UC San Diego
UC San Diego Previously Published Works

Title
Guest Column

Permalink
https://escholarship.org/uc/item/80d93481]

Journal
ACM SIGACT News, 52(2)

ISSN
0163-5700

Authors

Knop, A
Lovett, S
McGuire, S

Publication Date
2021-06-14

DOI
10.1145/3471469.3471479

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/80d93481
https://escholarship.org/uc/item/80d93481#author
https://escholarship.org
http://www.cdlib.org/

Guest Column: Models of computation between decision trees
and communication[]

A. Knop| S. Lovet#]| S. McGuireg| W. Yuanf|

Abstract

We survey recent work on the communication complexity of functions F' : {0,1}" x{0,1}" —
{0,1} of the form f(zoy) where f: {0,1}"™ — {0,1} is a total boolean function and o represents
either bit-wise XOR, or bit-wise AND. This naturally leads to the study of models of computation
that are, in a sense, ‘between’ communication complexity and decision tree complexity. These
classes of functions capture a rich class of communication problems while simultaneously being
amenable to analysis with minimal assumptions about the structure of f. This flexibility has
shed new light on central topics in communication complexity, including restricted cases of the
log-rank conjecture and the query-to-communication lifting methodology.

1 Introduction

Communication complexity studies the amount of communication necessary to compute a function
whose value depends on information distributed among several entities. Yao [Yao79| initiated the
study of communication complexity more than 40 years ago, and it has since become a central field
in theoretical computer science with many applications in diverse areas such as data structures,
streaming algorithms, property testing, approximation algorithms, coding theory, and machine
learning. The textbooks [KNO6/RY 20| provide excellent overviews of the theory and its applications.

In the basic version of communication complexity, two players, call them Alice and Bob, wish to
compute a function F': X x Y — {0,1}, where X and Y are some finite sets. Alice holds an input
x € X, Bob holds an input y € Y, and they wish to compute F(z,y) by sending messages back
and forth according to some protocol. Importantly, Alice and Bob have arbitrary computational
power, as we are interested only in how much information must be exchanged to compute the
function. The goal is to design low cost protocols, measured in terms of the number of bits Alice
and Bob exchange (in the worst case) and, ideally, we would show tight upper and lower bounds
on the communication complexity of the communication problem of interest. Let D®(F') denote
the lowest achievable cost for a deterministic protocol computing F' correctly on all inputs.
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Many of the celebrated results in the field concern the communication complexity of important
concrete functions, such as Set Disjointness [Raz92a] and Gap Hamming Distance |[CR12]. Un-
fortunately, the understanding of communication complexity of arbitrary functions is still lacking.
Probably the most famous problem of this type is the so-called log-rank conjecture, formulated by
Lovéasz and Saks [LS8§|. The conjecture asserts that D(F') can be (roughly) characterized by the
rank of the |X| x |Y| boolean matrix M(F) € {0,1}**Y defined as M (F),, = F(x,y).

The difficulty in analyzing the communication complexity of arbitrary functions, even in the
deterministic case, has led researchers to study a special class of functions called ‘lifted functions’.
These are functions of the form f o g™, where f: {0,1}" — {0, 1} is an arbitrary boolean function
and g : X xY — {0,1} is a two-party function. Typically f is called an outer function and g is
called a gadget. Formally, F' = f o g" is a two-party function F': X" x Y™ — {0,1} defined as

F(<$17 T 7'%'“)7 (y17 s 7y'fl)) - f(g(331,y1), s 7g($n;yn))-

This framework captures a number of the closely-studied concrete functions in communication
complexity. For example, Set Disjointness is obtained by taking f as the OR of n bits and ¢ as the
AND of 2 bits, and Equality is obtained by taking f as the AND of n bits and g as the negated
XOR of 2 bits. In general, the size of g’s domain is allowed to be non-constant; namely, depend on
n, the number of inputs for the function f.

Studying lifted functions has been quite successful, leading to, for example, a resolution of
the clique vs. independent set problem [G6615,|GPW18a], separations between monotone and
non-monotone circuits [GKRS18|, NP-hardness of automating various proof systems |[GKMP20],
lower bounds on semi-algebraic proof systems |[GP18|, and sub-exponential size lower bounds for
approximating CSPs with linear programming relaxations [KMR17].

This success is, in broad terms, due to the fact that the communication complexity of lifted
functions F' = f o g" can often be bounded in terms of different query complezity measures of the
outer function f. Such relationships allow us to ‘lift’ query complexity lower bounds for f into
communication complexity lower bounds for F', so we will refer to them as ‘lifting theorems’ (an
imprecise definition, though it will be clear after some examples). This is useful because proving
query complexity lower bounds is generally easier than proving communication complexity lower
bounds. The query complexity of a function f : {0,1}" — {0,1} is the number of ‘queries’ an (in
general, adaptive) query algorithm must make to its input z € {0,1}" in order to compute f(z),
where the objective is to minimize the number of queries made and the exact notion of a query
depends on the particular model. For studying lifted functions f o g", the query model we use will
depend on the choice of gadget g.

The simplest type of query model — the deterministic decision tree — can adaptively ask
questions of the form ‘what is the value of some input bit?’. For example, suppose we want to find
the single ‘1’ in a Hamming weight one, n-bit string. The obvious algorithm is to simply check
every bit position, and it is not too hard to see that checking every bit is essentially necessary:
an adversary can always delay their choice of where the ‘1’ will go until the decision tree has
queried n — 1 positions without answering any two queries inconsistently. Decision tree complexity
is polynomially related to a number of other complexity measures of boolean functions, including
certificate complexity, block sensitivity, sensitivity, and related algebraic notions such as degree and
approximate degree. This equivalence is due to Nisan-Szegedy [NS94] and the recent breakthrough
of Huang [Hual19) [

SFor background on decision trees and their related complexity measures, see the beautiful survey of [BAW02].
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Despite the model’s simplicity, the decision tree complexity of f is roughly equivalent to the
communication complexity of F' when we choose an appropriate gadget g. A concrete example of
such a gadget is the m-bit indexing gadget, defined by

Indlogm,m : [m} X {07 1}m — {07 1}) Indlogm,m(x7y) = Yz

where m ~ poly(n). In this case, Raz-McKenzie [RM99] and Goos-Pitassi-Watson |GPW17] showed
that F’s communication complexity is equivalent to f’s decision tree complexity, up to a logm
factor. However, this relationship is only known to work if g satisfies a pseudorandomness condition
[CFK™19b| and its domain X x Y has size at least polynomial in n. We are instead interested in
understanding structured choices of g with constant domain size | X| = |Y| = O(1), which are not
captured by this setting.

Sherstov addressed the constant-sized gadget setting in [ShelO], showing that D(f o g") is
lower bounded by a polynomial in D(f) when g embeds both AND and OR as sub-functions.
More specifically, Sherstov showed that the communication complexity of either f o A™ or f o V"
is at least the degree of f as a multilinear polynomial (known to be polynomially related to the
decision tree complexity of f), where A is a one-bit AND gadget and V is a one-bit OR gadgetm

While sufficient for Sherstov’s applications, the lower bound does not explain which of f o
A™ or f o V™ has large communication complexity. We are interested in obtaining more explicit
communication lower bounds on F.

This survey will primarily focus on cases when g : {0,1}? — {0,1} is either the AND or the
XOR of the two input bits, which are the simplest non-trivial gadgets with constant domain size
|X|=1Y|=0O(1). Unlike the previous two cases [RM99,GPW17,/Shel0|, we consider query models
which are strictly stronger than standard decision trees, which can be thought of as ‘intermediate
models’ between standard decision trees and communication complexity. Efficient query algorithms
in these stronger models are connected to a number of interesting structural properties of f distinct
from (but related to) the complexity measures classically studied in query complexity.

1.1 Lifted functions with one-bit gadget

We now introduce the main objects of study, which are lifted functions where the gadget is a simple
one-bit function. There are only two non-degenerate and non-equivalent one-bit gadgets: AND and
XOR, as all other ones can be obtained from these by either flipping the inputs or outputs of the
gadget g.

Definition 1.1. Let f : {0,1}"™ — {0,1} be a boolean function. Its corresponding AND-function is
fa:{0,1}" x {0,1}™ — {0,1} and XOR-function is fg : {0,1}™ x {0,1}" — {0, 1}, defined as

In(z,y) = f(xz Ny)

and
fo(z,y) = f(x D y).

Here x,y € {0,1}", x Ay is entry-wise AND, and x &y is entry-wise XOR.

Many natural communication problems can be cast as either of these models. For example, the
Equality function is an XOR-function and Set Disjointness is an AND-function.

"That is, A : {0,1}? — {0,1} is defined as A(z,y) = 2 Ay for z,y € {0,1}, and V is defined analogously.
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XOR-functions correspond to the query model of parity decision trees, which we abbreviate
as PDTs. This model extends the standard decision tree model by allowing nodes to query the
parity (namely, XOR) of an arbitrary subset of the input bits. To see the connection between
PDTs and XOR-functions, notice that if f can be computed by a PDT of depth d, then fg has a
deterministic communication protocol which sends 2d bits (that is, D°(fg) < 2d), as the players
can simulate the computation by the PDT. Let z = x @& y. If at a given node the PDT needs
to compute a parity @, g 2, then the first player computes the parity on her input €, g =;, the
second player computes the parity on his input €, g ¥, and exchanging the answers and XORing
them reveals the required parity on z, which allows both players to move to the correct child of
the node. PDTs and XOR-functions have both been studied in complexity theory, either from a
communication complexity perspective [MOO09,|ZS09,|LLZ11}Zhal4, HHL1§| or a boolean function
analysis perspective [ZS10,[TWXZ13,lOWZ™' 14, BCK14, Yaol5,BTW15/|San19].

Similarly, AND-functions correspond to the query model of AND decision trees, which we
abbreviate as ADTs. This model extends the standard decision tree model by allowing nodes to
query the AND of an arbitrary subset of the input bits. Similar to PDTs, if f can be computed by
an ADT of depth d, then fa can be computed by a communication protocol which sends 2d bits,
by simulating the computation of the ADT. ADTs are much less studied than PDTs; to the best
of our knowledge, the only papers studying them are [LM19, KLMY21].

Since PDTs and ADTSs are intermediate models between decision trees and communication
complexity, it seems natural to study PDT and ADT complexity of arbitrary functions. This, in
turn, implies necessity of study of communication complexity of AND- and XOR-functions due to
aforementioned connection.

1.2 Lifting with complicated gadgets

Next, we compare our setting to lifting theorems appearing in the literature which use ‘complicated’
gadgets. Let D(f) denote the number of queries used in the optimal deterministic decision tree
for f. Goos, Pitassi and Watson [GPW17], extending the work of Raz and McKenzie [RM99),
showed the following:

Theorem 1.2 (D%-to-D lifting, [RM99, GPW17]). For a fized n, let m = poly(n) and g =
Indiog m,m- Then for any function f:{0,1}" — {0,1},

DY(f 0 g") = DU(f) - ©(log n).

One direction of the equality — designing a communication protocol from a decision tree — is
easy. Trivially, D(Indiogsm,m) = O(logm), as Alice can simply send her input to Bob (and this
is tight). Alice and Bob can simulate f’s decision tree and compute the i-th copy of g using the
trivial protocol whenever the decision tree for f queries its i-th input bit. The other direction uses a
much more sophisticated argument, constructing a decision tree by simulating the communication
protocol round-by-round on an ‘unknown input’ while paying careful attention to which copies of
g Alice and Bob appear to know a lot about. See [RM99,|GPW17| for more details.

A drawback of known simulation-type arguments is their reliance on ‘pseudorandom’ choices
of g, of which Indjogm,m is a special case. More generally, g needs to resemble a ‘two-source
extractor’, meaning g(A, B) is close to unbiased if A C X and B C Y are large enoughﬂ We want

8See Chattopadhyay et al. [CFKT19b], which gives a general simulation argument that works for any g with
sufficiently low discrepancy. Indeed, this property is satisfied by random choices of g.
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to understand choices of g which are very much not pseudorandom, and it’s unclear how to adapt
simulation-type arguments to handle this.

A crucial parameter in Theorem|[I.2]is the size m of the gadget. If g’s domain has size polynomial
in n, then we would incur a factor which depends on the size of the universe. For applications,
this is undesirable: we would like to obtain a weaker dependence on n (or even no dependence).
Lovett et al. [LMM™20] address this issue by proving an analogue of Theorem where m = n!t
is nearly-linear, and conjecture that a poly-logarithmic dependence is obtainable. Additionally,
[GKMP20] (reproved in [LMMT"20] with an alternative argument) show that it suffices to pick
m > DI(f)OM) for the size of the gadget in Theorem This improves the m = n'*® when
DY (f) is a sufficiently small polynomial in n. In contrast, our focus is on the case where m = 2.

Finally, it is important to consider the possible choices for f when considering ‘small and struc-
tured gadgets’ versus ‘large and pseudorandom gadgets’. Theorem [1.2]can be stated more generally
for search problems, where we can replace f by any search relation. This flexibility is important
for applications in, e.g., proof complexity [dRNV16,BPR95| and circuit complexity [RM99], and
it is possible because simulation arguments tend to use very little (or no) information about the
outer function. Our context is, in some sense, the opposite: we choose very small gadgets g with
no pseudorandomness properties, but transfer the burden onto understanding the structure of f.

Gadget Query Model Communication Model Total Functions Reference
DT deterministic No [RM99)
Indiog m,m s e
probabilistic DT bounded error probabilistic No [GPW17]
P, DT deterministic No [CFK*19b]
probabilistic DT bounded error probabilistic No [CFK*19a]
EQ, ADT deterministic No [LM19]
@ PDT deterministic Yes [HHL18]
A ADT deterministic Yes [KLMY21]
polynomial degree rank Yes [Shel0]

Figure 1: Query-to-communication lifting theorems. m in the first line is polynomial in n. g in the
last line is any function that has as sub-functions both an AND and an OR.

1.3 The log-rank conjecture

A noteworthy example of a problem for which the connection between AND-/XOR-functions and
ADTs/PDTs has been fruitful is the log-rank conjecture of Lovasz and Saks [LS8§].

To explain the origins of this conjecture, let us prove a simple lower bound on communica-
tion complexity of the equality function EQ,, : {0,1}" x {0,1}" — {0, 1}, the function such that
EQ,(z,y) = 1 iff z = y for z,y € {0,1}". First, note that any function F' : X xY — {0,1}
corresponds to the | X| x |Y| communication matriz Mp such that (Mp),, = F(x,y) for z € X
and y € Y (in this survey we identify F' with its communication matrix). Using this connection,
Mehlhorn and Schmidt [MS82] proved a simple lower bound on communication complexity. We use
the following notation: given a communication problem F', we define D(F’) to be the deterministic
communication complexity of F'; namely, the minimal number of bits needed by a deterministic
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protocol computing F. We define rank(F') to be the rank of the communication matrix Mg of F,
where the rank is computed over reals.

Theorem 1.3 (|MS82]). Let F': X xY — {0,1}. Then
D(F) > log(rank(F")).

Note that the communication matrix of EQ,, is the 2" x2" identity matrix; hence, D*“(EQ,,) > n.
The aforementioned log-rank conjecture conjectures that this bound is almost tight.

Conjecture 1.4 (Log-rank Conjecture [LS88|). Let F': X x Y — {0,1}. Then
D*(F) < polylog(rank(F")).

Here and throughout, polylog(-) is a shorthand for log(-)°().

Despite over 30 years of research, little is known about the validity of the log-rank conjecture. A
well-known elementary upper bound is D(F') < rank(F')+1, which is exponentially worse than the
conjectured bound. This was improved by Lovett [Lov16| to D(F') < O(y/rank(F') logrank(F)).
On the lower bound side, G66s, Pitassi and Watson [GPW18a| constructed a function with D(F") >
Q(log? rank (F)).

1.4 Randomized variants of lifting and log-rank

There are natural randomized variants of lifting and the log-rank conjecture which have also received
recent attention. On the lifting side, [GPW 17|, with follow up work of [CFK™19a], showed a query-
to-communication lifting theorem from bounded-error randomized decision trees to bounded-error
public coin protocols. In the language of standard complexity classes, this is referred to as a ‘BPP
lifting theorem’. A lifting theorem for the larger class ZPPNPI consisting of zero-error protocols
with a single query to an NP-oracle — was given in [Wat19]. As discussed by Watson in [Wat19],
communication lower bounds against zero-error protocols with access to two NP queries would
require proving lower bounds against Arthur-Merlin communication, which is a notorious open
problem. Notably, these randomized lifting results are all in the large gadget regime, holding, for
example, when g is the indexing gadget. No analogous randomized lifting results are known in the
small-gadget regime, which we consider to be an important direction for future work.

In formulating a randomized variant of the log-rank conjecture, Lee and Shraibman [LS09]
noticed that if we expect linear algebraic measures to characterize deterministic communication
complexity, then it is logical to expect matrix-analytic measures to characterize randomized com-
munication complexity. Indeed, it is clear that if F' has a short randomized communication protocol,
then Mg can be approximated as a sum of matrices with small rank since any randomized commu-
nication protocol is a convex combination of deterministic protocols. Let rank.(F') be the minimal
number r such that

T
HMF =Y M| <e
i=1 0o
for some rank-1 matrices My, ..., M,. Hence, the previous observation can be written as follows:

log(rank.(F)) < RE(F),

where RE(F') denotes randomized communication complexity of F' with error bounded by €. Lee and
Shraibman conjectured, in analogy with the log-rank conjecture, that the opposite inequality holds
too (this conjecture is known as the approximate-log-rank conjecture). Recently, Chattopadhyay,
Mande and Sherif [CMS19] found a counterexample to the approximate-log-rank conjecture:
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Theorem 1.5 (|[CMS19|). There are functions F, : {0,1}" x{0,1}"™ — {0, 1} such that ‘{%(Fn) =
Q(y/n) but rank, j5(F,) = O(n?).

In fact, the functions F,, from Theorem [1.5|are XOR~functions and the idea of the proof is based
on the aforementioned connection between XOR~functions and PDTs.

Another natural analogue of the log-rank conjecture is the so-called the log-approximate-
nonnegative-rank conjecture, suggested initially by [KMSY19] and then refined by [CMS19|. To
formulate the conjecture we need to define approximate-nonnegative-rank. Let rank (F) be the
minimal number r such that

T
HMF - Z M;|| <e
i=1 .
for some rank-1 matrices M, ..., M, with nonnegative entries.

Conjecture 1.6 (Log-approximate-nonnegative-rank Conjecture [KMSY19,/CMS19]). Let F : Y x
Y —{0,1}. Then

D(F) < polylog(max{rankf/g(F) ,rankf/g(ﬂF)}),

where =F =1 — F is the negation of F.

It is important to notice that the fact that we have a maximum on the right side of inequality is
important since in the same paper Chattopadhyay et al. [CMS19] proved the following statement.

Theorem 1.7 ([CMS19]). Let F, : {0,1}" x {0,1}" — {0,1} be the functions from Theorem[1.5

Then rank;r/3(Fn) — nOlogn)

Moreover, randomized communication complexity is closed under complement and so any matrix
analytic characterization should also be closed under complement.

Organization. The rest of the survey focuses on one-bit gadgets. Section[2]covers XOR-functions
and parity decision trees, and Section [3| covers AND-functions and AND decision trees.

2 Parity decision trees

A parity decision tree (abbrv. PDT) is an extension of the standard decision tree model, where
nodes can query arbitrary parities of the input bits.

Definition 2.1 (Parity decision tree). A parity decision tree is a binary tree T where each non-leaf
node v is labelled by a vector v, € Fy and each leaf node £ is labelled by a bit by € {0,1}. Given
an input z € FY, computation on a parity decision tree proceeds by walking from the root to a leaf,
where at each step the choice of which child to take in the path is determined by the value of the bit
2y, = (2,7) (denoting the inner product over F3): if z,, = 0, we take the left child and if z,, =1,
we take the right child. Computation terminates when this iterative process reaches a leaf £ and the
outcome of the computation is by. We denote by T(z) the output of T on an input z.

A PDT T computes a function f:{0,1}"™ — {0,1} if for every input z € {0,1}", T'(2) is equal
to f(z). We denote by D®%(f) the minimal depth of a PDT which computes f. We may also be
interested in the size of the PDT, which is the number of leaves.

Viewing the input space as 3, PDTs of depth d partition the inputs into affine subspaces of
co-dimension at most d on which f is constant. To see this, note that a root-to-leaf path of length
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d specifies an inhomogeneous system of d linear equations over F5, the solutions of which form an
affine subspace; moreover, each input z will travel to exactly one leaf over the course of computation
and hence these subspaces partition Fy. Such a viewpoint stands in contrast to standard decision
trees, which partition the input space into subcubes (a special case of affine subspaces). Additionally,
this viewpoint provides us with a simple strategy of proving lower bounds on PDTs computing a
function f: if we know that f is non-constant on any affine subspace of co-dimension d, then f
requires PDTs of depth greater than d.

This section will examine the PDT model in detail. First, we will look at the relationship
between PDT complexity (and other related parity query measures) and the Fourier transform
of f. Second, we will look at how PDTs are related to the communication complexity of XOR
functions and lead to a natural special case of the log-rank conjecture. Finally, we will see how
PDTs have been used in other contexts, such as property testing and proof complexity.

2.1 Relationships to the Fourier transform and other query measures
2.1.1 Fourier sparsity and spectral norm

The Fourier transform of a function f : Fy — R is defined by

= > f(=

veFy

where the coefficients f('y) = E,[f(z) - (=1){*7)] are referred to as the Fourier coefficients. There
are many interesting quantities associated with f’s Fourier transform and we will focus on two for
the time being: the sparsity and the spectral norm. The Fourier sparsity (which we _sometimes
simply refer to as sparsity in this section) of f is the defined as HfHo = |{y € F¥ : ( ) # 0},
namely the number of nonzero Fourier coefficients of f. The spectral norm of f is defined as
11l = 2qem [F (V-

Intuitively, the Fourier coefficient of v in f’s Fourier representation measures the correlation
between f and the linear function z — (z,v). It might therefore seem unsurprising that there are
relationships between the Fourier transform of f and its PDT complexity. For example, a reasonable
heuristic for constructing PDTs could be to iteratively query the parity with the highest Fourier
coefficient. Perhaps the simplest formal relationship between PDT complexity and the complexity
measures on the Fourier transform introduced above is the following:

Claim 2.2. Let f : {0,1}" — {0,1} be computed by a PDT of depth d. Then ||]?||0 < 4% and
1fll < 2¢.

Proof. Let T be a PDT of depth d computing f. Let L = {¢1,..., ¢y} be the leaves of T'. For each
leaf ¢ let Iy(z) be the indicator for an input z reaching the leaf ¢ in the computation of T'(z), and
let by be the output bit of . Then

= Ii(2)be

lel

The claim follows as |L| < 2¢, each I, has Fourier sparsity 2¢ and spectral norm 1. To see why,
fix a leaf ¢ of depth e < d, let vq,...,7 € F5 be the parities queried in the path to ¢, and let
ai,...,a. € {0,1} be the labels of the edges followed. Then

—1\{zvi)+aq
Hl z%—az]—Hl—i_( 1;7 ;

i€le] i€le]
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where 1[(z,7;) = a;] is 1 if (z,7;) = a; and 0 otherwise. A direct computation gives 1 Z]jo < 2¢ and
[ el < 1. O

Given this upper bound, one might ask: does small sparsity or small spectral norm imply the
existence of a small PDT? We first formulate this for sparsity:

Question 2.3. Is D®%(f) < polylog(llﬂlo) ¢

The best known lower bound is that there are functions f with D®%(f) > log(”f”o)c for
¢ = logs 6 ~ 1.63 due to O’Donnell et al. [OWZT14]. This question will be discussed in more detail
in Section as it turns out to be related to the communication complexity of XOR, functions (in
fact, it is equivalent to the log-rank conjecture for XOR, functions). For the spectral norm, we have
the analogous question:

Question 2.4. Is D4 (f) < polylog(|| f]l1) ?
In this case, a strong negative result was given by Chattopadhyay et al. [CMS19]:

Theorem 2.5 ([CMS19]). There is a function f:{0,1}" — {0,1} so that D% (f) = Q(y/n) and
1fli = O(W/n).

Despite this barrier, low spectral norm can still guarantee some type of simplicity in the PDT
model but there will be some dependence on n. As alluded to previously, a reasonable-sounding
heuristic for constructing a PDT is to repeatedly query the parity with the largest corresponding
Fourier coefficient. The problem with this heuristic is that f might not have any large Fourier
coefficients (e.g. the inner product function on 2n bits), in which case one can’t do much better
than randomly guessing a parity to query. However, when the spectral norm is small, it turns out
that a variant of this heuristic actually works.

The idea is to select two parities, which we’ll think of as vectors o, € [y, whose Fourier
coefficients ]/"\(a) and ]/"\(ﬁ) are rather large. These can be easily show to exist under the assumption
that f has small spectral norm. Then our PDT will repeatedly query the value of (a+ 3, z). It can
be shown that, regardless of the value of (a + 3, z), making such a query will reduce the spectral
norm of the restricted function significantly.

Theorem 2.6 (|[TWXZ13,[STIV17]). Suppose ||f]1 = S. Then f can be computed by a PDT of
28

size 25°n

A question similar in spirit to the existence of short PDTs from low spectral norm is whether
there exists an ‘efficient’ decomposition of f into subspaces. Specifically, how many affine subspaces
Vi,...,Vin C F} are needed to ensure that f can be decomposed as f(z) = 3 ¢, £1[z € Vi]?
Note that we are not restricting the co-dimension of these subspaces.

By writing a PDT as a sum of leaf indicators (similar to the proof of Claim , it is easy
to see that if f has a PDT of depth d (respectively, size t), then it suffices to take m < 2¢
(respectively, m < t). In particular, the above theorem gives us an upper bound of 25125 when
S = ||f]l1. This has the undesirable characteristic of depending on n. Sanders [Sanl9| (see also
Green-Sanders |GS08|) gives an upper bound with no dependence on n while maintaining the
exponential dependence on S:

Theorem 2.7 ([Sanl9]). Suppose Ifli = S. Then there are m = 25 4 ffine subspaces
Vi,...,Vin CFY and coefficients c1, ..., cm € {—1,1} so that

flz) =) cillze V.

1€[m]
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Additional relationships between the Fourier transform and PDT complexity have also been
discovered. For example, a result of O’Donnell and Servedio [OS07] states that the sum of the
linear Fourier coefficients are upper bounded by the square root of the (standard) decision tree
depth.

Theorem 2.8 (|0OS07)). If f is computable by a depth-d decision tree then

> fi) < 0(Vad).

i€[n]
Blais, Tan and Wan in [BTW15] generalized this result to PDTs as follows:

Theorem 2.9 ([BTW15|). If f is computable by a depth-d PDT then

S 7li) < O(Vd) - Var[f].

i€[n]

Having described some relationships between deterministic PDT complexity and various mea-
sures of complexity in the Fourier basis, we now introduce randomized PDTs about which less is
known.

2.1.2 Randomized parity decision trees

Let Py, 4 be the set of PDTs of depth d computing over Fy. A randomized PDT 7T of depth d is a
distribution over trees T' € P, 4. We say T computes f if for every z, Proor[T(2) = f(2)] > 2/3.

Unlike the result of Nisan and Szegedy |[NS94] establishing the equivalence of randomized and
deterministic decision trees (up to polynomial factors), randomized PDT's are exponentially stronger
than deterministic PDTs. To see this, consider the conjunction of n bits; that is, the function
AND,, : {0,1}" — {0,1} such that AND,(x1,...,2,) = Ai_; zi. It can be easily verified that a
deterministic PDT requires depth n to compute the function. However, there is a randomized PDT
of constant depth computing AND,,: sampling independent, uniformly random parities vy,...,7; €
F% to query and checking that (z,7;) = (1,7;) (where 1 is the all 1’s vector) for each i € [k]. The
probability of a false negative is 0 and the probability of a false positive is 27, so a constant
number of queries k suffices to compute AND.

A useful perspective which provides a more conceptual justification to the randomized-
deterministic separation is via the Hadamard code. Recall the Hadamard encoding of z € [}
is the 2™-bit string where the i-th bit is equal to (z,v;), where ~; is the i-th vector in F% under some
ordering. Then we can see the PDT as having regular query access to the Hadamard encoding of
z. Since the Hadamard code has distance n/2, random queries to the codeword quickly demarcate
inequivalent strings.

Unsurprisingly, randomized PDTs have their own set of limitations. For example, one can show
that the inner product function on 2n bits requires n/2 queries. This can be seen as an example of a
more general family of hard functions called affine extractors. An affine extractor for co-dimension
d, informally, is a function g : F§ — {0,1} so that for every affine subspace V' of co-dimension d,
E.-v|[g(z)] = 1/2. It is a simple observation that such functions require randomized PDT of depth
Q(d).
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2.1.3 Parity kill number

A relaxation of affine extractors called affine dispersers are also relevant to PDT complexity. Affine
dispersers for dimension d are functions ¢ : F§ — {0,1} which are non-constant on every affine
subspace V' of dimension d. This notion of affine disperser suggests another complexity measure,
which was called the parity kill number in [OWZ"14], and we will keep this terminology here. The
parity kill number of a function f is the co-dimension of the largest affine subspace on which f is
constant. Note that affine dispersers of dimension d have parity kill number n — d.

The parity kill number was studied in [OWZ™14], giving a lower bound on the parity kill number
of the composed function f°F. ﬂ The parity kill number is also connected to the construction of
short PDTs for f. In particular, [TWXZ13] observe that if f has small sparsity and small parity
kill number then it has a small PDT:

Theorem 2.10 ([TWXZ13]). Let T() be a function such that, for any boolean function f, its
parity kill number is at most T'(||f|lo). Then for any boolean function f, its PDT depth is at most

T(| fllo) - log || fllo-

In particular, it suggests the following natural question, connecting the parity kill number to
Fourier sparsity as means of connecting it with PDT depth.

Question 2.11. Is the parity kill number of any boolean function f at most polylog(HfHo) ¢

The analogous question, where Fourier sparsity is replaced by spectral norm, was raised in
[TWXZ13| and disproved in [CMS19]:

Theorem 2.12. There is a function f : {0,1}" — {0,1} so that f has parity kill number Q(/n)
and || flx = O(V/n).

We view it as an interesting question to understand the relationship between randomized PDT
complexity and the parity kill number:

Question 2.13. Suppose a boolean function f can be computed by a randomized PDT of depth d.
Does this imply that the parity kill number of f is at most poly(d)? namely, that f is constant on
an affine subspace of co-dimension poly(d)?

Generally, the relationship between approzimate global structure of f (such as randomized
PDTs) and ezact local structure of f (such as a large monochromatic subspace) is poorly un-
derstood and worthy of more investigation.

2.2 Relationship to communication complexity of XOR-functions

Decision trees have historically been a useful tool to understand more complicated models of com-
putation. One recent success story is query-to-communication lifting theorems from communication
complexity, which tightly characterize the communication complexity of particular structured func-
tions in terms of the decision tree complexity of a related function. Might PDTs have a similar
utility? A simple connection between PDT complexity and communication complexity of XOR
functions is the following claim, whose proof we sketched in the introduction.

Claim 2.14. Suppose that f can be computed by a PDT of depth d. Then the function fg has
deterministic communication complexity at most 2d.

9We do not define composed functions as it is tangential to our discussion. See [OWZ™ 14| for the definition.
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The converse statement is also true, which establishes a (qualitatively) tight characterization
of the communication complexity of XOR functions in terms of PDT complexity. The following
theorem was proved by Hatami, Hosseini and Lovett [HHL18].

Theorem 2.15 (Lifting for XOR functions [HHL18)). Suppose that fg has deterministic commu-
nication complexity d. Then f can be computed by a PDT of depth O(dS).

It is worth understanding the hypothesis of Theorem [2.15]in more detail. Recall that communi-
cation protocols for any two-party function F' imply the existence of a partitioning of the associated
communication matrix Mg into a small number of monochromatic rectangles. In our context, a
rectangle A x B corresponds directly to the sumset A+ B ={a+b:a € A,be€ B} over F} (since
F(z,y) = f(z +y)) and so F} can be partitioned into monochromatic sumsets.

Another property of f that follows from the existence of short communication protocols for F'
is that f has small Fourier sparsity.

Claim 2.16. Suppose fg has deterministic communication complexity d. Then HJ?HO <24,

This claim can be seen in two steps. First, we use the generic observation that short protocols
for F implies that the communication matrix Mg has correspondingly small rank. Next, we connect
rank to sparsity as follows:

Claim 2.17. For any f:{0,1}" — R, rank(M;,) = HJ?HO

Proof. Let M = My, where we identify its rows and columns with F3. It satisfies M, , = f(z®y).
We first show how to express M in terms of the Fourier decomposition of f.

The Fourier decomposition of f is given by f(z) = Z'yelF; f(’y)(—l)<z’7>. For each v € Fy define
the vector v, € R%" given by (v,), = (—1){*7 (here we identify the coordinates of v, with F}).
We have the identity

M = Z f Yl 5 Uy

vEFy
which holds since
Maz,y:f(w@y)Z F) (=)o) = 3" f(y) (=)W = FO)(0y)2(v1)y-
cFp YEFy YEFp

As each matrix v$ vy is a rank-one matrix, we immediately get that the rank of M is at most

the number of nonzero Fourier coefficients of f:

rank (M) < [|f]lo-

Next, observe that the vectors {v, : v € Fy} are linearly independent. Simple linear algebra then
gives that in fact

rank (M) = || f{|o-
O
Going back to the question of lifting XOR-functions to PDTs, we already established two useful
facts: (i) an efficient communication protocol for F' implies sparsity in the Fourier basis; and

(ii) sparsity in the Fourier basis combined with a small parity kill number implies the existence of a
small PDT. This leads into a natural question — can we use the existence of a large monochromatic
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sumset to show that the parity kill number of f is small, thereby proving a lifting result for PDTs?
It turns out that in general, large sumsets need not contain large subspaces, which is an obstacle to
using this approach. The authors of [HHL18| get around this by using more directly the assumption
that F' has an efficient protocol in order to prove the lifting theorem for XOR functions. For further
details see the paper [HHL18].

In addition to lifting, one might ask for additional applications of the structure of XOR functions.
For example, is the log-rank conjecture true for XOR functions? By the previous claim which
characterizes the rank as the Fourier sparsity, this question is equivalent to the following:

Question 2.18. Is it true that for any boolean function f, the deterministic communication com-
plezity of fo is al most poly-logarithmic in the Fourier sparsity of f? Namely, does D(fe) <
polylog({| f]lo) #

Since we can upper bound the communication complexity in terms of the PDT complexity, it
would also be sufficient to answer Question in the affirmative (and this is indeed equivalent, by
the lifting theorem for XOR functions). Various special cases of this question are known to be the
case: for example, when f has constant Fo-degree [TWXZ13| or is monotone [MOOQ9).

Analogous questions may be formulated in the randomized setting. To begin with:

Question 2.19. Suppose fg has randomized communication complezity d. Does f have randomized
PDTs of depth poly(d)?

This question remains open. As an intermediate step, it is worthwhile to investigate whether
lifting theorems hold for other notions of global structure. For example, we can ask this question
about the smooth rectangle bound [Klal0] which is conjectured, but not known, to be equivalent to
randomized communication complexity:

Question 2.20. Suppose, for fg, there exists a function G(z,y) = >, arR(x,y) with ar > 0 so
that

1. FEach R s the indicator function of a rectangle.

2 |fo(z,y) = Gz, y)| < € for every (z,y)
3. M= ZRQR.

Then is there a function g(z) =Y fvV (z) where V are indicators for affine subspaces, By > 0
such that |f(2) — g(2)| < € and 3, By = MOM) 2

Define for any € > 0, the e-approzimate sparsity of a function f : {0,1}" — {0,1} as the smallest
s so that there exists a function g with ||g|| = s and |g(z) — f(z)| < € for every z € {0,1}". In
analogy with Question we can ask the following randomized variant:

Question 2.21. Suppose [ has 1/3-approxzimate sparsity r. Does f have a constant-error random-
ized PDT of depth polylog(r)?

The answer to this question turns out to be negative, as shown by Chattopadhyay et al. [CMS19]:

Theorem 2.22 ([CMS19]). There is a boolean function f :{0,1}"™ — {0,1} so that any constant-
error randomized PDT has depth Q(/n) and yet f has 1/3-approzvimate sparsity O(n?).
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Such a separation also yields a separation for a randomized variant of the log-rank conjecture.
In particular, for any € > 0, the e-approximate rank of a matrix M € {0,1}"*" is the smallest s so
that there exist rank-1 matrices My, ..., My € R™" for which [Myy — (3 ¢ Mi)ay| < € for any

entry (x,y).

Theorem 2.23 ([CMS19]). There is a boolean function f :{0,1}" — {0,1} so that any constant-
error randomized communication protocol for fg has depth Q(\/n) and yet My, has 1/3-approzimate
rank O(n?).

This achieved simply by observing that if f has small approximate sparsity then fg has small
approximate rank.

2.3 Relationships to other areas of theory

The study of PDTs has also appeared in application areas other than communication complexity.
Here, we briefly discuss relationships to property testing, circuit complexity and proof complexity.

2.3.1 Testing linear and quadratic functions

Property testing is the study of determining, in sub-linear time, whether an input object satisfies
some property P or is ‘far’ from any object which satisfies the property P. See, for example, [Gol17]
for an introduction to property testing. A randomized algorithm which performs this task is called
a tester T. When T is testing a property of the function f : {0,1}" — {0,1} we give it black-box
access to f and generally ask for two-sided error guarantees.

Linear functions f : Fy — [Fo are determined by their evaluation over some basis of ;. In
particular, f(z) =3, . . _; f(e;). A randomized tester T for linear functions having some property
P using query access to f can then be seen to be equivalent to a randomized PDT for a function
gp applied to strings (f(e1), f(e2),..., f(en))-

This perspective can be applied to obtain property testing for k-linearity — testing whether
your function is of the form z — (z,v) where  has k non-zero entries — and can be generalized to
quadratic forms in order to prove lower bounds for testing affine isomorphism to the inner product
function. See [BCK14] for details.

2.3.2 DNFs of parities

A frontier open problem in circuit complexity is the construction of strong correlation bounds and
pseudorandom generators for the circuit class AC°[@] consisting of bounded-depth, unbounded fan-
in circuits of polynomial size with A, V, @ and — gates. An intermediate model is ACo@®, consisting
of constant-depth A, V, — circuits with one layer of parity gates at the bottom. A concrete problem
which is so far unsolved is the following:

Question 2.24. Does IP,(z1,...,x2,) = Zie[n] ziZirn mod 2 require depth-d AC° o @ circuits of
size exp(Q(nl/4))?

A low-depth variant of this model is directly related to PDTs. Specifically, a DNF of parities is
a function of the form f(z) = V;C;(x) where C;(x) is the indicator function of an affine subspace
Vi. We say the width of C; is simply the co-dimension of V;. We say that the DNF of parities has
width k if largest co-dimension of a subspace V; is k. By writing a PDT as a union of the accepting
affine subspaces, we can see that a PDT of depth d can be written as a DNF of parities of width d.
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Given the difficulty in proving strong correlation bounds for AC?[@)], it seems natural to inves-
tigate to what extent our techniques for AC? can extend to ACY o @. In particular, do common
techniques used in the study of DNFs, such as the switching lemma or sparsification, extend to
DNF of parities?

2.3.3 Average-case (unrestricted) circuit lower bounds

Another important problem in circuit complexity is proving lower bounds on (unrestricted) circuit
complexity of explicit functions. The best known lower bound bound was proven by [LY21]. Below,
we denote by a Bs-circuit a circuit over the full binary basis.

Theorem 2.25. Let f : {0,1}" — {0,1} be an affine extmctoﬂ for dimension d. Then any
Bsy-circuit for f has size at least (3.1 —o(1))n.

However, if we only require the circuit to be correlated with the function, the best bound was
proven by Chen and Kabanets |[CK16| by using connections between circuit complexity and PDTs.

Theorem 2.26. Any boolean function computed by a Bo-circuit of size s < 2.5n is computable by
a PDT of size on—((2.5n—5)*/n)

This theorem combined with the observation that affine extractors for dimension d require large
PDTs implies the following lower bound.

Theorem 2.27. Let § > 0. There are explicit functions fp : {0,1}" — {0,1} such that any
By-circuit of size 2.5n — dn, has correlation with f, at most 2~ "),

Question 2.28. Is it possible to construct explicit functions f, such that any Bo-circuit of size
3n — o(n) has correlation with f, at most 2~ 2
2.3.4 Resolution with linear constraints

A major open question in proof complexity is proving lower bounds on Frege proof systems (this
is the name used in proof complexity for the standard text-book Hilbert-style proof system).

Question 2.29. Is there an unsatisfiable CNF formula ¢ such that any Frege refutation of ¢ has
size exponential in the size of ¢?

Currently the best known result is for so-called AC°-Frege.

Theorem 2.30 (|BIK'92,[PBI93|Raz95|). For any d, there is a family of unsatisfiable formulas
bn and § < (1/5) such that

e the size of ¢, is polynomial in n and

e any Frege refutation of ¢, has size 2”6, provided that each line of the refutation is a AC®
circuit of depth d.

However, like in circuit complexity the situation with AC°[@] is not clear.

Question 2.31. Let d be a constant. Is there a family of unsatisfiable CNF formulas ¢, such that
any Frege refutation of ¢, has size exponential in the size of ¢,, provided that each line of the
refutation is a ACY[®] circuit of depth d?

10Ty fact this theorem holds even for affine dispersers.
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Hence, one may try to consider subsystems of AC?[@®]-Frege to find the specific obstacles for
currently known methods. One of the most popular such proof systems is Res(ling,). This is the
resolution based proof system that operates with disjunctions of linear equations over Fs.

Definition 2.32. We say that a formula C' semantically implies a formula D if any assignment
that satisfies C' also satisfies D. The resolution principle says that any assignment that satisfies
both C'V X and DV =X also satisfies CV D. The clause C'V D is said to be a resolvent of C'V X
and DV =X derived by resolving on X.

We say that C is a linear clause if C' is a disjunction of linear equations over Fo. Note that
any clause can be represented as a linear clause.

These definitions lead us to a definition of a resolution over linear combinations proof system
(Res(ling,)). A Res(ling,) refutation of a CNF ¢ is a sequence of linear clauses in which each
linear clause is either a clause of ¢, or is a resolvent of two previous linear clauses, or semantically
implied by a previous linear clause; and the last disjunction in the sequence is empty; We say that
this refutation is tree-like if each clause is used exactly once.

It is easy to see that this proof system is a fragment of depth-2 AC°[®]-Frege since each line is
a conjunction of XORs. However, even for this ultimately weak system the lower bounds are only
on the tree-like version of the proof system [[S20].

Question 2.33. Is there a family of unsatisfiable CNF formulas ¢, such that any Res(ling,) refu-
tation of ¢, has size exponential in the size of ¢y, ¢

The reason behind proving a lower bound on the tree-like Res(ling, ) refutations is the following
connection between these refutations and PDTs.

Theorem 2.34. Let ¢ = A\[“, C; be an unsatisfiable CNF on n variables, and let Searchy C
{0,1}™ x [m] be a search problem such that

(w,i) € Searchy <= Cj(x) = 0.

In other words, Searchy is the problem of finding a falsified clause. If there is a Res(ling,) refutation
of ¢ of size S, then there is a PDT for Searchy of depth log S.

Therefore, to prove a lower bound on Res(ling,) it is enough to prove a lower bound on PDT
complexity. Similar connections between decision tree and communication complexity of Searchg
and proof complexity of ¢ is known for many other pairs of models of computations and proof sys-
tems [GP18,BPS07,Knol7,BPRI7,IPU94]; probably the most explicit example of such connection
is the stabbing planes proof system |[BFIT18|: proofs in this proof system are decision trees that
query linear inequalities (over the reals).

3 AND decision trees

In this section, we study the communication complexity of AND-functions and their corresponding
query model: AND decision trees (abbrv. ADTS).

Similar to PDTs, an ADT extends the standard decision tree model, where every node could
query the AND of arbitrary subset of the input bits.
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Definition 3.1 (AND decision tree). An AND decision tree is a binary tree T" where each non-
leaf node v is labelled by a subset S, C [n], its two branches are labelled by 0, 1 respectively, and
each leaf node ¢ is labelled by a bit by € {0,1}. Given an input z € {0,1}", computation on a
AND decision tree proceeds by walking from the root to a leaf, where at each step we take the child
labelled by zs, = [l;eg, zi- Computation terminates when this iterative process reaches a leaf { and
the outcome of the computation is by. We denote by T(z) the output of T on an input z.

We say an ADT T computes f: {0,1}" — {0,1} if for every input z € {0,1}" the output 7'(2)
is equal to f(z). We denote by D% (f) the minimal depth of an ADT which computes f.

In the previous case of XOR, functions, we were working with the Fourier basis for functions over
{0,1}™. In this case, we instead work with the basis of all multilinear monomials {z° : S C [n]},
where 2° = Il;csz;. One can write an arbitrary function f : {0,1}" — R uniquely as a multilinear
polynomial

where ag € R. The number of non-zero coefficients is called the Mébius sparsity (which we will
usually refer to as just ‘sparsity’ in this section) of f, denoted by spar(f) = [{S : g # 0}|. Similar
to PDT and Fourier sparsity, D=7 (f) is lower bounded in terms of spar(f).

Claim 3.2. Let f:{0,1}" — R be computed by an ADT of depth d. Then spar(f) < 3%.

Proof. We prove the claim by induction on d. It clearly holds for d = 0. For d > 1, let S C [n]
denote the subset of variables whose AND is queried at the root, and let fy, f1 denote the functions
computed by its two subtrees. Then we have

f@)=25f + (1 — 25 fo.

By induction, spar(fy),spar(f1) < 3?1 as they are computed by ADTs of depth at most d — 1.
Hence spar(f) < 3%. O

Another important fact points out the relationship between the sparsity of a boolean function
and the rank of its corresponding AND-function, analogous to Claim which connected the rank
of XOR functions to the Fourier sparsity.

Claim 3.3. For any f:{0,1}" — R, rank(M;, ) = spar(f).

The proof of Claim is analogous to the proof of Claim and we omit it.

3.1 Relationship to communication complexity of AND-functions

Similarly to PDTs and XOR-functions, by simulating the computation of an ADT, one can give an
upper bound on the deterministic communication complexity of its corresponding AND-function.

Claim 3.4. Suppose that f has an ADT of depth d. Then the function fx has deterministic
communication complexity at most 2d.

A natural question to be asked is whether the opposite direction is true. Knop, Lovett, McGuire,
and Yuan [KLMY21| recently gave a positive answer up to a logn factor. Before reviewing this
result, let us introduce a measure called monotone block sensitivity, which builds a bridge between
ADT complexity and communication complexity.
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Recall that the block sensitivity of a boolean function f : {0,1}" — {0,1} at input =, denoted
bs(f,z), is the maximum number k of pairwise disjoint blocks Bj,..., B C [n] so that for all
i€ [k], f(z) # f(z®B), where 2%Pi = x @ 1p, is the string obtained from z by flipping the value
of every coordinate in B;. The block sensitivity of f is defined as bs(f) = max, bs(f, x).

Monotone block sensitivity is a variant of block sensitivity, obtained by restricting our modifica-
tion of the input x towards higher-weight strings. Specifically, for a subset B C [n] of coordinates,
let 272 = 2V 1p be the string obtained from z by flipping every 0 occurring in B into a 1 and leaving
every 1 unmodified. The monotone block sensitivity of f at z, denoted mbs(f, z), is the maximum
number of k of pairwise disjoint blocks B, ..., By C [n] so that for each i € [k], f(z) # f(x15).
The monotone block sensitivity of f is mbs(f) = max, mbs(f,z). To give two examples illustrat-
ing this definition, the monotone block sensitivity of n-bit AND is 1, where the monotone block
sensitivity of n-bit OR is n (obtained at z = 0").

We next connect the monotone block sensitivity of f to the communication complexity of its
AND-function fa. Suppose that mbs(f,z) = k for some z € {0,1}". We will show that fa
embeds as a sub-function Unique Disjointness on k bits (denoted UDISJ;), a function which is
known to require (k) communication complexity is a variety of communication models (including
deterministic and randomized communication).

First, let us define the Unique Disjointness function UDISJy: it is a partial two-party function
whose inputs are a,b C [k]. Its value is 0 if they are disjoint, 1 if the inputs share a single element
is common, and is not defined if they share two or more elements in common.

In order to see the connection, assume that mbs(f,z) = k is witnessed by pairwise disjoint
blocks By, ..., By C [n] such that f(z) # f(z'5)). Denote w; = 15. Given a,b C [k] define the
following inputs to f:

a;(a):z\/\/wi, y(b):z\/\/wi.
i€a i€b
Note that we have
z ifanb=10
zVw; ifanb={i}.

z(a) Ay(b) = {

Thus, any protocol computing f can also compute UDISJ;. It is well known that UDISJ; re-
quires (k) bits of communication under deterministic, non-deterministic, as well as randomized
settings [GPW18b, Raz92b|. As a result, we get the following corollary.

Corollary 3.5. Let f: {0,1}" — {0,1}. Assume that the deterministic or randomized communi-
cation complexity of fa is c. Then mbs(f) = O(c).

Monotone block sensitivity is also at most poly-logarithmic in the sparsity of f.
Lemma 3.6. For any f : {0,1}" — {0,1}, mbs(f) = O (log*(spar(f)))

Some of the ideas underlying these definitions can be traced back to an early paper of Nisan
and Wigderson on the log-rank conjecture [NW95|. There, they consider a function f with sparsity
2832 ~ 9n”* and monotone block sensitivity n. Applying Corollary [3.5/to F' = fo A, we see that
log rank (My) = log spar(f) = O(n%%3) and yet mbs(f) = Q(n). As Nisan and Wigderson observed,
this implies a lower bound for the log-rank conjecture. This example also demonstrates that the
quadratic factor in Lemma cannot be improved beyond a factor 1/(logs2) ~ 1.59.

One celebrated result in [NS94] is that block sensitivity and decision tree complexity are poly-
nomially related. It is natural to ask whether it is true for monotone block sensitivity and ADT
complexity. The following example refutes this.
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Example 3.7. The function AND,, o ORg is defined as f(x1, - ,xo,) = Algign(@i—l Voxe;). It
is easy to verify that mbs(f) =2, but DU (f) = Q(logspar(f)) = Q(n).

Nevertheless, ADT complexity can be bounded in terms of monotone block sensitivity and
sparsity. The proof uses zero decision tree complexity (abbrv. 0DT complexity) as a medium.

Definition 3.8 (Zero Decision Tree Complexity). The zero decision tree complexity of f, denote
by DO (f), is defined as the minimal zero-depth over all standard decision trees that compute f,
where the zero-depth of a decision tree T is defined as the mazximal number of 0-branches over all
paths from the root to leaves in T.

It turns out that zero decision tree complexity is bounded by a polynomial in the monotone
block sensitivity and sparsity of f.

Lemma 3.9 ([KLMY21]). Let f:{0,1}" — {0,1}. Then D% (f) = O (mbs?(f) - log spar(f)).

Combining this lemma with Lemma bounds the 0DT complexity of any boolean function
by a poly-logarithmic function of its sparsity:

Do'dt(f) =0 (log5 spar(f)) .
The final step is to connect zero decision tree complexity back to the AND decision tree com-
plexity. Mukhopadhyay and Loff [ML19] observed that 0DT complexity is equivalent to ADT

complexity, up to a logn factor.
dt
(

Claim 3.10 ([ML19)). Let f : {0,1}" — R. Then 212 < D04 (f) < DA f).

n

This establishes an “almost” log-rank conjecture for AND-functions, up to a logn factor.

Theorem 3.11 (Log-rank Conjecture for AND-functions, [KLMY?21]). Let f : {0,1}" — {0,1}
and assume that rank(fa) = r. Then DV¥(f) = O (log®r -logn) and in particular D(fs) =
0O (log5 r - log n)

Using the connection to Unique Disjointness gives the following related theorem.

Theorem 3.12 (Deterministic Lifting for AND-functions, [KLMY?21]). Let f : {0,1}" — {0,1}
and assume that D°(f5) = d. Then D4 (f) = O (d*-logn).

We conjecture that in both cases, the logn factor can be removed.

Conjecture 3.13 (Log-rank conjecture for AND-functions). Let f :{0,1}" — {0,1} and assume
that rank(fx) = r. Then D9 (f) < polylog(r).

Conjecture 3.14 (Lifting for AND-functions). Let f : {0,1}" — {0,1} and assume that D(fr) =
d. Then D9 (f) < poly(d).

We end this subsection with some speculative remarks on the above conjectures. A conspicuous
feature of the strategy used above in proving log-rank and lifting (modulo the log n factor) for AND-
functions is that we didn’t directly design ADTs for f. Instead, we went through the intermediate
0-DT model which can simulate ADTs with a logn overhead (and this overhead is necessary). It
therefore seems desirable to find a more direct way of building ADTs. One difficulty in doing so the
following: when an ADT queries a set S C [n] and gets a 0, there can be many subcubes which are
consistent with the answer but inconsistent with one another. In this sense, it is not entirely clear
what type of progress has been made. We can resolve this inconsistency by binary searching for
the first bit in S set to 0 and keeping everything else unset, but the number of queries needed to do
so will depend on |S|. Tt seems plausible that a more sophisticated understanding of the monomial
structure of sparse boolean functions could help us design complexity measures which more readily
simplify under AND queries.
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3.2 Randomized ADT complexity

In this subsection, we introduce randomized ADT complexity and related problems.

Definition 3.15 (Randomized ADT Complexity). A randomized ADT T is a distribution over
(deterministic) ADTs. The depth of T is defined as the mazximal depth of ADTs in the support of
T. We say T computes f if Pr[f(z) = T(x)] > % for any input x. The randomized ADT complexity
of f, denoted by R"=PT(f), is the minimal depth of a randomized ADT which computes f.

Recall that randomized PDTs are exponentially stronger than deterministic PDTs. However, no
such separation is known for ADTs. The following conjecture was posed in [KLMY21], speculating
that randomness does not help ADTs.

Conjecture 3.16. Let f : {0,1}" — {0,1} and assume that R"¥(f) = d. Then DN (f) <
poly(d,logn).

A logn factor is necessary here, as the following example shows.

Example 3.17. Let f : {0,1}" — {0,1} be a threshold function, which outputs 1 if and only if
|z| > n — 1. Then D¥(f) = Q(logspar(f)) = Q(logn). However, R"%(f) = O(1), since we can
sample a subset S C [n] uniformly at random, then output 0 if both \;cqx; and /\i¢s x; equal to 0,
and output 1 otherwise.

Next, we introduce approximate sparsity, which might be a useful tool for this problem. Infor-
mally, it is the smallest sparsity of a polynomial which approximates f on all inputs.

Definition 3.18 (Approximate Sparsity). Let f : {0,1}" — {0,1}. The approximate sparsity of f
is defined as the minimal sparsity of a polynomial p : {0,1}" — R that satisfies |p(z) — f(z)| < 1/3
for all z € {0,1}™.

It is suspected that approximate sparsity is polynomially related to sparsity, which is sufficient
for proving Conjecture [3.16

Conjecture 3.19. Let f:{0,1}" — {0,1}. Assume that spar(f) =r. Then spar(f) < poly(r).
Claim 3.20. Conjecture[3.19 implies Conjecture [3.16

Proof. Assume that R"%(f) = d. As each ADT in the support of the distribution of the ran-
domized ADT has depth at most d, its sparsity is at most 3¢. A standard Chernoff bound shows
that it suffices to consider distributions over O(n) ADTs. This shows that spar(f) < O (3%n).
Conjecture then implies that spar(f) < 3°@n°M) Applying Theorem gives DM (f) <
O ((d +logn)® - log n) which proves Conjecture O
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