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HIGHLIGHTED ARTICLE
| GENETICS OF SEX

An Association Mapping Framework To Account for
Potential Sex Difference in Genetic Architectures
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ORCID IDs: 0000-0002-4482-5640 (C.H.L.); 0000-0002-2266-5164 (B.H.)

ABSTRACT Over the past few years, genome-wide association studies have identified many trait-associated loci that have different
effects on females and males, which increased attention to the genetic architecture differences between the sexes. The between-sex
differences in genetic architectures can cause a variety of phenomena such as differences in the effect sizes at trait-associated loci,
differences in the magnitudes of polygenic background effects, and differences in the phenotypic variances. However, current
association testing approaches for dealing with sex, such as including sex as a covariate, cannot fully account for these phenomena and
can be suboptimal in statistical power. We present a novel association mapping framework, MetaSex, that can comprehensively
account for the genetic architecture differences between the sexes. Through simulations and applications to real data, we show that
our framework has superior performance than previous approaches in association mapping.

KEYWORDS Association Mapping; Genome-Wide Association Study; Genetics of Sex; Linear Mixed Model; Meta-Analysis

GENOME-WIDE association studies (GWAS) have success-
fully identified numerous genetic loci associated with

complex human traits. In recent years, increasing attention
has been paid to the sex difference in genetic architectures in
GWAS. A number of studies have found differences in effect
sizes betweenmales and females on loci associatedwith traits
(Magi et al. 2010; Boraska et al. 2012; Fox et al. 2012; Kostis
et al. 2012; Mason and Lehert 2012; Chen et al. 2013; Kubo
et al. 2013; Peters et al. 2013; Porcu et al. 2013; Randall et al.
2013; Kang et al. 2014; Ohmen et al. 2014). In particular, a
meta-analysis of 46 studies of anthropomorphic phenotypes
discovered seven loci with different effects between the
sexes (Randall et al. 2013). Recently, Winkler et al. per-

formed a meta-analysis of 114 studies on the waist/hip
ratio adjusted for body mass index (BMI) to discover 44 loci
showing significant sex-specific effects. Of these, 11 loci showed
opposite effects between the sexes (Winkler et al. 2015).

It remains unclear how best to account for the sex differ-
ence in genetic architectures in association mapping. One
traditional approach is to analyze each sex separately using
sex-specific tests (SSTs). This approach is optimal for detect-
ing sex-specific effects that only exist in one sex, but is not
powerful for detecting effects that exist in both sexes. Another
traditional approach is to analyze the whole sample and use
sex as a covariate (CV). This approach is optimal for detecting
effects that exist in both sexes in a constant effect size, but is
not powerful for detecting sex-interacting effects that exist in
both sexes in differing effect sizes.

In the present study, we first enumerate three possible
phenomena that can be caused by the sex difference in genetic
architectures. One is the effect size difference between the
sexes at the associated locus, which was observed in previous
studies (Randall et al. 2013; Winkler et al. 2015). Another is
the effect size difference between the sexes at numerous loci
spread throughout the genome with small effects, which can
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be manifested as the polygenic background effects that in-
teract with sex. The final one is the phenotypic variance dif-
ference between the sexes, which can be caused by many
factors such as sex acting as a biological environment (e.g.,
hormone difference) and sex interacting with external envi-
ronments (e.g., lifestyle difference). We show that these phe-
nomena can often be observed in human traits collected in
the North Finland Birth Cohort (NFBC) dataset (Sabatti et al.
2009).

Here, we present a novel association mapping framework,
MetaSex, that can account for the potential sex difference in
genetic architectures. Our framework comprehensively deals
with the three aforementioned phenomena by uniquely com-
bining linear mixed model and meta-analysis. Our linear
mixedmodel includes five variance components, where three
components capture sex-interacting polygenic effects and two
components capture sex-interacting variances. We then com-
bine the observed effect sizes of the two sexes using the
random effects model meta-analysis (RE) (Han and Eskin
2011) that provides high power for detecting sex-interacting
effects. This whole procedure can be computationally chal-
lenging because the five variance component model is im-
practically slow to apply to millions of markers in GWAS.
Therefore, we propose an approximated model that splits
the five variance component model into two sex-specific
models, each including only two variance components. Using
simulations and real data, we demonstrate that our frame-
work can powerfully detect associations in a wide range of
situations.

Materials and Methods

MetaSex

Overview: We first provide an overview of our proposed
framework. We constructed a toy example with six individuals
(three females and three males). The equation in Figure 1A
shows the components in ourmodel for testing a single SNP. In
this equation, vector y is the observed phenotype measure-
ments, where subscripts ðf Þ and ðmÞ denote females andmales.
m denotes the phenotypic mean. h is the sex status indicator
(female = 1 and male = 0), which is included as a CV to
account for the sex-specific phenotypic mean. The first column
of X is the genotype vector of the SNP, whose effect size is b.
The second column of X is the genotype-by-sex interaction
term (SNP 3 h), whose effect size is bg3 s: ug is a variance
component that models the polygenic background effects from
the genome-wide loci that affect both sexes. Consistent with
the standard linearmixedmodel (Kang et al. 2008, 2010; Zhou
and Stephens 2012), we assume that ug follows a normal
distribution with mean zero and variance-covariance matrix
s2
gK, where K is the kinship matrix representing the relation-

ship between individuals. uf is an additional variance compo-
nent that we introduce, which represents the female-specific
polygenic effects. We assume that uf has mean zero and var-
iances2

g; f ðK ∘hhTÞwhere ∘ indicates element-wisemultiplication.

Similarly, um is a variance component representing the ma-
le-specific polygenic effects, which has mean zero and var-
iance s2

g;mðK ∘ ð12hÞð12hÞTÞ: We then model separate
error terms for females and males, assuming that error var-
iances can be different. ef is a female-specific error term that
follows a normal distribution with mean zero and variance
s2
e; f ðI ∘hhTÞ;where I is an identity matrix. Similarly, em is a

male-specific error term that has mean zero and variance
s2
e;mðI ∘ ð12hÞð12hÞTÞ:
Applying this full model to GWAS can be computationally

challenging because there are five variance components to fit
(ug; uf ; um; ef ; and em). Currently available linear mixed
model methods for association mapping are optimized for
models with two variance components (Kang et al. 2008,
2010; Zhou and Stephens 2012). If there is a third compo-
nent, a state-of-the-art method uses a simple grid search
(Lippert et al. 2011). Thus, fitting five variance components
may require a three-dimensional grid search, which can be
prohibitively slow for GWAS.

To expedite the application of our model to GWAS, we
propose an efficient decomposition of the model. Suppose
thatwe restrict our scope to individuals of one sex. Then, the
full model with five variance components collapses into a
sex-specific model with two variance components (Figure
1B). Thus, the model can be efficiently solved using exist-
ing approaches (Kang et al. 2008, 2010; Zhou and Ste-
phens 2012). In the decomposed model, we cannot
distinguish the whole-sample polygenic component (s2

g)
from the sex-specific polygenic components (s2

g; f or s
2
g;m)

because they follow exactly the same distribution condi-
tioned on one sex. However, this distinction is unimportant
for association mapping, because we want to control for
both.

Finally, given the sex-specific effect size estimates and the
standard errors [cbm; SEðcbmÞ; bbf SEðbbf Þ], we apply a series of
statistical tests. We first apply SST, which is optimal for
detecting sex-specific effects. Then, to effectively detect
sex-interacting effects, we combine the two sex-specific es-
timates using the RE (Han and Eskin 2011) (Figure 1C),
which explicitly models heterogeneity. As a result, our
framework involves three tests (female SST, male SST,
and RE), requiring multiple testing correction. A powerful
multiple testing strategy can be to adjust the significance
threshold for each test to maximize power while controlling
for overall false positive rate (Eskin 2008). We identify and
propose a set of thresholds for the three tests, what we call
smart thresholding, that exactly controls the false positive
rate to the GWAS threshold (531028) while maximizing
power.

Linear mixed model: Our MetaSex framework is based on a
linearmixedmodel designed to account for the sex difference
in genetic architectures. The standard linear mixed model to
account for the polygenic background effects is:

y ¼ m1þ bxþ uþ e; (1)

686 E. Y. Kang et al.



where y is a phenotype vector, m is an intercept, 1 is a vector
of ones, x is a genotype vector, b is the genetic effect,
u � Nð0;s2

gKÞ is a variance component that accounts for
the polygenic effects, and e � Nð0;s2

e IÞ is the random error
term. Recent studies have developed numerical optimization
strategies that allow an efficient application of this model to
GWAS (Kang et al. 2008, 2010; Zhou and Stephens 2012).

We expand this model to account for the potential sex
differenceswhereweassume that eachof the four terms of the
standard model (intercept, genetic effect, polygenic effect,
and error variance) can have differences between the sexes.
The expanded model is:

y ¼ m1þ mshþ bxþ bg3 sx ∘hþ ug þ uf þ um þ ef þ em;

(2)

where h is the sex status indicator, ug � N
�
0;s2

gK
�
; uf �

N
�
0;s2

g;f

�
K ∘hhT

��
; um � N

�
0;s2

g;m

�
K ∘ ð12hÞð12hÞT

��
;

ef �N
�
0;s2

e; f I∘hh
T
�
; and em � N

�
0;s2

e;mI ∘ ð12hÞð12hÞT
�
:

As we described in the Overview section, ug is the standard
variance component that accounts for the polygenic effects,
uf is an additional variance component that accounts for the
female-specific sex-interacting polygenic effects, um is a
variance component that accounts for the male-specific

Figure 1 Overview of the MetaSex
framework. (A) A linear mixed model
with five variance components (full
model). (B) Decomposition of the full
model into two sex-specific linear mixed
models with two variance components
(approximated model). (C) Given the
sex-specific effect size estimates and
standard errors, MetaSex performs two
sex-specific tests and a random effects
model meta-analysis.
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sex-interacting polygenic effects, and ef and em are sex-
specific error terms that account for the difference in error
variances between the sexes.

Because this comprehensive model involves five variance
components, application of this model to GWAS can be com-
putationally challenging. For this reason, we apply the follow-
ing approximation and split the model into two sex-specific
models:

yf ¼ mf1þ bfxf þ yf þ ef
ym ¼ mm1þ bmxm þ ym þ em;

(3)

where yf is the phenotype vector of female individuals, bf is
the effect size in females, xf is the genotype vector of female
individuals, yf � Nð0; r2g; fKfÞ is the polygenic effect within
females, and ef � Nð0; r2e; f IfÞ is the female-specific error
term. Kf is the genotype similarity matrix between female
individuals and If is an identity matrix defined for the female
sample size.We similarly define terms formales. This approx-
imated model has the following relationship to the previous
full model:

mf ¼ mþ ms
mm ¼ m
bf ¼ bþ bg3 s
bm ¼ b
r2g; f ¼ s2

g þ s2
g; f

r2g;m ¼ s2
g þ s2

g;m
r2e; f ¼ s2

e; f
r2e;m ¼ s2

e;m:

These equalities hold because the approximatedmodel can be
considered as the same comprehensive model where we only
look at a subset of samples (one sex). Intuitively, since we
separate each sex into two models, the intercept is no more
tied to be the same between the two sexes. This freedom
accounts for the phenotypic mean difference between the
sexes. This is the same for the genetic effect size (b) and
the error variance. The polygenic effect term for each sex
simultaneously accounts for both the whole-sample poly-
genic and the sex-interacting polygenic effects in the original
model because, for each sex, the covariance matrices of the
two terms become identical.

The benefit of this approximated model is that each model
contains only two variance components. Currently available
methods are well optimized for this two-variance-component
model (Kang et al. 2008, 2010; Zhou and Stephens 2012).
The difference in this approximated model compared with
the original model is that, in the original model, s2

g ; s
2
g; f ,

and s2
g;m are separately estimated, allowing for the distinc-

tion between the three. By contrast, in this approximated
model, the estimates r2g; f and r2g;m do not allow distinction
between the whole-sample polygenic component and the
sex-interacting polygenic component. However, this distinc-
tion is not crucial in association mapping, where we want to
control for both effects. Another difference is that the cross-

sex elements in K are not used, which would give more
accurate estimates of variance components. However, if the
sample size in each sex is sufficiently large, the variance com-
ponent estimates of the approximated model will almost be
identical to those of the original model. We also note that the
cryptic relatedness between the sexes are not accounted for
in this approximated model.

SST: In our framework, after obtaining the effect size estimate
and its SE from each sex-specific model (for example, bbf and
SEðbbf Þ for females), we first apply the SST. The null hypoth-
esis of SST is that the variant has no effect in each sex
(H0 : bf ðmÞ ¼ 0). We can obtain a P-value from female-spe-
cific test [SST(F)] and a P-value from male-specific test [SST
(M)]. Since we perform two independent tests in SST, we
correct for multiple testing. The reason that we apply SST
first is not only because SST is optimal for detecting sex-
specific effects, but also because in practice, investigators
typically look at each sex separately in their data. By explicitly
including this test in our framework, we can account for
multiple testing induced by this test.

Whole-sample test using meta-analysis: The next step of our
framework is to perform a whole-sample test by combining
information fromboth sexes.Ourgoal is tofinda locus thathas
either commoneffect (effect that exists for both sexeswith the
same effect size) or interaction effect (effect that exists for
both sexes with differing effect sizes). In the comprehensive
model, our null hypothesis isH0 : b ¼ 0  and  bg3 s ¼ 0: In our
approximated model, this null hypothesis translates to an
equivalent null hypothesis, H0 : bm ¼ 0  and  bf ¼ 0: What
would be an optimal approach for simultaneously testing
bm and bf will depend on the alternative models. If bm and
bf are expected to be completely different (e.g., opposite
directions of effects), simply adding x2 statistics as is done
in the genome-wide association meta-analysis method
(GWAMA) (Magi et al. 2010) would be powerful. More common
situations would be that the effects are in the same direction but
in differentmagnitudes.Nevertheless, if themagnitudes of effects
are extremely different such that one effect is relatively very close
to zero, then the variant is likely to be already found by SST.
Thus, we can specifically target effect size pairs whose directions
are the same andwhosemagnitudes can be different, but none is
very close to zero. To this end, we chose to use the RE which
assumes that the male and female effect sizes are random vari-
ables drawn from the same underlying distribution.

The traditional RE model assumes that the effect size of
each study, bi; follows a distribution with the grand mean b

and the variance t2 (DerSimonian and Laird 1986; Han and
Eskin 2011):

bi � N
�
b; t2

�
:

The recently proposed RE model by Han and Eskin (2011)
tests the null hypothesis H0 : b ¼ 0  and  t2 ¼ 0 vs. the alter-
native hypothesis H1 : b 6¼ 0  or  t2 6¼ 0: The difference from
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the traditional RE model is that the Han–Eskin model as-
sumes no heterogeneity under the null hypothesis (Han
and Eskin 2011). This assumption is valid if the causes of
heterogeneity do not exist under the null hypothesis, which
is likely to be the case for GWAS. Han and Eskin built a likeli-
hood ratio test of which likelihood functions of the null and
alternative hypotheses are (Han and Eskin 2011):

L0 ¼
Y 1ffiffiffiffiffiffiffiffiffiffiffi

2pVi
p exp

�
2
b2
i

2Vi

�

L1 ¼
Y 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðVi þ t2Þ
p exp

 
2

ðbi2bÞ2
2ðVi þ t2Þ

!
:

Toapply theREmodel byHanandEskin toour framework,we
assumed ameta-analysis combining two pairs of observationsbbi (i ¼ m; f), whose variances are bVi ¼ SEðbbiÞ2: Then, apply-
ing RE is equivalent to estimating the grand mean of
the genetic effects between sexes ðbsexÞ and the between-
sex heterogeneity ðt2sexÞ from the likelihood functions above
and testing the null hypothesis H0 : bsex ¼ 0  and  t2sex ¼ 0
vs. the alternative hypothesis H1 : bsex 6¼ 0  or  t2sex 6¼ 0:
Note that this null hypothesis exactly corresponds to
H0 : bm ¼ 0  and  bf ¼ 0: We can rewrite the likelihood
functions as follows:

L0 ¼
Y

i¼m; f

1ffiffiffiffiffiffiffiffiffiffiffi
2pbViq exp

�
2
bbi

2

2bVi
�

L1 ¼
Y

i¼m; f

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
�bVi þ t2sex

�r exp

0B@2

�bbi
2bsex

�2
2
�bVi þ t2sex

�
1CA:

Themaximum likelihood estimates bbsex and t̂2sex can be found
by an iterative procedure suggested by Hardy and Thompson
(1996). Then the likelihood ratio test statistic can be built:

Smeta ¼ 2 2logðlÞ ¼ P
i¼m; f

log

 bVibVi þ t̂2sex

!

þ
X
i¼m; f

bbibVi 2
X
i¼m; f

�bbi
2bbsex

�2
bVi þ t̂2sex

; (4)

which asymptotically follows a half and half mixture of x2
ð1Þ

and x2
ð2Þ under the null. The P-value after a small sample

adjustment can be efficiently calculated using a precomputed
table (Han and Eskin 2011).

Smart thresholding: In ourMetaSex framework, we perform
three tests: SST, which consists of SST(F) and SST(M), and
the whole sample test using RE. To account for multiple
testing, we can use the Bonferroni correction, but that can
be overly conservative because of the dependency between
the test statistics of SST and RE. Instead, we can perform null
simulations to empirically determine the significance thresh-
old. Moreover, we can use a strategy similar to one published
previously (Eskin 2008), which uses different levels of signif-
icance thresholds for multiple tests to achieve higher power
while controlling the overall false positive rate (family-wise
error rate) to a fixed level.

To find an optimal threshold pair for RE and SST while
controlling the false positive rate at 53 1028; we generated
10 billion null statistic pairs for the male studies and the
female studies. Any pair of thresholds for RE and SST that
rejected 500 null statistics would control the false positive
rate at 53 1028: Then, we adjusted the thresholds for RE and
SST while keeping the total number of rejections to 500. For
example, a threshold pair can have one false positive for RE
and 499 false positives for SST. Next, one can have two false
positives for RE and 498 false positives for SST. There were
500 such threshold pairs that control the false positive rate of
53 1028: Among all 500 pairs of thresholds that gave the
same false positive rate, we chose the threshold pair that gave
us the maximum power. To calculate power, we needed an

Figure 2 Power comparison for the Meta-
Sex (RE + SST), CV + SST, GWAMA + SST,
and SST approaches where we varied the
effect size ratios of females and males. All
methods were corrected for multiple testing.
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assumption for the alternative hypothesis. We assumed a
model in Figure 4, which uniformly sampled the female
effect size and male effect size from a range between
0 and 1. Although this alternative model was just one
possible model, we expect that it will cover a range of
possible situations. Under this uniform prior assumption,
we calculated the power of each pair. We found that using
unequal thresholds, 2:413 1028 for RE and 1:363 1028

for SST(F) and SST(M), gave us the best power while still
controlling the false positive rate. Note that although our pair
of thresholds was optimized for a specific alternative model,
even if the true alternative model would be different from the
assumed model, our false positive rate can be still controlled;
only the power will be affected. The users using our method
can just use these precomputed thresholds.

Existing approaches

CV: The standard approach for dealingwith sex is to use sex as
a CV. We refer to this model as CV in short. The CV model is:

y ¼ m1þ mshþ bxþ uþ e;

which is equivalent to the traditional model in Equation (1),
with theonlydifference being the inclusionof theCVdenoting
sex (ms). CV accounts for the phenotypic mean difference
between the sexes. However, CV does not account for the
potential sex difference in the effect sizes (b), polygenic back-
ground effects (u), and the error variances [VarðeÞ].

GWAMA: GWAMA is another meta-analytic approach pro-
posed by Magi et al. (2010). In GWAMA, as in MetaSex, each
sex is analyzed separately. Then, the x2 statistics of males and
females are calculated by squaring the corresponding
z-scores, that is:

x2m ¼ z2m ¼
�

bmffiffiffiffiffiffi
Vm

p
�2

and  x2f ¼ z2f ¼
 

bfffiffiffiffiffi
Vf

p !2

:

The GWAMA statistic can be obtained by summing the male
x2
m and female x2

f :

SGWAMA ¼ x2m þ x2f :

The P-value can be obtained from a x2 distribution with two
degrees of freedom.

Because GWAMA is a meta-analytic approach that ana-
lyzes each sex separately and combines summary statistics
from the two sexes, it shares some of the advantages with
our MetaSex approach. That is, GWAMA framework can
account for between-sex differences in intercepts and error
variances.

Note that N degrees of freedom x2 test for N strata is a
general method that was used in many other contexts such as
for performing a joint test for genetic main effects and gene3
environment interaction effects (Aschard et al. 2010). Other
studies often call this test an “N d.f. test” (Aschard et al. 2010;
Winkler et al. 2015).

Power calculation

To evaluate the power of methods, we performed simulations
as follows.Weassumeda specific effect size. Then based on an
assumed SE, we sampled an observed estimate of effect size.
We performed this sampling formales and females separately
byM times. GivenMmale estimates andM female estimates,
we applied each of the tested methods. The statistical power
was computed as the proportion of P-values that were more
significant than a significance threshold. We found the
method-specific significance threshold by performing null
simulations under the null hypothesis of no effects; Empirical
null simulation was necessary because some methods in-
volved multiple testing. For example, SST consists of two
tests, SST(F) and SST(M), and MetaSex (RE + SST) consists
of three tests, SST(F), SST(M), and RE. As with MetaSex,
each of GWAMA + SST and CV + SST consists of three tests.
We used M of at least 10,000 in all of our simulations.

Figure 3 Power comparison for the Meta-
Sex (RE + SST), CV + SST, GWAMA + SST,
and SST approaches where we varied the
error variance ratio in females and males.
All methods were corrected for multiple
testing.
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Levene’s test

Levene’s test determines if there is a significant difference
among the variances of multiple groups (Brown and Forsythe
1974). The statistic is:

W ¼ ðN2 kÞ
ðk2 1Þ

P  k
i¼1NiðZi:2Z::Þ2P k

i¼1
P  Ni

j¼1

�
Zij2Zi:

�2: (5)

where k is the number of different groups to which the sam-
ples belong (k ¼ 2 for our between-sex test), N is the total
number of samples, and Ni is the number of samples in the
ith group. Let Yij be the value of the measured variable for
the jth sample from the ith group. We define Zij ¼

		Yij 2 Yi
		

(Yi is a mean of ith group), Z:: ¼ 1
N

Pk
i¼1
PNi

j¼1Zij; and
Zi: ¼ 1

N

PNi
j¼1Zij: The resulting statistic W follows an F distri-

bution with k2 1 and N2 1 degrees of freedom under the
null hypothesis.

NFBC data

In our current study, we used the previously reported NFBC
data (Sabatti et al. 2009), which contained 5326 individuals
(2546 males and 2780 females). To investigate the sex dif-
ference in genetic architectures of human traits, we exam-
ined 10 phenotypes: triglycerides, high-density lipoprotein
(HDL), low-density lipoprotein (LDL), C-reactive protein,
glucose, insulin, BMI, systolic and diastolic blood pressure,
and height. Detailed trait measurements and sample geno-
type collection have previously been described (Sabatti et al.
2009).

Data availability

TheREused in theMetaSex framework is publicly available at
http://genetics.cs.ucla.edu/meta/. The authors affirm that
all data necessary for confirming the conclusions of the article
are present within the article, figures, and tables. Supplemen-
tal material available at Figshare: https://doi.org/10.25386/
genetics.6071567.

Results

Power comparison

Simulation setting: We performed simulations to evaluate
the power of our MetaSex approach. Below, we also refer to
our MetaSex method as RE + SST because the framework
involves simultaneous testing of RE and SST. We compared
our method to two other approaches: (1) CV, the traditional
approach using sex as a CV, and (2) GWAMA (Magi et al.
2010), another meta-analysis approach designed to discover
sex-interacting effects. CV and GWAMA are similar to RE in
that they use the whole sample. We assumed a practical
situation in which investigators examine each sex sepa-
rately, using SST regardless of which method is used for
the whole sample. Thus, we compared the power of our
MetaSex (RE + SST) approach with that of CV + SST and
GWAMA + SST, where A + B denotes a combination
method that calls a result significant if either A or B method
gives a significant result after correcting for multiple testing.
We also compared the power of the bare SST to get a sense of
how much power is increased by the methods using the
whole sample.

To make a fair comparison between these methods, we
corrected for multiple testing within each method in an
equitable way. In MetaSex (RE + SST), CV + SST, and
GWAMA + SST, we performed three tests, whereas in SST,
we performed two tests. Therefore, for each of thesemethods,
we generated 10 billion (1010) null male/female statistic
pairs and chose the 500th smallest P-value, which was the
method-specific significance threshold to control the false
positive rate (family-wise error rate) to 53 1028: The result-
ing significance thresholds were 1:703 1028 for CV + SST,
1:733 1028 for GWAMA + SST, and 2:4931028 for SST.
For MetaSex (RE + SST), we used our smart thresholding
strategy that applied 2:413 1028 for RE and 1:3631028 for
each of the two SST (see Materials and Methods). These em-
pirically calculated thresholds ensured that the false positive
rates of all compared methods were well controlled. SeeMa-
terials and Methods for the further details of our power
simulations.

Simulating the sex difference in effect sizes: In the first
power simulation, we simulated the effect size difference
between the sexes, a phenomenon called “effect size hetero-
geneity.” We assumed a SNP of minor allele frequency 0.3
and generated genotypes of 1000 males and 1000 fe-
males. Then we simulated continuous phenotypes of these

Figure 4 Power characteristics of RE, CV, GWAMA, and SST in a space
where we varied the effect sizes of males and females. Each line denotes
the effect size pairs for which a method achieved 50% power. We assumed
the error variance ratio of 1.2 between males and females. The diagonal
line shows the points where the effect sizes of the two sexes were equal.
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individuals while assuming the same error variance for the
two sexes. For each male individual, we generated a pheno-
type assuming a genetic effect size of 0.192 and variance of
1.0. For each female individual, we generated a phenotype
assuming 10% of the male effect size (0.019) and variance of
1.0. We repeated this simulation 10,000 times and computed
the power of a method as the proportion of simulations in
which the test P-value was more significant than the given
significance threshold. We then gradually increased the fe-
male effect size from 10 to 100% of the male effect size, to
simulate differing levels of heterogeneity.

Figure 2 shows the power of the four approaches (RE +
SST, CV+ SST, GWAMA+ SST, and SST) with respect to the
effect size ratio between the two sexes. As expected, when
the effect size ratio was very small (when the effect was
almost sex-specific), SST showed the highest statistical
power. As the effect size of the female study increased, the
MetaSex (RE + SST) approach showed the highest statistical
power, demonstrating that our approach can effectively de-
tect sex-interacting effects. Even at the ratio of 1.0 (when the
effect size was identical for both sexes), although CV was
expected to be the most powerful, MetaSex (RE + SST)
slightly outperformed CV + SST. This was because of our
smart thresholding strategy that allowed a more liberal

significance threshold for RE with the expense of a more
stringent threshold for SST.

Simulating the sex difference in error variances: In the
second power simulation, we simulated the error variance
difference between the sexeswhile assuming a constant effect
size (no heterogeneity). As in the first simulation, for each
male and female individual, we generated a phenotype as-
suming a genetic effect size of 0.2 and variance of 1.0. Then,
we gradually increased the error variance of the females from
1.0 to 4.0 (SD from 1.0 to 2.0). Figure 3 shows the power of
the four approaches (RE + SST, CV + SST, GWAMA + SST,
and SST) with respect to the SD ratio between the two sexes.
Our proposed approach (RE + SST) outperformed other
methods in all simulated situations. When we examined the
second and the third best methods, we observed that
GWAMA + SST outperformed CV + SST when the SD ratio
was large ($ 1:4). This was because GWAMA, being a meta-
analytic approach that estimates the variance of error terms
in each sex separately, was robust to the variance difference
between the sexes. Although both our MetaSex (RE +
SST) and GWAMA + SST were meta-analytic methods,
our method consistently outperformed GWAMA + SST.
In addition, we simulated a power comparison where we

Figure 5 Comparison of the variance components between the full and the sex-specific models for the 10 phenotypes of NFBC data. The points
represent phenotypes. For each point, the vertical and horizontal lines represent the 95% confidence intervals in the full and sex-specific models,
respectively. The dotted line is where the variance estimates of the two models are equal. We evaluated r2 in the log10 scale and labeled an outlier
(diastolic blood pressure, red color) observed in the male genetic variance plot (bottom left).
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simultaneously varied the effect size ratios and the variance
ratios between females and males. In this simulation, RE +
SST was still the most powerful (Supplemental Material,
Figure S1).

Power characteristics of the methods: We examined why
using RE to complement SST was more powerful than using
GWAMA or CV to complement SST. We evaluated the power
of the individual methods (RE, CV, GWAMA, and SST) over a
wide range of female/male genetic effect size pairs, varying
each from small value (0) to large value (1.0). Note that
althoughwe examined a specific effect size range (0, 1.0), the
general tendencies in relativepower areexpected tobe similar
in different settings; for example, if the effect sizeswere larger
and the variances were larger, the power results would be
similar. Here, we assumed an error variance ratio of 1.2
(females/males) between the two sexes, because this was

the average ratio of the phenotypic variances in the 10 phe-
notypes of the NFBC data.

Figure 4 shows the power of the four individual methods
(RE, CV, SST, and GWAMA) in a two-dimensional space
where x-axis is the male genetic effect size and y-axis is the
female genetic effect size of a SNP. We plotted the 50%
power lines of the four methods, so that each line denotes
pairs of the male and female effect sizes where the method
achieved an exact power of 50%. Because the power in-
creased as the effect size increased, the closer the 50% line
was to the bottom leftmost point on the graph, the more
powerful the method was. As expected, when one of the
effect sizes was close to zero (sex-specific effect: top left cor-
ner or bottom right corner), SST was the most powerful.
When the effect sizes were at most moderately different be-
tween male and female studies (middle area), RE outper-
formed other approaches. We measured the size of the area

Figure 6 Association results of RE, CV, GWAMA, and SST in NFBC data. We show 16 SNPs that were associated to one of the 10 phenotypes. (A) Relative
2log10P improvement of the other methods compared with the CV method [(2log10P of RE/GWAMA/SST)2 (2log10P of CV)]. The reference SNP identity
(RSID) of the SNPs as well as their CV P-values are shown at the bottom. (B) The ratio of the phenotypic variance between males and females after regressing
out the genetic effect of each SNP. (C) The ratio of the genetic effect size of each SNP between males and females. CRP, C-reactive protein.
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whose power was.50%; which was the area outside of each
curve, toward the top right corner. The sizes of the areas were
22:1% for SST, 23:5% for CV, 29:7% for GWAMA, and 29:9%
for RE. Thus, RE and GWAMA achieved the largest similar
areas.

Figure 4 demonstrates why using RE to complement SST
allowed us better power than using GWAMA or CV to com-
plement SST in previous simulations (Figure 2 and Figure 3).
The GWAMApower linewasmore steeply curved than the RE
power line, which meant that GWAMA tended to detect ef-
fects that were extremely different between the sexes. There-
fore, what GWAMA found could have substantial overlap to
what SST found. The power of the combined methods (RE +
SST, CV + SST, and GWAMA + SST) can be interpreted as
the sum of areas where each method achieved the power of
50% or more. Figure 4 shows that RE and SST complemented
each other resulting in the largest combined area in this plot.
To quantify this difference, we measured the area.50% not
covered by the 50% power of the SST approach. The areas
were 13:8% for GWAMA and 15:4% for RE. Thus, in the
common situations that investigators apply SST first, RE
can give us the biggest additional power.

We then tested if the three-method compositions, such as
RE + CV+ SST, RE + GWAMA+ SST, and CV + GWAMA+
SST, canhave better power.Weassumed the female effect size
of 0.125 and male effect size of 0.25 (effect size ratio of 0.5).
We applied the Bonferroni correction to the three-method
compositions. Figure S2 shows the power comparison of the
seven methods (RE + SST, CV + SST, GWAMA + SST, SST,
RE+CV+SST,RE+GWAMA+SST,andCV+GWAMA+SST),
where MetaSex (RE + SST) slightly outperformed the others.

Analysis of the NFBC data

We analyzed the NFBC data (Sabatti et al. 2009), which con-
sisted of 5326 individuals (2546 males and 2780 females).
This dataset provided 10 phenotypic measurements of the
individuals (see Materials and Methods).

Sex difference in phenotypic variances:Wefirst investigated
whether the phenotypic variances showed differences be-
tween the sexes. We applied Levene’s test, which tests for
the equality of the variances between two groups (seeMaterials

and Methods). Table 1 shows that five phenotypes (triglycerides,
HDL, LDL, BMI, and diastolic blood pressure) showed signif-
icant differences in the phenotypic variance between females
andmales (P, 0:005; Bonferroni correction on 10 tests). The
most significant difference was observed in triglycerides
(P ¼ 1:45310221).

Variance component analysis: To investigate why the phe-
notypicvariancesof some traitsdifferedbetween thesexes,we
performed a variance component analysis. We used the five-
variance-component linear mixed model described in Figure
1A, where we excluded the SNP terms. Decomposing the
variance components could reveal if the phenotypic variance
difference came from the differences in polygenic back-
ground effects, or the differences in error variances. We used
the Genome-wide Complex Trait Analysis (GCTA) method to
perform this analysis (Yang et al. 2010). First, we generated
the genetic relationship matrix, K; using the GCTA frame-
work. Second, we created two modified genetic relationship
matrices, K ∘hhT and K ∘ ð12hÞð12hÞT ; by masking the val-
ues of K except for the sex-specific values (see Materials and
Methods). Unfortunately, GCTA did not allow us to separate
the error term into two sex-specific terms as in the model in
Figure 1A, because the default error term (with variance s2

e )
for the whole sample was automatically included in the
model. Thus, we added the sex-specific error term (with var-
iance s2

e;ss) to one sex. We tried both males and females for
this additional term, and chose the configuration with
s2
e;ss . 0:
Table 2 and Table S1 show the variance component esti-

mates. The polygenic background effect (s2
g) was signifi-

cantly nonzero in five traits (P, 0:005 for BMI, HDL,
height, LDL, and systolic blood pressure). The sex-interacting
polygenic background effects (s2

g;m and s2
f ;m) were nonzero in

some traits, but the SEs were large and none of them showed
significance (P. 0:005). The variance of the sex-specific er-
ror term (s2

e;ss) was significantly nonzero in traits triglycer-
ides (P ¼ 6:233 1025) and BMI (P ¼ 1:203 1024). Thus, in
some phenotypes, the phenotypic variance difference between
the sexes was not completely explained by the genetic compo-
nents alone, which suggested the need for explicitly modeling
the sex difference in error variances as in our MetaSex method.

Table 1 Phenotypic variances in the females and males for the 10 phenotypes of NFBC data

Phenotype Variance (female) Variance (male) Ratio (larger/smaller) Levene’s test P-value

Triglycerides 0.171 0.256 1.494 1.45e221
HDL 0.134 0.107 1.251 2.54e210
LDL 0.670 0.820 1.223 1.39e205
BMI 0.0309 0.0189 1.635 6.14e219
C-reactive protein 2.37 2.24 1.056 0.0877
Glucose 0.0065 0.0068 1.048 0.174
Insulin 0.111 0.117 1.061 0.117
Systolic blood pressure 156.77 171.35 1.092 0.0079
Diastolic blood pressure 118.56 136.05 1.147 0.0012
Height 38.65 41.10 1.063 0.0154

694 E. Y. Kang et al.



Fullmodel vs. approximatedmodel:Although itwas feasible
to estimate the five variance components one time using tools
such asGCTA, applying the full linearmixedmodel tomillions
of markers can be prohibitively slow because the variance
component estimation needs to be repeated for each SNP.
Therefore, we proposed an approximated model that decom-
poses the problem into two sex-specific linear mixed models
(Figure 1B). Here, using the NFBC dataset, we examined if
the variance components estimated by the approximated
model were similar to those estimated by the full model.

To achieve this goal, we performed GCTA analyses in each
sex-specific two-variance-component model described in Fig-
ure 1B. Table 3 shows the estimated variance components for
the two sexes. We can categorize the variance components
into two groups: the genetic variance and the random error
variance. The genetic variances in the full and sex-specific
models are s2

g þ s2
g; f ðmÞ from Table 2 and s2

g; fðmÞ from Table
3, respectively. The random error variances in the full and
sex-specific models are s2

e þ s2
e;ss from Table 2 (or s2

e ;

depending on which sex s2
e;ss was added) and s2

e; f ðmÞ from
Table 3, respectively. We examined if the genetic and random
error variances were the same between the full and sex-
specific models. Figure 5 shows that the estimated variance
components were highly concordant between the full and
sex-specific models. Most of the points closely followed the
y ¼ x line (dashed line). The Pearson correlations were high
(r2 . 0:9) in all comparisons, except for the male genetic
variance. The low correlation in the male genetic variance
was driven by one outlier (diastolic blood pressure). This
outlier appears to have a large SE of the estimates. Specifi-
cally, the SE of the genetic variance SEðs2

g;mÞ in the sex-specific
model was 12.47, which was five orders of magnitude greater
than the estimate itself (Table 2). If we excluded this outlier,
the correlation was high (r2 ¼ 0:979). Overall, the estimates
of the full and sex-specific models were highly concordant,
which supported the use of the approximated model in our
framework.

Association mapping: We mapped associations for the 10
phenotypes in the NFBC dataset, using different methods.We
used our efficient approximatedmodel; that is, in each sex,we

applied a sex-specific linear mixed model (Efficient Mixed-
Model Association eXpedited (EMMAX); Kang et al. 2010)
to account for the polygenic effects and the sex-interacting
polygenic effect simultaneously (Figure 1B). Then, we applied
RE and SST to the resulting female and male effect size esti-
mates. For comparison, we also applied CV and GWAMA. In
both CV and GWAMA, we similarly accounted for the poly-
genic background effects using variance components. Finally,
for a fair comparison, we calculated the genomic control fac-
tor l separately for eachmethod (Table S2) and corrected the
resulting P-values of each method, using this factor.

The challenge in this real dataset analysiswas the lackof an
objective measure to compare performances of the methods
becausewedonot knowwhich loci are truepositives.Whatwe
could do was to examine loci that were genome-wide signif-
icant and compare the P-values of different methods. Under
the assumption that the loci exceeding the significance
threshold have a high chance of being true positives, a puta-
tively bettermethod can be amethod that gave smaller P-values
at those loci.

In this analysis, we discovered 16 loci that were associated
with any of the 10 phenotypes at the threshold level
P, 53 1028 by at least one method. At these 16 loci, we
calculated the P-values using RE, CV, GWAMA, and SST (Ta-
ble S3). To compare the P-values of the methods, we chose
CV as a reference method. We plotted the2log10P difference
between each method and the CV approach in Figure 6A
[(2log10P of RE/GWAMA/SST) 2 (2log10P of CV)]. Thus,
for each SNP, the positively larger the difference, the better
the method was compared with CV. As shown in Figure 6A,
RE showed the best overall performance. RE gave smaller
P-values than GWAMA at 14 out of 16 loci and better P-values
than CV at 11 out of 16 loci. Even at loci where GWAMAor CV
showed smaller P-values than RE, the difference from REwas
small. Specifically, RE P-values were never larger by one or-
der of magnitude than any of these methods at all 16 loci.

We further investigated on what characteristics of the loci
caused these P-value differences between the methods. First,
Figure 6B shows the phenotype variance ratio (PVR) between
males and females after regressing out the genetic effect of
the SNP tested. Second, Figure 6C shows the effect size ratio

Table 2 Variance components in the full five-variance-component model for the 10 phenotypes of NFBC data

Phenotype s2
gðSEÞ s2

g;f ðSEÞ s2
g;mðSEÞ s2

e;ssðSEÞ s2
eðSEÞ

Triglycerides 0.0189 (0.014) 0.0323 (0.022) 0.0031 (0.024) 0.113 (0.029) 0.121 (0.019)
HDL 0.0375 (0.0072) 0 (0.011) 0 (0.012) 0.0017 (0.014) 0.0694 (0.010)
LDL 0.257 (0.051) 0.0237 (0.079) 0.042 (0.082) 0.119 (0.098) 0.392 (0.067)
BMI 0.0052 (0.0014) 0 (0.0022) 0 (0.0023) 0.0107 (0.0028) 0.0118 (0.002)
C-reactive protein 0.222 (0.16) 0.135 (0.24) 0.0301 (0.26) 0.0227 (0.31) 1.99 (0.23)
Glucose 0.0011 (0.0005) 0.00021 (0.0008) 0.0014 (0.0008) 0.00087 (0.0009) 0.0043 (0.0007)
Insulin 0.0121 (0.0082) 0.0139 (0.013) 0.0040 (0.014) 0.0163 (0.017) 0.0847 (0.011)
Systolic blood pressure 37.14 (10.50) 4.58 (16.77) 2.00 (17.60) 18.33 (21.47) 114.19 (14.62)
Diastolic blood pressure 22.04 (8.31) 0.00013 (12.91) 0.00013 (13.65) 11.61 (16.16) 97.54 (11.07)
Height 24.07 (2.65) 1.23 (3.89) 1.16 (4.22) 3.23 (4.98) 12.61 (3.33)

s2
g; polygenic background effects; s2

g;f ; female-specific polygenic background effects; s2
g;m; male-specific polygenic background effects; s2

e;ss; sex-specific random errors; s2
e ;

random errors.
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between males and females for each SNP. Because the
power of the methods depend on both the error variance
ratio (which will affect PVR) and the effect size ratio be-
tween males and females as we have shown in simula-
tions, we can interpret the P-values of the methods (Figure
6A) in terms of the PVR (Figure 6B) and the effect size ratio
(Figure 6C).

If we look at the SNP rs7298683 (indicated by y, Figure 6),
the effect size ratio between males and females was20.0227
(Table S3), which meant that the effect direction was oppo-
site for the two sexes and that the absolute magnitude of the
male effect size was 36 times larger than that of the female
effect size. However, there was almost no difference in PVR
between male and female studies (PVR of 0.965). In this
case, the SST approach gave the smallest P-value, because
SST was the best method to detect an extreme effect size
magnitude difference as we have shown in simulations.

If we look at the SNP rs2167079 (indicated by *, Figure 6),
the PVR (female/male) was 1.261 and the effect size ratio
(female/male) was 0.43 (Table S3). The variance in females
was larger, so the female effect size estimate was more un-
certain than the male estimate. Thus, when combining infor-
mation from the two sexes, an optimal method should give
more weight to male estimate. Moreover, effect size was
greater in males. Thus, an optimal method should give more
weight to the male estimate even further. Because CV ignores
both the variance difference and the effect size difference, RE
achieved a smaller P-value at this locus than CV. A similar
interpretation of the result can be applied to the SNPs
rs7120118 and rs693 (indicated by •, Figure 6).

Now consider the SNP rs11668477 (indicated by ‡, Figure
6). The PVR (female/male) was 0.82 and the effect size ratio
(female/male) was 0.5 (Table S3). In this case, when com-
bining information from the two sexes, based on the variance,
we shouldweight the female estimate, but based on the effect
size, we should weight the male estimate. Thus, the effect of
differing variances and the effect of differing effect sizes can-
celed out, giving CV the smallest P-value of all approaches
because CV can be considered as equally weighting the two
sexes. A similar interpretation of the result can be applied to
the SNPs rs2794520, rs560887, and rs10096633 (indicated

by ), Figure 6). However, as described, even in such situa-
tions, RE was not much worse than CV.

In summary, RE showed the best stable performance of all
methods, exceptwhen the effect only existed in one sexwhere
SST performed the best. This analysis demonstrates that our
MetaSex framework, where RE and SST complement each
other, can cover many possible situations with high power.

Discussion

Here, we present MetaSex, a novel framework that accounts
for the potential sex difference in genetic architectures for
powerful association mapping. We built our method on a
comprehensive model that included multiple variance com-
ponents and expedited the optimization by using an approx-
imated sex-specific models. We utilized the meta-analysis
framework toachievehighpower inawide rangeof situations.
Simulations and real data analyses supported the superior per-
formance of our approach compared with previous approaches.

The high power of our approach was attributable to two
factors: the effect size difference between the sexes and the
error variance difference between the sexes. Previous studies
have observed effect size differences at a number of loci
(Randall et al. 2013; Winkler et al. 2015). However, few
studies have reported phenotypic variance differences be-
tween the sexes, which can reflect the error variance differ-
ence. In our study, we showed that the phenotypic variance
difference can be a real phenomenon in the existing dataset.
The nongenetic cause of the phenotypic variance difference
can be sex acting as an environment (e.g., hormone) or sex
interacting with external environments (e.g., lifestyle). We
demonstrated that accounting for the nongenetic causes by
modeling differing error variances can increase power.

Our framework can be generalized to analyze data con-
taining any strata other than the sex. To apply our framework
to N strata, we can apply the linear mixed model to each
stratum and obtain N effect size estimates and their SE. First,
we can perform stratum-specific tests with the estimated ef-
fect sizes. Next, we use those estimates as an input to RE and
perform a meta-analysis for multiple strata. Finally, we can
correct for multiple testing of the RE and N stratum-specific

Table 3 Variance components in the sex-specific models for the 10 phenotypes of NFBC data

Female Male

Phenotype s2
g;f ðSEÞ s2

e;f ðSEÞ s2
g;mðSEÞ s2

e;mðSEÞ
Triglycerides 0.0073 (0.016) 0.164 (0.017) 0.0565 (0.027) 0.200 (0.027)
HDL 0.0315 (0.012) 0.103 (0.012) 0.055 (0.012) 0.053 (0.012)
LDL 0.246 (0.063) 0.423 (0.062) 0.476 (0.089) 0.341 (0.085)
BMI 0.0067 (0.003) 0.0243 (0.0031) 0.0037 (0.002) 0.0152 (0.002)
C-reactive protein 0.263 (0.22) 2.11 (0.23) 0.149 (0.22) 2.10 (0.23)
Glucose 0.0021 (0.0007) 0.0043 (0.0007) 0.0020 (0.0007) 0.0048 (0.0007)
Insulin 0.0176 (0.011) 0.0929 (0.012) 0.0261 (0.013) 0.0911 (0.013)
Systolic blood pressure 50.60 (14.45) 105.90 (14.30) 24.70 (14.98) 146.47 (15.39)
Diastolic blood pressure 36.17 (11.06) 82.26 (10.98) 0.00013 (12.47) 136.05 (13.08)
Height 29.28 (3.60) 8.89 (3.30) 26.11 (4.31) 14.80 (4.07)

s2
g;f and s2

e;f ; female polygenic background effects and random errors; s2
g;m and s2

e;m; male polygenic background effects and random errors.
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tests by the smart thresholding strategy, where the thresholds
can be calculated for a specific situation.

In our simulations, we assumed that the effects of the two
sexes are in the same direction. Our assumption was that for
disease phenotypes, it would be rare that the same variant
increasesrisk foronesexanddecreases for theother.Theresults
of theNFBCdataset supported this assumption,given thatnone
of the 16 associated variants showed significant evidence of
opposite effects (Table S3). In a recent study, some variants
were found to be associated to waist/hip ratio in males and
females in an opposite way (Winkler et al. 2015). We tried an
extended simulation setup to test variantswith opposite effects
(Figure S3). Among the four approaches (RE + SST, CV +
SST, GWAMA+ SST, and SST), GWAMA+ SST achieved the
highest power if the directions were opposite. This indicates
that RE and GWAMA can play a different role in the analysis;
RE is powerful for detecting unidirectional effects while
GWAMA is powerful for detecting opposite effects.

We did not systematically compare the runtime of the
methods (MetaSex, CV + SST, and GWAMA+ SST) because
the runtimegreatly depends on the specific implementation of
the linearmixedmodel that is applied to each sex. Because the
meta-analytic part (RE or GWAMA) only combines two esti-
mates (female and male effect sizes), the runtime for meta-
analysis is relatively negligible. Zhou and Stephens compared
the runtimes of the standard linear mixed models for two
variance components (Zhou and Stephens 2012), which
showed that the recent implementations of the linear mixed
model can be applied to the typical GWAS dataset within a
single day. Therefore, if we use these implementations for
each sex, the time complexity of the whole procedure of
our framework will be similar.

Although we tried to account for many possible phenom-
ena that can occur due to the sex difference in genetic
association mapping, our model might still have limitations.
In ourmethod, we explicitlymodeled the sex difference in the
effect sizes of the associated locus, magnitudes of the poly-
genic effects, and error variances. However, we did notmodel
the sex difference in the phenotype distribution (i.e., shape),
genetic interaction with CVs, or the liability distribution of
binary traits. Moreover, we only assumed a specific parame-
ter space or dataset both in power evaluations and in variance
estimate comparison of the full and approximated models. In
future analyses, extended datasets or simulations may help
us evaluate the full characteristics of our method in the wider
spectrum of situations. We expect that a large-scale study will
be necessary to fully decipher sex-interacting genetic archi-
tectures of human traits.
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