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Abstract
The increasing abundance of DNA sequences obtained from fossils calls for new population genetics theory that takes
account of both the temporal and spatial separation of samples. Here, we exploit the relationship between Wright’s FST and
average coalescence times to develop an analytic theory describing how FST depends on both the distance and time
separating pairs of sampled genomes. We apply this theory to several simple models of population history. If there is a time
series of samples, partial population replacement creates a discontinuity in pairwise FST values. The magnitude of the
discontinuity depends on the extent of replacement. In stepping-stone models, pairwise FST values between archaic and
present-day samples reflect both the spatial and temporal separation. At long distances, an isolation by distance pattern
dominates. At short distances, the time separation dominates. Analytic predictions fit patterns generated by simulations. We
illustrate our results with applications to archaic samples from European human populations. We compare present-day
samples with a pair of archaic samples taken before and after a replacement event.

Introduction

Genomic sequences obtained from fossils provide new
information about the history of present-day species.
Already, thousands of partial or complete genomic
sequences have been obtained from modern humans and
their extinct relatives, and DNA sequences from fossils of
numerous other species have been obtained as well (Reich
2018).

Population genetics theory of ancient DNA (aDNA) has
focused primarily on the time dimension. Several methods
have been developed to test for natural selection and esti-
mate selection coefficients in a time series of samples
(Bollback et al. 2008; Malaspinas et al. 2012; Terhorst et al.

2015; Schraiber et al.). Much less effort has gone into
incorporating the spatial dimension. The usual approach to
analyzing spatially distributed aDNA is to use methods such
as principal components analysis (PCA) and f-statistics that
were developed for contemporaneous populations and
ignore the ages of the fossils from which sequences are
obtained. (Slatkin 2016)

There are three papers that have considered the spatial
and temporal components of aDNA together. Skoglund
et al. (2014) developed the coalescent theory of samples of
different age and showed that PCA can reveal the time
separation of spatially distributed samples. Duforet-
Frebourg and Slatkin (2016) extended the classic Kimura-
Weiss (1964) analysis of isolation by distance in a stepping-
stone model to predict the decrease in identity by descent
with increasing spatial and temporal separation of samples.
Silva et al. (2017) carried out an extensive simulation study
that showed the importance of considering geographic
structure when testing for population continuity. Although
all these papers provide some insight into the effects of
isolation by distance and time, they did not fully explore the
effect on measures of population differentiation.

In this paper, we examine the effects of isolation by
distance and time on pairwise FST values. FST and related
statistics have been widely used to characterize isolation
by distance. Using the principles introduced by Skoglund
et al. (2014) and Duforet-Frebourg and Slatkin (2016), we
will show how pairwise FST between archaic and present-
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day samples reflects both the distance and time separating
samples in equilibrium populations and in non-
equilibrium populations after a partial population
replacement.

Pairwise FST

FST is useful for characterizing the extent of genetic dif-
ference between pairs of populations because it can be
predicted analytically for a wide variety of models of
population structure. If the per-locus mutation rate is small,
FST computed for pairs of populations is dependent on the
average coalescence time of two copies of a gene, one
drawn from each population (Slatkin 1991). We consider
two populations a and b. We will use the Hudson et al.
(1992) estimator of FST, which Bhatia et al. (2013) have
shown has somewhat better properties than either the Weir
and Cockerham (1984) or Nei (1986) estimators when
applied to genomic data. Hudson et al. (1992) estimated FST

from the expression

FST ¼ 1� HW

HB
ð1Þ

where HW is the average number of differences between
chromosomes sampled from the same population and HB is
the average number between different populations. That is,
HW is average of the expected per site heterozygosity within
each population, which for two populations is

Hw ¼ HðaÞ
w þ HðbÞ

w

� �
=2. HB is the expected between-

population heterozygosity.

Using the same method as in Slatkin (1991), we can find
the expectations of HW and HB in terms of average branch
lengths and the time between the samples when the per site
mutation rate, µ, is small. For two lineages sampled at the
same time, the average branch length is twice the average

coalescence time. Therefore E HðaÞ
W

� �
� 2μta and

E HðbÞ
W

� �
� 2μtb where E denotes the expectation and ta and

tb are the average coalescence times of two copies of the
locus sampled from populations a and b. Therefore

E HWð Þ ¼ E H að Þ
W

� �
þ E H bð Þ

W

� �� �
=2 � μ ta þ tbð Þ.

If samples a and b are from different times, then no
coalescence is possible until the lineage from the more
recent sample reaches the time horizon of the older sample
(Skoglund et al., 2014). Assume a and b were sampled Ta
and Tb generations in the past, with Ta<Tb. Then
E HBð Þ � μ Tb � Ta þ 2tabð Þ, where tabis the average coa-
lescence time of the a and b lineages starting at Tb.
Therefore the expectation of the Hudson et al. estimator of

FST is approximately

E FSTða; bÞ½ � � 1� ta þ tb
Tb � Ta þ 2tab

: ð2Þ

In many of the models, ta and tb are the same for all
populations while tab depends on the spatial separation of a
and b.

It will be convenient to describe patterns of pairwise FST

in terms of the ratio

ηab ¼
FSTða; bÞ

1� FSTða; bÞ ¼
Hb

Hw
� 1: ð3Þ

This ratio was introduced by Rousset (1997) and denoted
by β/(1 - β). The Users Manual of Arlequin (Excoffier and
Lischer 2010) called this ratio “linearized FST”. From Eq.
(2), it follows that

E ηabð Þ � Tb � Ta þ 2tab � ta þ tbð Þ
ta þ tbð Þ : ð4Þ

Thus, ηab is proportional to the additional average coales-
cence time between gene copies drawn from different popu-
lations attributable to their separation in space and time.

Isolation by time

To illustrate our method, we consider first a single randomly
mating diploid population. If the two samples come from
the same population, the effect on FST is easy to calculate.
First, assume the population has constant effective size.
Standard coalescent theory tells us ta ¼ tb ¼ tab ¼ 2N.
Therefore

E ηabð Þ ¼ Tb � Ta
4N

: ð5Þ

We compared the analytical estimates of ηab from Eq. (5)
with simulations in Supplementary Fig. S2 (Skoglund et al.
2014).

If the population size is a function of time, the result is
not quite as simple. Both ta and tb can be computed for an
arbitrary demographic model from

t ¼
Z 1

T
exp �

Z t

0

dt′
2Nðt′Þ

� �
dt ð6Þ

where T= Ta or Tb, and tab ¼ tb. Therefore

ηab ¼
Tb � Tað Þ þ tb � ta

tb þ ta
: ð7Þ

We can also obtain analytic results if samples are taken
from sister populations. For simplicity, assume all popula-
tions are of effective size N and let the time of population
divergence be TC. The two lineages cannot coalesce until
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they are in the ancestral population. Therefore, ta ¼ tb ¼
2N and tab ¼ TC � Tbð Þ þ 2N (Skoglund et al. 2014) and

E ηabð Þ ¼ 2TC � Ta � Tb
4N

: ð8Þ

Thus, E(ηab) is proportional to the sum of the branch
lengths in the population tree connecting the two samples. If
population sizes depend on time in either or both branches,
ηab would reflect the coalescence probabilities in the two
branches. We compared the analytical estimates of ηab from
Eq. (8) with simulations in Supplementary Figs. S1 and S3.

Partial population mixture

We consider a generalization of a model analyzed by
Skoglund et al. (2014) and illustrated by Fig. 1. At time tC

in the past the ancestral population splits into two descen-
dent populations, A and B. The numbers in Fig. 1 indicate
the times of samples, with sample 1 being from the present
day. At time tR, a fraction 1–f of population A is replaced by
individuals from B. The resulting population continues to
the present. How this model is described depends on the
magnitude of f. If f= 0, there was a complete population
replacement. If f is small there was partial replacement. If f
has an intermediate value, there was a population merger,
and if f is nearly 1, there was admixture from B into A.

To illustrate the main result, we assume all populations
are of the same size, N. Variable population size can be
accounted for in the same way as for a single population.
We assume that the present-day population, sample 1, is
compared to an archaic sample taken at time τ in the past.
The average coalescence time tof two lineages depends on
whether the sample is taken before or after tR. If τ<tR, then

t ¼ x~t þ ð1� xÞ f 2 þ ð1� f Þ2
� �

ðtR � τÞ þ 2Nð Þ
h

þ2f ð1� f Þ tR � τð Þ þ tC � tRð Þð Þ þ 2N�:
ð9Þ

where x ¼ 1� e� tR�τð Þ=ð2NÞ is the probability that the two
lineages coalesce in the interval τ; tRð Þ and ~t ¼ 2N �
tR � τð Þe� tR�τð Þ= 2Nð Þ= 1� e� tR�τð Þ= 2Nð Þ� �

is the average time
to coalescence given that they coalesce in that time interval.
The logic is that if they coalesce before tR, the average
coalescence time is ~t. If they do not coalesce and both
lineages go into the same ancestral population, the expected
coalescence time is tR � τ þ 2N. If they do not go into the
same population, then they have to wait an additional tC �
tR generations before they can coalesce. If τ>tR then
t ¼ 2N.

We also need the between-sample coalescence time, tab,
If τ<tR, then

tab ¼ t ð10Þ

where t is given by Eq. (9). Once the present-day lineage
reaches time τ, the average coalescence time is the same as
if the two lineages were sampled at the same time. If
tC>τ>tR,

tab ¼ f 2Nð Þ þ 1� fð Þð2N þ tC � τÞ ð11Þ
because with probability f the present day lineage remains
in the same population and with probability 1–f it enters the
other population. If τ>tC, tab ¼ 2N.

Substituting these expressions into Eq. (4), we can pre-
dict ηab as a function of τ and the other parameters. Some
results are shown in Fig. 2. The solid lines show the analytic
predictions. The dots show simulation results obtained from
using the program scrm (Staab et al. 2015). In these and
simulations described later in the paper, 100,000 replicates
were run and results accumulated over all segregating sites.

Fig. 1 Illustration of the model of partial population replacement. This
model is a generalization of one used by Skoglund et al. (2014). At
time tC in the past, an ancestral population split into two descendent
populations, distinguished as light gray and black. Archaic samples are
available from the black population at different times in the past,
indicated by the numbers. At time tR in the past, a fraction 1 – f of the
black population is replaced by the light gray population. The resulting
population survives to the present day

FST between archaic and present-day samples 713



The mutation rate was chosen so that on average there were
ten segregating sites per replicate. With this choice, there
were no replicates with no segregating sites.

Isolation by distance and time

Duforet-Frebourg and Slatkin (2016) showed that the
combined effects of isolation by distance and time in a
stepping-stone model can be understood by considering the
movement of lineages ancestral to the more recent sample
during the time interval between the two samples. That
movement is governed by dispersal patterns during the
interval. Coalescence cannot occur until the time of the
older sample. For simple models, analytic results can be
obtained.

To illustrate, consider a one-dimensional stepping stone
model with d demes arranged in a circle, and assume a
migration rate m between adjacent demes. The average
coalescence time of two genes sampled from i steps apart is

ti ¼ 2Nd þ iðd � iÞ
4m

ð12Þ

where i is counted in a clockwise direction (0 ≤ i ≤ d–1)
(Slatkin 1991). To see the effect of the difference in
sampling time, assume one sample is from the present, (Ta
= 0) and the other from T generations in the past (Tb= T).
Between 0 and T, the present-day lineage undergoes a
random walk on the circle. The probability that the lineage

will be in deme j, given that it was initially in deme i is pij,
the jth element of the vector, pij ¼ MTei

� �
j
where ei is a unit

vector with 1 in position i and 0 otherwise and M is a
circular matrix, which has non-zero elementsMii ¼ 1� 2m
and Mi;iþ1 ¼ Mi;i�1 ¼ M1;d ¼ Md;1 ¼ m. MT denotes the
Tth power of M.

Thereforeta ¼ tb ¼ 2Nd and

tab ¼ 2Nd þ
Xd�1

j¼0

pij
jðd � jÞ
4m

� �
ð13Þ

from which we can compute ηi to be

ηi ¼
T

8Nd
þ 1
8Nmd

Xd�1

j¼0

pijj d � jð Þ ð14Þ

Figure 3 presents results for ηi using an archaic sample
drawn from deme 0 at time T = 40N generations ago and a
present-day sample drawn from another deme. Shown for
comparison is the equilibrium IBD pattern for con-
temporaneous samples (T= 0). As the age of the archaic
sample increases, ηi increases in the neighborhood of the
sampled deme. There are two components to this increase.
One is the time separation of the samples, represented by
the first term in Eq. (14). The other is the averaging of the
equilibrium pattern because of the dispersal of the present-
day lineage between 0 and T, which is represented by the
second term in Eq. (14). Because ηi=0 for two samples
from the same population at the same time, the averaging is

Fig. 2 Comparison of analytic and simulation results quantifying the
extent of differentiation (η) between a present-day population (1 in Fig.
1) and an archaic population (2 to 10 in Fig. 1) sampled before or after
a partial population replacement. The analytic results indicated by the
line were obtained from Eqs. (9)–(11) in the text. The simulation

results indicated by the dots were obtained using scrm (Staab et al.
2015), where one chromosome was sampled from the present and the
other sampled τ generations in the past, where τ is measured in units of
4N generations. The partial replacement occurred at 0.225( x 4N)
generations in the past
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over populations for which ηi is positive. That results in a
positive contribution. Both terms contribute and their rela-
tive magnitudes depend on the parameter values. Note that
in this model, as in many models of a subdivided popula-
tion, the average within-deme coalescence time is twice the
total number of individuals in the population, independently
of the migration pattern (Strobeck 1987).

Similar results are obtained for one- and two-dimensional
symmetric stepping stone models. Figure 4 shows typical
examples.

Models of symmetric dispersal are a staple of population
genetics theory because of their mathematical simplicity.
There is no reason to suppose that dispersal in natural
populations is actually symmetric either in each generation
or when averaged over many generations. Comparison with
archaic samples can reveal slight asymmetry in dispersal
that may not be apparent when comparing only present-day

samples. Figure 5 provides one example. The population is
in a 101 × 1 linear stepping stone model, as in Fig. 4a. The

Fig. 3 Comparison of analytic and simulation results quantifying the
extent of differentiation (ηi) between populations i steps apart in a
circular stepping-stone population sampled at the same time and with a
time-separation of 40N generations. The analytic results, shown by the
solid lines, were obtained using Eq. (14) in the text. The simulation
results, shown by the dots, were obtained using scrm (Staab et al.
2015). The model was of a circle of 101 demes with migration rate

4Nm= 10 between adjacent demes. The black dots and line show the
equilibrium pattern of isolation by distance between contemporaneous
populations. The gray dots and line show the pattern for a sample
taken 40N generations in the past from deme 0 against con-
temporaneous samples from other demes. Simulation results are
averages of 100,000 replicates

Fig. 5 Simulation results for a 101 × 1 stepping stone model with
asymmetric migration. The model is the same as in a of Fig. 4 but with
migration rate to the right of 4Nm= 11 and to the left of 4Nm= 9. We
show values of η for archaic samples taken at t= 0, 2 and 3, where
time is measured in units of 4N generations

Fig. 4 Isolation by distance patterns in one and two dimensional
stepping stone models with symmetric migration. Pairwise values of η
were estimated from simulation results obtained with scrm (Staab et al.
2015). Each point is based on 100,000 replicates. a 101 × 1 stepping
stone model with 4Nm= 1 between adjacent demes. The middle
population (population 51) was sampled at the present (t= 0, black
dots), and two times in the past, t= 8N generations (dark gray dots)
and t= 40N generations in the past (light gray dots) and compared to
each of the present-day populations. The results are symmetric around

the middle population. b 25 × 25 stepping stone model with 4Nm= 1
between adjacent demes. The middle population in the middle row
(population 13,13) was sampled at the present (t= 0, black dots), and
two times in the past, t= 8N generations (dark gray dots) and t= 40N
generations in the past (light gray dots) and compared to each of the
present-day populations in the middle row (population 13,13 to
population 25,13). The results are symmetric around the middle
population. Note the difference in scale of the vertical axes in a and b
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only difference is that 4Nm to the right and left are 11 and 9
respectively. As shown in Fig. 5, this difference is not
obvious in the isolation by distance pattern of present day
populations, but is when a few archaic samples are
included.

Range expansion with partial replacement

Range expansions have happened many times in the history
of humans and other species. Range expansions create
unusual patterns in allele frequencies because of continued
founder effects, a phenomenon called “gene surfing”
(Excoffier and Ray 2008). Several ways have been pro-
posed for detecting the genetic signatures of range expan-
sions including testing for clines in heterozygosity
(Ramachandran et al. 2005) and computing a directionality
index (Peter and Slatkin 2013). Range expansion may occur
into an area previous unoccupied or an area occupied by
another population. In the latter case, admixture between the
invading and resident populations will take place (Currat
et al. 2008).

To determine the effects of range expansion on FST taken
from archaic samples, we simulated a model in which there
is a partial replacement of a resident population by an
expanding population. Both before and after the range
expansion, there is a stepping stone population structure.
The model is illustrated in Fig. 6. As in Fig. 1, f is the
fraction of each population that is descended from the
resident population and 1 – f is the fraction that is descended

Fig. 6 Illustration of the model of partial population replacement in a
stepping stone framework. At time tCA in the past, the ancestral
population split into two descendent populations. At time tC, the one
population gave rise to several populations, which then exchange
migrants at rate m in a stepping stone model. At time tR, the descendant
of the other population becomes the source for a range expansion.
After each colonization event, the expanding population mixes with a
resident population to produce a descendent population. Each des-
cendent population is made up of a fraction f of the resident population
and a fraction 1 – f of the expanding population. The resulting popu-
lations exchange migrants symmetrically with each neighboring
population at rate m until the present day

Fig. 7 Representative patterns of isolation by distance seen when
archaic samples are taken before and after a partial replacement. The
model is as illustrated in Fig. 6. There were 101 populations in a
stepping stone configuration with migration at rate 4Nm= 10 between
adjacent demes. At time t= 16N in the past, there was a range
expansion beginning with population 1. During each colonization
event, the population size was reduced by a factor of 0.01 for 0.002N
generations. As each colonizing population came into contact with a
resident population, the two populations contributed equally to the
descendent population (f= 0.5). The black dots indicate ηab for the
middle present-day population compared to each of the other present-
day populations. The gray dots indicate the values for the middle
archaic population and each of the present-day populations. The two
archaic samples were taken t= 4N and t= 24N generations before the
present. The graphs were obtained using scrm. Each point is the
average of 100,000 replicate simulations

Fig. 8 Comparison of increases in η for different extents of admixture
with resident populations. The parameters were the same as in Fig. 7
except that the results for f= 0.25, 0.5 and 0.75 are shown. The archaic
samples were taken 4N, 8N, 12N, 20N, 24N and 28N generations in the
past
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from the invading population in each location. Some
simulation results are shown in Figs. 7 and 8. The patterns
in pairwise η values are a combination of those seen with
partial population replacement and isolation by distance in
an equilibrium population. The pattern of isolation by dis-
tance and the relationship between archaic and present-day
samples are preserved if there is partial replacement (Fig. 7).
And the abrupt change created by a partial replacement is
evident when comparing archaic samples before and after
the replacement event (Fig. 8).

Examples

To illustrate patterns seen in data from human populations,
we reanalyzed the data of the Simons Genome Diversity
Project (Mallick et al. 2016) and two ancient human gen-
omes (Lazaridis et al. 2014). The ancient genomes come
from a Neolithic farmer (the Stuttgart sample, ~7000 years
before present) and a Neolithic hunter-gatherer (the
Loschbour sample, ~8000ybp). Figure 9 shows the results.
The black histograms in Fig. 9a show pairwise values of ηab
computed for Stuttgart and several present-day European
samples. The gray histograms show ηab computed for
Loschbour and the same present-day samples. The results

are consistent with two theoretical expectations: The older
sample, Loschbour, has larger ηab values. Additionally, the
results are consistent with a smaller average ancestry in
present-day Europeans coming from hunter-gatherers (Haak
et al. 2015). This is in agreement with our partial population
replacement model, where comparisons of present-day
individuals with ancient samples coming from a popula-
tion that has been mostly replaced (f close to 0) tend to have
larger ηab when the ancient sample was sampled from
before the time of replacement, tR, and after the present-day
and ancient populations coalesce to an ancestral population,
tc, (see Fig. 2). The ancient samples we used, Loschbour
and Stuttgart, are samples taken from near the time of
replacement.

We found a significant positive correlation between the
pairwise geographical distance and the pairwise ƞab values
of present-day samples and the Stuttgart sample (Fig. 9b).
This observation is consistent with a pattern of isolation by
distance in Neolithic farmers that is retained in present-day
populations. In contrast, there is no significant correlation
when we do the same analysis with the Loschbour sample.
This observation suggests that the replacement of hunter-
gatherer populations by early farmers erased any signal of
isolation-by-distance in the hunter-gatherer populations, if
one was present.

Fig. 9 a Comparison of pairwise ƞab values computed for two focal
samples. All data were taken from the Simons Genome Diversity
Project dataset (Mallick et al. 2016), which also contains two ancient
human genomes, Stuttgart and Loschbour (Lazaridis et al. 2014). We
compare the results for the two focal samples. The black dot indicates
the location of the Stuttgart Neolithic farmer skeleton (∼7000-years-
old) and the gray dot points the location of the Loschbour Neolithic
hunter-gatherer skeleton (∼8000-years-old). The histogram bars indi-
cate the value of ƞab computed between the focal sample of the same

color and a present-day sample at each location. b Pairwise ƞab values
of present-day samples and the two focal ancient samples vs. the
pairwise geographical distance between the sampling location of the
present-day and ancient samples. The correlation coefficient r and the
p-value of the null hypothesis that the slope obtained from the linear
regression line has a value equal to zero. The p-values were obtained
using an F-test comparing the linear model with a non-zero slope to a
model with a zero slope
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Discussion and conclusion

We present the basic theory of Wright’s FST between samples
taken at different times and places. As Skoglund et al. (2014)
note, there is an important difference between pairwise FST

and the principal components analysis (PCA). Pairwise FST

values do not depend on what other samples are included in
the analysis while principal components do. Although both
representations of data reflect pairwise coalescence times
(Slatkin 1991; McVean 2009), principal components depend
on pairwise coalescence times for a particular pair of samples
relative to other pairs of samples. The two ways of looking at
data are both useful. Using pairwise FST values allows a more
direct tie to the underlying coalescent process and allows
comparison with analytic theory.

The theory we have developed shows that FST values for
pairs of samples of different age depend on numerous
parameters in addition to the time separation of the samples.
For that reason, pairwise FST values alone are not suitable
for inferring demographic parameters. Both the results
presented here and the simulation study of Silva et al.
(2017) show that patterns of population differentiation
depend in a complex way on the time separation of samples,
patterns of dispersal and the extent of population replace-
ment. However, pairwise FST values could serve a key
statistic in an approximate Bayesian computation analysis
(Bertorelle et al. 2010) because they directly reflect pairwise
coalescence times.
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