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golden@utdallas.edu

Abstract

An optimal control theory of story comprehension and re-
call is proposed within the framework of a “situation” state
space. A point in situation state space is specified by a
collection of propositions each of which can have the val-
ues of cither “present” or “absent”. Story comprchension is
viewed as finding a temporally-ordered sequence of situa-
tions or “trajectory™ which is consistent with story-imposed
conslraints. Story recall is viewed as finding a trajectory
consistent with episodic memory constraints. A multi-
slale probabilistic (MSP) machine representational scheme
is then introduced for compactly and formally assigning a
“degree of belief” (i.e., a probability value) to each tra-
jectory in the state space. A conneclionist model is also
introduced which searches for trajectories which are highly
probable with respect to a set of constraints and an MSP
machine representation. Like human subjects, the model
(i) recalls propositions with greater causal connectivity as
retention interval is increased, and (ii) demonstrales how
misordered propositions tend to “drift” more towards their
canonical position in a text as retention interval is increased.

General Theory

We have currently been approaching the problem
of story comprehension and recall within the {rame-
work of a special high dimensional state space which
is called the “situation” state space. A point in sit-
uation state space consists of a collection of d facts
about the world, cach of which can be classificd as be-
ing either “present” or “‘absent.” The reader’s current
mental state is therefore modelled as a single point
in a d-dimcnsional situation state space. Al some
later point in time, the reader’s mental state would be
modelled as another point in the same d-dimensional
situation state space. It will be convenient, therefore,
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to order these points according to a time index. Thus,
the “unfolding” or “evolution” of the reader’s mental
state as a function of time, may be represented as an
ordercd sequence of points or frajectory in situation
slate space.

Some trajectories in situation state space will
be more likely to occur than others. For exam-
ple, a trajectory in a four-dimensional situation state
space might be specified by the secquence of three
four—dimensional situation state vectors depicted in
Table 1. World knowledge is represented by a belief
function which assigns a specific “degree of belief”
to different trajectories in the situation state space. In
particular, trajectories which are more likely are as-
signed values close to one, while trajectories which
are less likely are assigned values close to zero.

A story is a set of constraints upon the class
of possible trajectories in situation state space. The
features possessing the value “present” along the tra-
jectory are fixed in value. The remaining features
possessing the value “absent” may have their values
modified.

The problem of story comprehension is now for-
mally defined as finding a trajectory in situation state
space which is most probable with respect Lo some
probabilistic belief function (for some closely related
idcas see Rumelhart, 1977). We suggest that readers
may find highly probable trajectories by “running”
their probabilistic mental models forwards and back-
wards in time. The resulting trajectory is then used
to update the parameters of the belief function via
some learning process, and then a reconstructed story
trajectory is recalled from memory by using another
partially specified trajectory (perhaps the title of the
story) as a retrieval cue, and “‘rerunning” the prob-
abilistic mental model. Note that once a Lrajectory
has been constructed following the comprehension
process or reconstructed following the recall process,
the resulting representation may be used by other sys-
tems to answer questions about the story, summarize
the story, or recall the original story.
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Story Feature =1 t= =3
Hear (M, IC Music) 1 1 0
Desire (M ,Eat(M,IC) 0 1 0
Eat (M, IC) 0 0 1
Sleep (M) 0 0 0

Table 1. A situation state space trajectory. M=Mary.
IC=lIce-Cream. 1 = Feature Present. O=Feature
Absent.

Representation and Model

Multi-state probabilistic machines.

Gabrielian and his colleagues (for a review see
Gabrielian and Iyer, 1991) have been developing the
theoretical foundations of a new class for machines
known as hierarchical multi-state machines for speci-
fying the performance requirements of complex high-
dimensional systems. We have found that a proba-
bilistic extension of the multi-state machines studied
by Gabriclian and his colleagues provides a useful
way of implicitly, yet precisely, representing complex
belief functions that assign degrees of belief o spe-
cific trajectories in situation state space. We will call
this special notation for representing complex proba-
bilistic knowledge structures a MSP (multi-state prob-
abilistic) machine.

A MSP machine consists of three distinct types
of entities: local states, transitions, and controls. The
local states of the MSP machine correspond to the
set of 4 features required to specify a point in a d-
dimensional situation state space. The sct of all states
of the MSP machine is sometimes referred to as a
global state of the machine. A marking of the MSP
machine indicates the values of local states of the
machine at an instant in time. Thus, a marking of
the machine identifies a point in the d-dimensional
situation state space. The transitions and the controls
of the MSP machine specify how the global state of
the machine evolves from one instant of time to the
next

Table 2 and Figure 1 show a more complicated
example where the multi-state probabilistic machine

notation is used to represent the causal knowledge
structure underlying an actual story. The story was
parsed into propositions following Trabasso, Secco,
and Van Den Brock (1984). All probabilistic transi-
tions are designed to “fire” with probability 0.9. Close
inspection of Figure 3 reveals a very compact nota-
tion for specifying complex causal relations over time.
Like the notation of Trabasso and his colleagues, the
links in this representation are derived from a combi-
nation of intuitive considerations supported by coun-
terfactual arguments. This notation has the advan-
tage, however, of permitting multiple local states
be simultaneously active, and permitting multiple lo-
cal transitions to simultancously fire. We also exploit
a Markov random field framework to formally link
the firing of the “local probabilistic” transitions, with
the global subjective probability function which as-
signs a probability to each trajectory in the system,
Thus, once the probabilistic causal chain representa-
tion has been constructed, it is possible to implicitly
assign a degree of belief to all possible trajectories in
situation state space through the use of interpretable
local probability distributions,

The parallel distributed processing model.

The theory of story comprehension and recall we
have been describing is based on a two-step process.
First, a highly probable (believable) trajectory is com-
puted by the reader which is consistent with the con-
straints of the story. This story trajectory is the
rcader’s mental model of the story. The reader then
learns the constructed mental model. During the re-
call process, the reader is given the initial portion of
the trajectory (story) as a retrieval cue, and the re-
mainder of the story is retricved.

Network Architecture. We have devised a re-
current parallel distributed processing model which
searches for highly probable trajectories where the
probability of a trajectory is formally defined with re-
spect Lo a MSP representation consisting of d local
states or propositions.. Figure 1 shows a convenient
way of thinking about this system. Instead of try-
ing to visualize the complex temporal dynamics of a
d-unit system, a system of dM units is considered
where the unit in the ith row and jth column of the
array corresponds to the value (absent or present) of
the ith feature at time j. Thus, the cach column of
the array represents a point in the d-dimensional sit-
vation state space, and the M columns of the array
correspond to an ordered sequence of M points in sit-
uation state space.



Feature | Sentence Fragment associated with Story

# Feature

1. Once there was a little boy

2. who lived in a hot country.

3. One day his mother told him to take
some cake 1o his grandmother.

4, She wamed him to hold it carefully

5. s0 it wouldn’t break into crumbs.

6. The little boy put the cake in a leaf
under his arm

7. and carried it to his grandmother’s.

8. When he got there

9. the cake had crumbled into tiny picces.

10. | His grandmother told him he was a silly
boy

11, and that he should have carried the cake
on top of his head

12. | so it wouldn’t break.

13. Then she gave him a pat of butter to
take back to his mother.

14, The little boy wanted to be very careful
with the butter

15. s0 he put it on top of his head

16. and carried it home.

17 The sun was shining hard

18. | and when he got home

19. the butter had all melted.

20. | His mother told him that he was a silly
boy

21: and that he should have put the butter in
a leaf

22, so that it would have gotten home safe

and sound.

Table 2. Siwation Siate Space Representation of

Epaminondas Story

e

Figure 1. Epaminondas Causal Chain Represenia-
tion. The numbered states refer to propositions in
Table 2.

time=1 time=2 time=3 time=4 time=5
Figure 2 An “expanded" version of a recurrent PDP
network. The recurrent network may be visualized as
a matrix of units where the pattern of connectivity
from one time instant to the next is identical. In
this example, a four unit recurrent network has been
rewritlen as a sequential 20 unit network which can
reconstruct state space trajectories of length five or
less.




Notice that the connectivity pattern between units
at adjacent time intervals is identical because this two-
dimensional array is intended to model a two-layer re-
current network. The network shares important sim-
ilarities with recurrent back-propagation (Rumclhart,
Hinton, and Williams, 1986) and the brain-state-in-a-
box model (Anderson et al., 1977; Golden, 1986).
Golden (submitted) has found a discrete-time Lia-
punov function for this algorithm which explicitly
states when all trajectories will converge to the set
of system equilibrium points.

Comprehension Process. The comprehension
process is modelled by beginning with a story which
has already been parsed into a situation state space tra-
jectory as in Table 1. If situation feature i at time j is
equal to one (indicating feature i at time j is present),
then the activation value of the unit in the ith row and
jth column of the array in Figure 4 is clamped to the
value of one during the comprechension process. The
term clamped refers to the case where the activation
of a unit is not permitted to change. The unclamped
unit representing situation feature i at ime j then com-
putes a weighted sum of the activations of the units at
time j-1 and time j+1, and uses this weighted sum to
increment or decrement the unclamped unit’s activa-
tion value. The unclamped unit’s activation value is
also decremented by an amount inversely proportional
1o p so that the system searches the high-dimensional
trajectory space in a region near the original story
trajectory. Finally, the activations of all units in the
system are constrained to lie in the range of zero 1o
one. When the activations of the unclamped units
arc updated in this manner, then the network may be
formally viewed as secking a trajectory in situation
state space which is highly probable with respect to
a probability (beliel) function. The system updatcs
the activations of the units for some pre-determined
maximum number of iterations, or until the system
stabilizes. The resulting pattern of activation over
the dM units is the constructed story trajectory, and
represents the system’s "understanding” of the story.

Learning and Recall Processes. It is assumed
that people learn the story trajectory (mental model)
which they constructed during the comprchension
process. Rather than attempt to model the details
of this lcarning process, we are currenty content to
model the end results of that process. In particular, it
is assumed that when people are asked to recall a story
from memory, an episodic memory trace of the story
trajectory is available to guide the recall process. In
the model, the strength of this episodic memory trace
is the p paramcter. Large values of p correspond to
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long retention intervals so the strength of the episodic
memory trace of the story trajectory is strong. Small
values of p correspond to short retention intervals so
the strength of the episodic memory trace of the story
trajectory is weak.

The recall process is then similar to the compre-
hension process, except that only the first few features
of the story in the first three time steps of the trajec-
tory are clamped as a retrieval cue. The network
must then reconstruct the remainder of the trajectory.
Although this is a very high dimensional parameter
estimation problem, the introduction of the learning
constraint helps by restricting the search to trajecto-
rics close in an Euclidean distance sense to the orig-
inal story trajectory. In particular, each unit at time
¢ uses a weighted sum of the activations of the units
at times (-/ and t+] to update its activation value,
but each unit at time ¢ also has its activation value
modified by the episodic memory trace of the story
weighted by the p parameler.

The reconstructed recall trajectory is then used
to generale the model’s free recall responses. In
particular, the "most active" unit in each situation is
assumed to be the model’s summary of that situation.
Moreover, since the situation vectors are ordered in
the recall trajectory, the responses of the model will
be ordered as well. If the maximally active unit’s
value was less than 0.5, the model does not recall a
situation feature summarizing that situation. If several
units in a situation are maximally active, then exactly
one of the units is randomly chosen to summarize the
situation,

Simulation Experiments

Human memory for simple causally coherent sto-
rics is characterized by at least four fundamental phe-
nomena (Trabasso, Secco, & Van Den Brock, 1984;
Van Den Broek & Trabasso, 1985). First, proposi-
tions with more causal connections are more likely
to be on the main causal chain of the story and are
more likely to be recalled. Second, as the retention
interval between reading and recalling the story is in-
creased, the percentage of propositions recalled de-
creases but those propositions will be more likely
to lie on the main causal chain of the story. And
third, more propositions will be recalled from stories
which are more causally coherent (i.e., stories pos-
sessing more propositions on the main causal chain
of the story). In this first set of simulations, we were
interested in whether the proposed model would ex-
hibit some of these qualitative phenomena.The av-
erage causal connectivity of a group of propositions



was computed by counting the number of forward and
backward connections in the MSP representation cach
statement in the group possessed, and then averaging
over the group of propositions.

Each of the four stories were individually "com-
prehended" by the model, "leamed" by the model, and
"recalled" by the model as previously described. The
p parameter during the recall process was varied, and
took on the values:p = 0.1, p = 0.2, and p = 0.3
corresponding to short, medium, and long retention
intervals respectively.

Effects of causal connectivity.

Figure 3 shows how variation of the retention
interval parameter of the model affects which propo-
sitions are recalled by the model from memory. The
dependent measure was relative causal conneclivity
which was defined as the average number of causal
conneclions per proposition in a story subtracted from
the average number of causal connections per propo-
sition in the set of propositions recalled by the sub-
jects. Like human subjects (e.g., Trabasso et al.,
1984; Van Den Brock & Trabasso, 1985), proposi-
tions with greater causal connectivity (greater causal
cohesiveness) are more likely to be recalled as reten-
tion interval increases. We would expect 1o see these
effects in the model since the algorithm is minimiz-
ing an cnergy function which becomes more closely
related to the relative causal connectivity as the reten-
tion interval parameter p is increased (Golden, sub-
mitted).

An analysis of variance of the data using a story
by retention interval design where the story factor was
treated as random, however, did not support the hy-
pothesis that statements with greater causal connectiv-
ity are more likely to be recalled as retention interval
increases although the effect was marginally signifi-
cant (F(2,6) = 4.2, p < 0.10). On the other hand, the
average relative causal connectivity was significantly
greater than zero (¢(11) = 2.4, p < 0.05), indicating
statements with greater causal conneclivity are more
likely to be recalled (e.g., Trabasso et al., 1984; Tra-
basso and Van Den Brock, 1986) was replicated by
the model.

Migration of misordered propositions.

Another important aspect of human memory
for stories with a strong causal structure is that if
propositions in such stories are "displaced,” they will
"migrate” back towards their canonical positions in
the text (Bischofshausen, 1985; Bower, Black, and
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Turner, 1979; Mandler, 1978). Morcover, the magni-
tude of these effects tend to increase as retention in-
terval is increased (Bischofshausen, 1985). We would
expect to see these effects in the model as well since
as the retention interval factor is decreased, the local
probability of predicting a feature at the next instant
of time becomes less dependent upon the episodic
memory trace of the story formed during the compre-
hension process.

To model these phenomena, the simulations de-
scribed above were repeated using exactly the same
four causal knowledge structures (i.e., sets of con-
nections among the units), but using stories which
were slight distortions of the original four stories. For
example, a “distorted” story was generated from the
original Fox and Bear story by switching statement #8
with statement #21. Three distorted stories for each
of the original four stories were generated in this man-
ner, and the recall of the model for each of the twelve
stories was recorded. Because the retention interval
factor was varied in this experiment as well, thirty six
independent simulation runs of the model were done.
The number of steps along the recalled trajectory a
misordered statement "drifted" towards its canonical
position was used as a dependent measure.The results
of these experiments are shown in Figure 4.

An analysis of variance of the data using a story
by retention interval design where the story factor was
treated as random supported the hypothesis that as
retention interval increased, the magnitude of the drift
increased as well (F(2,6) = 15.6, p < 0.01). Also the
drift measure was significantly greater than zero (¢(11)
= 6.1, p < 0.01) indicating that misordered statements
did indeed “drift” towards their canonical positions in
the text rather than in the opposite direction,
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