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Abstract
Energy-related  occupant  behavior  is  crucial  to  design  and  operation  of  energy  and control
systems in buildings. Occupant behaviors are often oversimplified as static schedules or settings
in  building  performance  simulation  ignoring  their  stochastic  nature.  The  continuous  and
dynamic  interaction  between  occupants  and  building  systems  motivates  their  simultaneous
simulation  in  an  efficient  manner.  In  the  past,  simultaneous  simulation  has  relied  on  co-
simulation approaches or  customized source code changes  to building simulation programs.
This paper presents Buildings.Occupants, an open-source package implemented in Modelica, for
the simulation of occupant behaviors of lighting, windows, blinds, heating and air conditioning
systems  in  office  and  residential  buildings.  Examples  were  presented  to  illustrate  how  the
models in the Occupants package are capable to simulate stochastic occupant behaviors. The
major  contribution  of  this  work is  to  introduce  the  equation-based  modelling  approach  to
simulate occupant behaviors in buildings, and to develop an open-source Occupants package in
the Modelica language. 

Keywords: Occupant behavior; Modelica; Modelica Buildings Library; Modelica Occupants 
Package; Occupant behavior modeling
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1. Introduction
1.1 Modeling occupant behaviors in building simulation
Occupants are not passive participants in buildings. Rather, they actively respond to and interact
with building systems [1]. Occupant’s energy-related behavior in buildings include their comfort
(thermal, visual, aural and olfactory) preference, presence and movement, and interactions with
building components and systems (lighting, HVAC, windows, blinds). Previous researches ([2],
[3],  [4],  [5],  [6]) have confirmed that occupant behaviors have significant impacts on building
energy performance and occupant comfort. Different occupant behaviors, as simple as window
opening, might lead to a significant variation in the building Energy Use Intensity (EUI), e.g., by a
factor of four in commercial buildings in United States [7], and by a factor of three in identical
apartments in Denmark [8]. Additionally, occupant behaviors are one of the key reasons of the
performance gap between the design and operation stage of buildings [9], [10]. It is argued that
the difference between the actual and designed energy use depends, to a large degree, on the
different  use  patterns  of  energy  systems  between  the  designed  and  actual  operation  of
buildings [11]. 

Despite  the  significant  influence  of  occupant  behaviors  on  building  energy  consumption,
occupant  behaviors  are  often  over-simplified  in  the  building  simulation  for  the  design,
commissioning  and  operation  of  buildings  [12].  It  is  a  common  practice  to  treat  occupant
behaviors as static, deterministic schedules or settings in building performance simulation [13],
ignoring the stochastic, diversity and dynamics of occupant behaviors in reality. A more realistic
and robust representation and modelling of occupant behaviors could help to improve building
simulation accuracy and to understand the building design-operation performance gap.

Accurate modelling and prediction of occupant behavior could not only improve the accuracy of
building simulation but also enhance the performance of building control systems. Mirakhorli
and  Dong  (2016)  concluded  that  incorporating  the  prediction  and  modelling  of  occupant
behavior into HVAC system control could achieve three benefits: to decrease discomfort when
the room is first being occupied, to improve energy efficiency of HVAC system through control
optimization, and to save energy when a room is unoccupied [14]. Goyal et al. (2012) found that
the  errors  in  occupancy  modelling  have  a  stronger  effect  on  the  performance  of  model
predictive control  [15] compared with errors in predicting outdoor temperature or solar load.
The  stochastic  nature  of  occupant  behavior  requires  and  facilitates  the  stochastic  model
predictive control [16], which could demonstrate an energy saving potential of 5% - 38.3% [17],
[18]. 
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1.2 Modelica & Buildings Library
Currently,  the  field  of  building  simulation  is  dominated  by  the  imperative  programming.
Imperative  programming languages  assign values  to  functions  and declare  the sequence of
execution of these functions, which tightly couples the numerical solution methods with model
equations  and  input/output  routines  [19].  The  imperative  programing  facilitates  efficient
computation in building energy simulation and performance assessment, in which cases all the
inputs (for instance the physical parameter of), boundary conditions and initial conditions have
been given. However, the tight coupling of numerical solutions with equations and input/output
of imperative programming limits the applicability and extensibility of models in other uses,
which becomes increasing important recently  [20],  such as models for  control  optimization,
commissioning and operation [21], coupled models of thermal and electrical systems (systems
combining large and small time constants, algebraic and differential equations [22], continuous
time and discrete event dynamics [23]).

To complement the current simulation tools and to efficiently simulate the important problems
which  could  not  be  efficiently  computed  by  imperative  programming,  the  equation-based
modelling emerges and becomes increasingly popular. An equation-based model specifies the
mathematical equations, in contrast to specifying the sequence of computing assignments as in
the imperative programming [19]. A major benefit of the equation-based modeling is in solving
optimization  problems,  because  equation-based  modeling  could  1)  support  automatic
conversion of simulation models into optimization problems, 2) provide analytic expressions for
gradients to facilitate gradient-based optimization methods, 3) allow automatic generation of
the finite dimensional approximations defined by the collocation methods [19].  In paper [19],
an  example  was  presented  to  show that  the  equation-based language  could  speed up  the
solution of an optimization problem by a factor of 2200 compared with traditional imperative
language modeling.

As  a  representative  of  the  current  trend  towards  equation-based  modelling,  Modelica,  an
equation-based,  object-oriented language  [24],  has  been introduced and applied in building
simulation  [25],  [26]. Currently, applications of Modelica are majorly from researchers rather
than  practitioners.  One  obstacle  limiting  the  wide  application  of  Modelica  in  building
performance simulation is the lack of standardized library. To fill in the gap, Wetter et al. (2014)
developed a free open-source building simulation library with Modelica [27]. The latest version,
Modelica Buildings library 6.0.0, has been released on June, 14, 2018, which contains over 500
models for: 

 HVAC systems,

 controls,

 heat transfer among rooms and the outside,

 multi-zone airflow, including natural ventilation and contaminant transport,
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 single-zone computational fluid dynamics coupled to heat transfer and HVAC systems,

 data-driven load prediction for demand response applications, and

 electrical  DC  and  AC  systems  with  two-  or  three-phases  that  can  be  balanced  and
unbalanced.

The primary use of the library is for flexible and fast modeling of building energy and control
systems  to  accelerate  innovation  leading  to  cost-effective  low energy  systems  for  new and
existing buildings. The library is particularly suited for 

 rapid prototyping of new building systems,

 analysis of the operation of existing building systems,

 development,  specification, verification and deployment of building controls  within a
model-based design process, and

 reuse  of  models  during  operation  for  functional  testing,  verification  of  control
sequences, energy-minimizing controls, fault detection and diagnostics. 

1.3 Objectives
The  major  goal  of  the  Buildings.Occupants package  is  to  facilitate  the  occupant  behavior
simulation in Modelica language. One way to realize this goal is to utilize the standardized co-
simulation  interface.  For  example,  Plessis  et  al.  (2014)  [28] implemented  a  co-simulation
between the SMACH platform for occupant behavior and the BuildSysPro library for the building
and its energy system using the standardized Functional Mockup Interface (FMI) [29]. Hong et
al. (2015) proposed and implemented a new occupant behavior ontology with the eXtensible
Markup  Language  (XML)  schema  obXML  [30],  [31],  and  then  developed  obFMU  for  co-
simulation [32] using FMI. Belafi et al. used the obXML to compile a library of occupant behavior
models in 2016 [33].
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Although obFMU can be used with Modelica tools through co-simulation, there are challenges
of  computing  performance  due  to  the  Modelica’s  differentiability  requirements.  Occupant
behaviors are often in the form of discrete event, and introduce abrupt changes into building
environments. Differentiability requirements in Modelica are vital since they are necessary and
sufficient  conditions  to  establish  existence  and  uniqueness  of  a  solution  to  the  differential
equations. In addition, they are also needed to avoid computational problems. Contrarily, if the
occupant behavior  events are modeled directly within Modelica, the Modelica complier  can
study the structure of the problem a prior, and will instruct the integrator to simply integrate
exactly up to the point where an abrupt change occurs and then restart when the event occurs.
This  completely  addresses  the  computational  difficulties  resulting  from  the  discontinuous
change in system variables. Therefore, there is a need to develop a library of occupant behavior
models in Modelica. Besides, a Modelica package of occupant behavior models could be more
conveniently integrated into Modelica models compared with the co-simulation approach. This
paper introduces an effort to develop such a package, the Buildings.Occupants, which is open
source, and would be a package of the Modelica Buildings Library.

In Section 2, the subpackages and models of the Occupants package are introduced with more
details. The model validation is presented in Section 3. Three models were selected as examples
to  illustrate  how  the  Occupants  package  could  be  utilized  to  simulate  complex  occupant
behaviors.  The  three  selected  models  represent  three  model  types  implemented  in  the
Occupants package, i.e. the state model, the transition model, and a combination of state and
transition model. Section 4 addresses the key issue of occupant model selection. Conclusions
are drawn in Section 5. 

The major contribution of this study is to introduce the equation-based modelling approach to
simulate occupant behaviors in buildings, and to develop an open-source Buildings.Occupants
package in Modelica to share with the building simulation community as well as to encourage
co-development. The Buildings.Occupants could be downloaded from Github1 in the next official
release of Modelica Buildings Library and is currently available at a custom branch on Github2.

2. The Occupants Package
2.1 Overview
The Occupants  package was developed as  part  of  the  Buildings.Library [27].  Therefore,  the
convention of annotations and variable names are consistent with the Buildings.Library.

Many  occupant  behavior  models  have  been  developed  and  reported  in  the  literature.  We
categorized and selected some models to be implemented in Modelica as a starting point of the
initial  release of the Occupants package.  These models are selected because they are more
commonly  used  and  are  better  documented  in  terms  of  the  data  source,  mathematical
equation, independent variables, parameter values etc. We did not propose any new occupant

1 https://github.com/lbl-srg/modelica-buildings

2 https://github.com/lbl-srg/modelica-buildings/tree/issue1162_obModelica
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behavior models in this work. Instead, we selected and implemented models proposed by other
researchers. Table 1 lists occupant models included in the package. Summary of these selected
models are available in [34] as well as full details in the original reference papers. 

To summarize and present the occupant behavior  models in a consistent  form, the Drivers-
Needs-Actions-Systems  (DNAs)  framework  proposed  by  Hong  et  al.  [28] were  utilized,  as
illustrated in Figure 1. 

 Drivers refer to the environmental factors that stimulate occupants to take an action. In
the Occupants Library, drivers are the model inputs, varying from indoor/outdoor air
temperature, to solar intensity/altitude. 

 Needs represent occupants’ requirement, which has not been explicitly represented but
would be implicitly reflected by the dynamic characteristics of the models. For instance,
occupants need to remain thermal comfort in buildings. Therefore, the model dynamics
would  demonstrate  a  trend  that  it  is  more  likely  for  occupants  to  turn  on  the  air-
conditioning when the indoor temperature rises above the comfort limit. 

 Actions describe how the occupants interact with the building systems. In the Occupants
library, actions are the model outputs. In the current version of Buildings Library, only
the binary-variable actions were included, i.e. turn on or turn off a specific equipment. In
the future, models with actions to adjust the temperature set-point might be added to
the library. 

 Systems refer  to  which  building  (residential,  office,  schools,  etc.)  and  equipment
(lighting, blinds, windows, heating, AC, etc.) the occupants are interacting with.

Figure 1: Application of DNAs ontology to the Occupants Package

The Version 1.0 of Occupants Package contains 34 models to simulate occupants’ interaction
with  windows,  blinds,  air  conditioning,  lighting,  and space heating  systems  in  two  building
types, residential and office buildings. The structure of the Occupants package is illustrated in
Figure 2.
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Figure 2: Overview of the Occupants package

Table 1: List of occupant behavior models included in the Occupants package

Building 
System

Reference Survey 
Region

Drivers 
(inputs)

Actions Remarks

Office Occupanc
y

Wang et al.
2005 [35]

California, 
US

N/A Occupie
d
/not

For single 
person office
only

Blinds Newsham 
1994 [36]

Japan Solar 
Intensity 

On/off

Inkarojrit 
2008 [37]

California, 
US

Solar 
Intensity, 
Self-
reported 
sensitivity 
to 
brightness

On/off

Haldi and 
Robinson 
2008 [38]

Swiss Indoor 
Temp.

On/off

Haldi and 
Robinson 
2008 [38]

Swiss Outdoor 
Temp.

On/off

Zhang  and 
Barrett 
2012 [39]

Sheffield, 
UK

Solar 
Intensity

On/off

Zhang  and 
Barrett 
2012 [39]

Sheffield, 
UK

Solar 
Altitude

On/off
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Window Rijal et al. 
2007 [40]

UK Indoor 
Temp., 
Outdoor 
Temp., 
Comfort 
Temp.

On/off

Haldi and 
Robinson 
2008 [38]

Swiss Indoor 
Temp.

On/off

Haldi and 
Robinson 
2008 [38]

Swiss Outdoor 
Temp.

On/off

Herkel et 
al., 2008
[41]

Freiburg, 
Germany

Outdoor 
Temp.

On/off 3 models, for
different 
window 
types

Yun and 
Steemers
[42]

Cambridge,
UK

Indoor 
Temp.

On/off

Yun and 
Steemers
[42]

Cambridge,
UK

Outdoor 
Temp.

On/off

Haldi and 
Robinson 
2009 [43]

Lausanne, 
Switzerland

Indoor 
Temp., 
Outdoor 
Temp.

On/off

Zhang  and 
Barrett 
2012 [39]

Sheffield, 
UK

Outdoor 
Temp.

On/off 5 models, for
different 
window 
orientations

Lighting Hunt 1980
[44]

Germany Illuminance On/off

Love 1998
[45]

Calgary, 
Canada

Illuminance On/off 2 models 
generated 
from 
different 
occupants

Reinhart 
and Voss 
2003 [46]

Germany Illuminance On/off

Gunay et 
al. 2016
[47]

NA Illuminance On/off
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Residential AC Ren et al. 
2014 [48]

China Indoor 
Temp.

On/off 2 models, for
bedroom 
and living 
room

Heating Nichol 
2001 [49]

UK Outdoor 
Temp.

On/off

Nichol 
2001 [49]

Europe Outdoor 
Temp.

On/off

Nichol 
2001 [49]

Pakistan Outdoor 
Temp.

On/off

Windows Nichol 
2001 [49]

UK Outdoor 
Temp.

On/off

Nichol 
2001 [49]

Europe Outdoor 
Temp.

On/off

Nichol 
2001 [49]

Pakistan Outdoor 
Temp.

On/off

2.2 BaseClasses
This  package  contains  models  in  the  generic  form,  used  for  instantiating  specific  occupant
behavior  models  for  windows,  blinds,  air-conditioning,  lighting  and heating.  In  general,  the
behavior models implemented in the Occupants package are categorized into two types: the
state  model  and  the  transition  model.  The  state model,  also  called  the  Bernoulli model,
characterizes the probability of occupant behavior at different states. For instance, ON and OFF
are two states for lighting behavior; opening and closing are two states for blind behavior. In the
state model,  occupant  behavior  state at  different  time steps  is  treated as independent and
identically distributed (i.i.d.) random variables. The distribution of random variables is modeled
as a function of indoor and outdoor environmental parameters/variables, as illustrated in the
Inputs column of Table 1. The models in the package falling into this category include:

- Linear regression, which models the probability as a linear function of predictors;
- Logistic regression with one or two predictors, where the probability that occupant 

behavior state is modeled as a logistic/sigmoid function of linear combinations of 
predictors;

- Weibull model, where the behavior state is represented as i.i.d. Weibull random 
variables. 

The state model  needs to generate random variables  at  each simulation step.  To avoid the
frequent  change of  states,  the default  simulation time step is  set  to 120 seconds,  which is
adjustable for users by tuning the parameter of  samplePeriod to make sure the time step is
suitable for their simulation purpose.

The second type of occupant behavior  model is  the  transition model,  which calculates how
frequently the occupant behavior changes and characterizes the duration of certain occupant
behavior as a random variable. An example of a transition model is the so-called survival model.
The  survival model  only  needs  to  draw  a  random  number  when  there  is  a  change  in  the
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occupant behavior, and is therefore more computationally efficient. The Wang2005Occupancy
model  belongs  to  the  survival model.  We incorporate  two types  of  survival models  in  the
BaseClasses package  for  extensibility:  one  is  to  model  the  duration  as  an  exponentially
distributed random variable while the other model as a Weibull distribution.

2.3 Occupant behavior models
These  packages  include  models  for  occupants’  interaction  with  windows,  blinds,  air
conditioning, lighting, and space heating systems. All models in these packages call functions
defined in  the BaseClasses.  The occupant  behavior  models  are  grouped into  two packages
based on the building types they are applied to: one package for residential buildings, and the
other for office buildings.

Residential buildings
Currently,  there  are  eight  occupant  behavior  models  in  the  residential package to  simulate
occupants’ interaction with air-conditioning, heating and windows. The Weibull distribution was
utilized to characterize how the probability of occupants  to turn on/off the air-conditioning
varies  with  indoor  air  temperature,  different  parameter  values  were  chosen  for  the  AC
behaviors in the bedroom and living-room  [48]. The logistic regression was used to describe
how the outdoor temperature influence the probability of occupants to turn on/off the window
and heating [49].

Office buildings
There are four sub-packages to simulate occupant behavior in office buildings. 

 There  are  six  models  in  the  Blinds sub-package.  Simple  threshold  method  [36] and
logistic regression model  [37],  [38],  [39] were chosen to fit occupants’ blinds behavior.
The drivers (model inputs) include solar intensity ([36],  [37],  [39]), solar altitude  [39],
indoor air temperature [38], and outdoor air temperature [38].

 There are 14 models in the  Windows sub-package.  The threshold method  [40],  one-
dimensional  logistic  regression  ([38],  [39],  [41],  [42]),  and  two-dimensional  logistic
regression  ([40],  [43])  were  chosen  as  the  model  equation  forms.  The  indoor  air
temperature ([40], [38], [43], [42]), outdoor air temperature ([40], [38], [43], [41], [42],
[39]), and occupants’ comfort temperature ([40]) serve as the model inputs. Different
parameter values were chosen for different window types ([41]) and different window
orientations ([39]).

 There are five models in the Lighting sub-package. Probit curve ([44],  [46]) and logistic
regression ([45], [47]) were chosen to build up the lighting behavior models. The model
input is illuminance level on the working plane/desk ([45],  [46],  [47]). Since occupants
are  more likely  to turn on and off the lighting when they  enter  or  leave the space
compared with when they stay in the space, different parameter values were chosen to
specify this difference ([46], [47]) and are subscripted as Arriv and Inter, separately. 

 There is one model in the  Occupancy sub-package.  The survival model was utilized to
simulate whether the office is occupied or not in office settings based on a field study in
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California with 35 single-person offices at a large office building [35]. No model input is
needed for this model.

Previous researches pointed out the distinction between individual occupant behavior models
and  aggregate  models  for  occupant  behavior  simulation  [50],  [51].  Individual  models  are
derived based on data obtained from each occupant while aggregate models are derived from
an  aggregated  group  of  people.  To  estimate  the  peak  load,  the  individual  models  might
outperform  aggregate  models,  while  to  estimate  the  aggregated  energy  consumption,
aggregate or individual models have similar performance [50]. We do not distinguish individual
models from aggregate models,  and have included both of them in the  Buildings.Occupants
package.  For  instance,  the  Love1998Light1 and  Love1998Light2 are  individual  models  while
Reinhart2003Light is the aggregate model. The users could tell the model type according to the
models’ information page. For advanced users, they could define either individual or aggregate
models by inheriting from BaseClasses and tuning the model parameters.   

2.4 Implementation of stochastic behavior
A key feature of occupants’ interaction with buildings lies on its stochastic behavior. Given the
same physical environment, even the same person might respond differently. It is a common
practice to use a probability function to characterize occupant behaviors. However, in building
simulation, an explicit state is needed to describe the state of a specific building equipment. For
instance, given an indoor temperature, occupant might have a probability to turn on the AC. But
in a specific simulation, we need to know exactly whether the AC is on or off. 

To generate a random binary variable from the value of probability, a seed is usually needed. By
fixing the seed value, simulators could replicate and verify the result in a later simulation. In the
Occupants package, we need to repetitively call the binary variable generation function every
samplePeriod. If the seed is fixed as the implementation shown in Equation 1, the same number
would be generated each time when calling the function, which could not reflect the stochastic
behavior as we wish. To solve this problem, we multiplied the parameter seed with the time to
generate a  series  of  time-dependent  seeds,  and input this  series  of  seeds into the random
variable generator  as  shown in  Equation 2.  Through this  way,  we could generate the same
results in two simulations once the seed is fixed, and meanwhile we could randomly generate
different values in two time steps within the same simulation due to the time- dependent input
globalSeed. 

on = Buildings.Occupants.BaseClasses.binaryVariableGeneration(p=p
, globalSeed=seed)                                                             Equation 1

on = Buildings.Occupants.BaseClasses.binaryVariableGeneration(p=p
, globalSeed=integer(seed*time))                        Equation 2

3. Validation and Examples
A validation model has been created for each model included in the Occupants package for two
purposes, first for debugging, and second to serve as an illustration to users on how the models
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could be used. In this section, three models were selected as the representatives of three model
types implemented in the Occupants package, i.e. the state model, the transition model, and a
combination of state and transition model.

3.1 Ren2014ACBedroom: a state model example

(a) Photographic modeling interface

(b) Modeling results
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Figure 3: Validation of the Ren2014ACBedroom model

The Ren2014ACBedroom model simulates occupants’ AC behavior in the bedroom of residential
buildings, which was originally fitted from the field study in China in 2014 and documented in
[48]. Weibull distribution was utilized to characterize how the probability to turn on or turn off
the air-conditioning is influenced by the indoor air temperature. Two inputs are needed in this
model:  occupancy  and  indoor  air  temperature.  In  real  practice,  users  could  plug  in  the
scheduled  or  simulated  occupancy  as  the  first  input,  and plug  in  the  simulated  indoor  air
temperature  as  the  second  input.  The  output  state  of  AC,  rather  than a  pre-defined  fixed
schedule,  could  serve as  an input  for  the building  energy/thermal  environment  simulation,
which could be a more realistic representation of occupant behavior and accordingly help to
improve simulation accuracy.

In this demonstration, the Modelica built-in  Step function was utilized to simulate occupancy,
and the Modelica  built-in  Sine function was  utilized  to  simulate  the variation of  indoor  air
temperature,  as  illustrated  in  Figure  3(a).  Two  indoor-temperature-dependent  probability
functions (turn on probability and turn off probability, respectively) need to be calculated to
determine the state of AC.

Figure  3(b)  shows  the  input,  intermediate  and  output  variables  for  a  3600-second-period
simulation. When the space is unoccupied, the AC is always off. When the space is occupied, the
state of AC is determined by the indoor air temperature. Higher indoor air temperature, higher
chance to turn on the AC and lower chance to turn off the AC. Then a binary random variable
will be generated every 120 seconds based on the calculated  pon and  pof to determine the
state  of  AC.  The  frequency  of  random  variable  generation  could  be  tuned  by  the  user  by
adjusting  the  parameter  samplePeriod.  To  save computation  power,  pon and  pof  could  be
calculated at the interval of samplePeriod. In this case, a more frequent calculation of pon and
pof is requested for a better demonstration of how the probability is influenced by the indoor
air temperature.
 
3.2 Wang2005Occupancy: a transition model example
The Wang2005Occupancy model simulates the occupancy state of a single-person office, which
was originally documented in [35]. As a transition model, the duration of each occupancy state
is  characterized and calculated as a  Weibull  random variable. For instance, at the point the
space starts to be occupied, the duration of this  occupancy, or in another words, when the
occupant will leave the room, will be calculated from the Weibull distribution. No model inputs
are needed. The model parameters were fitted from a field study in California with 35 single-
person offices at a large office building lasting for almost one year starting from 1998. 
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(a) simulation result with seed = 5

(b) simulation result with seed = 10

(c) simulation result with seed = 30
Figure 4: Validation of the Wang2005Occupancy model

Figure 4 presents the simulation results with three different seeds. Though sharing exactly the
same  mathematical  models  and  parameter  values,  each  run  with  different  seeds  produce
markedly different behaviors. However, the occupied/unoccupied time ratios almost keep the
same, and are close to the ratio of two key parameters of the model, i.e.  one_mu (mean of
occupancy duration) to zero_mu (mean of vacancy duration) in all the three cases simulated.

3.3 Rijal2007WindowsTInTOutTComf: a combination of state and transition model
As the last example in this section, a more complicated model was chosen to show how the
models  of  the  Occupants  package  are  capable  to  simulate  relatively  complex  occupant
behaviors.  

The Rijal2007WindowsTInTOutTComf model simulates occupants’ window behavior in the office
buildings.  The  model  was  fitted from the field studies  in  15 office buildings  in  Oxford  and
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Aberdeen, UK, and was originally documented in [40]. The window state is determined by four
inputs: occupancy, indoor air  temperature,  outdoor air  temperature and occupants’ comfort
temperature. In this demo, the Wang2005Occupancy model was utilized to simulate occupancy
state,  and  three  Modelica  built-in  Sine functions  were  utilized  to  simulate  the  variation  of
indoor, outdoor and comfort temperatures, as illustrated in Figure 5(a). 

The dynamics of the Rijal2007WindowsTInTOutTComf model is shown in Figure 5(b):
 Case 1: When the space is unoccupied, the window is always closed, for instance during

the period 3.85 h and 5.00 h 
 Case 2: When the indoor temperature is within the comfort temperature plus and minus

2 oC, the window state will not be changed, for instance during the period between 1.05
h and 1.25 h 

 Case 3: When the indoor temperature is above the comfort temperature plus 2 oC:
o Case 3.1: If the window is open, it would be kept open, for instance during the

period between 2.45 h and 2.60 h 
o Case  3.2:  If  the  window  is  closed,  the  probability  to  open  the  window  is

determined by the indoor and outdoor temperature through a two-dimensional
logistic regression

 Case 4: When the indoor temperature is below the comfort temperature minus 2 oC
o Case 4.1: If the window is closed, it would be kept closed, for instance during the

period between 1.30 h and 2.10 h 
o Case  4.2:  If  the  window  is  open,  the  probability  to  close  the  window  is

determined by the indoor and outdoor temperature through a two-dimensional
logistic regression.

In the released Version 1.0, to speed up the computation, the probability of window opening
would only be calculated in Case 3.2 and Case 4.2, and set to the default value of 0 in other
cases. In this example, in order to demonstrate and highlight different cases, the probability of
window opening has been manually set to non-zero values: -0.1 for case 2, -0.3 for case 3.1 and
-0.5 for case 4.1.
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(a) Photographic modeling interface
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(b) Rijal2007WindowsTInTOutTComf
Figure 5: Validation of the Rijal2007WindowsTInTOutTComf model

4. Model selection
It should be acknowledged that the mathematical forms, the choice of input variables (indoor
air temp. vs. outdoor air temp.), and the parameter values of each model were derived from
field studies conducted in a limited number of buildings in a specific climate zone on a certain
group of occupants with specific cultural background and behavior preference, which should
not  be  considered as  universal.  As  the result,  given  the same environment  conditions,  the
occupancy behaviors simulated from different models might vary significantly. Figure 6 selected
and plotted the window behaviors of 13 models included in the Occupants package, which all
use the outdoor air temperature as the model inputs. Though sharing similar trends, these 13
models produced markedly different results.  
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(a) Office buildings

(b) Residential buildings
Figure 6: Comparison on window behavior models

The  significant  behavioral  differences  predicted  by  different  occupant  behavior  models  are
understandable due to the marked inter-occupant diversity.  Different subject might respond
differently  to the same ambient  environment  [50],[52].  However,  because of  the significant
behavioral differences, careful selection of proper models for a specific simulation purpose is of
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high importance. It is also possible that neither of the models included in the package suits your
simulation case. The model selection and parameter tuning relies on users’ expertise and prior
knowledge. What  we could offer in  the package are:  first,  necessary information about the
reference which we think might be of value for your decision, as shown in Figure 7(a). Second,
an interface to easily adjust the parameters, as shown in Figure 7(b). 

(a) Information session 

(b) Parameter tuning interface
Figure 7: Information session and parameter tuning of each occupant behavior model

To select the proper model for your simulation cases, we would recommend you to review the
original paper to see if the assumptions and the data sources documented in the paper fit well
with  your  simulation  purpose.  For  instance,  the  window  behavior  models  derived  from
European residents might not be suitable to simulate residential buildings in China or in the U.S.
Based  on  our  experience  in  implementing  the  models,  we  would  suggest  you  to  carefully
consider the following three factors when choosing occupant behavior models:

 Model  inputs:  for  instance,  whether  you  are  going  to  use  the  indoor  temperature,
outdoor temperature, solar intensity or solar altitude to predict the occupants’ blinds
behavior.
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 Data  source:  where  the  field  study  was  conducted.  For  instance,  the  model
Zhang2012WindowsAll regressed  the  probability  to  open  the  window  with  outdoor
temperature: the higher the outdoor temperature, the higher the chance to open the
window. This could be the case in the UK, where the climate is mild and the outdoor
temperature would seldom be too high.  But this  dynamic would not  be the case in
tropical areas, where occupants would choose to close the window and turn on the AC
when the outdoor temperature is too high.

 Range of input variables: almost all the models included in the Occupants package are
data-driven models and derived from field studies. Therefore, the models might only be
valid in a limited range and could not be extrapolated outside the range. For example,
the  Haldi2008WindowsTOut  model  was  derived  from  data  with  the  outdoor
temperature range of 5 to 35oC. Accordingly, the Haldi2008WindowsTOut model might
not be applicable when the outdoor temperature is either below 5 or above 35 oC.

More  diversified  while  well  documented  occupant  behavior  models  will  be  added  to  the
Occupants package in future releases. Contributions from the simulation community is warmly
welcome.

5. Conclusion
This  study  presents  the  Buildings.Occupants,  a  new  package  of  occupant  behavior  models
implemented in Modelica, an emerging equation-based object-oriented modelling language, as
part  of  the  Modelica  Buildings  Library.  The  Occupants  package  contains  commonly  used
occupant behavior models covered in the literature, including six Blinds, fourteen Windows, five
Lighting, and one Occupancy models for office buildings; and two AC, three space Heating, and
three Windows models for residential buildings. Validation examples showed that the models in
the Occupants package are capable to simulate stochastic occupant behaviors in buildings.

Considering that different occupant behavior models might produce markedly different results,
library users should be careful in model selection. Additionally, a BaseClasses package has been
developed and included in the library, so that users could easily  define their own occupant
behavior  models  by  tuning  the  model  parameters  or  inheriting  from  BaseClasses.  The
BaseClasses package defines Logistic, Weibull and random-variable-generation functions which
are commonly used in occupant behavior modeling. 
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