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Blockchains for Decentralized Optimization of
Energy Resources in Microgrid Networks*

Eric Munsing1, Jonathan Mather2, and Scott Moura1

Abstract— We present an architecture for peer-to-peer energy
markets which can guarantee that operational constraints are
respected and payments are fairly rendered, without relying on
a centralized utility or microgrid aggregator. We demonstrate
how to address trust, security, and transparency issues by using
blockchains and smart contracts, two emerging technologies
which can facilitate decentralized coordination between non-
trusting agents. While blockchains are receiving considerable
interest as a platform for distributed computation and data
management, this is the first work to examine their use
to facilitate distributed optimization and control. Using the
Alternating Direction Method of Multipliers (ADMM), we pose
a decentralized optimal power flow (OPF) model for scheduling
a mix of batteries, shapable loads, and deferrable loads on an
electricity distribution network. The DERs perform local opti-
mization steps, and a smart contract on the blockchain serves
as the ADMM coordinator, allowing the validity and optimality
of the solution to be verified. The optimal schedule is securely
stored on the blockchain, and payments can be automatically,
securely, and trustlessly rendered without requiring a microgrid
operator.

I. INTRODUCTION AND MOTIVATION

The energy production landscape is being reshaped by
distributed energy resources (DERs) — photovoltaic pan-
els, electric vehicles, smart appliances, and battery storage
systems, which provide low-voltage energy services and
are often remotely controllable as part of the Internet of
Things. When used intelligently, these DERs can reduce
cost, improve reliability, and integrate renewable resources
in the electric grid — features which have led regulators to
introduce policies promoting their adoption [1], [2].

However, payments for DER services must be negotiated
with electric utilities, monopolies who may be invested in
preserving conventional generation systems. As a result, the
deployment of DERs has often been met with animosity
by utilities, which may bar the participation of DERs or
seek monopoly rents in return for access to the distribution
infrastructure [3], [4].

Local distribution markets for energy services have been
proposed as a means of efficiently incentivizing and dispatch-
ing DERs, much as is done at the transmission scale [5],
[6]. However, such a local distribution market would need
to address both the monopoly incentive issues highlighted
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above, and also the abuses of market power observed in
wholesale energy markets [7], [8]. These issues would be
particularly pertinent in microgrid operation, which may not
benefit from the scrutiny given to a larger utility [9].

Engineering literature has examined control schemes for
providing energy services with DERs in distribution grids
and microgrids [10], but has typically assumed operation is
managed by a benevolent aggregator or cooperative utility. It
is unclear how these proposed control systems would work
in the face of incentive issues or regulatory shortcomings.

To address these issues, we leverage an emerging technol-
ogy which has been developed to allow decentralized con-
sensus between non-trusting agents: blockchains and smart
contracts. Despite extensive use in financial applications for
addressing trust issues [11], blockchains have seen limited
deployment in the energy space [12] and have not been
considered for the direct coordination of DERs [13].

We examine how a blockchain architecture can be used
to distribute the aggregator’s role across all devices on a
microgrid network. This integrated architecture is demon-
strated on a blockchain platform controlling a microgrid
simulation, and demonstrates how to address incentive issues
while respecting operational constraints.

We structure the remainder of the paper as follows: Sec-
tion II provides a brief overview of blockchains and smart
contracts. Section III provides a survey of previous literature
on dispatch of DERs in microgrids, decentralized optimiza-
tion techniques, and blockchain use in energy applications.
Section IV presents the formulation of the optimal power
flow problem with DERs and its ADMM equivalent, and
Section V describes the algorithm for utilizing a blockchain
for securing our decentralized problem. We present results
from a simulation network, discuss limitations, and conclude
by highlighting additional research opportunities.

II. BLOCKCHAINS AND SMART CONTRACTS

Blockchains are an emerging technology for decentralized
computation and data storage, secured by a combination of
cryptographic signatures and a distributed consensus mech-
anism. Participants on the blockchain network are able to
come to universal agreement on the system state σt at each
time step t, even in the presence of cyberattacks, communica-
tion dropouts, and participants joining/departing the network.
This is in stark contrast to conventional architectures where
a central coordinator defines the state of the system, but may
be subject to attack or malfeasance.

The general architecture of blockchains is described in
[14] and illustrated in Fig. 1. Participants on the peer-to-peer
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Fig. 1. Symbolic representation of the data in a blockchain, showing
blocks B0 to Bt+1 with detail of block Bt. Blocks are linked by their
cryptographic hashes Υ(Bt), securing the contents from alteration and
allowing transparent auditing of system history. Messages Mt

i contain
information about changes to the system state, such as energy transfers
or payments.

network broadcast messages M t
i , i ∈ (1, . . . ,Nm). These

messages contain commands which affect the state of the
system (control actions, account withdrawals, etc), and the
feasibility of each message can be checked by each node
using a validation function π(σt−1,M t

i ).
Participants listen to the network and collect a set of

messages into the contents of the next block Bt. A block
header H is formed which contains the timestamp, a concise
cryptographic hash Υ(Bt−1) of the contents of the previous
block, and the results of a verification test that is compu-
tationally or economically difficult to forge. The new block
is broadcast to the network, where its validity is checked
and nodes reach consensus on the updated state of the
system σt = Π(σt−1, Bt). The utility of blockchains can be
significantly expanded when the state transition function Π(·)
can execute computer code embedded in the transmissions
Mi. These smart contracts can be transparently inspected
and audited, and are guaranteed to be faithfully executed on
the network.

Recursively linking the contents of blocks, verifying
new blocks with peer-to-peer consensus, and using crypto-
graphic signatures to verify communication are the pillars of
blockchain architecture. Together, they provide an immutable
and robust representation of system state- without requiring
the intervention of a trusted central authority. While this ar-
chitecture introduces some computational overhead, it offers
immutability, transparency, and verifiability which can make
the system well suited for coordination between parties who
do not trust each other. We refer the reader to [13], [15],
[11] for additional details on the security, architecture, and
applications of blockchains and smart contracts.

III. PRIOR LITERATURE

This work draws on three bodies of research: control of
distributed energy resources, the economics and regulation of
microgrids, and research on blockchains and smart contracts.
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Fig. 2. Comparison of an efficient market in which the optimal quantity
Q∗ is cleared at price P (Q∗), and a market operated by a monopoly who is
able to charge separate prices for generation and consumption. In this model,
the monopoly restricts output to QM , purchasing energy at C(QM ) and
charging consumers P (QM ).

We provide a brief summary of relevant literature from each
domain.

A. DER Control

Microgrids are electricity networks which can be con-
trolled autonomously, and may operate in both grid-
connected and self-sufficient modes [16]. Without the benefit
of a large balancing territory, loads and generation must
be coordinated carefully and the role of DERs becomes
particularly important. Surveys of approaches to microgrid
management can be found in [17], [10].

Conventionally, generation resources have been centrally
controlled by a utility or system operator — but these central-
ized approaches do not scale well to large numbers of DERs,
and recent research has focused on decentralized algorithms
with low computational overhead. Decentralized algorithms
have been explored for coordinating electric vehicles [18],
[19], smart inverters [20], and for fleets of diverse DERs
[21], [22], [23].

Constraints on network voltage and power power flows can
become significant at high DER penetrations, and decentral-
ized models for power flow in distribution systems have been
explored in [24], [25], [26]. As the underlying AC optimal
power flow problem (OPF) problem is nonconvex, each of
these examines different assumptions or relaxations which
grant computational tractability.

B. Microgrids and Monopoly Economics

In prior literature, DERs are compensated for providing
energy services by an aggregator or a utility: a central
authority who is trusted to act fairly in scheduling generators,
satisfying loads, and rendering payments.

Like conventional electrical utilities, a microgrid operator
faces a set of competing demands: minimizing consumer
costs, investing in reliability and long-term capacity, and
providing a return for shareholders [27]. Even without own-
ing any assets, such a monopoly aggregator can have strong
incentives to shift the market away from a cost-minimizing
equilibrium and towards a profit-maximizing monopoly out-
come, as shown in Figure 2. These conflicts of interest are
typically controlled through regulatory intervention, where



auditors scrutinize market outcomes and regulate customer
fees [28].

However, when regulatory efforts are expensive, a small
degree of market inefficiency may be less burdensome than
regulatory costs [29]. This can create distrust between the
microgrid operator and producers/consumers, who cannot
assess whether their bills reflect monopoly profits or justified
costs [9], [1].

This trust issue is already visible in the integration of
rooftop photovoltaic systems in distribution networks [3], [4],
and can be expected to be a greater problem in microgrids
if regulatory scrutiny cannot be efficiently implemented for
small systems — for example, if regulation has a high fixed
cost (such as for retaining auditors) [29].

C. Blockchains and Energy

Blockchain research is still a new field, with most existing
work focused on security and scalability [13], [11] and
few applications for controlling physical devices [15], [30].
Although blockchains rely on a distributed consensus mech-
anism to provide security, the parallels with decentralized
consensus algorithms in engineering control and optimization
research have not yet been explored.

Existing applications in the energy space have only used
blockchains as secure databases for tracking energy gen-
eration and consumption, typically in the form of tokens
representing renewable energy credits [31], [32], [33].

While blockchains have been discussed for use in coordi-
nating DERs in transactive energy markets [34], [35], these
works have not considered physical constraints on DER op-
eration – instead treating DERs as idealized financial assets.
In reality, any coordination system must consider the DER’s
own constraints as well as the constraints of the distribution
network. Prior literature has not considered methods for
addressing these constraints in blockchain applications.

D. Novel Contributions

With this background, we see blockchains and smart
contracts holding unexplored potential for eliminating trust
issues with microgrid operators, and as a natural platform
for coordinating the decentralized optimization schemes
described above. The following contributions extend prior
literature:
• Distributed optimal power flow algorithm with batteries,

shapable loads, and deferrable loads
• Recovery of distributed locational marginal prices from

a decentralized OPF problem
• Use of a blockchain for coordinating devices with

operational constraints
• Use of a blockchain to facilitate the aggregator step of

a decentralized optimization algorithm

IV. OPTIMAL DISPATCH FORMULATION

We consider a microgrid with a dispatchable central gen-
erator, uncontrolled plug loads, non-dispatchable renewable
energy resources, shapable loads (e.g. electric vehicles),
deferrable loads (e.g. appliances), and batteries. We consider

a day-ahead scheduling problem, with the objective of min-
imizing cost of energy provision subject to the operational
constraints of the DERs and of the distribution network.

Note that in formulating the equations our variables are
italicized, constants are non-italicized, and sets are denoted
by calligraphy.

A. Network Model

The distribution network is modeled as an undirected
radial graph G(N , E), consisting of a set of nodes N and
a set of distribution lines (a.k.a. edges) E connecting these
nodes. Using the notation described in [36], we index the
nodes in N by i = 0, 1, . . . , n, where node 0 represents the
root node (substation) and other nodes in N represent branch
nodes. We also denote a line in E by the pair (i, j) of nodes
it connects where j is closer to the feeder 0. We call j the
parent of i, denoted by π(i), and call i the child of j. Denote
the child set of j as δ(j) := {i : (i, j) ∈ E}. Thus a link
(i, j) can be denoted as (i, π(i)).

For each line (i, π(i)) ∈ E , let zi = ri + ixi be the
impedance of the line, let Ii be the complex current flowing
from nodes i to π(i), and Si = Pi + iQi be the complex
power flowing from nodes i to π(i). On each node i ∈ N ,
let Vi be the complex voltage, and si = pi + iqi be the net
complex power injection. We assume the complex voltage
V0 at the substation node is given and fixed. We define
li := |Ii|2, vi := |Vi|2.

We model power flow on the network using the branch
flow equations, first proposed in [37], which reflect a bal-
anced single-phase radial network.

pi = Pi −
∑
k∈δ(i)

Pk + rili, i = 0, . . . , n (1a)

qi = Qi −
∑
k∈δ(i)

Qk + xili, i = 0, . . . , n (1b)

vi = vπ(i) + 2(riPi + xiQi)− (r2i + x2i )li, i = 1, . . . , n
(1c)

li =
P 2
i +Q2

i

vi
, i = 1, . . . , n (1d)

where S0 = 0 + i0 at the slack bus. Equations in (1) define
a system in the variables (P,Q, l, v) := (Pi, Qi, li, vi, ∀ i ∈
N ), which do not include phase angles of voltages and
currents. Given (P,Q, l, v), phase angles can be uniquely
determined for radial networks [38].

The final equation (1d) forms a non-convex set. It is
relaxed to an inequality, which yields a second-order cone
constraint:

li ≥
P 2
i +Q2

i

vi
⇐⇒

∥∥∥∥∥∥
2Pi
2Qi
li − vi

∥∥∥∥∥∥
2

≤ li + vi (2)

In addition to the power flow equations, we also consider
constraints on voltage magnitude on the network. These
typically bound voltage within ±5% of a nominal voltage.

vi ≤ vi ≤ vi, i = 1, . . . , n (3)



B. Controllable DERs

We consider a set of energy resources with complex
injections/withdrawals s placed at nodes i throughout the
microgrid network, denoted as follows:

sgi Dispatchable generators sui Uncontrollable loads
sri Renewable generators sdi Deferrable loads
sbi Stationary batteries ssi Shapable loads

The net complex injection at a node i in period t is

si(t) = sgi (t)− s
l
i(t), i = 0, . . . , n (4)

where

sli(t) = sui (t) + sdi (t) + ssi (t)− sbi (t)− sri (t) (5)

Dispatchable generators (e.g. microturbines, diesel genera-
tors, fuel cells) are considered to have quadratic increasing
cost, which may be time-varying:

Ci,t(s
g
i (t)) = αi,ts

g
i (t)

2
+ βi,ts

g
i (t) + γi,t (6)

Power injection from renewable generators is considered to
be deterministic and have no marginal cost Ci,t(sri (t)) = 0.
Power withdrawals due to uncontrollable loads (lights, plug
loads) are considered deterministic, inflexible, and inelastic.
We do not model thermostatically controlled loads or smart
inverters, though those can be added to the formulation using
the approaches in [39] and [26] respectively.

Stationary batteries are modeled as dispatchable loads
which can be controlled to withdraw power (sbi < 0) or
inject power (sbi > 0). We assume charging efficiency ηi,in,
and discharging efficiency ηi,out. We assume that the battery
should not undergo a net discharge of more than ε over the
course of the dispatch period.

∀t = 1 . . .T :

sbi (t) = dbi (t)− cbi (t) (7a)

0 ≤ cbi (t) ≤ Pbi,charge (7b)

0 ≤ dbi (t) ≤ Pbi,discharge (7c)

Eb,min ≤ Eb(t) ≤ Eb,max (7d)

Ebi (t) = Ebi (t− 1) + cbi (t)∆tηi,in − d
b
i (k)∆t/ηi,out (7e)

(1 + ε)Ebi (1) ≤ Ebi (T) ≤ (1− ε)Ebi (1) (7f)

Shapable loads (e.g. electric vehicles with continuous
charging levels, continuously variable fans) are modeled as
having net energy demand Esi,demand, and must be charged
between times ti,startby and ti,endby:

Psi,min ≤ ss(t) ≤ Psi,max ∀t = 1 . . .T (8a)
T∑
t=1

ss(t) = Esi,demand (8b)

ssi (t) = 0 ∀t = 1, . . . , ti,startby (8c)
ssi (t) = 0 ∀t = ti,endby, . . . ,T (8d)

Deferrable loads are considered to have some flexibility in
their start time, but a defined load profile l(τ) ∀ τ = 1, . . . , L
once started (e.g. appliances, manufacturing equipment).

Following on the work in [22], we model the minimal starting
time of the load as an arrival process a(t), and the actual
starting time as a departure process d(t), where each of
these variables takes the value 0 until the time of the request
arrival/departure, at which point it takes the value 1. If the
device can be started at most ζ time steps after the arrival
request, we can formulate the constraints on our decision
variable d(t) as

∀t = 1 . . .T :

0 ≤ di(t− 1) ≤ di(t) ≤ ai(t) (9a)
ai(t− ζ) ≤ d(t) (9b)
di(t) ∈ (0, 1) (9c)

Following [22] to formulate a matrix Φ which convolves
the departure process d(t) into a power consumption profile
sd = Φd, we can relax the binary constraint to allow
scheduling to be expressed as a linear problem.

C. Optimal Power Flow

We consider the problem of maximizing social welfare
in the network over a day, which amounts to scheduling
the controllable loads to minimize generation cost, while
respecting network constraints. This problem is commonly
known as economic dispatch, one of a family of optimal
power flow (OPF) problems. It is formulated as follows:

min

T∑
t=1

n∑
i=1

Ci,t(s
g
i (t)) (10a)

s.t. (1a), (1b), (1c), (2), (3), (4), t = 1, . . . ,T (10b)
(7)i, (8)i, (9)i, i = 1, . . . , n (10c)

over sgi (t) ∈ [sgi , s
g
i ], i = 0, . . . , n, t = 1, . . . ,T

(Pi, Qi, li, vi)(t), i = 1, . . . , n, t = 1, . . . ,T

where constraints (7)i, (8)i, (9)i, are specific to each node
i = 1, . . . , n, depending on the resources at that node.

In order to compensate the DER operators for their
services and charge consumers for withdrawals, we want
to compute nodal clearing prices, known as distributed
locational marginal prices (DLMPs). The DLMP at a node
represents the marginal cost to supply an additional unit of
real power at that node. We denote the DLMP at node i as
λi, and they can be found as the dual variables associated
with the real power balance constraint (1a). As described in
[36], the DLMP can be decomposed into contributions from
energy, line losses, and voltage congestion.

D. Decomposition with ADMM

The Alternating Direction Method of Multipliers (ADMM)
has gained popularity as a tool for decomposing difficult con-
vex optimization problems into a set of simpler subproblems,
coordinated through an aggregator step [40]. While conver-
gence may be slow, the simplicity of the aggregator step
and the guarantee of global optimality make the algorithm
compelling for DER coordination. For examples of ADMM
applications in various models of optimal dispatch problems,
see [23], [41], [26], [25].



In the canonical ADMM problem, we consider a mini-
mization problem with separable objectives and constraints
in vectors x and z:

min
x,z

f(x) + g(z)

s. to: x ∈ Kx, z ∈ Kz
Ax+Bz = c

We can form the augmented Lagrangian:

Lρ(x, z, ξ) := f(x)+g(z)+ξ>(Ax+Bz−c)+ρ

2
‖Ax+Bz−c‖2

This then decomposes into the general form of ADMM:

xk+1 = arg min
x∈Kx

Lρ(x, z
k, ξk) (11a)

zk+1 = arg min
z∈Kz

Lρ(x
k+1, z, ξk) (11b)

ξk+1 = ξk + ρ(Axk+1 +Bzk+1 − c) (11c)

When decomposing a problem into subproblems for solu-
tion with ADMM, it is useful to think of x and z in the above
as local and global variables respectively. Local variables
only pertain to their respective subproblems, whereas global
variables couple subproblems together and must be agreed
upon at the global optimum, reaching a distributed consensus
among subproblems. An intuitive way to formulate this is to
give each subproblem its own copy of any coupling variables,
and then try and make these copies agree.

The economic dispatch problem of (10) can be reformu-
lated in this way by forming an individual subproblem at
each node, whose solutions are made to coincide at the
global optimum through copied local coupling variables.
Each subproblem has its own copy of the relevant global
coupling variable, and consensus on their value is achieved
among subproblems through the ADMM algorithm. The
subproblem of node i takes the following form, where for
clarity we have omitted the time index from each nodal
variable.

min

T∑
t=1

Ci,t(s
g
i (t)) (12a)

s.t. pi = Pi −
∑
k∈δ(i)

Pk + rili, t = 1, . . . , T (12b)

qi = Qi −
∑
k∈δ(i)

Qk + xili, t = 1, . . . , T (12c)

vi = vπ(i) + 2(riPi + xiQi)− (r2i + x2
i )li, t = 1, . . . , T

(12d)

li ≥
P 2
i +Q2

i

vi
(12e)

(7)i, (8)i, (9)i (12f)

over sgi ∈ [sgi , s
g
i ], s

b
i , s

d
i , s

s
i

(Pi, Qi, li, vi), (Pδ(i), Qδ(i), vπ(i))

We first define a set of global variables z :=
[P>, Q>, v>]> ∈ R3n, a set of private local variable xi :=
[sgi , s

b
i , s

d
i , s

s
i , li]

>, and a set of coupling local variables

x̃i = [P>i , Q
>
i , v

>
i , P

>
δ(i), Q

>
δ(i), v

>
π(i)]

>. We see that each
subproblem i is coupled to other subproblems through the
coupling local variables x̃i, each of which is a selection of
the components of the global variable z. Using notation from
[40], the mapping from local variable indices into the global
variable index can be written as g = G(i, j), which means
that local variable component (x̃i)j corresponds to global
variable component zk. Achieving consensus between the
local variables and the global variable means that

(x̃i)j = zG(i,j),∀i, j (13)

We can equivalently define a selection matrix Bi, such that,
z̃i = Biz, and at the optimum

x̃i −Biz = x̃i − z̃i = 0 (14)

At each iteration k, each node i, receives z̃ki from the
central aggregator, and solves

min

T∑
t=1

Ci,t(si,t) + ξ>i (x̃i − z̃ki ) +
ρ

2
‖x̃i − z̃ki ‖22

s.t. (12)
over xi, x̃i

(15)

The node then sends its new x̃k+1
i to the central aggrega-

tor, who computes the following update for each individual
global variable zk+1

g

zk+1
g :=

1

kg

∑
G(i,j)=g

(x̃k+1
i )j (16)

where kg is the number of local variable entries that corre-
spond to global variable entry zg . The update can be thought
of as taking the average of all local copies of the global
variable. The central aggregator then updates ξi as

ξk+1
i = ξki + ρ(x̃k+1

i − z̃k+1
i ) (17)

We define the stopping criteria using the following residuals

rki = x̃ki − z̃ki , sk = zk − zk−1 (18)

Defining rk := [rk1 , . . . , r
k
n], the algorithm is determined to

have converged when the both the following conditions are
met

‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual (19)

where εpri, εdual are suitably defined tolerances, and can be
set using methods described in [40].

V. BLOCKCHAIN AND ADMM
We have formulated an optimal scheduling program for

distributed energy resources through a decentralized algo-
rithm. However, this only addresses part of the microgrid
operation problem, and still has notable weaknesses:
• The aggregation step is not guaranteed against cyberat-

tack or tampering by participants
• Individual DERs/consumers cannot verify that they are

being paid/billed at fair prices
• Payments for actual generation/consumption will still be

handled by a central utility



As an alternative, we propose to leverage the benefits
of a blockchain architecture to create a fully peer-to-peer
system which guarantees both operational feasibility and fair
payments to all parties while taking full advantage of the
decentralized structure of the problem.

repeat
Pi: Private Optimization, compute locally

Gather private constraints
Compute x̃i and send to smart contract S1

S1: ADMM Aggregator, on blockchain
Update z
if ‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual then

Compute final schedule and clearing prices
Send schedule to S2

end
until ‖rk‖2 ≤ εpri, ‖sk‖2 ≤ εdual

Mi: Each Smart Meter
Record energy consumption
Send time-stamped & signed consumption to S2

...time progresses
S2: Billing contract, on blockchain

Compare schedule from S1 with meter readings
Compute penalties, payments, and charges
Transfer payments between accounts

Algorithm 1: Computational elements in the microgrid control system.
Function Pi is executed locally by each device participating in the
market. The results are passed to the smart contract S1, which serves
as publicly verifiable ADMM aggregation step. Pi and S1 iterate
back and forth until ADMM converges, at which point the schedule
is saved to the billing smart contract S2. Smart meters send trusted
meter readings to S2, which computes payments and automatically
transfers funds from consumers to generators.

As discussed in Section II, blockchains provide a method
for providing a transparent, trustless platform for data storage
and computation. This makes a private blockchain the perfect
platform for conducting the aggregation step of ADMM,
allowing all participants to audit the progress of the al-
gorithm, the accuracy of the solution, and the veracity of
their scheduled commitments. Further, ADMM is a natural
fit for implementation on a blockchain, as it guarantees
convergence yet has a computationally cheap aggregation
step (minimizing the burden of verification).

Algorithm 1 provides an outline of the sequence of events
in our proposed blockchain-based system. In it, we use the
blockchain to (i) provide a fair computation of the ADMM
aggregator update step from (16), (ii) store the resulting
schedule, and (iii) compute payments and penalties for actual
generation/consumption.

Any participant can verify that the schedule maximizes
social benefit while respecting network constraints, removing
the possibility of monopolistic price manipulation. This
immutable record can also become the basis for reckoning
payments when the schedule is realized, if smart meters
send consumption data to a billing contract S2 on the

Fig. 3. The 55-bus sample microgrid test feeder used in the simulation, with
a microturbine placed at Bus 1 and DERs randomly distributed throughout
the network.

blockchain. After computing credits and debits for each node
in the network, the updated account balance is securely
saved to the blockchain. Paired with a cryptocurrency as
discussed in [11], this can form a complete payment system
— removing the need for a utility or microgrid operator to
handle scheduling and billing.

VI. IMPLEMENTATION: TEST NETWORK

We implement the proposed algorithm on a simulated
SCE 55-bus test network shown in Fig. 3 with parameters
described in [42]. Bus 1 is used as the reference bus, and is
equipped with a large microturbine generator with quadratic
cost function (this could also represent a connection to a
utility grid). Each node has a deterministic load profile,
created by adding a uniform random variable to the average
uncontrollable load signal seen in Figure 4. We randomly
placed solar arrays at 60% of the buses, and assume a
deterministic solar generation profile. We place deferrable
loads at 70% of the buses, with earliest start times randomly
distributed between hours 7:00-11:00; these represent ap-
pliances and industrial equipment. Shapable loads are also
randomly placed at 70% of the buses, with net energy de-
mand generated from a uniform random variable that is up to
10 times the peak power consumption of the uncontrollable
loads; these are intended to represent electric vehicle loads.
The time constraints are randomly generated such that the
shapable loads begin self-scheduling as early as 10:00, and
can continue to draw power as late as hour 24:00. Batteries
are placed at each bus, with a power capacity of 50% of the
peak controllable load at the bus, and with a 4 hour energy
storage capacity.

We use a private Ethereum Frontier blockchain test net-
work [43], and Python/CVXpy [44] to run the private op-
timization problems. Remote procedure calls through EthJ-
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Fig. 4. Schedule of commitments generated by the ADMM algorithm and
stored to the smart contract. Positive values of power indicate real power
consumption, and negative values indicate generation/injections.

sonRpc allow the Python scripts to communicate with the
smart contracts.

A. Results and Discussion

The ADMM algorithm converged in 204 iterations, using
ρ = 100, εpri = 10−3, εdual = 0.1, with each iteration taking
at most 1.2s to compute. The optimal cost of the distributed
solution was 0.4% larger than the centralized OPF solution.

The average power consumption across all nodes is shown
in Fig. 4. The power consumption profiles of individual
nodes primarily differ in the temporal constraints, size of
shapable load, and presence or absence of solar. The algo-
rithm schedules deferrable and shapable loads to consume
energy coincident with solar generation. Roughly speaking,
the shapable loads fill gaps in the sawtooth profile of the
deferrable loads. The battery charges when the net load is
lowest, and discharges when net load is highest.

The impacts of network topology can be seen in the
voltage of each bus during the simulation period, shown
in Figure 5. Since there are no current flow constraints, at
optimality the upper voltage limit at the generator bus (#1)
becomes the binding constraint; the voltages at each of the
other buses decrease with distance from the feeder due to
line effects (the critical link between bus 4 and 20 can be
clearly seen). General trends in voltage over the course of the
day are visible, with a significant drop in hour 18 when the
setting sun and peaking uncontrollable load leads to a spike
in net load throughout the network. Upon closer inspection,
the impacts of DER scheduling are also visible at some buses
(e.g. 38, 48.49) as appliances and EVs switch on and off.

The distributed marginal prices are not shown here for
brevity, but can be easily calculated from the net load
which must be supplied by the central generator (other
resources are inframarginal). We found very little variation in
DLMPs between buses (variance of <1% of hourly DLMP),
reflecting a lack of congestion on this small network.

Bus Voltage Across Microgrid
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VII. LIMITATIONS

We only consider a day-ahead scheduling problem here,
and do not consider shorter time horizons and ancillary
services. For these secondary electrical services, the commu-
nication overhead required for ADMM and the verification
delay required for a blockchain may make conventional sys-
tems more appropriate. One solution could be an economic
scheduling layer as we have described here, above a real-time
control layer operating at much faster time scales.

The algorithm above does not consider stochasticity in
generation, demand, and device constraints. We also assume
that the network topology is fully known by all parties, and
we do not consider changes in line impedances (e.g. due to
temperature changes) or in topology (e.g. due to outages).

This paper focuses on exploring the application of
blockchains for coordinating decentralized optimization, but
does not attempt a rigorous examination of system secu-
rity, speed, or resilience as is discussed in [45] and other
blockchain literature.

VIII. CONCLUSIONS

We have shown how decentralized consensus techniques
and blockchains can be used both to coordinate the schedul-
ing of distributed energy resources on a microgrid, and to
guarantee fair payments without requiring a utility or central-
ized microgrid aggregator. By using ADMM, we decompose
our problem into a structure that naturally lends itself to
a blockchain implementation, and show how blockchains
and smart contracts can provide a natural solution for the
trust, security, reliability, and immutability requirements of
microgrid operation.

The proposed architecture can be improved with contribu-
tions from active areas of control research: examining pri-
vacy of device constraints and consumption data, addressing
stochastic/uncertain data through model predictive control
and robust optimization, examining resilience to network
interruptions, utilizing fully distributed ADMM between
nodes to reduce communication overhead, and developing
fault detection algorithms to identify fraud and changes in
system architecture.



While this is the first paper (to our knowledge) to examine
the integration of blockchain with distributed optimization of
energy systems, we expect that many other applications are
possible, both within the energy sector and in other engineer-
ing realms. Blockchain’s distributed consensus mechanism
has proven itself in the finance world by guaranteeing robust,
trustless, and transparent execution; we highlight similar ben-
efits for controlling physical devices. We see blockchains and
smart contracts as a key technology that enables distributed
optimization amongst non-trusting entities, at all scales of
operation.
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