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We study hydrodynamic interactions and clustering mechanisms of active membrane inclusions
within lipid bilayers. Pairs of inclusions display unique oscillatory dynamics that disappear when
the 3D fluid adjacent to the membrane is confined. We reduce the governing equations to a coupled
dynamical system whose phase behavior reveals the striking role of bulk confinement in enhancing
cluster formation within the membrane. Using numerical simulations, we then extend this finding to
demonstrate the role of confinement in controlling large-scale aggregation of membrane inclusions.

Author’s final version of article published in Phys. Rev. Lett. 125, 268101 (2020), doi:10.1103/PhysRevLett.125.268101

Biological membranes separate the cell cytoskeleton
from the extracellular environment. The typical eu-
karyotic cell membrane is a crowded assembly of pro-
tein machines, molecular motors, ion channels, and other
biomolecules embedded in a phospholipid bilayer matrix.
This complex system forms a fluid ‘mosaic’ [1, 2]: mem-
brane inclusions are e↵ectively suspended in a quasi-2D
fluid. Hydrodynamic models for the mobility of inclu-
sions [3–8], together with the Einstein-Smoluchowski re-
lation, have been widely successful at quantifying lateral
di↵usion of proteins [9], lipid domains [10, 11] and col-
loidal particles [12].

However, molecular machines are not passive inclu-
sions: they operate as motors, manipulators and ion
pumps, converting chemical energy to mechanical work.
Active biomolecular machines achieve this via confor-
mational changes [13, 14], polymerization [15], cyclical
binding-unbinding transitions [16], lateral reorganization
[17, 18] or rotation [19–21]. Importantly, inertia is neg-
ligible relative to viscous forces at these length and time
scales: membrane inclusions are thus force- and torque-
free. To leading order, active inclusions therefore induce
hydrodynamic flows within the membrane (the ‘inter-
face’) and in the surrounding 3D fluid (the ‘subphase’)
via force or torque dipoles. Indeed, recent studies have
confirmed the dipolar nature of the stresses exerted by
active membrane proteins [14].

These hydrodynamic fields decay algebraically, setting
up long-ranged disturbances that enhance di↵usive trans-
port [16, 22]. Additionally, active membrane inclusions
are rarely isolated and any disturbance induced by one
perturbs its neighbor, leading to large-scale collective dy-
namics. For instance, rotor proteins such as ATP syn-
thase were recently shown to self-assemble into a lat-
tice state due to ‘hydrosteric’ interactions [21]. Recent
evidence indicates that microtubule motors like kinesin
and dynein coordinate their action to cluster on fluid
membranes so that their collective dynamics drive faster
or more e�cient cellular transport [23–25]. However, a
theoretical description of the membrane-mediated hydro-
dynamic interactions between inclusions that exert force
dipoles to drive motion is still lacking.

In this work, we illustrate for the first time the non-
trivial and coordinated motion of pairs of active force
dipoles on viscous membranes. We first examine the
phase behavior of a pair of hydrodynamically interacting
membrane inclusions. Based on insights generated by the
pair problem, we will illustrate strategies to experimen-
tally manipulate long-range hydrodynamic interactions
to enhance or suppress their aggregation. The key re-
sult of this work is illustrated in Fig. 1: confining the
3D subphase (e.g. via ultra-thin polymer supports [26])
modifies flow in the plane of the membrane in a manner
that promotes aggregation of active dipoles. Traditional
engineering of foreign inclusions in membranes [27, 28]
has targeted interactions due to capillarity, curvature and
electrostatics. In what follows, we propose an additional
controllable parameter to tune collective motility and ag-
gregation on lipid membranes.

The paradigmatic fluid mechanical model for a biolog-
ical membrane [3–8] consists of a 2D manifold of sur-
face viscosity ⌘s atop a 3D fluid of viscosity ⌘ . Lipid
molecules that comprise the bilayer are free to flow within

r

✓1

✓2

F

�F

(a) (b)

(c) (d)separation aggregation

subphase
deep confined

subphase

aggregation

confined
subphase

FIG. 1. (a,b) An active membrane inclusion exerts a force
dipole, generating disturbance flows that perturb neighbor-
ing inclusions. Strategies to exploit hydrodynamics to aggre-
gate membrance inclusions by confining the bulk phase via:
(c) thin-film-supported bilayers; and (d) close confinement
between adjacent cells or between a cell and a substrate or
biopolymer.
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the 2D manifold, but exchange momentum with the ad-
jacent subphase. Membrane inclusions are embedded
within and constrained to move along the 2D quasi-fluid.
We will assume that the bilayer is flat and that mem-
brane curvature is negligible on length scales comparable
to inclusions. Additionally, we will only account for sub-
phase on one side of the interface for simplicity: presence
of a 3D fluid on both sides will introduce a multiplica-
tive factor in the Green’s functions below, and do not
qualitatively change the results.

Stress balance on a viscous 2D manifold is prescribed
by the Boussinesq-Scriven equations [29, 30]. Let u(r)
be the in-plane fluid velocity at a point r = (x, y) on a
planar membrane represented by z = 0. Phospholipid
bilayers (indeed, all insoluble surfactant-laden interfaces
[30]) are 2D incompressible so that rs · u = 0, where
rs = (I� ẑẑ) ·r = (@/@x, @/@y) is the surface gradient
operator. When perturbed by a point force F at the
origin, the surface stress balance is

rs⇧ = ⌘sr2
su � ⌘

@v

@z

����
z=0

+ F�(r), (1)

where ⇧(r) is the surface pressure. Equation (1) couples
to the 3D fluid flow via the viscous traction ⌘ @v/@z ex-
erted at the interface. The bulk fluid velocity v(x, y, z)
satisfies the Stokes equations with the additional no-slip
condition v = u at z = 0. The surface disturbance veloc-
ity following Eq. (1) can be determined by solving this
coupled system to obtain

u = G(r) · F =
1

4⇡⌘s

h
A(r)I + B(r)

rr

r2

i
· F, (2)

where A(r) and B(r) with r = |r| depend on the position,
the geometry, and the Sa↵man-Delbrück length ` = ⌘s/⌘
[8, 30–32]. If the subphase 3D fluid is unbounded (the
‘deep-subphase’ limit), A(r) = ⇡[H0(d) � H1(d)/d +
2/⇡d2 � (Y0(d) � Y2(d))/2] and B(r) = ⇡[�H0(d) +
2H1(d)/d � 4/⇡d2 � Y2(d)], with d = r/`. Here, H⌫

and Y⌫ are the Struve and Bessel functions of the second
kind of order ⌫, respectively. Flow is dominated by sur-
face viscous stresses and momentum transfer is restricted
to the plane of the membrane when r ⌧ `. Conversely,
3D momentum transfer and bulk viscous traction domi-
nate flow at distances r � `.

However, motor proteins (or surface-attached swim-
mers and catalysts) are force-free inclusions. The distur-
bance flow created by such inclusions can be obtained
by perturbing the Boussinesq-Scriven equation with the
appropriate stresslet [33] or by integrating over appropri-
ate force densities [34, 35]. An easier and more intuitive
approach for small inclusions identifies the leading-order
disturbance flow as that arising from a dipole (Fig. 1),
constructed by two equal and opposite point forces sep-
arated by a distance L. This distance is characteristic of
typical inclusion dimensions, so L = O(10 nm).

(a) (b) (c)

FIG. 2. Fluid streamlines in the plane of the membrane
around a force dipole on an unconfined subphase when (a)
r > ` and (b) r < `, where ` is the Sa↵man-Delbrück length.
(c) Confinement introduces azimuthal streamlines over dis-
tances smaller than ` if r > `c with `c =

p
`H < `.

Following this approach, the surface velocity at a lo-
cation r on the membrane due to an inclusion oriented
in the direction p̂ and located at the origin is u =
G (r � Lp̂/2) ·F�G (r + Lp̂/2) ·F. Owing to small size
of O(nm) inclusions relative to flow over O(µm) length
scales, we retain only the leading-order terms in the Tay-
lor expansion of G to get

uj = ��pi
@Gjk

@xi
pk. (3)

Here, � = FL is the magnitude of the stresslet corre-
sponding to the dipolar inclusion. Much like with 3D
swimmers [36], � > 0 denotes an in-plane ‘pusher’ which
pushes fluid in the directions ±p̂, whereas a ‘puller’ with
� < 0 creates inward flows along ±p̂.

We wish to highlight the role of the subphase fluid in
determining inter-particle interactions on the interface.
Phospholipid bilayers are typically highly surface vis-
cous with ⌘s ⇠ 10�9 Ns/m so that the Sa↵man-Delbrück
length is ` ⇠ 10µm. The system is subphase-dominated
at length scales larger that `. The Green’s function then
simplifies with A(r) ! 2`2/r2 and B(r) ! 2`/r�4`2/r2.
Then, the disturbance flow due to a dipole, using Eq. (3),
is

udeep
r>` = � �

2⇡⌘r2

⇥
(1 � 3 cos2 ✓) r̂ + cos ✓ p̂

⇤
, (4)

where r̂ is the radial unit vector relative to the membrane
inclusion at the origin and ✓ = r̂ · p̂. This flow field is
illustrated in Fig. 2(a).

By contrast, A(r) ! log(`/r) and B(r) ! 1 to leading
order when r ⌧ `. The Green’s function is then indeed
the 2D stokeslet and the flow diverges unless regularized
by bulk viscous traction at length scales above ` [3]. How-
ever, the dipolar flow field from Eq. (3) in this limit is
well-defined:

udeep
r<` = � �

4⇡⌘sr
(1 � 2 cos2 ✓) r̂. (5)

A significant di↵erence emerges in surface-dominated sys-
tems relative to Eq. (4): the surface disturbance flow is
entirely along the radial direction when r ⌧ ` (Fig. 2(b)).
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FIG. 3. (a) Distance between a pair of inclusions and (b) dipolar orientations in an unconfined membrane, obtained by
integrating Eqs. (7)-(8). Shaded regions indicate times when inclusions approach each other. (c) Phase behavior and dynamical
flow lines of (✓1, ✓2) at fixed r. The solid line is the closed orbit corresponding to the initial conditions in (a-b). Pairs aggregate
when ṙ < 0 (shaded) and separate otherwise. (d) Inter-inclusion separation and (e) orientations in a confined membrane,
following Eqs. (9)-(10). (f) The corresponding phase portrait shows that oscillations are no longer possible. The solid line
shows the pair in (d-e) aggregate upon being drawn into the region of attraction (ṙ < 0, shaded).

The azimuthal component of disturbance flows causes
membrane inclusions to aggregate more easily, as we
show below. However, azimuthal streamlines emerge
only when r � ` ⇠ 10µm. It is therefore of prac-
tical interest to manipulate the cut-o↵ length `. Tun-
ing the viscosity of the suspending fluid is one option;
however, this strategy can at most reduce ` by an O(1)
factor. The novel insight of this work is that an alter-
native (and experimentally accessible) strategy to en-
hance the viscous drag from the bulk fluid – and there-
fore introduce azimuthal flow in the membrane plane –
is to confine the depth H of the 3D bulk phase adja-
cent to the membrane. Using the methods of lubrication
theory for a thin subphase layer [6, 31, 32], it can be
shown that the coe�cients in the Green’s function satis-
fying Eq. (1) are A(r) = �2/d2

c + 2K0(dc) + 2K1(dc)/dc
and B(r) = 4/d2

c � 2K0(dc) � 4K1(dc)/dc, where K⌫ is
the modified Bessel function of order ⌫. In this case,
dc = r/`c where `c =

p
`H is a modified cut-o↵ length

beyond which bulk viscous e↵ects become dominant.

Thus, reducing subphase depth H has the e↵ect of
screening the Sa↵man-Delbrück length `: confinement
constrains surface viscous stresses to be sub-dominant
beyond a length scale `c < ` if H . 10µm. In close con-
finement between adjacent vesicles or atop a thin film
(as illustrated in Fig. 1) or polymer cushions such that
H ⇠ 10 � 100 nm [26], the modified cut-o↵ distance can
be `c < 1µm. At distances greater than this modified
lower cuto↵, A(r) ! �2`H/r2 and B(r) ! 4`H/r2. Un-
surprisingly, the Green’s function then represents a po-
tential dipole, which is the singularity corresponding to
a point force in a confined Hele-Shaw system. The flow
flow corresponding to a force-free membrane inclusion,

following Eq. (3), then becomes

uconfined
r>`c = � �H

⇡⌘r3

⇥
(1 � 4 cos2 ✓) r̂ + 2 cos ✓ p̂

⇤
, (6)

which is a potential quadrupole (Fig. 2(c)). Equation (6)
re-introduces azimuthal flow lines on a viscous mem-
brane at lengthscales much smaller than ` by amplify-
ing bulk viscous stresses in the thin film underlying the
interface. A membrane machine of size O(10 nm) gen-
erating local forces of O(10 pN) has stresslet strength
� ⇠ 10 � 100 kBT . When confined with H ⇠ 100 nm,
Eq. (6) predicts O(µm/s) flows due to such an inclusion
that can drive co-ordinated motion across cellular O(µm)
length scales.

We approach such large scale collective dynamics by
first examining the hydrodynamic interactions between
a pair of inclusions. Each inclusion translates with the
disturbance velocity induced by the other. The inter-
inclusion separation evolves as ṙ = (u21 �u12) · r̂, where
u21 and u12 are translational velocities of inclusion 2
relative to 1 and vice versa. Assuming equal stresslet
strengths � = �1 = �2, the distance between inclusions
on an unconfined viscous membrane evolves as

ṙ =
�

2⇡⌘sr

�
cos2 ✓1 + cos2 ✓2 � 1

�
. (7)

Following fluid kinematics, each inclusion also rotates at
a rate equal to half the vorticity of the disturbance field
of the other: ⌦2 = 1

2r ⇥ u21 and ⌦1 = 1
2r ⇥ u12.

The dipole orientations ✓1(t) and ✓2(t) relative to the
line through the particle centers (Fig. 1) thus evolve as

✓̇1 = � �

4⇡⌘sr2
sin 2✓2, ✓̇2 = � �

4⇡⌘sr2
sin 2✓1. (8)

This nonlinear coupling between r, ✓1 and ✓2 leads to the
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unique oscillatory behavior shown in Figure 3(a-b) and
in the supplementary videos [37].

To examine these novel nonlinear dynamics, we map
the phase portrait of the dynamical system governing
(✓1, ✓2) at fixed r in Fig. 3(c) . The phase ‘flow’ lines
weave in and out of regions where ṙ is negative (shaded)
so that inclusions approach each other and where ṙ is
positive (unshaded) so that the inter-inclusion separation
grows. Indeed, all but a limited class of initial conditions
result in oscillations. The fixed points at the corners
of the shaded region are nonlinear centers [38], so that a
pair of inclusions starting at any of these centers maintain
their relative orientation and separation. Any perturba-
tion from these points would place them in the family
of closed orbits around the centers, launching them into
nonlinear oscillations like in Fig. 3(a-b). The fixed points
at the corners of the phase portrait and at (⇡/2, ⇡/2) are
hyperbolic saddle nodes: inclusions separate or approach
each other when placed at these positions, but are again
easily perturbed into nonlinear oscillations. Real inclu-
sions have finite size, so oscillations are limited to cases
when r & 2L where L is the particle size.

The frequency of these oscillations can be estimated by
a linear stability analysis around the centers when the in-
clusions are initially at a separation R0. Assuming that
the angles ✓1 and ✓2 grow as e↵t when perturbed from one
of the centers and solving for the eigenvalues of the cor-
responding Jacobian matrix gives ↵ = ±i�/2⇡⌘sR2

0. The
growth rates are imaginary, consistent with oscillations
that neither grow nor decay. The time period of these
oscillations is then T0 = 2⇡/|↵| = 4⇡2⌘sR2

0/�. This ap-
proximation holds so long as the separation r(t) remains
close to R0. The period of oscillations is therefore de-
termined by the relative strengths of the characteristic
force ⇠ �/R0 due to hydrodynamic interactions and the
surface viscous resistance ⇠ ⌘sR0.

Entirely di↵erent phase dynamics arise in a system of
membrane inclusions confined by a thin subphase. Using
Eq. (6), inter-inclusion separation now evolves as

ṙ =
2�H

⇡⌘r3

�
cos2 ✓1 + cos2 ✓2 � 1

�
. (9)

The local angular velocity as a result of the disturbance
field is zero, which is not surprising as potential flow in
a Hele-Shaw system is a vorticity-free. So the two parti-
cles translate without rotation in the lab frame. However,
the disturbance velocity due to each particle has an az-
imuthal component u? = sin 2✓✓̂, which has the e↵ect
of rotating the line joining particle centers by an angle
�. In the frame of reference moving with one of the par-
ticles and rotating with the line joining particle centers,
each particle therefore experiences an angular rotation of
magnitude �̇ = |u?|/r. The net rate of rotation in the
moving frame is then

✓̇1 = ✓̇2 =
�H

⇡⌘r4
(sin 2✓1 + sin 2✓2) . (10)
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FIG. 4. (a-b) Snapshots from simulations of hydrodynami-
cally interacting dipolar membrane inclusions in a 2D periodic
domain. Arrows denote dipole orientations. Inclusions chaoti-
cally approach and separate when the bulk fluid is unconfined,
but aggregate when confined. (c-d) Normalized distributions
of number Nc of inclusions in a cluster across 10 simulations
up to 200 time steps each [37]. Small aggregates dynamically
form and separate when unconfined, whereas larger aggre-
gates are stable when confined. (e-f) Growth of the largest
cluster of sizeNmax with time, ensemble averaged across simu-
lations each. Hydrodynamic e↵ects are indistinguishable from
Brownian fluctuations for an unconfined subphase even when
the e↵ective temperature ⌧ = kBT/� ! 0. By contrast, clus-
ters grows when the membrane is confined.

Figure 3(d) shows the phase diagram of (✓1, ✓2) at fixed
r for a confined membrane, revealing that oscillatory dy-
namics are not possible when the subphase is confined. In
fact, very few relative orientations are stable: any per-
turbation from the points where ✓̇1 = ✓̇2 = 0 reorients
inclusions in a manner that leads to a negative ṙ. In
stark contrast to the unconfined geometry, pairs of in-
clusions are essentially trapped once within the region of
attraction leading to cluster formation.

These di↵erences are amplified in more crowded sys-
tems, as shown in Fig. 4 using simulations of 10 par-
ticles in a 10L ⇥ 10L 2D periodic box; the qualitative
results illustrated here were checked to be independent
of box size [37]. In addition to hydrodynamic interac-
tions, these simulations account for a short-range soft
repulsion to prevent particle overlap. The repulsive force



5

decays exponentially beyond a steric length L: far-field
co-ordinated motion is thus driven entirely by membrane
hydrodynamic interactions via Eq. (5) or (6). The sim-
ulations also account for thermal fluctuations following
the fluctuation-dissipation theorem [37]. The strength
of stochastic Brownian forces relative to the disturbance
flow experienced by an inclusion is quantified by an ef-
fective temperature ⌧ = kBT/�. Alternatively, ⌧�1 may
be interpreted as a Péclet number Pe = �/kBt which
compares convection on the surface due to dipolar flow
relative to thermal di↵usion.

As shown in Fig. 4, clusters do not form on mem-
branes atop an unconfined or deep subphase. In this
case, streamlines around each particle (Fig. 2(b)) are as
likely to attract a pair of inclusions as they are to sep-
arate them. Thermal fluctuations and disturbances due
to neighboring inclusions perturb a two-particle system
away from fixed points and out of the region of attrac-
tion in the phase portrait in Fig. 3(c). In a multi-particle
system, inclusions thus chaotically approach each other
until a perturbation causes them to separate [37]. A
quantitative index of the long-time aggregation behav-
ior is the number Nmax of particles in the largest cluster
(Fig. 4(e)): even in the athermal limit (⌧ = 0), aggre-
gate sizes are statistically indistinguishable from a sys-
tem dominated by Brownian fluctuations.

In stark contrast, collective hydrodynamics on a con-
fined viscous interface always draw neighbors towards
each other. Any relative configuration other than a head-
on orientation leads to trapped pairs. The head-on ori-
entation is almost always perturbed by other inclusions
(or thermal noise), and so aggregates are stable and the
typical cluster size Nc grows. Figure 4(d) shows the dis-
tribution across simulations upto a dimensionless time
of 200: smaller clusters at early times coalesce stably
into large system-spanning aggregates [37]. The e↵ec-
tive temperature is in the range of ⌧ ⇠ 0.01 for a mem-
brane machine of size O(10 nm) generating local forces of
O(10 � 100 pN). The long-time e↵ect of subphase con-
finement in this biologically relevant regime is clear from
Fig. 4(f): the largest cluster continues growing due to
confined hydrodynamics.

Note that hydrodynamic interactions become purely
radial at small inter-inclusion separations even in the
confined geometry (when r ⌧ `c). However, the con-
finement depth H can be controlled to ensure that the
screened cut-o↵ `c is small enough so that far-field hy-
drodynamics always promote aggregation, whereas short-
range finite-size e↵ects and intermolecular interactions
dominate at length scales smaller than `c. The simula-
tions are performed to highlight this limit, assuming that
the bulk phase is su�ciently confined so that hydrody-
namics are bulk-dominated at all inter-inclusion separa-
tions. In other words, `c is taken to be comparable to
inclusion size L so that the hydrodynamic disturbance
felt by neighboring inclusions is always quadrupolar.

This dramatic shift due merely to subphase confine-
ment can be exploited to accumulate active membrane
inclusions by simply introducing a confining wall, or sup-
porting the bilayer on a thin film or polymer cushion
atop a substrate (Fig. 1(c)). Alternatively, bringing two
vesicles in close proximity would thin the suspending
fluid layer between them, mimicking the e↵ect of sub-
phase confinement on either membrane (Fig. 1(d)). Simi-
larly, the subphase is locally confined when motors attach
onto an adjacent macromolecule. Indeed, enhanced cargo
transport has recently been reported due to clustering of
membrane motors in confined regions near microtubular
attachment [24, 25]. Further, aggregates increase the ef-
fective surface viscosity of the membrane [8, 30], resulting
in locally immobilized regions of the bilayer. Confine-
ment thus provides a strategy to tune the local fluidity –
and, therefore, membrane di↵usivity – of crowded phos-
pholipid bilayers. Building on these insights, we antic-
ipate that the present work will spur new directions of
experimental inquiry into active and tunable membranes.
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branes 7, 49 (2017).

[16] A. S. Mikhailov and R. Kapral, Proceedings of the Na-
tional Academy of Sciences 112, E3639 (2015).

[17] S. Mayor and M. Rao, Tra�c 5, 231 (2004).

mailto:hmanikantan@ucdavis.edu
https://doi.org/10.1126/science.175.4023.720
https://doi.org/10.1017/S0033583500003735
https://doi.org/10.1017/S0033583500003735
https://doi.org/10.1073/pnas.72.8.3111
https://doi.org/10.1073/pnas.72.8.3111
https://doi.org/10.1017/S0022112076001511
https://doi.org/10.1017/S0022112076001511
https://doi.org/10.1017/S0022112081000785
https://doi.org/10.1017/S0022112081000785
https://doi.org/10.1017/S0022112088003106
https://doi.org/10.1017/S0022112088003106
https://doi.org/10.1016/j.bpj.2009.01.020
https://doi.org/10.1016/j.bpj.2009.01.020
https://doi.org/10.1146/annurev.biophys.34.040204.144637
https://doi.org/10.1146/annurev.biophys.34.040204.144637
https://doi.org/10.1021/jp0702088
https://doi.org/10.1021/jp0702088
https://arxiv.org/abs/0611492
https://doi.org/10.1016/j.bbamem.2018.02.028
https://doi.org/10.1016/j.bbamem.2018.02.028
https://doi.org/10.1103/PhysRevLett.97.176001
https://doi.org/10.1103/PhysRevLett.97.176001
https://arxiv.org/abs/0604262
https://doi.org/10.1103/PhysRevLett.82.4356
https://doi.org/10.1063/1.4803507
https://doi.org/10.1063/1.4803507
https://doi.org/10.3390/membranes7030049
https://doi.org/10.3390/membranes7030049
https://doi.org/10.1073/pnas.1506825112
https://doi.org/10.1073/pnas.1506825112
https://doi.org/10.1111/j.1600-0854.2004.00172.x


6

[18] K. Gowrishankar, S. Ghosh, S. Saha, R. C., S. Mayor,
and M. Rao, Cell 149, 1353 (2012).

[19] H. C. Berg, Annual Review of Biochemistry 72, 19
(2003).

[20] W. Junge and N. Nelson, Annual Review of Biochemistry
84, 631 (2015).

[21] N. Oppenheimer, D. B. Stein, and M. J. Shelley, Physical
Review Letters 123, 148101 (2019).

[22] Y. Hosaka, K. Yasuda, R. Okamoto, and S. Komura,
Physical Review E 95, 052407 (2017).
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Supplementary information: Tunable collective dynamics of active inclusions on
viscous membranes

Harishankar Manikantan
Department of Chemical Engineering, University of California, Davis, CA 95616, USA

In the following, we outline the Brownian dynamics simulations used to verify large-scale clustering behavior (figure 4
and related discussion in the manuscript). Each inclusion i translates and rotates due to the collective disturbance
field of the other N � 1 inclusions and due to Brownian fluctuations:

dxi

dt
=

NX

j 6=i

uj(xi) + uBr
i , (1)

d✓i

dt
=

NX

j 6=i

✓̇j(xi) + ⌦Br
i . (2)

The velocities due to thermal fluctuations relate to the collective hydrodynamic mobilities [1] of the inclusion via the
fluctuation-dissipation theorem. The concatenated 2N vector UBr of the two velocity components of uBr of all N
inclusions satisfies

hUBr(t)i = 0, hUBr(t)UBr(t0)i = 2kBTM�(t� t
0). (3)

Here, M is a 2N⇥2N grand mobility matrix with self-mobility of each inclusion along the diagonal, and the collective
mobility due to hydrodynamic interactions populate the o↵-diagonal terms. Similar equations can be written for the
rotational motion of each inclusion. The central 2⇥ 2 blocks along the diagonal are the dominant local mobilities of
each inclusion and the o↵-diagonal terms are the sub-dominant interaction terms that become more relevant at higher
concentration. Owing to the diluteness of our system and for simplicity, we only account for local mobilities that
decouples the fluctuation-dissipation relation of each inclusion from the rest. The translational Brownian velocities
then satisfy local relations

huBr(t)i = 0, huBr(t)uBr(t0)i = 2kBTM�(t� t
0), (4)

where M is a 2 ⇥ 2 tensor. Further, we will assume that each inclusion is a cylindrical disk of radius L embedded
within the monolayer, so that the mobility is isotropic in the plane of the membrane: M = M(I � ẑẑ). Similarly,
rotational Brownian motion satisfies

h⌦Br(t)i = 0, h⌦Br(t)⌦Br(t0)i = 2kBTR�(t� t
0), (5)

where R is the local hydrodynamic rotational mobility.

Unconfined or deep subphase: The translational velocity at a point r = rr̂ away from an inclusion atop a deep
subphase is

udeep = � �

4⇡⌘sr
(1� 2 cos2 ✓) r̂. (6)

For such an inclusion in an unconfined viscous membrane with r ⌧ `, the mobility is approximately [2, 3] M = 1/4⇡⌘s.
Substituting in Eq. (1), using Eq (4), and assuming a constant dipole strength � = FL, the translational velocity of
each inclusion becomes:

dxi

dt

����
deep

=
NX

j 6=i

�

4⇡⌘sr
(2 cos2 ✓ij � 1)r̂ij +

s
kBT

2⇡⌘s�t
w. (7)

Here r̂ij is the unit vector pointing from the inclusion that is the source of the disturbance (with index j) to the
current inclusion (with index i), and ✓ij is the polar angle in this frame of reference. Written this way, �t is the
simulation time step and w is a white noise vector containing random numbers from a distribution of zero mean and
unit variance. Nondimensionalizing Eq. (7) over L for length and ⌘sL

2
/� for time gives

dx̃i

dt̃

����
deep

=
NX

j 6=i

1

4⇡r̃
(2 cos2 ✓ij � 1)r̂ij +

r
⌧

2⇡�t̃
w, (8)



2

where

⌧ =
kBT

�
(9)

is a dimensionless temperature. Alternatively, ⌧ can be interpreted as (the inverse of) a Peclet number that compares
convective flow due to the force dipole (/ �) against Brownian di↵usion. Similarly, the net rotational velocity of
inclusion i, using a local rotational drag of R = 1/4⇡⌘sL2 [2, 3] and nondimensionalizing like before is

d✓̃i

dt

�����
deep

=
NX

j 6=i

� 1

2⇡r̃2
sin 2✓ij +

r
⌧

2⇡�t̃
w. (10)

Numerically integrating the coupled system of Eqs. (8) and (10) in a 2D periodic box gives the results in Figure 4.

Confined or shallow subphase: In this case, the translational disturbance velocity around an active inclusion is

uconfined = � �H

⇡⌘r3

⇥
(1� 4 cos2 ✓) r̂+ 2 cos ✓ p̂

⇤
, (11)

The 2D isotropic membrane mobility is now M = H/2⇡⌘R2 [2, 4], so the net velocity of each inlcusion becomes

dxi

dt

����
confined

=
NX

j 6=i

� �H

⇡⌘r3

⇥
(1� 4 cos2 ✓ij)r̂ij + 2 cos ✓ijp̂j

⇤
+

s
kBTH

⇡⌘R2�t
w, (12)

where now pj is the orientation of dipole that generates the disturbance. Nondimensionalizing in this case with a
characteristic time ⌘L

4
/�H, one finds

dx̃i

dt̃

����
confined

=
NX

j 6=i

� 1

⇡r̃3

⇥
(1� 4 cos2 ✓ij)r̂ij + 2 cos ✓ijp̂j

⇤
+

1p
⇡s�t̃

w. (13)

The corresponding angular velocity has no contribution due to dipolar interactions (as the confined flow is irrotational);
rotation occurs due to Brownian fluctuations alone. Using a confined mobility of R = 2H/⇡⌘L

4 [4], the rotational
velocity in dimensionless terms is

d✓̃i

dt

�����
confined

=

r
4⌧

⇡�t̃
w. (14)

Numerically integrating the coupled system of Eqs. (13) and (14) gives the results in Figure 4 corresponding to a
confined membrane.

Steric repulsion: Particle overlap is prevented in simulations by adding a soft repulsion when particles are close to
each other. This e↵ectively amounts to an additional pair-wise relative velocity of the form

ui|steric = Us
e
��(r�L)

1 + e��(r�L)
r̂ij , (15)

where Us is the contact velocity that decays exponentially over a length scale ��1 ⌧ L, ensuring that hydrodynamics
dominates at all distances except near contact.

[1] N. Oppenheimer and H. Diamant, Biophysical Journal 96, 3041 (2009).
[2] H. Manikantan and T. M. Squires, Journal of Fluid Mechanics 892, P1 (2020).
[3] P. G. Sa↵man, Journal of Fluid Mechanics 73, 593 (1976).
[4] E. Evans and E. Sackmann, Journal of Fluid Mechanics 194, 553 (1988).


	Tunable Collective Dynamics of Active Inclusions in Viscous Membranes
	Abstract
	References


