
1. Introduction
The early Earth may have been extensively or completely molten, and it has been proposed that as the silicate 
portion crystallized, a basal magma ocean formed: a layer of silicate liquid at the base of the mantle overlain by 
crystalline material (Labrosse et al., 2007). The formation of the basal magma ocean has been invoked to explain 
geochemical signatures from the mantle, the properties of deep mantle structures as revealed by seismology, 
including large low shear wave velocity provinces (LLSVPs), and ultra low velocity zones (ULVZs), and may 
have been the source of the Earth's earliest magnetic field (Stixrude et al., 2020).

The formation of a basal magma ocean requires silicate liquids to become denser than coexisting solids at high 
pressure. It is known that at low pressure, silicate liquids are less dense than coexisting crystalline assemblages, 
accounting for the rise of magma toward the surface (Lange & Carmichael, 1987). We also know that at lower 
mantle pressure, silicate liquids approach, but do not exceed the density of isochemical crystalline assemblages 
(Braithwaite & Stixrude, 2019; Stixrude & Karki, 2005). For silicate liquids to be denser than crystals requires the 
partitioning of elements: a difference in composition between coexisting phases dictated by chemical equilibrium 
that leaves the liquid enriched in relatively abundant and massive elements such as iron (Stixrude et al., 2009).

The nature of element partitioning between silicate liquid and coexisting crystals at lower mantle pressure is 
still poorly constrained. For example, experimentally determined values of the distribution coefficient of iron 
between silicate liquid and bridgmanite range from 0.09 to 0.5 (Andrault et al., 2012; Nomura et al., 2011). In the 
(Mg,Fe)O system experimentally determined values of the distribution coefficient also span a wide range (Deng 
& Lee, 2017; Du & Lee, 2014; Fu et al., 2018). To our knowledge, there have been no ab initio predictions of 
iron partitioning between liquid and crystalline phases in mantle oxide or silicate systems. The current state of 
knowledge therefore does not permit us to draw conclusions about the relative density of liquids and crystals in 
the lower mantle, nor the possible formation of a basal magma ocean.

Here, we investigate partitioning of iron between liquid and crystalline phases of (Mg,Fe)O. Depending on pres-
sure, ferropericlase is found to be the second or third phase to crystallize from the magma ocean in the deep 
mantle (Fiquet et al., 2010; Tateno et al., 2014), and so iron partitioning in this system is important for under-
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standing the formation and chemical evolution of a putative basal magma 
ocean. Moreover, (Mg,Fe)O is a relatively simple model system that allows 
us to isolate the influence of pressure on iron partitioning, and in particular, 
the role of the high spin to low spin transition of the ferrous cation.

2. Methods
We determine the partitioning of iron between liquid and crystalline phases 
of (Mg,Fe)O from first principles via adiabatic switching, a form of thermo-
dynamic integration that has been widely used to study element partitioning 
(Alfe et al., 2002; Deng & Stixrude, 2021; Frenkel & Smit, 1996). In brief, 
the method computes the work done on the system by transmuting one or 
more Mg atoms to Fe atoms, and relates this to the free energy of cation 
exchange, from which the distribution coefficient is calculated.

In the dilute limit which is our focus, the distribution coefficient
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where xA = Fe/(Fe + Mg), A = L (liquid) or A = C (crystal) denotes the phase, ΔGR is the free energy change of 
the reaction

MgO (crystal) + FeO (liquid) = MgO (liquid) + FeO (crystal) (2)

for which the free energy of reaction may be divided into single phase components

Δ!" = Δ!# − Δ!$ (3)

with

Δ!" = !"(FeO) − !"(MgO) (4)

We find the Helmholtz free energy of chemical substitution via adiabatic switching
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∫

1

0
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#
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where λ specifies the Hamiltonian that produces the molecular dynamics trajectory: λ = 1 for the iron-bearing 
trajectory and λ = 0 for the iron-free trajectory, U = E − TSel − TSmag, where E is the internal energy, T is temper-
ature, Sel is the electronic entropy, Smag is the magnetic entropy, and ⟨Δ!⟩ is the time averaged difference between 
U1 and U0: the values of U for the iron-bearing and iron-free systems, respectively. We take Smag = k ln(μ + 1) per 
iron atom with μ the local magnetic moment on the iron atom in units of Bohr magnetons. Because fluctuations 
in ΔU are small compared with ⟨Δ!⟩ and kT, we compute the integral as (Sola & Alfe, 2009)
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A typical trajectory of ΔU is shown in Figure 1.

Finally, we relate the Gibbs free energy to the Helmholtz free energy of substitution (Desjarlais, 2013)
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Figure 1. The internal energy of the liquid phase along an iron-free trajectory 
(λ = 0) for iron-free (U0, red) and high-spin iron-bearing (U1, blue) systems 
and the difference ΔU = U1 − U0 (black, right axis) at 480 Å 3 per cell 
(4.518 cm 3 mol −1 atom −1, 92 GPa), and 4000 K.
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where PA are the pressures computed from Fe-free trajectories of each phase 
and kA are the isothermal compressibilities (inverse of the bulk modulus) 
computed from Birch-Murnaghan fits to the equations of state of the crys-
talline (A = C) and liquid (A = L) phases. The equations of state are shown 
in Figure 2.

The details of our first principles molecular dynamics simulations follow our 
previous work on liquid and crystalline phases of (Mg,Fe)O (Holmstrom & 
Stixrude, 2015, 2016). Briefly, the simulations are based on density func-
tional theory in the PBEsol approximation (Perdew et al., 2008) combined 
with the + U method (Dudarev et al., 1998) with U − J = 2.5 eV. We use the 
projector augmented plane wave method as implemented in VASP (Kresse 
& Furthmuller,  1996; Kresse & Joubert,  1999). The outermost core radii 
(in Bohr) and number of electrons treated as valence are: Fe (2.2, 14), Mg 
(2, 8), and O (1.52, 6). We perform Born-Oppenheimer simulations in the 
canonical ensemble with the Nosé-Hoover thermostat for typically 10 ps with 
1 fs time step. We assume thermal equilibrium between ions and electrons 
via the Mermin functional (Mermin,  1965). Sampling the Brillouin zone 
at the Gamma point and a basis-set energy cutoff of 500 eV was found to 
be sufficient to converge ΔU and pressure to within 0.07 eV and 0.2 GPa, 
respectively.

We consider simulation cells of 64 atoms with periodic boundary condi-
tions in liquid and crystalline phases of pure MgO composition and with 
one Fe substitution, corresponding to xA  =  1/32  =  3.125%. We perform 
spin-polarized calculations with the spin moment on the iron atom either free 
to vary, or fixed to the high-spin (μ = 4) or low-spin (μ = 0) states. We find 
the stable magnetic state is high spin up to 80 GPa. At higher pressure, we 
determine the equilibrium value of μ by minimizing ΔF with respect to the 
high spin fraction

Δ! = (1 − " )Δ!#$ + "Δ!%$ + &' [" ln " + (1 − " )ln(1 − " )] (9)

where the equilibrium high spin fraction

! =
{

1 + exp
[

(Δ"#$ − Δ"%$ ) ∕&'
]}−1 (10)

and ΔFLS and ΔFHS are the values computed for fixed high-spin and low-spin 
states, respectively.

3. Results
The free energy of iron substitution in the liquid is less than that in the solid 
over the entire range of volume explored here (Figure 3). This means that Fe 
partitions preferentially into the liquid phase (i.e., Fe is incompatible). The 
variation of ΔF on compression is influenced by the high-spin to low-spin 
transition in both phases, but much more so in the crystal. The high-spin 
to low-spin transition occurs over a broad range of pressure in both phases 
(Figure 3 inset). The gradual transition begins at volume <508 Å 3/cell (for 
which the pressure is 68 and 80 GPa in crystal and liquid, respectively). The 
crystal is mostly low-spin (f = 0.35) at the smallest volume explored in our 
study (422 Å 3/cell, corresponding to 145 GPa), whereas the liquid remains 
mostly high-spin over the entire range explored (f > 0.7).

The distribution coefficient is much less than unity over the entire range 
explored indicating strong partitioning of Fe into the liquid phase (Figure 4). 

Figure 2. Equation of state of crystalline (blue) and liquid (red) phases 
in Fe-free (circles) and Fe-bearing (high-spin: up triangle, low-spin: down 
triangle) compositions with xA = 1/32 (3.125%). The symbols are the results 
of our simulations and the lines are third-order Birch-Murnaghan equation 
of state fits to the simulation results. Also shown for comparison is the 
experimental 4000 K isotherm (black lines; solid: Birch-Murnaghan, dashed: 
Vinet) (Tange et al., 2009).

Figure 3. The free energy change upon iron substitution ΔF in crystalline 
(solid blue squares) and liquid (solid red circles) phases. The solid lines are 
polynomial fits to the results with the uncertainty in the fit indicated by the 
shading. We also show results for fixed high-spin (upward pointing triangles) 
and low-spin (downward pointing triangles) for crystalline (blue) and liquid 
(red) phases. The inset shows the equilibrium value of the high-spin fraction in 
crystalline (blue squares) and liquid (red circles) phases.
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The distribution coefficient decreases with increasing pressure at low pres-
sure, reaches a minimum near 80 GPa, and then increases with increasing 
pressure at higher pressure. The change in pressure dependence of KD is 
caused by the high-spin to low-spin transition in the crystal.

Our results agree with trends that are apparent in experimental data: exper-
iments also show small values of the distribution coefficient (KD  <  0.3), 
and a tendency for the value of KD to decrease with increasing pressure at 
least up to a pressure of 70 GPa. A more detailed comparison is limited by 
the fact that most experiments are performed at different temperatures than 
ours and on more iron rich compositions. The dependence of the distribution 
coefficient on iron content is not clear, but some studies report that they are 
able to account for their results with the ideal solution approximation, for 
which the distribution coefficient is independent of iron concentration (Fu 
et al., 2018; Zhang & Fei, 2008), suggesting that it is reasonable to compare 
our results with experimental data despite differences in iron concentration. 
The dependence of KD on iron concentration may become important for the 
most iron-rich compositions, such as the lowest temperature results of (Zhang 
& Fei, 2008), for which xL > 0.9.

The density of (Mg,Fe)O liquid exceeds that of coexisting (Mg,Fe)O crystal 
over most of the mantle pressure regime (Figure 5). The composition of the 
crystal in equilibrium with a liquid of composition xL is, from the definition 
of KD

!" =

(

1 − !#

$%!#

+ 1

)−1

 (11)

which yields, for example, xC  =  0.016 for KD  =  0.15, and xL  =  0.1. We 
consider values of xL = 0.1, representative of the bulk silicate Earth, and a 
putative global magma ocean, and xL = 0.2, representative of a global magma 
ocean that is iron-enriched (e.g., due to crystallization). We compute the iron 
concentration of the coexisting crystalline phase using Equation 11 and our 
distribution coefficient (Figure 4). The density of phase A is

!" =
#FeO$" +#MgO (1 − $")

% FeO
"

$" + %
MgO

"
(1 − $")

 (12)

where w i and ! " #

!
 are, respectively, the molecular masses and volumes of the 

end-members. We use our iron free results for ! "
MgO

!
 (Figure  2). For ! " FeO

!
 

we focus on the high-spin state since the density crossover occurs at a pres-
sure much lower than that of the spin transition for either phase. We assume 

! " FeO
!

− "
MgO

!
  = 0.9 cm 3 mol −1, for both phases, consistent with our present 

and previous results (Munoz-Ramo & Stixrude, 2014).

4. Discussion
Our finding that the liquid phase is denser than the crystalline phase in the 
(Mg,Fe)O system is significant for our understanding of crystal buoyancy in 
the magma ocean. The magma ocean differs in composition from the system 
that we have studied here, most notably in the addition of the silica compo-
nent. We have found that at constant pressure and temperature, the density of 
silicate liquids increases with increasing silica content at lower mantle pres-
sures (de Koker et al., 2013). Therefore, ferropericlase crystals are even more 
buoyant in the magma ocean than they are in the (Mg,Fe)O system. Buoyant 
rise of ferropericlase in a crystallizing magma ocean is important because it 

Figure 4. The distribution coefficient from our results (large orange diamonds 
and orange line with orange shading) compared with experimental results: 
circles (Zhang & Fei, 2008); squares (Du & Lee, 2014); hexagons (Deng 
& Lee, 2017); pentagons (Fu et al., 2018). All theoretical and experimental 
results are color coded according to the temperature. The theoretical line and 
its uncertainty are computed from the polynomial fits to ΔF of solid and liquid 
phases (Figure 3).

Figure 5. The density of liquid (red) and coexisting crystal (blue) for xL = 0.1 
(solid lines) and xL = 0.2 (dashed lines). The shading indicates the range of 
pressure over which the liquid is less dense (crystals sink) and more dense 
(crystals float) than the coexisting crystalline phase.
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leaves behind liquid that becomes increasingly rich in iron and other incompatible elements. The enrichment of 
a basal magma ocean has previously been invoked as a possible explanation for the origin of LLSVP, ULVZ, and 
various geochemical signatures as seen in plume-derived lavas (Labrosse et al., 2007).

The pressure of the high spin to low spin transition that we find is consistent with that found in previous ab initio 
studies. For example, in the solid phase, we find f = 0.5 at 121 GPa, as compared with 130 GPa for xC = 0.25 
(Holmstrom & Stixrude, 2015). The increase of transition pressure with increasing xC has been found in a number 
of experimental and theoretical studies, albeit mostly at low temperature (Persson et  al.,  2006; Solomatova 
et al., 2016). Our results are consistent with a previous theoretical study on ferropericlase showing that the trend 
toward increasing stabilization of the high spin state with increasing xC persists at high temperature (Muir & 
Brodholt, 2015). In the liquid phase, we find that the spin transition occurs at higher pressure than in the solid 
phase, consistent with our previous study of the liquid phase at xL = 0.25 (Holmstrom & Stixrude, 2016).

Comparison with a previous, approximate ab initio study provides additional insight into our results. The previ-
ous study (Ghosh & Karki, 2016) finds a much larger value of KD than we do and that KD increases monotonically 
with increasing pressure with KD varying from 0.3 to 0.57 from 23 to 135 GPa at 4000 K. In contrast, we find 
smaller values of KD at all pressures and a non-monotonic variation with pressure. These different results are due 
to two approximations in the previous study: (a) that iron is in the low spin state at all pressures (non-spin-polar-
ized) and (b) that the Gibbs free energy of reaction (Equation 3) is equal to the enthalpy of reaction, thus neglect-
ing the entropy of reaction. We find that as iron goes through the high-spin to low-spin transition, it becomes 
more compatible, with the value of KD increasing as the spin transition proceeds. The much smaller value of KD 
that we find is important for understanding crystal buoyancy. With KD as large as 0.57, as in the previous study, 
crystals are much less buoyant than we find: the liquid with xL = 0.1 is less dense than the coexisting crystal up 
to a pressure of 115 GPa.

5. Conclusion
Iron behaves as a very incompatible element in the (Mg,Fe)O system: it partitions strongly into the liquid. Because 
of strong iron partitioning, ferropericlase crystals are buoyant with respect to coexisting liquid and are likely to 
rise in a crystallizing deep magma ocean. We have shown that it is possible to compute ab initio the partitioning 
of iron between liquid and crystalline phases taking account of all relevant aspects of the physics, including strong 
correlation and spin polarization. The latter is important as the high-spin to low-spin transition of the ferrous iron 
cation has a major influence on the distribution coefficient, causing it to depend non-monotonically on pressure. 
The methods illustrated here are applicable to iron partitioning in other systems, including silicates, and to the 
partitioning of other elements between liquid and crystal silicates and oxides (Deng & Stixrude, 2021).

Data Availability Statement
Data are available in the Open Science Framework (https://osf.io/udfth/) with DOI: https://doi.org/10.17605/
OSF.IO/UDFTH.
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