolism dependent upon small organic molecules originating in the gut microbes—is 
of tremendous practical import.

OAT1 and OAT3 are particularly attractive for integrating metabolism across multiple drug transporters, 
multiple organs, the gut microbiome, and multiple  scales3, 4. From the organ and inter-organ perspective, there 
is now considerable evidence regarding the key roles of OATs in kidney proximal tubule regulation of plasma 
levels as well as renal and urine levels of fatty acids, uric acid, vitamins, bile acids, and prostaglandins, as well wide 
range of other metabolites and signaling  molecules8. Intracellularly, OATs help regulate cytosolic levels of “classic” 
Krebs Cycle metabolites such as alpha-ketoglutarate9. On an inter-organismal scale, OATs appear to be one of the 
major systemic routes for elimination of numerous gut microbiome-derived metabolites; once inside the cells of 
the kidney, some of these metabolites also activate nuclear receptor signaling, leading to the expression of other 
transporters and  enzymes10–12. Given this coming together of recent in vitro and in vivo experimental evidence 
from several groups, suggesting the impact of OAT functioning upon multiple biological scales (including intra-
cellular metabolism, organ metabolism, inter-organ metabolism, and inter-organismal metabolism), Oat1 and 
Oat3 seem an ideal set of genes for condition-specific genome-scale metabolic reconstruction at multiple scales.

Genome-scale metabolic network reconstructions provide a means to carry out multi-omic, data-driven 
model construction, that enable network flux estimations to provide an assessment of the metabolic capabili-
ties of the cells (Fig. 1). Most constraint-based reconstruction analysis (COBRA) methods do not require any 
parameterization; thus there does not need to be any ‘training’ on the data, and the calculated results are not 
subject to  overfitting13, 14. Gene-protein-reaction relationships provide the means to map transcriptomic data 
onto the metabolic network. Data integration algorithms provide the means to generate context-specific models 
using transcriptomic data (as well as any available proteomic or metabolomic data)15, 16. Beginning over a decade 
ago, physiologically-relevant results were obtained with this general approach using earlier versions of human 
genome annotation and incomplete representation of transporters to integrate transcriptomics and very limited 
metabolomics data in a "one transporter-one organ" approach. Recent approaches have enabled the generation 
of useful condition-specific models capable of simulating the effects of drug-induced, as well as genetic, pertur-
bations with experimental  validation17–21. The models in turn can be used to test current notions and generate 
new, testable  hypotheses22–25.

Due to limitations in scope of the metabolic reconstructions as well as relatively limited throughput of 
metabolomics, many complex inter-organ and gut-microbiome interactions were not detectable a decade ago. 
However, through the use of much more expansive plasma metabolomic profiling of Oat1 and Oat3 knockouts 
(KO) in conjunction with the current iteration of the human metabolic network reconstruction—and with the 
incorporation of multiple microbial models—we are now able expand the scope of the systemic alterations result-
ing from the loss of function of these transporters. For the first time, the reconstruction explores inter-organ 
interactions as well as the role of the gut microbiome in OAT-regulated metabolism. The results, while consistent 
with previous "one transporter-one organ" analysis, reveal many novel interactions across multiple organs and 
multiple scales. Furthermore, because of the intimate connection between gut microbe-derived metabolites and 
renal OAT1 and OAT3 function in the setting of kidney  disease3, this strategy could set the stage for a much more 
formal and transparent understanding of the systems biology of chronic kidney disease (CKD).

Here we use a multi-omics-based systems biology approach to interpret organ-specific as well as systemic 
responses (including gut microbe responses) to the organic anion transporters, OAT1 and OAT3 in KO mice. 
Our strategy reconciles intra-cellular (including inter-organelle) metabolism with multi-organ (e.g. kidney-liver) 
metabolism as well as inter-organismal (e.g. host-gut microbe) metabolism using a human metabolic network 
reconstruction,  Recon3D26, in conjunction with a representative microbial model (composed of an amalgam of 
multiple microbial models including, Bacillus subtilis, Lactococcus lactis, and multiple strains of Escherichia coli) 
to construct multiple host organ-microbiome models. The resulting OAT1 and OAT3 wildtype (WT) and KO 
models are then used to evaluate aspects of function within the whole organism in relation to: (1) kidney-specific 
functions; (2) multi-organ and microbiome interactions; (3) intracellular reaction fluxes and organelle-associated 
functions; and (4) metabolic pathways (canonical and context-specific). The results indicate how the changes in 
function of a single transporter, as well as multiple transporters, manifest in specific organelle, cellular, organ, 
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inter-organ, systemic, and inter-organismal (host-gut microbe) alterations in metabolism. While the centrality 
of the transport function OAT1 and OAT3 in the gut (including microbiome)-liver-kidney axis is reaffirmed, 
previously unrecognized connections to reactions in other tissues, such as those predominantly occurring in 
skin, are revealed. The results support the Remote Sensing and Signaling Theory (RSST) of inter-organ and 
inter-organismal communication via small organic molecules that interact with "drug" transporters, "drug" 
metabolizing enzymes and nuclear  receptors3, 5, 10, 12.

Results
To briefly summarize the reconstruction strategy that follows, renal transcriptomic and untargeted plasma 
metabolomic data from Oat1 and Oat3 WT and KO mice were analyzed using an integrated human-microbiome 
genome-scale metabolic network model, starting with Recon3D merged with a representative multi-microbial 
model (Fig. 2). A two-tier model construction approach was employed. The first tier consisted of creating con-
text-specific models of the kidney-gut microbiome using renal transcriptomics data (Fig. 3), and the second 
tier involved incorporating plasma metabolomics data. The analysis can be viewed as a ‘Data Filter’ (Figs. 2), 
resulting in four context-specific metabolic network models (two WT/KO pairs). Comparisons of overall content 
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Network Model/Map Perspective Mathematical Perspective
A B

Figure 1.  Data integration and analysis workflow. Panels (A) and (B) show two perspectives of the same 
process: the former outlines the graphical depiction of the integration and modeling approach; the latter 
provides a high-level outline of the key modeling implementation and analysis steps. These are: (1) The 
conversion process from a reconstruction to a computable model involves translating a map of biochemical 
reactions into the stoichiometric matrix. (2) This stoichiometric matrix then used to perform constraint-
based optimization using experimental data (e.g. omics data from WT versus KO). 3) Finally, simulations are 
performed in order to define the in silico phenotypes, which are characterized in the accompanying figures and 
tables. More specifically, in this study the global human-microbe network reconstruction is constrained with 
condition-specific data for WT and (OAT1 and OAT3) KO mice; these are then compared in order to identify 
the systemic metabolic differences resulting from loss of transport function for OAT1 and OAT3. These steps are 
described in the “Methods”. Please also see Fig. 2 and Supplemental Fig. S1. S stoichiometric matrix, v reaction 
flux vector, c objective vector, vu reaction upper bound vector, vl reaction lower bound vector.
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and the relative composition of the networks enables an assessment of: (1) the similarities and differences in the 
WT versus KO models based on reaction composition, including cross-comparison between Oat1 and Oat3, (2) 
functional comparison between WT and KO for Oat1 and Oat3, respectively, based on context specific network 
reconstruction content and steady state flux comparisons.

Transcriptome analysis. (Fig. 2, Data Filter 1): Context-specific models of the kidney-gut microbiome 
connections using transcriptomic data from the Oat1 and Oat3 WT and KO mice.

In spite of overlap in loss of function resulting from knockout of each of the transporters—for example, uric 
acid and diuretics are taken up into the kidney proximal tubule cells by both  transporters27, 28—it has recently 
been clearly established, in contrast to earlier views, that there are many independent metabolic functions for 
OAT1 and  OAT329, 30.

Our initial analyses of the current reconstructed network were consistent with the notion that, while the 
OAT1 and OAT3 models share a large number of reactions, each OAT sub-type modulates many unique meta-
bolic processes. Interestingly, when comparing WT and KO models and the number of reactions unique to each 
model, the Oat1KO had a relatively larger number of unique reactions compared to WT; in contrast, in the 
case of the Oat3KO, there were a relatively larger number of WT reactions compared to knockout (Fig. 3). One 
interpretation of this result is that compensation for loss of OAT1 necessitated a more pronounced metabolic 
compensatory response, which is consistent with the greater statistical significance of the numerous changes in 
metabolites in the knockout mice as well as the established role of OAT1 in energy metabolism in cell culture 
 experiments31. The metabolic sub-systems corresponding to the unique reactions in WT and KO models for 
OAT1 and OAT3 (Fig. 3), respectively, are highlighted in Figs. 4 and 5. They include many reactions supported 
by in vitro and in vivo  studies22–24, 32, 33.

Two sub-systems that increased in number for Oat1 and Oat3 knockouts are schematized in Fig. 6 (Purine 
Synthesis for Oat1 knockout and Bile Acid Synthesis for Oat3 knockout). Purine metabolism intermediates, 
including inosine, inosine monophosphate (IMP), and adenine, that are also found to have increased plasma 
concentrations in Oat1 knockouts, are highlighted. The Bile Acid Synthesis sub-system changes in the Oat3 
knockout are slightly more nuanced but appear consistent with the well-established role of Oat3 in in vivo bile 

Network Reconstruction
Merged with Microbe
(Recon3D, iYO844+)

Renal Transcriptomic
Data Layer

Plasma Metabolomic
Data Layer

Context Specific, 
Multi-Cell Models

(Oat1 WT, Oat1 KO,
Oat3 WT, Oat3 KO)

Context Specific, Multi-Cell, 
Systems Level Models

(Oat1 WTvKO, Oat3 WTvKO)

Data Filter 1
(4 models)

Data Filter 2
(2 models)

Figure 2.  Schematic of study design. Shown here is an outline of the workflow to generate the context-specific 
models for the OAT1 and OAT3 “transcriptome model” and “transcriptome plus metabolome” models. As 
described in Methods, a human metabolic reconstruction (Recon3D) was merged with a representative 
microbiome metabolic reconstruction. The first tier (‘Data Filter 1’) involves generation of context-specific 
models for OAT1 and OAT3 WT and KO mice using renal transcriptomic data. The second tier (‘Data Filter 2’) 
uses targeted plasma metabolomic data to generate sets of WT versus KO comparison models. Since the plasma 
metabolome includes inter-organ interactions (uptake, elimination, and metabolism) across all organs in the 
body, alterations (synthesis and degradation) due to non-renal metabolism can be inferred using independently 
defined metabolic objectives (see “Methods” and main text).
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acid  regulation31. The increased plasma choline concentration in the Oat3 knockouts leaves less intracellular 
choline use for bile acid metabolism, leading to increased metabolism of other, multi-ring intermediates, such 
as 3 α ,7 α,12 α-Trihydroxy-5 β-cholestanoate.

Organelle-based differences in metabolism. The role of plasma membrane multi-specific “drug” 
transporters in modulating intracellular and organelle-specific reactions has received limited attention to date. 
Nevertheless, there is strong in vitro experimental evidence that the OATs are intimately connected to the tri-
carboxylic acid (TCA) Cycle, and indeed, counter-transport of a TCA Cycle intermediate (generally assumed to 
be the dicarboxylic acid, alpha-ketoglutarate) is necessary for uptake of metabolites and drugs into the kidney 
proximal tubule  cell34. Comparisons between the WT and KO models for the number of different metabolites 
for each of the 9 compartments (7 host-intracellular organelles, microbe-intracellular, and extracellular) were 
statistically significant for the knockouts of both Oat1 and Oat3 with Chi-square values of 103.9 (corresponding 
to p < 0.001) and 20.1 (corresponding to p < 0.01), respectively. Many of these metabolic processes are related 
to the endoplasmic reticulum (ER), a key site of metabolism of lipids, steroids, and xenobiotics (Fig. 3C). In 
contrast to the Oat1 knockout changes, knockout of Oat3 resulted in shifts (decreases) in Golgi, lysosome, and 
peroxisome metabolic processes (Fig. 3D).

Figure 3.  Comparison of metabolic reactions and organelle metabolite content between WT and OAT1 and 
OAT3 KO mice. Comparison between the renal transcriptome-constrained models revealed overlap between 
the WT and KO, as expected, but it is important to note there exist notable differences. In particular, there 
are metabolic reactions that are “unique” or specific to the WT but not to one or both knockouts, and vice-
versa. These differences are manifest in part by the organelle-specific metabolite composition changes (e.g. 
endoplasmic reticulum) in the KO mice reconstructions. The organelle-based differences reflecting different 
pathways of metabolism are noted in OAT1 versus OAT3. (A) OAT1 WT and KO Venn diagram summary of 
the kidney/microbiome model. The relatively larger number of unique KO model reactions suggests that in 
order to compensate for the loss of OAT1, the kidney cells must rely on a larger set of reactions associated with 
certain organelles. (B) OAT3 WT and KO Venn diagram summary of the kidney/microbiome model. (C) Ratio 
of the relative number of unique metabolites in OAT1 KO versus WT models across all 9 compartments. There 
is a significant increase in the number of metabolites in the endoplasmic reticulum (Chi-square p < 0.001) of 
the knockouts; these largely reflect the 232 unique knockout model reactions. (D) Ratio of the relative number 
of unique metabolites in OAT3 KO versus WT models across all 9 compartments. In contrast to the OAT1 
WT versus KO, the OAT3 KO has a significantly lower number of metabolites (Chi-square p < 0.01) in several 
compartments, namely the Golgi apparatus, lysosome, and peroxisome; these changes are also consistent 
with the relatively larger number of unique reactions in the WT model (B). MB microbiome, Cyt cytosol, 
EC extracellular, Gol Golgi, Lys lysosome, Mit mitochondria, Nuc nucleus, ER endoplasmic reticulum, Perox 
peroxisome.
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Metabolome and transcriptome analysis. (Fig. 2, Tier 2): System-wide changes from models incorpo-
rating transcriptomic and metabolomic data from the WT and Oat1 and Oat3 KO mice.

In order to further constrain the models and also expand the scope of the models by accounting for the plasma 
metabolomic measurements (i.e. the circulating metabolome), the metabolomic data from the four conditions 
(Oat1WT, Oat1KO, Oat3WT, Oat3KO) was mapped onto the model (Fig. 2; see Methods). Previous studies using 
early versions of reconstruction tools and very limited omics data focused on identifying novel metabolites that 
interacted with OAT  transporters22–24. For the present analysis, given the much broader and deeper metabolomic 
coverage that has recently been achieved in the Oat1 and Oat3 knockouts, the interest was to assess more global 
alterations resulting from the OAT KO, including direct and indirect consequences from loss of Oat1 and Oat3. 
Differentially active reactions achieving significance were identified by randomized sampling of the steady state 
flux solution space (Supplemental File 1). There were 189 and 142 significantly altered exchange metabolites for 
the WT versus the Oat1 and Oat3 KO conditions, respectively (104 shared metabolites).

Vitamin and micronutrient shifts. Among the notable total changes in the OAT knockouts are the shifts 
in vitamin and their precursor metabolites in the plasma; many of these changes occur in the Oat1  knockouts32. 
Both the Oat1 and Oat3 knockouts have increased plasma pyridoxal concentrations. However, the Oat1 knock-
outs have increases in numerous other vitamins including biotin, pantothenate, pyridoxate, and salicylate 
(Fig.  7). Notable decreases include tocopherol, nicotinamide, quinolinate, and retinol. Additionally, changes 
in the glutathione and associated redox pools were observed, notable for increased ophthalmate in both Oat1 
and Oat3 knockouts; increased S-methylglutathione was seen only in Oat3 knockouts and increased oxidized 
glutathione and cysteine-glutathione disulfide only in Oat1 knockouts.

Co-set analysis identifies host-microbiome interactions. Many gut-derived products entering the 
circulation are organic anions that are transported by OATs into kidney proximal tubule cells whereupon they 
are  eliminated22, 29, 32 and/or affect metabolism and signaling via, for example, nuclear receptors within kidney 
 cells35, 36. Reaction co-sets can provide insights into these complex metabolic pathways by analyzing functionally 

Figure 4.  Changes in mutually exclusive reactions in the WT versus OAT1 KO models according to metabolic 
sub-systems shown as a percentage of the total number of reactions in each Recon3D sub-system. The changes 
in sub-systems are not uni-directional; some sub-systems increase and others decrease. Notably, in the Oat1KO 
model there is an increase in purine metabolism, cholesterol metabolism, and fatty acid synthesis, while alanine 
and aspartate metabolism and Vitamin B metabolism sub-systems are noted to decrease.
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connected sets of reactions. Not surprisingly, the largest co-sets for all four models (Oat1WT, Oat1KO, Oat3WT, 
Oat3KO) were driven by reactions related to production of microbial biomass. However, uniformly across all 
of the models, the second largest co-set involved central metabolites in host and microbial metabolism (Fig. 8). 
While some metabolites are specific to microbes, other metabolites in evolutionarily conserved pathways, may 
be disrupted in the host and/or the microbiome. R1P, G3P, AKG, PYR, GLU-L were found to be altered in 
the plasma metabolomic data, however these measurements alone provided no insight into inter-dependen-
ices or whether the changes resulted from the host or the microbiome. The host-microbial co-set depicted in 
Fig. 8 highlights the mechanistic connectivity between some of these shared metabolites within the kidney and 
microbe. Further the co-set revealed that the intracellular changes could be transmitted/communicated between 
the kidney and microbe via dihydroxyacetone phosphate (DHAP), dihydroxyacetone (DHA), and XAN. Thus, 
DHA appears to be a critical link between sugar metabolism in the host and microbe (glycolysis and non-oxida-
tive pentose sugar metabolism), in addition to xanthine and alanine.

Another example among these significantly altered metabolites linking host-microbe metabolism is the 
metabolism and handling of p-cresol, which turns out to be similar to the experimentally well-supported and 
paradigmatic example of gut microbe-derived OAT substrate indoxyl  sulfate35–38—though, in this case, revealed 
by analysis of reaction co-sets. p-cresol is generated in the microbiome during conversion of L-tyrosine to 
L-methionine and subsequently absorbed by the host. p-cresol is, in turn, sulfated by hepatocytes and secreted 
from the liver (Fig. 9). The subsequent excretion by the kidney completes the gut microbiome-liver-kidney axis. 
This inter-organismal and inter-organ pathway has been described and confirmed in the experimental  literature5, 

28, 29, 39, 40. Furthermore, the recapitulation of this pathway explicitly with the models raised the question of 
whether other inter-organ interactions could also be identified with these data.

Figure 5.  Changes in mutually exclusive reactions in the WT versus OAT3 KO models according to metabolic 
sub-systems given as a percentage of the total number of reactions present in each Recon3D sub-system. In the 
Oat3KO model, notable decreases are seen in hyaluronan and glycerophospholipid metabolism. It is important 
to also recognize that, even though the number of reactions in a particular sub-system may decrease, particular 
reactions within that sub-system may have an increase in mean flux (since anabolic and catabolic reactions may 
be grouped within a single sub-system).
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Inter-organ interactions. When we further examined the results of metabolomics-constrained genome-
scale analyses (including host-microbe interactions) from the two transporter KO mice and two WT mice, we 
found many reactions relating to tissue-specific functions of other organs. This suggested that the new metab-
olomics-constrained host-microbe models, which already revealed intracellular and intra-organelle reactions, 
also included reactions spanning multiple organs.

Tissue-Specific Expression Analysis (TSEA)41 was used as an independently validated approach for identifying 
tissue-specific subsets of genes for kidney, liver, brain, skin, adipose, and colon (see “Methods”). The network 
reconstruction was used to define corresponding metabolic functions for these gene sets. The metabolic demands 
for each of these tissues compete for the availability of different metabolites depending upon reactions that are 
tissue-specific, or relatively so. Interestingly, correlations between any two tissues are relatively poor, suggesting 
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that our approach captures key aspects of organ-selective metabolic processes (in the context of the host-microbe 
unit) that are dependent upon Oat1, Oat3, or both.

We considered pairwise interactions among the six different organs plus the microbiome in order to determine 
whether an increased metabolic demand for one tissue affects (or doesn’t affect) the metabolic capabilities of a 
different organ. The relative interactions for the WT and KO mice were then compared in order to provide an 
assessment of the changes (if any) between different organs that result from transporter loss of function in the 
Oat1 or Oat3 knockout mouse. For each of the different organs and microbiome, the metabolic demand for each 
tissue was optimized while setting a non-zero demand for a different organ or microbiome (see “Methods”). Cru-
cially, by this approach, every pairwise influence of a particular organ on another organ can be assessed (Fig. 10).

The Circos plots of the optimized metabolic organ objectives (Fig. 10A,B for Oat3 WT and KO, respectively) 
provide a visual depiction of the metabolic demands of one organ on another. The width of each ribbon rela-
tive to itself (e.g. red brain to green brain or red kidney to green kidney) represents the ‘reference’ metabolic 
demand for that organ. The width of the self-organ ribbons in comparison to the inter-organ ribbons (e.g. red 
brain to green kidney, red kidney to green liver, etc.) represents the competitive metabolic demand of the other 
(green) organ. Differences in the weightings were then compared (as percentages) between the wildtype versus 
knockout models.

From these Circos plots, one can immediately appreciate the asymmetric metabolic demands of different 
organs on one another qualitatively and as quantitative percentage differences (Fig. 10C). Moreover, in assess-
ing the kidney-liver-colon axis, it is interesting that across a range of varying metabolic demands, the metabolic 
flexibility of the colon is most severely restricted as a consequence of Oat3 KO (Fig. 10D).

Interestingly, the organ-organ interaction difference maps are asymmetric for the Oat1 (Supplemental Figs. 2 
and 3) and Oat3 WT versus KO comparisons (Fig. 9). This supports the interpretation that the organ-organ 
interactions are not static and can potentially shift depending on changes in substrate availability and metabolic 
stresses on particular organs. Additionally, the WT versus KO organ-organ interaction plots for Oat1 indicate 
the largest alterations for the liver and colon (followed by adipose and skin), whereas for the Oat3 the largest 
alterations occurred with the liver and skin (followed by the colon). Finally, since these interactions are occur-
ring simultaneously and dynamically, the conceptual model of a hierarchical axis gives way to a structured web 
of interactions.

Figure 7.  Changes in vitamin concentrations in OAT1 and OAT3. Relative ratios (KO/WT) of vitamin and 
vitamin precursor concentrations for the OAT1 and OAT3 knockouts. The changes in the availability and 
transport of these metabolites in the context of the altered microbiome interactions as well as organ-organ 
interactions, such as the kidney-liver-colon axis, suggests there may be nutritional consequences resulting from 
loss of OAT expression.
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Collectively, we see the consequences of OAT influence on systemic metabolism extending beyond the kidney-
microbiome axis and involving multiple organs. Our results suggest that interactions between the liver, colon, 
and skin with the other organs are most prominently affected by loss of OAT function (Fig. 11). The interactions 
between renal OATs and skin metabolism may seem unexpected and has not been studied in any detail. Never-
theless, it is important to note that it is a large complex organ that is a key site of Vitamin D, fatty acid, organic 
acid, and melatonin/amino acid metabolism, and skin has its own sets of  microbiomes42–44.

Discussion
This reconstruction provides the first multi-scale representation of how multiple drug transporters regulate 
metabolism across organelles, cells, organs, multi-organ axes (e.g. gut-liver-kidney), and organisms (e.g. gut 
microbes-body). Many interesting insights emerge. For instance, to compensate for the loss of transport by a 
plasma membrane OAT, cells in the kidney alter a large set of reactions occurring in certain organelles. More 
generally, the reconstruction supports the RSST, which seeks to explain the role of "drug" transporters and other 
proteins—many of which are also involved in the drug absorption, distribution, metabolism and elimination 
(ADME) of small molecule drugs—in inter-organ and inter-organismal communication across multiple scales 
(organelle to multi-organism)3, 5, 10, 12. The RSST is discussed further below.

Considering both OAT1 and OAT3 together is particularly interesting and important from a physiological 
perspective. These two "drug" transporters are, together, the main route of renal handling of a very large class 
of clinically-relevant small molecules: organic anions. One of the main roles of the kidney is the elimination of 
small molecule drugs and toxins (exogenous and endogenous), as well as numerous by-products of metabolism, 
including uremic toxins of CKD originating from gut microbes. Many of these gut-microbe small molecules are 
organic anions with molecular weights on the order of 100–1000 Da known to be transported by OATs in the 
kidney proximal tubule.

While OAT1 and OAT3 are among the seven drug transporters initially focused upon by regulatory agencies 
because their immense pharmaceutical and pharmacokinetic  importance5, 45, 46, a growing amount of evidence 
indicates an essential role for OATs in many aspects of endogenous  physiology22–24, 29, 47. They and other closely 
related SLC22 family transporters are expressed early in organ  development39, 40, and OATs and other SLC22 
transporters are evolutionarily conserved, with orthologous and/or highly homologous genes found in mouse, 
zebrafish, fly, and  worm48. Indeed, many family members in fly are essential for development of the embryo, or 
in adults, recovery from oxidative  stress33. In zebrafish, OATs appear to have endogenous functions similar to 
 mammals49. There continues to be growing evidence for the direct relevance of mouse OATs and  humans48, 50, 

51, further supporting the important role of murine experimental models. While the murine knockouts of Oat1 
and Oat3 have the predicted pharmacological and toxicological phenotypes, the application of metabolomics 
has radically changed our understanding of OAT  function23, 24, 30, 45, 52, 53. Much of this wet lab experimental data 
comes from our research group.

In addition, numerous in vitro and in vivo experiments carried out by multiple groups, including ours, have 
revealed connections of OAT1 and OAT3 to the transport of gut microbe-derived products such as hippurate 
and p-cresol  sulfate54–56, intracellular molecules such as TCA cycle  intermediates9, and links between Phase 1 
and Phase 2 enzymatic modifications of endogenous molecules by the liver (e.g. glucuronidation, sulfation) and 
secretion by the proximal tubule of the  kidney57. Co-expression networks including SLC and ABC transport-
ers support the existence of endogenous networks linking the physiology of the gut, liver, and kidney to many 
multi-specific, oligo-specific and mono-specific transporters with SLC22 transporters (including OATs, OCTs, 
and OCTNs) forming key hubs in the transporter network by several network  metrics29.

Nevertheless, a formal analysis of these connections across multiple scales (organelles, cells, organs, organ-
isms) has been lacking until now, leaving much of the aforementioned experimental data piecemeal and uncon-
nected. Through analysis of multiple omics datasets from the Oat1 and Oat3 knockouts using a host-microbiome 
metabolic reconstruction, we have shown, to our knowledge for the first time, alterations in biochemical reactions 
involving two major multi-specific “drug” transporters affecting intra-cellular, inter-organ, and inter-organismal 
metabolic capabilities. These endogenous biochemical reactions are, at various scales, dependent upon OAT1, 
OAT3, or both.

We used TSEA as a reconstruction-independent means to define tissue-specific functions and then analyzed 
the metabolomic data with different organ objectives. Indeed, it is interesting to note how one or the other trans-
porter impacts certain non-renal organs similarly and differently (Fig. 10) as well as their differential impact on 
cellular and organelle (e.g. endoplasmic reticulum) reactions (Fig. 3). Thus, through a novel linkage of systems 
biochemical methods, transcriptomic, and metabolomic data from WT versus Oat1 and Oat3 KO mice, new 
insight is provided into the local and systemic effects of OATs, including connections to relevant aspects of host 
metabolism dependent upon the metabolism in the gut microbiome.

The implications for understanding the scope of drug transporter biology, as opposed to more narrowly-
defined pharmacokinetics analyses, are far-ranging and raises many new questions for research in this field. The 
metabolomic and transcriptomic measurements in conjunction with the systems analysis implicating altered 
interactions of multiple organs in the context of loss of OAT functions may have significant implications for 
understanding triggers for multi-organ failure when patients are administered multiple therapeutic drugs includ-
ing probenecid, antivirals, and penicillin-based antibiotics, for example, in the setting of compromised renal or 
hepatic function.

One of the most unexpected findings of this study is the connection between kidney OATs and the skin. 
We emphasize again a significant and largely unappreciated role of skin metabolism relating to endogenous 
metabolites and drugs. A growing number of experimental and clinical studies, however, indicate a significant 
role of skin as a drug metabolizing  organ58. Its role in systemic metabolism is only beginning to be explored. 
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Figure 8.  Kidney-microbiome interactions revealed by analysis of reaction co-sets connects host (kidney) and 
gut microbial metabolic pathways via transport. Reaction co-sets provide a means of identifying functionally 
correlated pathways by delineation of groups of reactions that are linked together based upon flux  correlations77. 
The kidney-microbiome steady state flux space was interrogated in order to identify reaction co-sets involving 
the host as well as the microbiome, reflected as changes in the plasma metabolite concentrations. The illustrated 
central metabolic pathways centering around hexose and pentose sugar metabolism provide direct links 
between the host and microbiome. Links between glycolysis and the non-oxidative pentose phosphate pathway 
are directly coupled via inter-organismal (host-microbiome) transport of dihydroxyacetone phosphate and 
dihydroxyacetone. Other metabolites such as xanthine and L-alanine are present in some but not all of the 
co-sets for the four models (Oat1WT, Oat1KO, Oat3WT, Oat3KO), reflecting the condition/context dependence 
of the co-sets. Reactions with blue names are present in all four models (reactions with red names are present 
in one, two, or three models). Abbreviations are as follows, with those enzymes and transporters present in 
the microbiome as opposed to the host indicated as “x_mb (microbiome)”: ALATA_L l-alanine transaminase, 
PSERT phosphoserine transaminase, PGCD phosphoglycerate dehydrogenase, PSP_L phosphoserine 
phosphatase (l-serine), r0841 RU5P ER to cytosol transport, r0249 d-ribose-5-phosphate ketol-isomerase, r0840 
R5P ER to cytosol transport, PPM phosphopentomutase, TKT1: Transketolase, RPEc ribulose 5-phosphate 
3-epimerase, TKT2 transketolase, TRIOK triokinase, GLYALDDr d-Glyceraldehyde dehydrogenase, HPYRRy 
hydroxypyruvate reductase (NADPH), TPI triose-phosphate isomerase, XANt xanthine reversible transport, 
r0242 glycerone phosphate phosphohydrolase, DHAPtr dihydroxyacetone phosphate transport, XANt2_mb 
xanthine transport (microbiome), PPM_mb phosphopentomutase (microbiome), RPI_mb ribose phosphate 
isomerase (microbiome), RPE_mb ribulose 5-phosphate 3-epimerase (microbiome), TKT1_mb transketolase 
(microbiome), TKT2_mb transketolase (microbiome), TALA_mb transaldolase (microbiome), TPI_mb triose-
phosphate isomerase (microbiome), GAPD_mb glyceraldehyde-3-phosphate dehydrogenase (microbiome), 
PGK_mb phosphoglycerate kinase (microbiome), ATPS4r_mb ATP synthase (microbiome), DHAt_mb 
dihydroxyacetone transport (microbiome), ALKP_mb alkaline phosphatase (microbiome), FBA_mb: Fructose-
bisphosphate aldolase (microbiome), PFK_mb phosphofructokinase (microbiome), PYK_mb pyruvate kinase 
(microbiome), AKG alpha ketoglutarate, GLU-L l-glutamate, R1P ribose-1-phosphate, G3P glyceraldehyde 
3-phosphate, XAN xanthine, DHAP dihydroxyacetone phosphate, DHA dihydroxyacetone, PYR pyruvate.
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Another interesting and unexpected finding was the shift in glutathione metabolism in OAT KO models. Interest-
ingly, ophthalmate has been directly linked to biochemical aging of cells with associated decreased glutathione 
 availability59. The ability to maintain redox pools and to respond to exogenous and endogenous redox loads 
is a core, essential function of cellular metabolism. An impaired ability to tolerate redox stresses, as suggested 
by the OAT KO models, may have practical implications in our understanding of ‘off-target’ effects of drugs 
interacting with these transporters. Future studies to further evaluate these mechanisms, as well as understand-
ing regulation of different sub-pathways in Oat1 versus Oat3 KO (e.g. increased cysteine-glutathione disulfide 
versus S-methylglutathione, respectively) may expand our understanding of metabolic regulation of redox states.

A critical challenge with analyzing OATs and other multi-specific (e.g. MRP2 or ABCC2, OATP1B3 or 
SLCO1B1) and oligo-specific transporters (e.g. organic cation/carnitine transporter 2 (OCTN2 or SLC22A5), 
multidrug and toxin extrusion protein 2 (MATE2 or SLC47A2)), most of which are usually considered drug 
transporters, is the spectrum of their transport capabilities not only for drugs but also endogenous molecules 
(e.g. short chain fatty acids, cyclic nucleotides, antioxidants, bile acids)–resulting in local and systemic effects 
secondary to their loss of function.

The Remote Sensing and Signaling Theory (RSST)60 posits that key multi-, oligo-, and monospecific trans-
porters, "drug" metabolizing enzymes, and nuclear receptors mediate communication via small molecules (e.g. 
metabolites, signaling molecules, antioxidants) between organs and organisms (e.g. host-microbiome). This ulti-
mately coordinates the shifts in the availability of small molecules with "high informational content" across dif-
ferent tissues and fluid compartments in the  body3. By and large consistent with the RSST, the systems approach 
employed here using transcriptomic and broad plasma metabolomic coverage takes steps towards analyzing how 
metabolic signals are transmitted across many scales including organelles, cells, organs, the mammalian organ-
ism (whole body), and the interfacing microbiome. More complete formulations of the RSST—as well as the 
experimental evidence behind the theory and applications to human disease—have been presented  elsewhere3, 

5, 8, 10, 47, 61.
OAT1 and OAT3 are but two of the > 500 proteins (consisting of transporters, DMEs, nuclear receptors 

and other proteins) that appear to be part of a Remote Sensing and Signaling protein network regulating small 
molecule  homeostasis45, 61. The SLC22 transporter family, of which OAT1 and OAT3 are among the best-known 
members, is a key hub in the Remote Sensing and Signaling protein  network45. It would be particularly interest-
ing, provided similar omics data becomes available, to perform metabolic reconstructions of members of other 
transporter, DME, and nuclear receptor families that are hubs in the Remote Sensing and Signaling protein 
network (e.g. BCRP, MRP2, HNF4a). This would give a more complete portrait of how these multi-, oligo- and 
monospecific transporters, enzymes and regulatory proteins affect different aspects of metabolism across mul-
tiple scales.

The context-specific genome-scale reconstructions that we present here were based on: (1) the transcriptomic 
alterations in the Oat1 and Oat3 knockout mice; (2) connecting them to bacterial metabolic reconstructions; 
and then 3) constraining by knockout metabolomics (as done here). The resulting reconstruction provides key 
and novel insights into how the system has responded, in terms of metabolic capabilities, to the loss of function 
of one or both OATs. However, one challenge with high-throughput profiling of complex systems with dynami-
cally interacting organelles, cells, organs, and organisms, is that the direction of causality cannot be immediately 
inferred. We acknowledge that this multi-scale model remains incomplete and simplified. Currently, it is difficult 
to perform rigorously controlled ex vivo multi-organ plus microbiome experiments that authentically repro-
duce in vivo inter-organ and inter-organismal cross-talk with simultaneous omics profiling at the many scales 
necessary to fully evaluate the model. However, this should be possible within a few years. Such experiments 
should be able to help refine the model as well as add complexity in a step-by-step fashion that is not easily done 
with in vivo experimentation even with multi-omics readouts. Then predictions of such multi-scale metabolic 
reconstructions can be further refined based on dynamic data based on ex vivo model perturbations in light 
of comparable in vivo perturbations in well-established physiological and pathophysiological animal models.

Importantly, through the use of organ-specific transcriptomics and plasma (systemic) metabolomics, the 
resulting models are a step towards reconciling genome-scale metabolic networks with ADME models. Thus, they 
provide a novel, rigorous, and quantitative avenue for relating the systems biology of metabolism to quantitative 
systems pharmacology (QSP) and physiologically-based  pharmacokinetics14, 61, 62. As such, the work also repre-
sents a foundational approach to understanding transporter-based drug-metabolite interactions beyond a single 
transporter, beyond a single organ, and—given that it considers the microbiome—beyond a single organism. The 
implications are far-ranging in that they both provide a basis for contextualizing previous in vivo  studies51, 63–66 
and also suggest the types of detailed analyses that will need to be done in future studies in model organisms 
and humans to more clearly define the multi-scale (i.e. intra-organelle, intra-cellular, inter-organ, and inter-
organism) impact of small molecule drugs and drug transporter perturbations on metabolism and physiology.

Ideally, we would like to integrate human metabolism with many more species of gut microbes; we would also 
like to have omics data at many scales from multiple organs and cell types for genome-scale metabolic reconstruc-
tions. We have used to advantage the fact that OAT1 and OAT3—while experimentally demonstrated to regulate 
or modulate many local and systemic metabolic pathways and shown to be key determinants of plasma levels of 
gut microbe-derived  molecules7, 53, 56—have 90–95 percent of their total expression in a single organ, the kidney. 
A major function of the kidney is to mediate, in large part via the activity of OAT1 and OAT3, the elimination 
of small organic anions. Thus, the quantitative data on levels of bacterial-derived metabolites made it possible 
to integrate a microbiome model into the multi-scale reconstruction. While we were able to incorporate basic 
interactions, future iterations may further build upon this as more extensive data becomes available.

This overwhelming expression of the OATs, the main drug transporters in the single organ responsible for 
the elimination of many common drugs (e.g. antibiotics, NSAIDs, HIV antivirals), is in marked contrast to many 
other multi-specific drug transporters such as p-glycoprotein (ABCB1), breast cancer resistance protein (BCRP, 
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ABCG2), multidrug resistance related protein 2 (MRP2, ABCC2), which are expressed in a number of organs 
involved in drug handling such as the gut, liver, and kidney. OAT1 and OAT3 are, however, not expressed in the 
adult gut and adult liver.

It is important to re-emphasize that the vast preponderance of expression of the OATs in a single organ seems 
to have been an advantage for our reconstruction in that we did not have to reconcile transcriptomics data 
from multiple organs, as might be necessary in the case of well-known multi-specific ABC drug transporters 
expressed broadly across many organs; in this latter case of major expression in many organs, the appropriate 
methodological approach is also far less clear. Given the aforementioned expression patterns, OAT knockout tran-
scriptomics data from the kidney, constrained by plasma metabolomics, seems likely to yield a useful multiscale 
reconstruction of drug transporter-mediated metabolism. This view is strongly supported by the considerable 
in vitro and in vivo wet lab data already discussed. As more datasets are generated, we anticipate that the model 
predictions will improve with greater specificity, although it is expected that the general observations from the 
current simulations will be refined rather than be radically altered.

In the future, exposing and exploring the potential to identify organ-specific side-effects of renal eliminated 
drugs with multi-organ metabolic reconstructions (MOMR) may become critical for understanding the extent 
of direct and indirect drug-metabolite interactions. This is likely to be particularly important in the care of 
patients, who have pre-existing organ compromise (e.g. CKD) and who receive multiple medications, as these 
can conceivably lead to iatrogenic precipitation of multi-organ dysfunction.

Methods
Transcriptomic profiling. All experimental protocols involving the use of animals were approved by the 
UC San Diego Institutional Animal Care and Use Committee (IACUC) and consistent with ARRIVE guidelines 
(arriveguidelines.org). All animals were handled in accordance with the Institutional Guidelines on the Use of 
Live Animals for Research. Adult WT, Oat1 KO, and Oat3 KO males were housed separately under a 12-h light–
dark cycle and were provided ad libitum access to food and water. Serum was extracted from the whole blood. 
These animals have been described in previous  publications22, 28.
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kidney. Abbreviations are as follows, with those enzymes and transporters present in the microbiome as opposed 
to the host indicated as “x_mb (microbiome)”: PCSF p-cresol sulfation, TYMSULT Tyramine sulfotransferase, 
PCRESOLup p-cresol uptake, 4CRSOLt_mb p-cresol transport (microbiome), TYRL_mb Tyrosine lyase 
(microbiome), ADMDC_mb Adenosylmethionine decarboxylase (microbiome), SPMS_mb Spermidine synthase 
(microbiome), MTAN_mb methylthioadenosine nucleosidase (microbiome), ADD_mb adenine deaminase 
(microbiome), HXAND_mb hypoxanthine dehydrogenase (microbiome), PAPS 3-phosphoadenylyl sulfate, PCS 
p-cresol sulfate, Met-L l-methionine, Tyr-L l -tyrosine, ADE adenine, XAN xanthine.
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Figure 10.  Organ-organ interaction and metabolic interdependence for OAT3 WT and KO models. The 
models were analyzed to assess the influence that different organ metabolic objectives had on one another and 
whether these changed with the loss of OAT function. The Circos plots illustrate direct pairwise interactions 
and the consequences of reaching a particular organ’s metabolic objective while being directly constrained by 
a different organ. The red shaded organ icons can be viewed as the output constraining effect, and the green 
shaded organ icons as the input constraining effect (‘constraining effect’ refers to a limit on a particular reaction 
flux as a result of competing substrates for a different metabolic reaction). The ribbon width of each organ 
to its self-counterpart (i.e. red colon to green colon) serves as the ‘reference’ comparison for other organ-
organ interactions. Similar ribbon widths reflect relative independence of the optimized organ. Conversely 
a smaller width indicates a constraining effect on the optimized organ metabolic objective. (A) WT Circos 
plot of organ-organ interactions with ribbon width corresponding to the maximum percentage of an organ’s 
metabolic objective while maintaining 80% of maximum for another organ. The majority of the ribbons are 
symmetric with similar widths. Notably there is a constraining effect of the kidney on the colon, microbiome, 
and brain metabolic objectives. (B) Zoomed in view of a section of the WT Circos plot. The outer ring scales 
are percentages relative to the summed total independently optimized organ objectives. The inner ring is the 
summed total normalized to a total value of 400. The width of the kidney-kidney ribbon serves as the reference. 
Note that the kidney → microbiome, kidney → colon, and kidney → brain ribbons (green → red for each 
respective case) are markedly thinner (approximately 1/10 each), indicating metabolic competition for each of 
these organs. (C) Knockout Circos plot of organ-organ interactions with ribbon width corresponding to the 
maximum percentage of an organ’s metabolic objective while maintaining 80% of maximum for another organ. 
Relative comparison between the WT (A,B) and KO (C) indicate changes in the inter-organ metabolic demands 
resulting from loss of OAT3 transport function. The kidney-colon-microbiome axis has been described, 
but there is a constraining effect of liver metabolism on multiple organs including the kidney, brain, and 
microbiome. In Supplemental Fig. 3, a similar analysis is presented for WT versus Oat1 KO. (D) Difference (in 
percentages) between the WT and KO Circos plots. The quantitative percentage differences between the organ-
organ interactions for WT (A,B) and KO (C) in panel (D) provide an objective assessment of the changes in the 
inter-organ constraints due to loss of OAT3. The most prominent changes are seen for the liver, colon, and skin. 
(E) Kidney-liver-colon flux cone. The 3D flux phase plane depicts the trade-offs among three competing organ 
objectives, the kidney, liver, and colon. It is interesting to note that, in comparing the WT and KO, although the 
liver-kidney slope is curtailed, the metabolic flexibility for the colon is severely restricted. Legend: Labels for the 
different organ icons are described. Red shading reflects the organ that has been constrained with a lower bound 
equal to 80% of its maximum value. Green shading demarcates the organ metabolic objective that is optimized. 
Abbreviations (corresponding to the organ icons): L liver, K kidney, B brain, S skin, A adipose, C colon, MB 
microbiome.
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Metabolomic profiling. Individual, unpooled samples were measured by the Metabolon analytical sys-
tem (Metabolon, Inc., Durham, NC). Samples were prepared and subjected to ultrahigh performance liquid 
chromatography-tandem mass spectroscopy (UPLC-MS/MS) utilizing an ACQUITY ultra-performance liquid 
chromatography (UPLC) (Waters, Milford, MA) and a Q-Exactive high resolution/accurate mass spectrometer 
interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 
mass resolution (Thermo Scientific, Waltham, MA). Raw data was extracted, peak-identified and QC processed 
using Metabolon’s hardware and  software60, 61. Two-way Analysis of Variance (ANOVA) testing was used to 
calculate the p-values and the metabolites that were selected for display in figures and tables had either: (1) a 
fold change ≥ 1.2 with a p-value ≤ 0.05; or (2) a fold change ≥ 2.0 with a p-value ≤ 0.1 in at least one of the various 
comparisons (e.g., Oat1KO vs WT; Oat3KO vs WT) (Supplemental File 1). Updated, expanded plasma profiling 
was performed as  described30.

Modeling and analysis. Multiple genome-scale metabolic reconstructions were used to construct a scaf-
fold for data mapping and simulation including Recon3D and multiple microbial reconstructions. The “rep-
resentative” microbiome microbe model (MB) was constructed starting with the Bacillus subtilis (iYO844)67 
metabolic network reconstruction with incorporation of pathways from Lactococcus lactis MG1363 (iNF517)68, 
Escherichia coli K-12 MG1655 (iAF1260)69, Escherichia coli ETEC H10407 (iETEC_1333)70, and Escherichia coli 
(iML1515)71. In particular, 2-hydroxy-3-methyl pentanoate metabolism including biosynthesis from S-3-Me-
thyl-2-oxopentanoate and transport were incorporated from iNF517, secretion of S-methyl-l-methionine from 

Figure 10.  (continued)
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iAF1260, glutarate metabolism pathway from iML1515, and tyrosine metabolism from iETEC_1333. The role 
of the microbiome is to represent a distinct ‘organ’ that interacts with the kidney and other organs, and most 
importantly, accounts for some of the metabolites that are not endogenously produced by murine organs.

The GIMME algorithm maps gene expression data as reaction weightings and calculates context-specific 
subnetworks to achieve particular metabolic objectives using  FBA15. These different networks are then compared 
to calculate a ‘consistency score’ that is minimized to optimize alignment of the resultant network with the gene 
expression data.

For the metabolic network with m metabolites, n reactions and corresponding stoichiometric matrix, 
S ∈ R

mxn , reaction flux vector, v ∈ R
n (and corresponding upper and lower bounds, vuandvl respectively), and 

reaction objective vector, c ∈ R
n,

subject to

with c = xcutoff − x for c > 0 , else c = 0 . Conversion of the above to a linear programming prob-
lem is performed by constructing a convex null space by redefining the flux vector such that, 
v = v

+ − v
−, 0 ≤ v

+ ≤ v
u and 0 ≤ v

− ≤ −v
l , as described  in15 and implemented  in72.

The mouse transcriptomic data were mapped to human orthologs using the NCBI Homologene database 
(accessed October 27, 2019). Since transcript expression levels and fluxes are qualitatively associated, but gen-
erally not quantitatively correlated, the GIMME algorithm was used to apply context-specification with the 
transcriptomic data for WT and KO model construction. As described previously, transcriptomic data were 
incorporated based on present/absent (P/A) calls using Affymetrix Microarray Suite Version 5.022. A minimum 

min(cT · |v|)

S · v = 0

vl ≤ v ≤ vu
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Figure 11.  OAT KO loss and gain of function. The constraint on cellular small metabolite transport capabilities 
due knockout of Oat1 or Oat3 can indirectly lead to apparent ‘gain of functions’ via altered substrate availability 
to different organs; this may provide a partial explanation for the observed remote organ effects. Liver, colon, 
and skin are noted to also exert constraining effects on metabolic objectives of other organs.
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of 3 microarray datasets were included for each condition (WT and KO) and were analyzed separately; for a gene 
to be considered present, it had to be present in at least 2 of 3 sets of data.

We are ultimately interested in the response to the transporter knockouts and the absence of condition 
specific measurements, substrate uptake was refined to only account for metabolites that were mapped from 
Recon3D to the experimental data. Metabolomic data constraints test with flux variability analysis (FVA)73 to 
classify metabolites into three groups, those that can only be secreted, those that can only be taken up, and those 
that can be secreted or taken up. Interpretation of the metabolomic fold change measurements (KO relative to 
WT) were as follows:

• If KO/WT > 1 and the metabolite could only be secreted, then the metabolite exchange was constrained with 
a non-zero lower bound (10% of maximum secretion)

• If KO/WT > 1 and the metabolite could only be taken up, then the metabolite exchange was constrained with 
a lower bound that was greater than the minimum

• If KO/WT < 1 and the metabolite could only be secreted, then the metabolite exchange was constrained with 
an upper bound that was less than the maximum

• If KO/WT < 1 and the metabolite could only be taken up, then the metabolite exchange was constrained with 
upper bound that was less than zero (90% of maximum uptake).

Since the comparison is targeted at looking at alterations, an arbitrary reference uptake of 0.25 mM/gDW/
hour was specified for the OAT WT models. The metabolomic constraints for the set of metabolites that were 
significantly altered in either OAT1 or OAT3 knockouts were applied as described above. Additionally ‘free’ 
uptake was permitted for oxygen, sodium, potassium, iron, magnesium, bicarbonate, protons, and water.

Cell specificity for metabolic genome reconstructions remains a challenge in terms of achieving high sensitiv-
ity and  specificity74. An advantage of GIMME is that it does not assume that flux is correlated with levels of gene 
expression; this is generally more biologically appropriate in comparison to other approaches that may assume a 
quantitative (linear) correlation between transcription and enzymatic flux. A limitation of GIMME (also shared 
by other context-specific constraining methods), is that frequently non-tissue specific genes may be included 
when tissue profiling is performed across an entire organ (so it becomes an amalgam of tissues). We leveraged this 
potential weakness as a strength for the current study, in order to enable detection of potential interactions via 
the plasma metabolome with different organs (see sub-section “Tissue specific reactions (TSEA) and analysis”).

GIMME models were evaluated for variety of constraining objective functions, including biomass, urea, and 
ATP production. Model content did not vary significantly (fewer than 10 reactions) in reaction content when 
using the other objectives. ATP production was used, given that the transcriptomic data analysis was performed 
on the organ level (as opposed to single-cell) transcriptomics. Following construction of four GIMME models 
(WT and KO for OAT1 and OAT3) and merging with the microbiome model, MB, the feasible solution space 
of each model was sampled. In order to ensure microbiome viability, a small non-zero lower bound was applied 
for the microbial biomass vector.

Differentially active reactions between WT and KO were than computed from the normalized sampled fea-
sible flux  states75, requiring the following conditions: p < 0.001 for Kolmogorov–Smirnov test as well as one-way 
ANOVA F-test, with at least ≥ twofold change (or ≤ 0.5 fold change).

The gpSampler in the CobraToolbox was used to characterize the steady state solution space with 2n sampled 
points (for n reactions in the model). FBA can be used to define functional, context-specific subsystems, or 
“reaction co-sets”—groups of reactions with tightly correlated  fluxes76, 77. These co-sets are of particular inter-
est since they can be used to understand complex metabolic pathway dependencies, such as host-microbiome 
interactions. Reaction co-sets were calculated from these points with a 0.95 Pearson correlation coefficient cutoff. 
Model modifications and simulations were carried out with using  CobraPy78 and the CobraToolbox v2.072 with 
the Gurobi Optimizer (v 8.0). Network pathway maps were created using Escher  Maps79.

Tissue-specific reactions and analysis. Human metabolic reconstructions are built upon the known/
established biochemical functions across all cells; thus, the construction of cell, tissue, and organ specific mod-
els can be performed through the specification of appropriate demands on metabolites. A recognized limita-
tion of interpretation of genome-scale models has been the inability to assign causality in plasma metabolome 
sampling, due to the ability to interact with multiple organs. Since most tissues express the large majority of 
metabolic enzymes, we felt it was important to use a reconstruction independent methodology and dataset in 
order to define tissue specific subsets of genes for the purpose of subsequent genome-scale metabolic network 
analysis. In order to approximate the cellular metabolic objectives of different tissues, we used Tissue-Specific 
Enrichment Analysis (TSEA)80. Here we specifically refer to organs rather than tissues in order to highlight the 
more general nature of the metabolic objectives. For each model, TSEA was applied to the gene set and the genes 
corresponding to kidney, liver, colon, adipose tissue, skin, and brain were selected following Benjamini–Hoch-
berg correction with p < 0.05. The corresponding reactions were then selected (using the rxnGeneMat matrix 
field in the model structure in Matlab) and the uniformly weighted linear sum of the reactions was used to define 
metabolic demand for each organ.

Flux cones. 3D phase planes for metabolic organ objectives of interest were constructed. For a triplet of 
reactions of interest, {vi,  vj,  vk} ∈ v and i, j, k ∈ Nn

+ , where v is the set of all network reaction vectors and n is the 
number of reactions in the network, and the set of all ordered permutations of {i,j,k}∈ P for is represented as P. 
Pseudo-code for the bi-level optimization problem follows,
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For each permutation in P:  

For the range of feasible values of vi: 

max(vj) fix the lower bound as 80% of the maximum: 

max(vk) store (vi, vj, vk) 

The resulting matrix  (vi,  vj,  vk) was then plotted as a 3D flux phase plane.

Circos plots. Circos  plots81 were generated following calculation of pairwise interactions between compet-
ing organ metabolic objectives. The purpose was to identify functional metabolic dependencies under ‘normal’ 
conditions as well as OAT knockout to see how systemic metabolic states are affected by loss of OAT function. 
Comparisons were made following calculation of a matrix, M, whose entries  mij are defined as max(cj) for i = j, 
and max(ci) for i  = j, with i, j ∈ Nn

+ , and  vj
l = α*max(cj) for j subset of the reaction list. For each vector, a set is 

calculated covering a range of α ∈ (0,1]. Here, we used the standard definition for the objective vector, c (in con-
trast to GIMME formulation above), c ∈ {0,1}n with 

∑n
i=1 ci = 1.

Interpretation of Circos plots: Each plot should be compared with respect to a ‘reference’ organ that has a 
fixed lower bound (denoted single capital letter abbreviations: A: adipose, B: brain, C: colon, K: kidney, L: liver, 
S: skin, MB: microbiome). The lower bound minimum was set to 80% of the corresponding organ objective. 
Pairwise organ-organ optimizations were linear from 10 to 90%, so the selection of the lower bound is relatively 
independent of qualitative interpretations of results. For example, in the OAT1WT model for skin_lb, there are 
essentially equally sized ribbons extending to the different tissues (adipose, brain, colon, kidney, liver, skin) and 
microbiome. The organ to organ_lb ribbon can be considered the reference point. So, for example, if the ribbon 
width of organ1_lb to organ2 is the same as the width of the ribbon from organ1_lb to organ1, then it can be 
stated that organ1 and organ2 have essentially independent metabolic objectives. Conversely, if the width of the 
ribbon from organ1_lb to organ3 is very narrow (< 10%), then it can be concluded that they are metabolically 
competing objectives. Constrained organs (“_lb” post-fix) that have large ribbons to some tissues and small rib-
bons to others indicated organ-organ interactions that are independent of one another versus competitive with 
one another, respectively. Comparison of the WT and KO organ-dependency Circos plots identifies changes in 
the ‘normal’ pairwise tissue interactions that result as a consequent Oat1 or Oat3 knockout.

Figures/illustrations. Circos plots were generated with Circos version 0.69–6 as cited  above81. Data plots 
and phase planes were generated with Matlab R2016b (MathWorks, Natick, MA). All other figures were gener-
ated in Adobe Illustrator CC 2015 (Adobe Inc, San Jose, CA).

Data availability
All data generated or analyzed during this study are included in this published article, its supplementary infor-
mation files, and cited references.
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