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G. Liu, T. Schmidt, R. Dömer. RISC Compiler and Simulator, Beta Release V0.3.0:
Out-of-Order Parallel Simulatable SystemC Subset. Report 16-06, Center for Em-
bedded and Cyber-Physical Systems, University of California, Irvine, USA, September 2016
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ABSTRACT OF THE DISSERTATION

A Compiler Infrastructure for Static and Hybrid Analysis of Discrete Event System Models

By

Tim Schmidt

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2018

Professor Rainer Dömer, Chair

The design of embedded systems is a well-established research domain for many decades.

However, the constantly increasing complexity and requirements of state-of-the-art embed-

ded systems pushes designers to new challenges while maintaining established design method-

ologies. Embedded system design uses the concept of Discrete Event Simulation (DES) to

prototype and test the interaction of individual components.

In this dissertation, we provide the Recoding Infrastructure for SystemC (RISC) compiler

framework to perform static and hybrid analysis of IEEE SystemC models. On one hand,

RISC generates thread communication charts to visualize the communication between in-

dividual design components. The visualization respects the underlying discrete event sim-

ulation semantics and illustrates the individual synchronization steps. On the other hand,

RISC translates a sequential model into a parallel model which effectively utilizes multi- and

many-core host simulation platforms for faster simulation. This work extends the conflict

analysis capabilities for libraries, dynamic memory allocation, channel instance awareness,

and references. Additionally, the traditional thread level parallelism is extended with data

level parallelism for even faster simulation.
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Chapter 1

Introduction

In this chapter, we introduce the foundation for this dissertation. Frist, we put this work in

the context of System Level Design (SLD) for embedded systems in Section 1.1 and introduce

the System Level Description Language (SLDL) SystemC in Section 1.2. Following, we

propose our RISC in Section 1.3 and the underlying Segment Graph (SG) data structure in

Section 1.4. Next, we define the goals for this dissertation in Section 1.5 and conclude this

chapter with the related work in Section 1.6.

1.1 System Level Design

Embedded systems are part of our daily life, visible as a cell phone or invisible in a combustion

engine in a car. The high demand of constantly increasing functionality of these products is

associated with more complex design processes. Modern system-on-chip architectures have

up to billions of transistors [4] which increase the design complexity dramatically. Designers

follow multiple strategies to cope with this complex process to save time and money.

One option is to describe models of prototypes on different levels of abstraction and increase
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their granularity iteratively during the design process. After a prototype fulfills the require-

ments at a certain abstraction level, the model is refined to the next lower abstraction level.

Figure 1.1 shows established abstraction levels with the number of components per model

at each level. In this dissertation, we focus on designs at the system level.

1E7

1E6

1E5

1E4

1E3

1E2

1E1

1E0

Transistor

Gate

RTL

Algorithm

System

Level Number of Components

A
b

s
tr

a
c
ti
o

n

A
c
c
u

ra
c
y

Figure 1.1: Level of abstractions for embedded system design [24]

Designers use simulation as a tool to make better design decisions for their prototypes.

However, simulations of complex systems are time consuming and become a bottleneck in

the tool flow. Traditionally, simulation uses the concept of DES to simulate the individual

components in a sequential fashion.

In this dissertation, we provide a compiler infrastructure to analyze system level models. The

proposed RISC compiler infrastructure is implemented for the IEEE SystemC SLDL 1. The

infrastructure is extendable and we can use it in many ways. On one hand, we obtain model

information, e.g. communication aspects through visual thread communication graphs. On

the other hand, we have advanced static and novel dynamic analysis to execute simulation

in parallel.

1Note that here the term RISC does not represent the term reduced instruction set computer.
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1.2 SystemC

In this section [46], we are introducing the SystemC class library for C++ that is developed

for modeling and simulating hardware and software components of embedded systems. UC

Irvine presented the very first SystemC version 0.9 in September 1999 and the current version

is 2.3.2. The Accellera Systems Initiative [5] maintains the recent IEEE Std 1666TM-2011

[3] standard. In this introduction, we focus on core aspects that are the basic components

and the simulation kernel.

SystemC Components

In SystemC the structural hierarchy of a model is defined by modules. A SystemC module

is the smallest container of functionality with state, behavior, and structure for hierarchical

connectivity [9, definition on p. 49]. A module is a class that is derived from the sc_module

class and can contain sub-modules. This mechanism allows creating structural hierarchy.

The SystemC simulation process is the basic unit of execution [9, p. 51]. A simulation

process is associated with a member function of the module and can model for instance

combinatorial or sequential circuits. Each process has a sensitivity list that can contain

zero, one, or many events. The SystemC scheduler activates a process, if an associated event

is triggered.

SystemC distinguishes between three different types of processes, namely SC_THREAD,

SC_CTHREAD, and SC_METHOD. A running SC_METHOD process is executed from the

beginning to the end without any interrupt. After the process has completed, the control

returns to the SystemC scheduler. SC_THREAD and SC_CTHREAD processes are initially

started in the elaboration phase (see the following section) and executed until the associated

function has ended or through a call of the wait() function. A SC_CTHREAD function is
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sensitive to a clock and a wait simulates a clock cycle. A SC_THREAD can wait for an

individual event or a timed event.

The communication between modules is performed by the so-called channel-interface-port

concept. A module has ports that allows communication with the environment. The in-

dividual ports are typed through an interface. Channels are bound to ports, however, the

bound channel and port must use the same interface otherwise a binding is not possible.

If a process performs an operation via the port, the interaction will be forwarded to the

channel. This concept separates computation and communication. Another type of ports is

the so-called export. An export, as the name mentions, exports the interface of a channel or

another export to the parent module. A port can be bound to a port or an export.

Figure 1.2 shows a graphical annotation of SystemC elements. The modules m1 and m2

are communicating via the channel c. The channel provides two different interfaces that are

indicated by the different colors. Module m1 requires a channel with a blue, and module m2

and sub module s require a green interface. The channel 2 is contained in the model m2.

Via the export, the blue interface is provided to the parent module testbench. The process

p1 drives the port and process p2 can only communicate to process p1 via events.

module m1

sub-module s

testbench module

channel c

module m2

process 
p2

port with interface

port with interface

channel with two different interfaces

export

process 
p1

Figure 1.2: Graphical structure of a SystemC model.
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SystemC Simulation Kernel

The SystemC simulation kernel has three major phases, namely elaboration, simulation, and

clean up. The elaboration is the first phase, when all modules are instantiated and channels

are bound to the ports. When all ports and modules are correctly bound, the second phase

will start. The function call sc_start() starts the simulation of the SystemC scheduler.

The semantic of the SystemC simulation kernel is close to the VHDL or Verilog simulation

kernel [36] and has eight steps [26, chapter 2.10]. Figure 1.3 shows the individual simulation

steps of the kernel. After simulation, the third phase clean up starts and all allocated

resources are deallocated.

Phase 3: Clean up

Phase 1: Elaborate Phase 2: Simulate

Initializesc_start() Evaluate

Update

Advance
Time

sc_main() Executes code possibly 

issuing events or updates. 

Either suspend waiting or exit 

entirely.

.notify

(SC_ZERO_TIME)

delayed

While

processes

Ready

.notify() immediate

.notify(t) timed

SystemC Simulation Kernel

1

2

3

4 5

6

7

8

Figure 1.3: The SystemC simulation kernel (source [9, p. 109]). The focus is on the different
notification types. Immediate notifications will be considered at the same evaluation phase.
Delayed notifications will be considered at the next evaluation phase. A timed notification
will appear after t time units.

In the following we discuss the eight steps in detail:

1. Initialize: At the initialization, each process is executed once. A SC_METHOD is exe-

cuted completely and both, the SC_THREAD and the SC_CTHREAD, are either executed

completely or until a wait statement occurs. A special function call in the constructor
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of the module avoids the initialization of a process. The execution order is undefined

and can vary in different simulation kernel implementations.

2. Evaluate: The simulator picks a process, which is ready. The process will be executed

and may notify events. Every process that is sensitive to this event will be put into the

ready set. The process keeps executing until the function ended or a synchronization

point occurs.

3. If the ready set is not empty go to step 2.

4. Update: A process can request an update in step 2. The update mechanism is used

for delta cycles. A delta cycle contains the evaluation and the update (see Figure 1.3).

5. The update step can trigger new events. If any events have been notified, the processes

that are sensitive to these events will be moved to the ready set. If the ready set is not

empty go back to step 2. This will increase the delta count, however, not the simulated

time.

6. If there is no more timed notification, the simulation will finish.

7. If there is a timed notification, the simulation will continue to the next advanced time

cycle and set the delta count to 0.

8. Determine which processes are sensitive to the timed event, and put the processes into

the ready set. Then go to step 2.

The timeline of a simulation can be described by two dimensions. On the X axis is the

simulated time and on the Y axis is the number of delta cycles. Figure 1.4 shows such a

diagram.
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Figure 1.4: Time diagram with delta cycles

1.3 Recoding Infrastructure for SystemC (RISC)

The RISC is a compiler infrastructure for static and hybrid analysis of system level de-

signs written in SystemC. Note again that the term RISC does not represent the reduced

instruction set computer architecture.

In this section, we discuss the RISC software stack and the tool flow of the infrastructure.

1.3.1 Software Stack

Figure 1.5 shows the software stack of RISC. On top of a C/C++ software foundation, we

selected the ROSE compiler [42] and its internal representation (IR) to generate and maintain

an abstract syntax tree (AST) of the design model and the SystemC library. Our SystemC

IR layer represents SystemC constructs, such as modules, channels, instances, threads and

ports. On top of this, we have placed our Segment Graph Generator (see Section 1.4) which

creates graph for the individual threads. The individual back ends (see Section 1.3.2) use

the layers below to perform their individual analysis.
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RISC

Backend Analysis

Segment Graph 

Generator

C/C++ Foundation

ROSE IR

SystemC IR

Figure 1.5: Software stack of the RISC compiler

1.3.2 Tool Flow

Now, we discuss the tool flow of the RISC compiler infrastructure which is the central contri-

bution of this dissertation. Figure 1.6 shows the flow of the components in the infrastructure

and the dependencies between the individual components.

The input for the RISC compiler is the IEEE SystemC library and a SystemC model. Ad-

ditionally, the designer can provide results of a previously executed dynamic analysis to

support the static analysis.

The compiler has individual steps while processing the input. The foundation is the ROSE

compiler infrastructure [42] which translates the SystemC library and the input model into an

Abstract Syntax Tree (AST). The ROSE Application Programming Interface (API) makes

it possible to perform analysis of variables and data types, modify the AST, and to perform

source-to-source transformations. The RISC front end uses these tools to have SystemC

sensitive analysis.
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Figure 1.6: Tool flow of the RISC compiler

Specifically, the internal SystemC representation analyzes the input model and identifies all
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user defined definitions. In other words, the AST is traversed for the module and channel

definitions and their properties as simulation threads, variables, and ports. Based on the

knowledge of the internal representation, for each simulation thread a related SG is cre-

ated. Next, the data conflict and the event notification dependencies among the individual

segments are computed (see Section 1.4). To avoid false positive conflicts, we perform the

channel and module instance analysis (see Section 3.1.1) to distinguish different instances

of variables. Alternatively, we prepare the model thorough transformations for the hybrid

analysis (see Chapter 4).

The output of the compiler depends on the individual backend, namely the thread com-

munication graph generator, the parallel model generator, the dynamic analysis, and the

vectorization identifier.

The Thread Communication Graph Generator produces communication charts to gain a

better understanding of the design. Such charts show communication between the individ-

ual segments and the related modules which respect to the DES semantics. Through this

information, legacy source code is faster analyzable and visually documented. The graph

generation is described in detail in Chapter 2.

The output from the Parallel Model Generator is a parallel SystemC model (cpp file) in-

cluding the original model with instrumented wait statements, a data conflict table, and an

event notification table (see Section 1.4). In other words, this model contains information

for the parallel simulation library how to run the individual simulation threads in parallel on

different Central Processing Unit (CPU)s. Next, this file is compiled with a general purpose

compiler (e.g. GNU’s g++ or Intel’s icpc for extra vectorization support) and generates an

executable. The executable links against a parallel version the SystemC library [29] which

supports advanced simulation technologies like out-of-order scheduling [16] and conflict pre-

diction [15]. Given a parallel SystemC model, the simulator synchronizes the individual

threads through the instrumented wait statements and prevents data and timing hazards

10



through the data conflict and event notification table. Advanced techniques to reduce the

amount of false positive hazards are introduced in Chapter 3.

The Dynamic Analysis back end generates an executable which simulates until the end of

elaboration (see Section 1.2) to gain structural information about the design. After com-

pleting the elaboration, the module hierarchy with the corresponding members are written

into a file. This information it taken into account for a more precise analysis. The complete

context of this concept is explained in Chapter 4.

The traditional Parallel Discrete Event Simulation (PDES) focuses on thread level paral-

lelism. However, it does not utilize the support of vectorization units for data level paral-

lelism. The Vectorization Identifier addresses this issue and analyzes the individual threads

for data level parallelism opportunities. The output of the back end is a list of loops which

are recommended for vectorization. However, this list cannot be automatically instrumented

through the limitations of static analysis (e.g. overlapping arrays). The designer must add

the vectorization proposals manually to the file through the limitations of static analysis.

This technique is discussed in Chapter 5.

1.4 Segment Graph

The Static Conflict Analysis [22] identifies potential race conditions between the individual

threads. In detail, we partition each thread into so-called segments. A segment considers

all potentially executed statements between two scheduling steps. A new scheduling step

is triggered with a wait() function call which gives control back to the simulation kernel.

Figure 1.8 shows a SG of the source code in Figure 1.7.
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0 void foo() { 

1   r++;

2   wait();

3   a=b+c;

4   if(condition){

5     i++;

6     wait();

7     j++;

8   } else {

9     b=x+y;

10  }

11  z=z*z;

12  wait()

13  y=z+4; }

Figure 1.7: Example Source Code [48]

r++

a=b+c;

condition

i++

b=x+y;

z=z*z;

wait (line 2)

j++

z=z*z;

wait (line 6)

y=z+4;

wait (line 12)

Figure 1.8: Segment Graph [48]

Algorithm 1 formally defines the central function BuildSG [48] which build the SG. Function

BuildSG is recursive and builds the graph of segments by traversing the AST of the design

model. Here, the first parameter CurrStmt is the current statement which is processed next.

The set CurrSegs contains the current set of segments that leads to CurrStmt and thus will

incorporate the current statement. For instance, while processing the assignment z=z*z in

Figure 1.8, CurrSegs is the set {wait(line2), wait(line6)}, so the expression will be added to

both segments.
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Algorithm 1 Segment Graph Generation

1: function BuildSG(CurrStmt, CurrSegs, BreakSegs, ContSegs)
2: if isBoundary(CurrStmt) then
3: NewSeg ← new segment
4: for Seg ∈ CurrSegs do
5: AddEdge(Seg, NewSeg)
6: end for
7: return { NewSeg }
8: else if isCompoundStmt(CurrStmt) then
9: for Stmt ∈ CurrStmt do
10: CurrSegs ← BuildSG(Stmt, CurrSegs, BreakSegs, ContSegs)
11: end for
12: return CurrSegs
13: else if isIfStmt(CurrStmt) then
14: AddExpression(IfCondition, CurrSegs);
15: NewSegSet1 ← BuildSG(IfBody, CurrSegs, BreakSegs, ContSegs)
16: NewSegSet2 ← BuildSg(ElseBody, CurrSegs, BreakSegs, ContSegs)
17: return NewSegSet1 ∪ NewSegSet2
18: else if isBreakStmt(CurrStmt) then
19: BreakSegs ← BreakSegs ∪ CurrSegs
20: CurrSegs ← ∅
21: return CurrSegs
22: else if isContinueStmt(CurrStmt) then
23: ContSegs ← ContSegs ∪ CurrSegs
24: CurrSegs ← ∅
25: return CurrSegs
26: else if isExpression(CurrStmt) then
27: if isFunctionCall(CurrStmt) then
28: return AddFunctionCall(CurrStmt, CurrSegs) . See Figure 1.9
29: else
30: AddExpression(CurrStmt, CurrSegs)
31: return CurrSegs
32: end if
33: else if isLoop(CurrStmt) then
34: return AddLoop(CurrStmt, CurrSegs) . See Figure 1.10
35: end if
36: end function

If CurrStmt is a boundary statement (e.g. wait), a new segment is added to CurrSegs with

the corresponding transition edges (lines 2 to 7 in Algorithm 1). Compound statements

are processed by recursively iterating over the enclosed statements (lines 8 to 12) while
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conditional statements are processed recursively for each possible flow of control (from line

13). For example, the break and continue statements represent an unconditional jump

in the program. For handling these keywords, the segments in CurrSegs move into the

associated set BreakSegs or ContSegs, respectively. After completing the corresponding loop

or switch statement, the segments in BreakSegs or ContSegs move back to the CurrSegs

set.

For brevity, we illustrate the processing of function calls and loops in Figure 1.9 and Fig-

ure 1.10. The analysis of function calls is shown in Figure 1.9. In step 1, the dashed circle

represents the segment set CurrSegs. The RISC algorithm detects the function call expres-

sion and checks if the function is already analyzed. If the function is encountered for the first

time, the function is analyzed separately, as shown in step 2. Otherwise, the algorithm reuses

the cached SG for the particular function. Then, in step 3, each expression in segment 1 of

the function is joined with each individual segment in CurrSegs (set 0). Finally, segments 4

and 5 represent the new set CurrSegs.

1

2 3

4 5

0

func()

Graph for func()

2 3

4 5

(1) (2) (3)

0+1

Figure 1.9: Function call processing [48]

0 1

2 3

4 5

while(var){

  //body

}

0+1

2 3

4 5

Graph for loop body

(1) (2) (3)

Figure 1.10: Loop processing [48]

Correspondingly, Figure 1.10 illustrates the SG analysis for a while loop. Again, the dashed

circle in step 1 represents the incoming set CurrSegs. The algorithm detects the while

statement and analyzes the loop body separately. The graph for the body of the loop is

shown in step 2. Then each expression in segment 1 is joined into the segment set 0 and the

new set CurrSegs becomes the joined set of 0+1, 4, and 5. Note that we have to consider
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set 0+1 for the case that the loop is not taken.

Listing 1.1 shows an example SystemC model where two threads th1 and th2 run in parallel

in modules M1 and M2, respectively. Both threads write to the global variable x, th1 in

lines 14 and 17, and th2 in line 35 since reference p is mapped to x. Before we can mark

these write conflicts in the data conflict table, we need to generate the SG for this example.

The SG with corresponding source code lines is shown in Figure 1.11, whereas Figure 1.12

shows the variable accesses by the segments. Note that segments 3 and 4 of thread th1 write

to x, as well as segment 8 of th2 which writes to x via the reference p. Thus, segments 3, 4,

and 8 have a write conflict. This is marked properly in the corresponding data conflict table

shown in Figure 1.13.

1 #include "systemc.h"
2 int x = 0;
3 int y;
4 SC_MODULE(M1) { // Module M1
5 SC_HAS_PROCESS(M1);
6 sc_event &event;
7 M1(sc_module_name name, sc_event &e): event(e)
8 { SC_THREAD(main); }
9 void main() {

10 int temp = 0;
11 while(temp++<2) {
12 wait(1, SC_MS);
13 wait(event);
14 x = temp;
15 }
16 wait(3, SC_MS);
17 x = 27;
18 }
19 };
20 SC_MODULE(M2) { // Module M2
21 SC_HAS_PROCESS(M2);
22 int i;
23 int &p;
24 sc_event &event;
25 M2(sc_module_name name, int &pp, sc_event &e):
26 sc_module(name), p(pp), i(0), event(e)
27 { SC_THREAD(main); }
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28 void main() {
29 do {
30 wait(2, SC_MS);
31 y = i;
32 event.notify(SC_ZERO_TIME);
33 } while(i++<2);
34 wait(4, SC_MS);
35 p = 42;
36 }
37 };
38 SC_MODULE(Main) { // Module Main
39 sc_event event;
40 M1 m1;
41 M2 m2;
42 Main(sc_module_name name):
43 sc_module(name), m1("m1", event), m2("m2", x, event)
44 { }
45 };
46 int sc_main(int argc, char **argv) {
47 Main m("main");
48 sc_start();
49 return 0;
50 }

Listing 1.1: SystemC example with two parallel threads in modules M1 and M2.

In general, not all variables are straightforward to analyze statically. SystemC models can

contain variables at different scopes, as well as ports which are connected by port maps. The

RISC compiler distinguishes and supports the following cases for the static variable access

analysis.

1. Global variables, e.g. x, y in lines 2 and 3 of Listing 1.1: This case is discussed above

and is handled directly as tuple (Symbol, AccessType).

2. Local variables, e.g. temp in line 10 for Module M1: Local variables are stored on the

stack and cannot be shared between different threads. Thus, they can be ignored in

the variable access analysis.

3. Instance member variables, e.g. i in line 2 for Module M2: Since classes can be
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instantiated multiple times and then their variables are different, we need to distinguish

them by their complete instance path added to the variable name. For example, the

actual symbol used for the instance variable i in module M2 is m.m2.i.

4. References, e.g. p in line 23 in module M2: RISC follows references through the module

hierarchy and determines the actual mapped target variable. For instance, p is mapped

to the global variable x via the mapping in line 43.

5. Pointers: RISC currently does not perform pointer analysis. This is planned as fu-

ture work. For now, RISC conservatively marks all segments with pointer accesses as

potential conflict with all other segments.

Segment ID: 0 [M1::main]

Example.cpp:10 int temp = 0;

Example.cpp:11 temp++ < 2

Segment ID: 2 (Example.cpp:12)

Segment ID: 4 (Example.cpp:16)

Example.cpp:17 x = 27

Segment ID: 3 (Example.cpp:13)

Example.cpp:14 x = temp

Example.cpp:11 temp++ < 2

Segment ID: 5

Segment ID: 7 (Example.cpp:30)

Example.cpp:31 y =(this) -> i

Example.cpp:32 (this) -> event . notify(SC_ZERO_TIME)

Example.cpp:33 (this) -> i++ < 2

Segment ID: 8 (Example.cpp:34)

Example.cpp:35 (this) -> p = 42

Figure 1.11: Segment graph generated by RISC for the example in Listing 1.1, source [22]
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Segment ID: 0 [M1::main]

(W) temp

(R) temp

Segment ID: 2 (Example.cpp:12)

Segment ID: 4 (Example.cpp:16)

(W) x

Segment ID: 3 (Example.cpp:13)

(W) x

(W) temp

(R) temp

Segment ID: 5

Segment ID: 7 (Example.cpp:30)

(W) y

(W) i

(R) SC_ZERO_TIME

(R) i

Segment ID: 8 (Example.cpp:34)

(W) p

Figure 1.12: Segment graph with variable access list generated by RISC for the example in
Listing 1.1, source [22]

0 2 3 54 7 8

0

2

3 T T T

4 T T T

5

7 T

8 T T T

Figure 1.13: Data conflict table for the ex-
ample in Listing 1.1, source [22]

0 2 3 54 7 8

0

2

3

4

5

7 T

8

Figure 1.14: Event notification tables for the
example in Listing 1.1, source [22]
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1.5 Goals

In this dissertation, we aim to provide a compiler infrastructure to analyze system level

designs for the SystemC library. We define the following requirements for this dissertation.

• Graphical representation: Design exploration considers refinement, extending, and

optimizing of given models. Refinement is a complex task especially the process of

analyzing the communication and synchronization steps between the individual com-

ponents. The RISC compiler should provide visual support to guide the designer

through the refinement process.

• Advanced conflict analysis: The parallel simulation is based on the SG data struc-

ture which partitions threads into smaller source code segments. In the next step, the

individual segments are analyzed for data and timing hazards. The necessarily pes-

simistic conflict analysis causes false positive conflicts to avoid simulation corruption

through false negative conflicts. However, a too pessimistic analysis prevents parallel

simulation and the simulator executes threads sequentially. The RISC compiler needs

a more sophisticated analysis to prevent false positive channel conflicts and to handle

references properly.

• Hybrid analysis: Design exploration requires extensive prototyping of models with

different configurations to sort out misleading paths. Designers provide such configu-

rations via command line to configure properties, e.g., the grid size of a NoC model.

The static analysis takes place at compile time and consequently it cannot consider

parameters which are provided at run time. The RISC compiler needs a hybrid analysis

technique to process models which take command line parameters into account.

• Vectorization: Traditional PDES focuses on thread parallelism. Modules are exe-

cuted by individual threads which execute on a set of available CPUs. We take data
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level parallelism into account to simulate the individual threads at a higher speed in

parallel. The RISC compiler needs to identify loops for vectorization to exploit the

host simulation platform.

• Open Source: SystemC is an open source project which benefits from contributions

of many individuals and companies. This work matches this philosophy as an open

source project and as such is our contribution to the SystemC and EDA community.

The remainder of this dissertation is organized as following. In Chapter 2 [48], we introduce

the concept of a Thread Communication Graph (TCG). In an ideal top-down system design

flow, graphical diagrams are designed before an executable specification in a SLDL is derived.

Such initial charts typically also serve as visual documentation of the textual specification

and aid in maintaining the model. In the absence of graphical charts, e.g., in case of legacy

or 3rd party code, a textual SLDL model is hard to comprehend for any unfamiliar designer.

Here, we propose to automatically extract graphical charts from given SystemC code to

ease the understanding of the source code with a visual representation. Specifically, we

extract the communication flow between the threads from the design model by use of an

automatic SystemC compiler infrastructure that statically analyzes the code and generates

custom TCG similar to message sequence charts. Our experimental results on embedded

applications demonstrate that our novel static analysis can quickly extract accurate TCG

that are highly useful for designers in becoming familiar with new source code.

In Chapter 3 [47], we introduce advanced techniques to improve the precision of the static

conflict analysis. Many parallel SystemC approaches expect a thread safe and conflict free

model from the designer. Alternatively, an advanced compiler can identify and avoid possible

parallel access conflicts. While manual conflict resolution can theoretically be more precise,

it is impractical for real world applications because of the inherent complexities. Here au-

tomatic compiler-based analysis is preferred which provides conservative conflict avoidance

with minimal false positives. Section 3.1 [47] introduces a novel compiler technique called
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Port Call Path (PCP) analysis that greatly reduces the amount of false positive conflicts

resulting in significantly increased simulation speed. Experimental results show that the

new analysis reduces the amount of false conflicts by up to 98% and, on a 4-core processor,

speeds up the simulation up to 3x for a NoC particle simulator and 3.5x for a Bitcoin miner

SystemC model. In Section 3.2, we introduce a new technique to resolve C++ references in

SystemC models. Experimental results show that these improvements reduce the amount

of false conflicts by up to 98% and, on a 4-core processor, speed up the simulation by up

to 3.5x for a Bitcoin miner SystemC model. Additionally, we measure a speedup of 1.51x

from the parallel particle simulator with reference version to the parallel particle simulator

without references.

In Chapter 4 [50], we introduce the concept of a hybrid analysis. Parallel SystemC approaches

expect a thread-safe and race-condition-free model from the designer or use a compiler which

identifies the race conditions. However, they have strong limitations for real world examples.

Two major obstacles remain: a) all the source code must be available and b) the entire

design must be statically analyzable. In this chapter, we propose a solution for a fast and

fully accurate parallel SystemC simulation which overcomes these two obstacles a) and b).

We propose a hybrid approach which includes both static and dynamic analysis of the design

model. We also handle library calls in the compiler analysis where the source code of the

library functions is not available. Our experiments demonstrate a 100% accurate execution

and a speedup of 6.39x for a Network-on-Chip particle simulator.

In Chapter 5 [49], we use the RISC compiler to detect vectorization opportunities system

level designs. Most parallel SystemC approaches have two limitations: (a) the user must

manually separate all parallel threads to avoid data corruption due to race conditions, and (b)

available hardware vector units are not utilized. In this chapter, our infrastructure exploits

opportunities for data-level parallelization. Our experimental results show a nearly linear

speedup of N ×M , where N and M denote the thread and data-level factors, respectively.
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In turn, a 4-core multi-processor achieves a speedup of up to 8.8x, and a 60-core Xeon Phi

processor reaches up to 212x.

1.6 Related Work

In this section, we discuss other works that are related to this dissertation. SLDLs in context

of the SG haven been intensively discussed in the Lab for Embedded Computer Systems

(LECS). In the first part, we review the RISC compiler framework of this dissertation which

shares similarities with the SpecC environment [21]. In the second part, we discuss other

works in the domain of parallel simulation and DES.

1.6.1 LECS Group

We discuss related work of the SG of the LECS group in this section. Figure 1.15 visualizes

the following discussion and dependencies between the individual contributions.

The SpecC language and compiler was introduced by Dömer [21] for modeling and simulating

embedded system models. The SpecC compiler uses static analysis to obtain information

of a model and generates an executable for simulation. Chen extended the SpecC compiler

infrastructure in many ways, however, we exclusively focus on extensions related to this

dissertation. First, the SpecC compiler and simulator is extended to run simulations in

parallel on the thread level [18]. This extension includes the introduction of the SG and the

related data, event, and timing tables. Different types of behaviors (modules) and channels

can simulate in parallel if the related segments are conflict free.
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Figure 1.15: Context and overview of this dissertation

This work of PDES is extended in [14] where the concept of instance isolation is introduced.

The SpecC compiler distinguishes between multiple instances of the same module type. Each

module is associated with an individual instance analysis which is respected during the

conflict analysis. Instead of comparing symbols only, we now compare symbols with the

associated module instance ID. Channel variables, however, are not distinguished. The
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reason and the needs for advanced channel instance ID analysis are discussed in Section 3.1.1.

[16] introduces the concept of out-of-order simulation where simulation threads break the

time boundary. In other words, simulation threads run ahead of the global time and syn-

chronize later when there is no upcoming conflict.

The concept of a hybrid analysis was introduced for the RISC compiler. Specifically, the

model is pre-simulated until the end of the elaboration and writes structural information in a

file. This file takes the RISC compiler into account and can perform a more precise analysis.

The advanced hybrid analysis is for instance needed when modules are dynamically created

in a loop. This works is published in [50] and is discussed in Chapter 4.

The work of module instance IDs is extended for channel instance IDs to reduce the number

of false positive marked race conditions. Therefore, a new technique, the PCP, is introduced

to store control flow transitions from a module to a channel. This makes it possible to identify

channel instance IDs and to distinguish member variables. This work [47] is discussed in

Section 3.1.1.

References can appear as member variables or as function parameter in models. Unresolved

references must be marked as conflicts in the conflict analysis to avoid race conditions and

generate false positives conflicts. The combination of advanced static analysis and the PCP

technique makes it possible to resolve references and to determine mapped variables. This

still unpublished work to reduce the number for false positives conflicts in context of refer-

ences is discussed in Section 3.2.

Another work in context of static analysis and library handling is published in [50] and is

discussed in Chapter 4. An annotation scheme for libraries is introduced which is considered

by the static analysis. This scheme makes it possible to include 3rd party libraries in a

thread-safe parallel simulation.
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Previous works focus on simulation speed through thread level parallelism. A new approach

for thread and data level parallelism for system level simulation is introduced in Chapter 5

and published in [49]. Each thread is analyzed for vectorizable loops in the model to benefit

from vectorization units. After the analysis, the designer gets a list of recommendations for

vectorization and has to decide which loops should be vectorized.

The SG is interpreted in a new way for documentation aspects in terms of Communication

Charts. A graphical visualization makes is possible to visualize communication steps be-

tween individual elements and their dependencies. This work is discussed in Chapter 2 and

published in [48].

The section uncharted territory in Figure 1.15 describes future opportunities to utilize the

RISC compiler infrastructure for new projects. Transaction-Level Modeling (TLM) 2.0 elim-

inates the concept of channel and introduces the concept of direct memory access to save

context switches and gain additional speedup. It should be possible to identify the individual

communication patterns and prepare these models for parallel simulation as well. Another

open task is the treatment of partial SGs. Currently, it is a requirement of the RISC compiler

to have the entire design in one file. However, real world applications are distributed over

multiple files. There is a need to generate SGs for individual files and combine them later.

1.6.2 Other Related Work

In this section we discuss a general overview of contributions in the domain of PDES. In

Chapter 2, Chapter 3, Chapter 4, and Chapter 5 we compare these works more detailed and

analyze them in context of the individual contribution of the dissertation.

Chen worked in the LECS group, too, and focused her research on PDES and static analysis

for SpecC models. She provides a nice and comprehensive related work section in [13]. The

25



sections ”General Programming Approaches” and ”Parallel Discrete Event Simulation” are

taken from Chen.

General Programming Approaches

The concept of multithreaded programming is implemented or provided through libraries in

many programming languages. Posix Threads [2] [41] and OpenMP [39] are well established

libraries for parallel programming in C and C++. Java has the language the dedicated

keyword synchronized and provides the interface Runnable and the class Thread.

Also there are dedicated languages for parallel programming like Erlang [8] from Erricson,

Cilk [20] [52] from Intel/MIT, CUDA [38] from Nvidia, among many others.

Parallel Discrete Event Simulation

The domain of PDES is a well studied topic in the literature. A first study is provided by

Chandy and Misra in 1979 [12]. Additionally, Fujimoto made a contribution for PDES in

1990 [23] and Nicol and Heidelberger for parallel execution for serial simulators in 1996 [37].

Generally speaking, PDES techniques can be categorized in two groups, namely, conservative

and optimistic. Conservative techniques prevent data and timing hazards and they need ad-

vanced analysis techniques to eliminate false positive race conditions. Optimistic techniques

assume no hazards and perform rollback strategies when a hazard is detected. However,

rollback strategies are expensive to implement and they are time costly during simulation.

The work of this dissertation belongs to the category of conservative strategies.

PDES can be performed on a local host or even distributed over a network of host machines.

This approach is discussed in [12] and [27]. However, partitioning the model in the complex

task and the simulation speed is limited through the network connection, too.
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SystemC Related

CARH [40] is an architecture for validating system-level designs. The software documenta-

tion generation tool Doxygen[7] and other open source tools generate a XML representation

of source code.

A very similar tool is the systemc-clang framework [28] for static analysis of SystemC mod-

els which generates an intermediate representation of Register-Transfer Level (RTL) and

TLM designs. systemc-clang can identify communication properties (callback function name,

socket name, payload information, and others) through static analysis in TLM 2.0 style.

Their compiler recognizes communication function calls. PinaVM [33] is a tool which bases

on LLVM to extract structural information and is inspired by [35]. Scoot [10] is a tool for

type checking to gain faster simulation via code re-synthesis.

Time decoupling is a widely-used method that speeds up the simulation of SystemC models.

Parts of the model execute in an unsynchronized manner for a user defined time quantum.

However, this strategy is associated with inaccurate simulation results [25]. [54] and [55] pro-

pose a technique to parallelize time-decoupled designs. This technique requires the designer

to manually partition and instrument the model in parts of time-decoupled zones.

A tool flow for parallel simulation of SystemC RTL models was proposed in [44]. The model

was partitioned according to a modified version of the Chandy–Misra–Bryant algorithm [12].

In contrast, our conflict analysis considers the individual statements of threads.

The authors in [53] describe an API to manually transform a sequential SystemC design

into a parallel design. An approach of static analysis for simulation of SystemC models on

GPUs was provided in [51]. Bombieri [11] proposes an automated transformation of RTL

applications to GPUs.
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Chapter 2

Static Communication Graph

Generation

In this chapter, we use the introduced RISC compiler infrastructure (see Section 1.3) and the

SG data structure (see Section 1.4) to generate visual representation of SystemC models.

The new introduced TCG is helpful to become familiar with 3rd party source code and

to represent graphically the individual communication and synchronization steps between

models.

2.1 Introduction

A picture is worth a thousand words. In the absence of a picture or graphical charts, the

model of a system described in a SLDL is hard to comprehend. For the system designer who

faces legacy code that needs to be reused and revised, identifying essential design elements,

such as the main design modules, threads and their communication patterns, becomes a

tedious and lengthy task. Before adjustments, improvements or extensions of the model can
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be applied, the existing source code needs to be read, analyzed and fully understood. Without

documented schematic charts, such reverse engineering can require months of unproductive

time.

In this chapter, we propose an automated technique to quickly generate graphical charts

from SystemC source code that can help the system designer in understanding third party

or legacy models. Our automatic chart generator, which is based on sophisticated static

code analysis by a novel SystemC compiler, quickly produces module hierarchy trees and

multi-thread communication charts that assist the designer to puzzle out and grasp the

intricacies of the complex source code. As such, this work provides a powerful resource in

getting familiar with legacy or third-party SystemC code.
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Sender::main INIT

Segment ID: 1

Ack.notify(SC_ZERO_TIME)

send_data()

event.notify(SC_ZERO_TIME)

Segment ID: 4

send_data()

event.notify(SC_ZERO_TIME)

Segment ID: 8

Segment ID: 10

receive_data()

Segment ID: 5

End.notify(SC_ZERO_TIME)

Segment ID: 6

Segment ID: 12

compute_checksum()

Receiver::main INIT

Req.notify(SC_ZERO_TIME)

Figure 2.1: Generated TCG from SystemC code

Figure 2.1 shows an example TCG that we generated automatically from original SystemC

source code for a model where a pair of modules obviously communicates in producer-

consumer fashion. Instead of reading the 586 lines of source code distributed over 3 files

that make up the design model, a simple glance over the quickly generated figure reveals the

essential communication protocol used between the modules Sender and Receiver. A closer

look at the chart then shows that events Req, Ack, and End are used to synchronize the com-

municating parties, then data is exchanged in a loop, and finally a checksum is computed.

The automatically generated TCG clearly saves the designer precious time in understanding

the model.
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The key contributions of this chapter are as follow:

• We developed a dedicated compiler to analyze the structural and behavioral aspects

of legacy SystemC code.

• We integrated the SystemC DES semantics in the analysis.

• We designed a novel algorithm to extract communication patterns and illustrate them

in form of a chart.

• We demonstrated the capabilities of our project on a 3rd party library and an abstract

AMBA bus model.

• We contribute our SystemC compiler to the open source community.

2.1.1 Related work

Static analysis of source code has been discussed in various works. CARH[40] is an ar-

chitecture for validating system-level designs. The software documentation generation tool

Doxygen[7] and other open source tools generate a XML representation of source code. Our

work differs in that we analyze and identify the structural and behavioral aspects of the

model. Specifically, we focus on the communication pattern in a given design. We utilize the

knowledge of DES semantics to achieve a deeper recognition of the design. In comparison,

general purpose tools like Doxygen cannot handle this task. The missing sensitivity to the

SystemC semantics does not allow deeper analysis. Doxygen is familiar with C++ constructs

like classes, templates, functions, and other concepts. However, the tool is not trained to

analyze modules, channels, and event notifications and cannot extract communication.

A very similar tool is the systemc-clang framework [28] for static analysis of SystemC models

which generates an intermediate representation of RTL and TLM designs. systemc-clang can
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identify communication properties (callback function name, socket name, payload informa-

tion, ...) through static analysis in TLM 2.0 style. Their compiler recognizes communication

function calls. The attributes of the communication type are analyzed through the function

parameters. However, we are analyzing the port binding, linked channels, and communi-

cation peers as well. Thus, our approach is designed for static analysis of structural and

behavioral communication charts among the threads in the model.

PinaVM [33] is a tool which bases on LLVM to extract structural information. This work is

inspired from [35]. Scoot [10] is a tool for type checking to gain faster simulation via code

re-synthesis.

A SG was first proposed in [16] for out-of-order scheduling to speedup simulation in context of

the SpecC language, and later [17] to detect race conditions and parallel execution conflicts.

In contrast, we are generalizing the concept of the SG for SystemC and aim at extracting

communication graphs from source code.

The rest of this chapter organized as following. We introduce the TCG in Section 2.2.

Following, in Section 2.3 we explain how to generate a TCG from a SG. Our experiments

are presented in Section 2.4, followed by a summary and future work in Section 2.5.

2.2 Thread Communication Graph

The design process of embedded systems typically requires combining various in-house mod-

ules and third party components, each of which the system designer needs to become familiar

with. Minimizing the time to study new parts is critical, so the designer needs to focus on the

essential aspects, including the communication and causal chain of composed components.

Tools like Doxygen can generate call graphs to illustrate the software function hierarchy.

However, these tools are agnostic to the system design semantics. To be effective, SystemC
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constructs for structure and communication need to be recognized and properly represented.

func 1 func 2

1: a

2: b

3: e1.notify()

4: wait(e2)

5: c

6: d

1: wait(e1)

2: x

3: y

4: z

5: e2.notify()

(a) Two functions

SC_THREAD 1 SC_THREAD 2

1: a

2: b

3: e1.notify()

4: wait(e2)

5: c

6: d

1: wait(e1)

2: x

3: y

4: z

5: e2.notify()

(b) Threads and events

SC_THREAD 1 SC_THREAD 2

Seg A:

1: a

2: b

3: e1.notify()

Seg C:

5: c

6: d

2: x

3: y

4: z

5: e2.notify()

Seg B: wait(e2) Seg D: wait(e1)

(c) DES dependency

Figure 2.2: Analysis of communicating threads

The problem of missing semantic analysis is illustrated in Figure 2.2. Two functions are

shown in Figure 2.2a, independent entities, as software tools would see them. When SystemC

semantics are applied, threads and events can be identified and the chart in Figure 2.2b can

visualize the synchronization between the two threads. Even more so, we can utilize the

knowledge of DES semantics and explicitly show the communication and timing dependencies

between the two threads.

Figure 2.2c shows the resulting graph when wait() is correctly represented as a construct

that incurs a delay due to the underlying multi-thread scheduling. For the remainder of this

chapter, we will refer to this as a segment boundary that separates the segments of code that

SystemC semantics imply as being executed without interruption. We will formally define

the corresponding SG below in Section 2.3.

In Figure 2.2c, the solid edges show the flow of thread execution over individual segments,

whereas the event notification dependencies are indicated by dashed lines. Here, segment A

notifies event e1 for which segment D is waiting. Thus, the designer can see immediately

that segment D must be executed before segment B.

Please note that for this analysis references and port mappings of events must be resolved

as well. For this, our approach generates an instance tree over the entire design hierarchy so
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that shared variables can be correctly disambiguated.

2.3 Static Compiler Analysis

At the core of our SystemC visualization is the RISC, an advanced compiler framework for

analyzing, executing and instrumenting SystemC models. The fundamentals of the RISC

infrastructure and the SG are introduced in Section 1.3 and Section 1.4.

2.3.1 Thread Communication Graph

Based on the generated SG, we then extract the TCG to aid designers who face legacy code

that needs to be reused and revised. For this, we identify and pair the synchronization and

communication points in the individual scheduling steps in the design.

The SG already determines which code elements are potentially executed in any given

scheduling step. However, we have to add the edges for the identified synchronization and

communication points. Specifically for event notifications, we have to analyze the notify()

and wait() function calls in each segment. Additionally, we need to identify any channel

communication calls, e.g read() and write(). Finally, the mapped channels and events

are followed and matched through the design hierarchy.

Port Mapping

SystemC ports provide a flexible interface to send and receive data via mapped channels (or

other mapped ports). While the indirect function calls via ports to channel methods are

a powerful modeling feature, it is difficult to follow the actual flow of control in unfamiliar

code. Here, our RISC compiler can help and determine which port is mapped to which
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channel, including for cases where this mapping goes through multiple levels of the design

hierarchy.

To resolve port mappings, two steps are required. First, a port needs to be unambiguously

identified in the hierarchy of the design. Second, we have to follow the module hierarchy to

find the mapped channel.

For step 1, we identify a port in the design through a so-called instance path. An instance

path is a list of tuples where each tuple contains a scope and an instance. For example, the

path to a port DataIn could be [GlobalScope::top] → [Top::platform] → [Platform::datain]

→ [DataIn::port1]. Note that the instance path uniquely identifies a port, even if there are

multiple instances of this port in the module hierarchy.

For step 2, we use the instance path to identify the mapped channel. Specifically, we analyze

the mapping between a tuple and its successor. Here, we check the module constructor and

identify the mapping to a channel or another port, and repeat the process as needed. In

each iteration we go up in the instance tree until the port is mapped to a channel.

Event and Reference Mapping

SystemC threads use events for synchronization with each other. If the synchronizing threads

are in the same module, a shared event variable in the module can be used. However, if

threads have to synchronize across module boundaries, an event at a higher level in the

hierarchy is needed, which is typically mapped via references.

Here, we can determine the reference mapping in the same fashion as the port mapping. We

describe the event by an instance path and go up the path until the reference is mapped to

an actual variable.
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Handling of Loops

Loops are naturally present in virtually all algorithms and clearly need to be supported by

our source code analysis. However, general loops can also lead to complex control flows

that are difficult to represent cleanly in visual graphs. For the purpose of our TCG, we

aim at a loop abstraction that simplifies the understanding of the protocol between the

communicating parties. Specifically, our goal is to visualize the overall sequential flow of

exchanged messages, in similar manner as exhibited by message sequence charts[34].

For our TCG, we support loops in one of two ways. On the one hand, we can assume that

each loop will be taken at least once. On the other hand, loops can be unrolled. By default,

our TCG assumes the first option because not every loop can be unrolled. Additionally, loop

unrolling can lead to state explosion and often decreases the readability of the TCG.

In context of communication protocols, it is reasonable to assume that the sender and the

receiver are exchanging messages equally. Listing 2.1 shows an example where thread1

notifies thread2 ten times. Here, the sender and the receiver are exchanging messages

and thus the associated notify() and wait() functions must be called equally often.

Figure 2.3 shows the TCG for the example in Listing 2.1. The graphs shows that the loop

is taken at least once.

1 void thread1() {
2 for(int i = 0; i < 10; i++) {
3 event.notify(SC_ZERO_TIME);
4 /* Do some stuff */
5 wait(SC_ZERO_TIME); } }
6 void thread2() {
7 for(int i = 0; i < 10; i++) {
8 wait(event);
9 /* Do some stuff */ } }

Listing 2.1: Producer and consumer example
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C:

event.notify(

SC_ZER_TIME)

A:

event.notify(

SC_ZER_TIME)

B: 

wait(SC_ZERO_TIME)

event.notify(

SC_ZER_TIME)

D:

wait(event)

Figure 2.3: Example of a loop with synchronization

2.3.2 Module Hierarchy

We can use the SystemC IR to determine the module hierarchy of the design model in two

steps. First, we identify the top module of the design. Unless explicitly specified by the

designer, we assume that the top module is declared in the function sc_main. From the

declaration, we can then derive the module definition. Finally, we can traverse the hierarchy

of the design as described in Listing 2.2.

1 traverse_hierarchy(ModuleDefintion md) {
2 foreach(ModuleInstance mi
3 in get_all_sub_mdules(md)) {
4 traverse_hierarchy(get_module_definition(mi))
5 }
6 }

Listing 2.2: Traversing the module hierarchy

The function traverse_hierarchy() takes the module definition md and iterates over

all its child modules. For each child module instance mi, the corresponding module definition

is determined and the function traverse_hierarchy() is called recursively.
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2.3.3 Optimization and Designer Interaction

The system designer has a set of configuration options and parameters available to get a

better picture of the design. For example, the designer can select what types of edges should

be displayed for the communication. Our TCG distinguishes native event notifications,

primitive, and hierarchical channel communication.

The system designer can also select only a subtree of the module hierarchy or a subset of the

SystemC threads for which the TCG will be generated. Thus, the designer can easily choose

and focus on the points of interest and see the communication and dependencies between

them.

Finally, pseudo comments may be used to indicate loop unrolling and wait statements can

be annotated and labeled. This information is then displayed in the generated graph for

enhanced readability.

Overall, the system designer can quickly and iteratively generate custom charts, getting more

familiar, and obtaining a better picture of the model and its components.

2.3.4 Visualization

Our RISC compiler performs the analysis and graph generation based on the internal rep-

resentation of the model and generates DOT files [6] for the SG and TCG. These files can

then be visualized by the DOT tools, e.g. as interactive chart on screen or as PDF.
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2.3.5 Accuracy and Limitations

The current implementation of our fully automated compiler has some limitations. We

cannot handle pointers. Also, currently we cannot match array indices in port mappings.

Our compiler produces charts which are giving an impression of the communication behav-

ior. However, static analysis can misinterpret situations and illustrate too many or too few

communication edges. As mentioned, a picture is worth a thousand words (and even if a

few words are inaccurate, the picture helps a lot in quick comprehension). For instance, in

Figure 2.7 we can see immediately that the master m1 requests the bus through the arbiter.

After the arbiter acknowledges the request, master m1 starts communicating to the slave.

We should emphasize that our TCG generator is fully automated and quickly visualizes

identified communication patterns without designer interaction. The generated illustrations

may be inaccurate in minor aspects (limitations listed above), but they nevertheless convey

an overall image that is helpful for getting to understand the source code quickly.

2.4 Experiments

We have evaluated our TCG generation from SystemC source code on a Mandelbrot graphics

application, an AMBA bus model, and the S2CBench benchmark set. For all examples, we

tested both our hierarchical and communication analysis.

2.4.1 Mandelbrot Renderer

The Mandelbrot example computes a stream of Mandelbrot [32] images and as such is a

representative for highly parallel graphics applications. The source code is complex, heavily

instrumented with macros for customization. Here, we choose 2 parallel renderer modules.
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The Mandelbrot module hierarchy is shown in Figure 2.4.

Top top

+- DataChannel c1

+- DataChannel c2

+- Stimulus stimulus

+- Platform platform

+- DataIn din

+- DUT dut

+- main (thread)

+- mb1 (thread)

+- mb2 (thread)

+- mb3 (thread)

+- mb4 (thread)

+- DataOut dout

+- Monitor monitor

Figure 2.4: Module hierarchy of the Mandelbrot

We can deduce that the modules Stimulus and Monitor feed data in and out of the Platform

and in turn the Device Under Test (DUT) (via DataIn and DataOut). The DUT hosts one

main and four worker threads mb1, mb2, mb3, and mb4.

Next, we performed behavioral analysis and generated TCG, such as Figure 2.5. The INIT

segments start threads and the solid arrows illustrate the transitions between the segments.

The dashed arrows show the event synchronization. The generated Figure 2.5 focuses on the

synchronization between the main and worker threads in the module DUT. We can see that

the thread main notifies the worker threads mb1, mb2, mb3, and mb4 when data is available

and both respond back to main.
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Segment ID: 5 [DUT::mb1] INIT

Segment ID: 7

mandel1.notify(SC_ZERO_TIME)

Segment ID: 4

mb_run.notify(SC_ZERO_TIME)

Segment ID: 11 [DUT::mb2] INIT

Segment ID: 13

mandel2.notify(SC_ZERO_TIME)

Segment ID: 2 [DUT::main] INIT

mb_run.notify(SC_ZERO_TIME)

Segment ID: 19

mandel1.notify(SC_ZERO_TIME)

Segment ID: 25

mandel2.notify(SC_ZERO_TIME)

Segment ID: 17 [DUT::mbj] INIT Segment ID: 23 [DUT::mb4] INIT

Figure 2.5: Mandelbrot TCG for DUT

Figure 2.6 shows a higher level of communication analysis, where our RISC compiler first

analyzed the module hierarchy and channel binding to identify the port mapping. Then it

followed the port mapping through the different module levels and associated them with

the corresponding read() and write() function calls. The resulting communication and

data flow is generated in Figure 2.6. We can easily see that the data flows from Stimulus

via DataIn into the DUT where the coordinates are processed. An image is then sent via

DataOut to the Monitor module.

Segment ID: 0 [DataIn::main] INIT

CoordsIn->read(coords)

CoordsOut->write(coords)

Segment ID: 2 [DUT::main] INIT

CoordsIn->read(coords)

Segment ID: 4

ImgOut->write(image)

CoordsIn->read(coords)

Segment ID: 17 [DataOut::main] INIT

ImgIn->read(image)

ImgOut->write(image)

Segment ID: 21 [Monitor::main] INIT

ImgIn->read(image)

Segment ID: 19 [Stimulus::main] INIT

CoordsOut->write(coords)

Figure 2.6: Generated Mandelbrot TCG with data flow from Stimulus via DUT to Monitor

For both diagrams the assumption that loops are taken once fits very well. The combination

of the structural and behavioral analysis provides quick insight into the behavior of the

design.

2.4.2 AMBA Bus Model

As an example with complex multi-component communication, we reimplemented an AMBA

bus model from [43] at TLM abstraction. The generated module hierarchy is shown in

Figure 2.8.
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The corresponding TCG for a BWRITE operation is shown in Figure 2.7. Here, the red

dashed lines represent event notifications and blue dashed lines communication via channels.

We can clearly see that master M1 requests the bus through the arbiter via the event areq1.

In turn, the arbiter grants the bus to M1 via the agnt0 event. Next, M1 uses the bus to

send data via BD to the Slave, which receives the address via the Decoder. Without

this chart, the designer would need to read and study the 498 lines of code and manually

figure out the port mappings and execution dependencies.

Segment ID: 3 [Arbiter::main] INIT

Segment ID: 4

agnt0.notify(SC_ZERO_TIME)

Segment ID: 0 [M1::main] INIT

areq1.notify(SC_ZERO_TIME)

Segment ID: 1

port_decoder->write(0x24)

port_data_bus->write(0x23)

port_bwrite->write(1)

areq0

Segment ID: 8 [Decoder::main] INIT

port_decoder->read(address)

port_slave->write(address)

Segment ID: 7 [Slave::main] INIT

port_slave->read(address)

port_bwrite->read(bwrite_val)

port_slave->read(data)

Segment ID: 6 [BD::main] INIT

port_data_bus->read(data)

port_slave->write(data)

BWRITE

Figure 2.7: Communication Graph generated from an AMBA bus model for a BWRITE
operation

2.4.3 S2C Testbench

Finally we have evaluated our TCG generation on the S2CBench [45], a benchmark suite of

16 synthesizable SystemC models that includes industrial, automotive, security, telecommu-

nication, and consumer applications. Our RISC compiler accurately generates the module

hierarchy and TCG for these examples1. Due to space limitations, we unfortunately cannot

present the resulting graphs here.

Each TCG was generated in less than 34 seconds, where on average the compiler spent

15 seconds on AST creation (ROSE parser), 10 seconds for SystemC IR generation, and 9

seconds on the TCG.

1 For six of the 16 benchmarks, we manually replaced indexed array variables with regular ones, since
our RISC compiler currently cannot match array indices in port mappings.
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Top top

+- Channel master1 to decoder

+- Channel master2 to decoder

+- Channel address bus to decoder

+- Channel master1 to data bus

+- Channel master2 to data bus

+- Channel data to bus to slave

+- Channel decoder to slave

+- Channel master1 to slave bwrite

+- Master1 m1

+- Master2 m2

+- Arbiter arbiter

+- DataBus databus

+- Slave slave

+- Decoder decoder

Figure 2.8: Module hierarchy of the AMBA bus

2.5 Summary

Becoming familiar with an unknown SystemC design is an often necessary and complex pro-

cess. Designers have to identify communication patterns between threads and the behavior

of individual components which can consume weeks of unproductive work.

In this chapter, we propose the RISC compiler framework to analyze and identify struc-

tural, behavioral and communication aspects of SystemC models. Specifically, we auto-

matically extract execution, synchronization and communication dependencies and visualize

them quickly as TCG.

The experimental evaluation of our framework using more than a dozen SystemC examples
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from different application domains shows that the automatically generated module hierarchy

and visual communication charts are very helpful for system designers in becoming familiar

with legacy or third party source code.
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Chapter 3

Static Analysis for Reduced Conflicts

The RISC compiler infrastructure transforms sequential IEEE SystemC models to parallel

executable models. The data and event analysis module in RISC compiler front end (see

Figure 1.6 and Section 1.4) determines which segments (see Section 1.4) can be executed

in parallel and stores this information in tables. False positive table entries prohibit an

effective parallel simulation and increase the simulation time. In this section, we address

how to reduce false positive table entries through channel variables in Section 3.1 and false

positive table entries through unresolved references in Section 3.2.

3.1 Channel Analysis

In this section, we introduce the PCP analysis technique to reduce the number of false

positive table entries. We evaluate the importance of this technique for a audio and video

streaming application, a Mandelbrot renderer, a Bitcoin miner application, and a NoC par-

ticle simulator.
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3.1.1 Introduction

Embedded systems are part of our daily life, visible as a cell phone or invisible in a combustion

engine in a car. The high demand of constantly increasing functionality of these products is

associated with more complex design processes. Designers use simulations as a tool to make

better design decisions for their prototypes. However, simulations of complex systems are

time-consuming and become a bottleneck in the tool flow.

SystemC [3] has been established as the de-facto and official Accellera standard for modeling

and simulating of embedded systems. The official IEEE proof-of-concept simulator runs

simulations in a sequential fashion. This means only one simulation thread is active at

any time during the simulation, also if many design parts could be simulated in parallel.

Consequently, the simulator can use at most one core on multi and many-core host simulation

platforms.

SystemC TLM 2.0 is a library-based approach to speed up the simulation where simula-

tion threads are temporally decoupled. Specifically, the designer defines manually a time

quantum in which a thread performs without performing any synchronization points. Un-

fortunately, the gained speedup comes with the disadvantage of simulation inaccuracy [25].

Other works such as [53] and [54] provide a parallel simulation kernel where the user has

to manually translate the sequential design into a parallel design. In detail, the individual

simulations threads must be analyzed for conflicting variable access. An overlooked conflict

can compromise the simulation and let the simulation fail.

Problem Definition

A parallel SystemC simulator needs the information which segments of a simulation thread

can be executed in parallel. One option is to provide this information in form of a conflict
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table. A table entry must be true if two segments have a potentially conflicting variable

access, otherwise the entry should be false, allowing parallel execution.

More specifically, a table entry is classified into four categories: true positive (TP), true

negative (TN), false positive (FP), and false negative (FN). The first two categories TP

and TN describe a correctly marked positive variable access conflict, respectively, no access

conflict. A FP is a table entry where a conflict is marked, however, no actual conflict exists.

A FN is a table entry where no conflict is marked, however, a conflict exists. This kind of a

table entry is not allowed because it compromises the simulation.

The conflict table generation can be done in two ways, manually or automatically. On one

hand, the manual analysis can eliminate many FP and FN entries because the designer

can utilize application knowledge. However, this analysis is very time consuming and is

not applicable for real world examples. On the other hand, the compiler driven automatic

analysis can be done in a few minutes. However, a compiler cannot be as precise as the

manual analysis, e.g. due to static pointer analysis. Consequently, a compiler must be

conservative to safeguard the simulation correctness. In other words, table entries are marked

as a potential conflict where actually no conflict exists. This behavior causes FP entries and

limits the parallel simulation performance.

ModuleA

a0

ModuleA

a1

ModuleB

b0

ModuleB

b1

Figure 3.1:
Two pairs of communicating modules

Figure 3.2:
Data conflict table

Figure 3.3:
PCP-sensitive data
conflict table

Figure 3.1 shows an example where two pairs of a sender and a receiver exchange data. The
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corresponding tables of conflicting variables accesses (red filled) are shown in Figure 3.2 and

Figure 3.3. The left table is created with a conservative conflict analysis. Often, the parallel

simulator can run only one simulation thread because of FP conflicts. The right table is built

with a more precise conflict analysis. In this simple example 50% of the positive marked

conflicts are FP conflicts. Consequently, the simulator can run more threads in parallel. Our

RISC compiler [30] instruments the conflict table in design file. Later, the parallel SystemC

simulator uses the conflict table for scheduling decisions.

In this chapter, we extend the static analysis capability of the SystemC compiler [30] to

largely reduce the FP entries in the conflict table. Specifically, we introduce the PCP tech-

nique to have more precise context information of accessed variables. During the needed SG

analysis, we take the related port call history into account. This information allows us to

distinguish between individual variables in channels instead of clustering them.

Related Work

Parallel discrete-event simulation (PDES) [23] is a well-studied subject. The SG data struc-

ture for PDES was first introduced for synchronous and out-of-order fashion in [16]. This

concept is extended with instance IDs for modules to have higher precision in the conflict

analysis in [14]. An extension for thread and data level parallelism is in [49]. In contrast

to these works, our new PCP technique for SGs allows a more precise analysis for variable

accesses in channels to reduce FP conflicts. Also, in contrast to [50], our analysis is purely

static.

The concept of time decoupling is implemented in the SystemC TLM 2.0 library where

threads execute for a user defined quantum in an unsynchronized manner. The missing syn-

chronization between threads limits the number of context switches to gain higher simulation

speed. However, the simulation boost is associated with the price of lower accuracy [25]. The
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works in [54] and [55] propose techniques to parallelize time decoupled designs for multi-core

systems. The designer must manually partition the design into a thread safe model which

is conflict free. So an overlooked conflict can compromise the simulation and leads to sim-

ulation failures. The authors in [53] describe an API to transform manually a sequential

SystemC design into a parallel design. Compared to these works, our compiler driven ap-

proach automatically identifies race conditions and instruments the design. In other words,

the transformation does not require application-specific knowledge or manual modeling.

In [51] static analysis of SystemC models is done to use GPUs as a simulation platform. In

contrast, our static analysis uses module and channel instance IDs to distinguish channel

variables. Other works in context of parallel SystemC are in [44]. They are using a modified

version of the of the Chandy-Misra-Bryant algorithm for their analysis. In comparison, we

provide a new analysis to have precise analysis for object instances.

3.1.2 Conflict Analysis

Segment Graph

As we have already discussed in Section 1.4, the SG is a data structure to partition the

individual simulation threads of a design in smaller pieces. Later, we use this graph to

identify potential race conditions and notification dependencies in the design. In detail, for

each simulation thread we partition the source code into segments and link them respectively

to the control flow. A segment includes all statements between two scheduling steps. The

transition from the application domain back to the scheduler domain happens through a

wait() function call. Figure 3.4a shows some example source code and the related SG in

Figure 3.4b.
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0 void foo() { 

1   r++;

2   wait();

3   a=b+c;

4   if(condition){

5     i++;

6     wait();

7     j++;

8   } else {

9     b=x+y;

10  }

11  z=z*z;

12  wait()

13  y=z+4; }

(a) Source Code

r++

a=b+c;

condition

i++

b=x+y;

z=z*z;

wait (line 2)

j++

z=z*z;

wait (line 6)

y=z+4;

wait (line 12)

(b) Segment Graph

Figure 3.4: Example of a Segment Graph [49]

Figure 3.4b shows the difference to the traditional control flow graph and a SG. The SG has

four segments, one initial and three related to wait() function calls. The statement in Line

11 sqr=sqr*sqr appears in the two segments from Line 2 and Line 6. This is possible

because both can reach Line 11. Note that a SG is generated per module definition and not

per module instance.

Variable Access Analysis

The data conflict analysis compares all pairs of segments for potential race conditions. Ba-

sically, two steps are needed to identify a conflict between two segments. First, we create

two sets of read and written variables for each segment. In particular, we traverse each ex-

pression of a segment and identify the accessed variable symbols. Second, we have to check

if there is a read-write or write-write dependency between the two segments. For instance,

in Figure 3.5a, the first segment of ModuleA and ModuleB contains only the symbols of a

and b, respectively. Consequently, the segments do not cause a race condition and can be

simulated in parallel.
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 a++

 wait()

 hash()

 port->func()

 encode()

 b++

 wait()

 hash()

 port->func()

 encode()ID 2

ID 0 ID 1

ModuleA a0 ModuleB b0

 a++

 wait()

 hash()

 port->func()

 encode()

 b++

 wait()

 hash()

 port->func()

 decode()ID 3

ID 1 ID 0

ModuleA a1 ModuleB b1ChannelC

c4

ChannelC

c3

(a) Module details

SC_MODULE(Top) {
  ChannelC c1; // ID 0

  ChannelC c2; // ID 1

  ChannelC c3; // ID 2

  ChannelC c4; // ID 3

  ModuleA a0; // ID 0

  ModuleA a1; // ID 1

  ModuleB b1; // ID 0

  ModuleB b0; // ID 1

  ...

};

(b) Source code

Figure 3.5: Additional module details of Figure 3.1

The situation is different for the module instances a0 and a1. The SG is generated per

thread and not per instance. Consequently, both instances are represented by the same SG.

So, the symbols ModuleA::a and ModuleA::a are in conflict because the SG stores only

the accessed symbol. This problem can be solved through module instance IDs [14]. Each

module has a unique ID which is defined due to the declaration order and its type in the

source file. Figure 3.5b shows the declaration and related IDs for the design in Figure 3.5a.

Now, the conflict analysis considers segments in context of a module instance ID. So we can

distinguish between the module instances and their members.

Limitations of Module Instance IDs

Modules communicate to other modules via channels to exchange data. Technically, ports are

the gateways to channels and they are the linking component between module and channel.

So, through a port call, the control flow leaves the scope of a module and enters the scope of

a channel. Exemplary, Figure 3.6 shows the transitioning control flow of a simulation thread

from a module into a channel and back.
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a++

wait()

hash()

port->func()

encode()

ch1++

wait(event)

ch2++

wait(event)

ch3++

Control flow

ChannelC c3, ID2

b++

wait()

hash()

port->func()

decode()

ModuleA a0, ID0 ModuleB b0, ID1

Figure 3.6: Additional channel details of Figure 3.5

A segment contains symbols of module and channel members at the same time. The union

of these symbols occurs only because segment boundaries are defined as entry points to the

scheduler. So, a port call does not start a new segment and is interpreted as a regular

function call. Consequently, a segment contains the union of expressions which come from

modules and channels. This is demonstrated in Figure 3.6 where a module communicates

through a channel. The associated SG in Figure 3.7b shows expressions from the module

(e.g. hash()) and channel (e.g. ch1++) in the second segment.

ch1++

ch2++

ch3++

(a) Channel
only

hash()

port->func()

ch1++

ch2++

ch3++

encode()

a++

(b) Without
Port Call Path

[ ]      hash()

[ ]      port->func()

[port]   ch1++

[port]   ch2++

[port]   ch3++

[ ]      decode()

[ ]      a++

(c) With
Port Call Path

Figure 3.7: Segment Graph of Figure 3.6 for ModuleA

The conflict analysis in context of channels with only module instance IDs is more challeng-
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ing. In detail, the function HasAccessConflict(Seg1, IdS1, Seg2, IdS2) determines if two

segments have a conflict. The instance ID parameters are the module instance IDs where the

simulation thread of the segment is spawned. So, all segment members are interpreted with

the given module instance ID. However, this interpretation is not valid for channel variables.

In Figure 3.6, module a0 and module b0 are bound to channel c3. Segment 2 starts after the

wait() call in ModuleA and includes the channel expression ch1++. Similarly, Segment 4

starts after the wait() call in ModuleB and also includes the channel expression ch1++.

Segment 2 interprets the variable ch1++ with instance ID 0 and segment 4 interprets the

variable ch1++ with instance ID 1. This gives the impression that both modules are not

connected to the same variables. So, the result would be a false negative conflict which is

not allowed. Correctly, the variable ch1++ must be interpreted with instance ID 2 following

the declaration order in Figure 3.5b.

The SG stores only the read and write access of the potentially used symbols of a segment.

A naive approach is a scope analysis of each symbol. If a symbol is declared inside a channel,

the instance ID will be mapped to a dedicated instance ID for all channels. However, this

strategy has two strong limitations for the speed of parallel simulation.

First, all channel variables get the same instance ID. So, all channel variables are in conflict

with each other. As a result, the parallel communication between modules happens in a

sequential fashion for the entire simulation.

Second, the sequential communication affects the parallel communication of modules. The

segment where the port call takes place and the segment where the port call returns in-

herit the conflicts from the channel. This is illustrated in Figure 3.6 and Figure 3.7b where

ModuleA communicates via ChannelC. The second segment includes the function hash()

as well as the increment expression of the channel member ch1++. The last segment in-

cludes the function encode() and the increment expression of the channel member ch3++.

Both segments can only be executed in parallel to other segments when there is no other
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communication during that simulation cycle.

3.1.3 Port Call Path Sensitive Segment Graphs

Our proposed PCP analysis for channels allows to distinguish individual channels through

channel instance IDs without modifying the design. In other words, the two communicating

parties in Figure 3.5a can then execute in parallel without interfering with each other.

Port Call Analysis

For this advanced approach, the conflict analysis needs more context information. So, we

store for each expression additionally the PCP history. The SG with and without PCP for

the example Figure 3.6 is shown in Figure 3.7b and Figure 3.7c. Particularly, the PCP can

be a single port call or a list of port calls, e.g. through hierarchical channels communication.

Id
S1

[port
1
, port

2
, ..., port

n
] ch1++

Id
1

Id
2

Id
n

Figure 3.8: Translation of a module instance ID to channel instance ID

The function HasAccessConflict(Seg1, IdS1, Seg2, IdS2) determines if two segments have

a variable access conflict. Initially, every expression of a segment is interpreted with the

related instance ID function parameter. However, the instance ID for channel expres-

sions must be updated for the later conflict analysis. Exemplary, Figure 3.8 shows the

expression ch1++ with the associated PCP (port1, ..., portn) of segment Seg1. A central

tool to determine the channel ID is the API of the RISC compiler [30]. Specifically, we

54



have created the function GetChannelId(port, id) to determine for a given port and in-

stance ID the instance ID of the mapped channel. The parameter id describes the in-

stance ID of the enclosing object for the parameter port. For hierarchical mappings,

first, Id1 is computed via GetChannelId(port1, IdS1). Afterwards, Idi is computed via

GetChannelId(porti, Idi−1). The function TranslateChannelId(IdS1,GetPcp(s)) in-

cludes all steps to compute the final channel ID.

Advanced Access Analysis

The algorithm to detect access conflicts between two segments is shown in Algorithm 2.

Essentially, we compute for each variable symbol two attributes to store the read and write

instance ID context. Let’s say a segment has read access to the instances 1, 2, and 3 of

variable x. Also, there is no write access to any instances of variable x. The resulting sets

are xRead = {1, 2, 3} and xWrite = {}. Before an instance ID is added to a set, channel

context analysis is necessary. If the symbol is in a module, its instance ID applies. If a

symbol is declared in a channel, we determine the related channel ID. For instance this is in

Line 5 where we use the function TranslateChannelId().
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Algorithm 2 Conflict analysis between two segments

1: function HasAccessConflict(seg1, id1, seg2, id2)
2: for all s ∈ GetReadSymbols(seg1) do
3: id← id1
4: if IsChannelSymbol(s) then
5: id← TranslateChannelId(id1,GetPcP(s))
6: end if
7: SRead ← SRead ∪ {id}
8: end for
9: for all s ∈ GetWriteSymbols(seg1) do
10: id← id1
11: if IsChannelSymbol(s) then
12: id← TranslateChannelId(id1,GetPcP(s))
13: end if
14: SWrite ← SWrite ∪ {id}
15: end for
16: for all s ∈ GetReadSymbols(seg2) do
17: id← id2
18: if IsChannelSymbol(s) then
19: id← TranslateChannelId(id2,GetPcP(s))
20: end if
21: if id ∈ SWrite then
22: return true
23: end if
24: end for
25: for all s ∈ GetWriteSymbols(seg2) do
26: id← id2
27: if IsChannelSymbol(s) then
28: id← TranslateChannelId(id2,GetPcP(s))
29: end if
30: if id ∈ SRead ∨ id ∈ SWrite then
31: return true
32: end if
33: end for
34: return false
35: end function

Overall, the algorithm is divided into two steps. In the first step, the read and write analysis

of segment seg1 takes place. All symbols are marked with their access type.

In the second step, a similar analysis happens. However, instead of adding a new read or
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write instance ID to the symbol, an access check is performed. In Line 21 we check if a

read-write conflict exists, i.e. if the read symbol of seg2 is written by seg1. In detail, we

check if the symbol is already marked with the same instance ID. If this is the case, we return

true because a conflict exists. Similarly, in Line 30 we check for a write-write conflict. We

iterate over the written symbols of segment seg2. If the symbol is already marked as read or

written, a conflict exists.

Segment Graph Generation with Port Call Context

The classic SG is generated in two steps. In the first step, all channel functions are analyzed.

For each function a partial SG is built as in Figure 3.9a. In the second step, the individual

simulation threads are analyzed. When a port call takes place, the pre-analyzed segments

of the channel are reused and linked as in Figure 3.9b. Consequently, channel segments

are shared between multiple simulation threads, no individual PCP can be associated, and

channel variables cannot be distinguished by module IDs.

1: ch2++

(a) Channel Seg-
ments

5

7

Module2

Domain

2

4

Module1

Domain

1: ch2++

Channel

Domain

3 6

(b) Linking (Old)

5

7

Module2
Domain

1``: [p2] ch2++

Channel
Domain

2

4

Module1
Domain

1`: [p1] ch2++

Channel
Domain

3 6

(c) Cloning (New)

Figure 3.9: Handling of channel segments from Figure 3.6

Our new SG generation with the PCP extension uses a more sophisticated strategy. Specif-
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ically, each expression in a channel takes into account the individual port call context for

the analysis, like ch2++ in Figure 3.9a. So, sharing of pre-analyzed channel segments be-

tween port calls is not possible. Similar to the regular SG, we analyze all channel functions

first. Next, we continue with the analysis of the simulation threads, but when we hit a

port call p, the related SG for the channel function is cloned and inserted instead of linked.

Therefore, channel related segments appear for each port call individually as in Figure 3.9c.

Concluding, the PCP of the cloned segments is extended. First, the PCP of the port call p

is prepended to the PCP of the cloned segments. Second, the port of p itself is added to the

cloned segments. This strategy is needed for the analysis of nested port calls in hierarchical

channels.

Event Notification Table

The event notification table contains the notification dependencies between the individual

segments. This information is needed for the simulator to schedule threads with respect to

possible wake-up times. Without this information, threads could run ahead, events get lost,

and the simulation fails. Since event notifications are analyzed with the same approach as

regular variables, it is important to take the instance ID of events into account. So that false

positives do not create extraneous conflicts, we apply the new technique of the PCP analysis

for the event notification analysis as well.

3.1.4 Experiments

We have implemented the PCP analysis to demonstrate the importance for parallel simu-

lation. The following experiments show the reduction of false positive data conflicts and

event notifications. Additionally, we show the speedup between the sequential and the par-

allel execution with (pcp) and without PCP (old). Our experiments consist of four different
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application examples, namely a video Mandelbrot renderer, a high-level video decoder, a

Bitcoin miner, and a NoC particle simulator. The execution times are measured on an Intel

Xeon E3-1240 processor with 4 cores at 3.4 GHz. To obtain unambiguous measurements,

we have turned CPU frequency scaling and hyper-threading off.

Note that in contrast to [49], we had to create for each individual channel instance an indi-

vidual channel class resulting in large code duplication. Otherwise, the conflicting channel

variables caused too many FP conflicts. In this work, all models contain only a single channel

class with multiple instances.

Video Player

In the video player example, the stimulus sends data to an audio and a video decoder. After

decoding, the processed stream goes to two speakers and one display unit. The design uses

a generic channel type to transfer the data between the units. Without the PCP analysis,

the individual channels are blocking each other. Additionally, they prevent the parallel

decoding. In turn, the execution is effectively sequential and has the same execution time as

the sequential reference simulation. In contrast, the new PCP analysis largely reduces the

channel related false positive conflicts. Consequently, communication and computation can

run in parallel. This enables a speedup of 1.48x (from 20.36 sec down to 13.76 sec) while

reducing the data conflicts from 484 to 196 and the event notifications from 168 to 36.

Mandelbrot Renderer

The Mandelbrot renderer is a parallel video application to compute the Mandelbrot set. Fig-

ure 3.10 shows the architecture of the model. Basically, the controller orchestrates a number

of renderer units. Each unit computes a different slice of the image. During the simulation,

the controller triggers the individual slices. Then, a slice computes the Mandelbrot set for
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given coordinates in a shared memory. The controller receives a completion signal from the

units and then saves the frame. Finally, new coordinates are provided to all slices for the

next frame.

Top

Mandelbrot Renderer 1

Mandelbrot Renderer NS
ti
m

u
lu

s

M
o

n
it
o

r

C
o

n
tr

o
lle

r

Figure 3.10: Structure of a
Mandelbrot video renderer
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Scanner 

1
Synchronizer

Scanner 

2

Receiver

Figure 3.11: Structure of a
Bitcoin miner model [19]

Table 3.1 shows the experiments of the Mandelbrot renderer application with up to 8 com-

putation units. For all configurations, the analysis is performed with (pcp) and without

(old) the PCP technique. The new analysis eliminated 2,024 false positive conflicts for the

set with 8 units. The false positive conflicts effectively sequentialize the parallel execution.

The PCP technique enabled a speedup of up to 3.36x on the 4-core host.

Table 3.1: Speedup of the Mandelbrot video renderer

Renderer Units 1.old 1.pcp 2.old 2.pcp 4.old 4.pcp 8.old 8.pcp
Entries in table 441 441 784 784 1,764 1,764 4,900 4,900
Data conflicts 162 154 270 190 702 262 2,430 406
Event notifications 73 40 146 58 424 94 1,508 166
Speedup 1.00 0.99 1.00 1.68 1.00 2.90 1.00 3.36

Bitcoin Miner

Bitcoin is a digital currency and is established as a decentralized payment system [19]. Bit-

coin mining describes the process of generating new Bitcoins through solving math problems.
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When a new Bitcoin enters the system it must prove the correctness of creation. Particularly,

this proof happens through a cryptographic hash algorithm. The Bitcoin miner application

is doing this with three stages which include work dispatching, scanning, and result receiv-

ing. Figure 3.11 shows the basic structure of the SystemC model. The scanners compute

the hash algorithms for a given coin in parallel. If a scanner completes the computation of

a coin, it synchronizes with the dispatcher and a new coin is sent to the scanners.

Table 3.2: Speedup of the Bitcoin miner example

Worker 1.old 1.pcp 2.old 2.pcp 4.old 4.pcp 8.old 8.pcp
Entries in table 100 100 256 256 784 784 2704 2704
Data conflicts 84 84 209 129 641 237 2069 501
Event notifications 4 4 8 4 16 4 32 4
Speedup 1 1 1 1.97 0.99 3.56 0.99 3.5

Table 3.2 shows the results for the Bitcoin miner experiment. The design was executed with

1, 2, 4, and 8 scanners. The amount of false positive entries effectively sequentializes the

execution of the old parallel version. In comparison, the new PCP analysis resolved the

conflicts. As a result, the individual workers execute in parallel and gain a speedup of up to

3.5x.

Network-on-Chip Particle Simulator

Our last experiment simulates a NoC particle simulator to demonstrate the importance

of reduced false positive table entries. A tile communicates with its neighbors through

bidirectional channel to the north, south, east, and west. In this model, particles move in a

2-dimensional space and affect each other. Each tile covers the computation of the moving

particles for are defined area in the space. If a particle leaves the space of a tile, it transitions

to the neighbor tile through channel communication.
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The simulation of the particle simulator has three major stages. In the first stage, the

platform communicates a set of particles to the individual tiles as an initial configuration.

In the following second stage, the simulation of the particles starts and tiles compute the

position for their associated particles. Particles are exchanged between neighboring tiles if

they leave the scope of their hosting module. In the final step, the tiles communicate the

position of the hosting particles back to the platform.

Table 3.3 shows the results of the particle simulator for grid sizes from 2x2 up to 6x6. For

each size, the model is analyzed with (pcp) and without (old) the PCP analysis.
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Table 3.3: Reduced false positive conflicts and speedup through the PCP analysis of the
NoC particle simulator

2x2.old 2x2.pcp 3x3.old 3x3.pcp
Entries in Table 14,641 14,641 73,441 73,441
Data conflicts (dc) 14,641 1,999 73,441 4,621
Event notifications (en) 8,988 843 28,153 1,893
False positive dc in number / percent 12,642 86.35% 68,820 93.71%
False positive en in number / percent 8,145 90.62% 26,260 93.28%
Execution time seq in sec 2,354.24 1,048.78
Execution time par in sec 2355.7 1191.52 1046.1 577.66
Speedup 1.00 1.98 1.00 1.82

4x4.old 4x4.pcp 5x5.old 5x5.pcp
Entries in Table 231,361 231,361 564,001 564,001
Data conflicts (dc) 231,361 8,303 564,001 13,181
Event notifications (en) 88,465 3,363 348,600 5,253
False positive dc in number / percent 223,058 96.41% 550,820 97.66%
False positive en in number / percent 85,102 96.20% 343,347 98.49%
Execution time seq in sec 590.37 378.79
Execution time par in sec 590.57 195.82 379.98 134.87
Speedup 1.00 3.01 1.00 2.81

6x6.old 6x6.pcp
Entries in Table 1,168,561 1,168,561
Data conflicts (dc) 1,168,561 19,363
Event notifications (en) 722,556 7,563
False positive dc in number / percent 1,149,198 98.34%
False positive en in number / percent 714,993 98.95%
Execution time seq in sec 262.58
Execution time par in sec 270.31 86.96
Speedup 0.97 3.02

The first important observation is that both conflict tables have the same amount of entries

for a given grid size.

Second, the amount of conflicts varies between the two versions. On one hand, in the old

version all entries in the data conflict (DC) table are marked as conflict. In other words, all

segments are conflicting with each other. Consequently, a simulation is effectively sequential.
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On the other hand, in the pcp version not all table entries are marked as conflict. For the

2x2 example the data conflict table has 14,641 (old) and 1,999 (pcp) positive conflict entries.

This means that the old analysis caused 12,642 false positive conflicts which are 86.53% of

the table entries. With increasing grid size, the amount of false positive conflicts increases

regarding to the number of channels. The channel related false positive errors is increasing

up to 98% for the 6x6 grid size. A similar observation can be made for the event notification

(EN) table.

Third, the speedup for the old version is 1 at most. This means that parallel simulation had

no impact. In contrast, the PCP sensitive analysis has a speedup of up to 3x.

3.1.5 Summary

In this chapter, we extended a fully automatic compiler infrastructure to parallelize IEEE

SystemC simulation. Our new PCP technique eliminates false positive conflicts in the analy-

sis which impacts especially channel communication. Before, false conflicts severely compro-

mised the parallel simulation of channels as well the computation in modules. We demon-

strated the importance of the PCP technique for diverse examples and reduced the amount

of false conflicts by up to 98%. As a result, we gained a speedup of up to 3.5x on a 4-core

host machine.

3.2 Reference Analysis

In this section, we address the topic of C++ references in SystemC models. Specifically,

we introduce compiler techniques to resolve function parameter references, module member

references, and references in context of channel communication. We discuss the impact of

false positive conflicts and analysis techniques to avoid them.
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For the evaluation, we use the same applications as for the channel conflict analysis in

Section 3.1, namely, an audio and video streaming application, a Mandelbrot renderer, a

Bitcoin miner application, and a NoC particle simulator.

3.2.1 Analysis of Reference Variables

SystemC designers use C++ references to model shared memory and events, as well as to

execute more efficiently to save simulation time. For the data conflict analysis, it is important

to identify the read and written variables. If a target of a reference cannot be identified, the

segment must be marked as a conflict with all other segments to prevent race conditions.

This pessimistic strategy can cause a lot of False Positive conflicts and slows down parallel

simulation.

Module M, ID 0

int shared;

Module1 M1

ID 0

int &x;

Module2 M2

ID 0

int &y;

(a) Shared variable as reference

Module M, ID 0

int x, y;

void compute(int &i)

{ ... i++; ... }

thread1

...
compute(x);

...

thread2

...
compute(y);

...

(b) Function argument refer-
ence

Module M, ID 0

Module1 M1, ID 0
...

write(x);

...

Module2 M2, ID 0
...

read(y);

...

Channel C, ID 0
void write(int &w);

void read(int &r);

(c) Channel parameter as refer-
ence

Figure 3.12: Different usage of C++ references in SystemC models

Figure 3.12 shows three different uses of references in SystemC. First, in Figure 3.12a, the

modules M1 and M2 have the member references x and y respectively which are mapped to

the variable shared in the common top module M. Both modules exchange data through

the shared variable. Second, in Figure 3.12b, module M has two threads which both call the

function compute(). The parameter i is passed by reference and represents the variables

x and y which are declared in the same module. Third, in Figure 3.12c, module M1 and M2

are connected through the channel C to exchange data in a synchronized fashion. Like in
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the second example, the parameters are passed by reference. However, the mapped variables

of the references are in different modules. Specifically, the function parameters w and r

represent the variable x from module M1 and the variable y from module M2.

References to Shared Variables

For the first situation in Figure 3.12a, we introduce the instance path which describes a

module or channel instance with the associated instance ID in the model hierarchy. For

example, in Figure 3.12a the module instances M1 and M2 are sub modules of the module

instance M. So, we describe them through the paths [M,0 → M1,0] and [M,0 → M2,0].

While analyzing the segments of M1, we hit access to the variable of x and identify it as a

reference and member variable. Through the instance path, we analyze the constructor of

the parent class, namely, the constructor call of M2 in the initializer list of M. Here, we have

two cases. On one hand, the provided argument is a member variable of M and we identify

the associated symbol for the future analysis. This situation is illustrated in Figure 3.12a

and the symbol of x is replaced with the symbol of shared with instance ID 0. On the

other hand, the provided argument in the constructor is a reference as well. In this case, we

continue traversing the instance path and analyze the constructor of the next parent module.

Function Argument References

In the second case in Figure 3.12b, the reference is a local function parameter and represents

the symbol of the function call argument. Here, we perform a function call analysis and

annotate reference parameters with the called argument. Instead of using the reference

symbol during the data conflict analysis, we then use the annotated symbols. We discuss this

strategy for the example of Figure 3.13 which shows a more detailed version of Figure 3.12b.

The function call graph generation starts with thread1 which calls the function compute()
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at the beginning. The function parameter i is analyzed as a reference, so the symbol of i is

annotated with the symbol of the member variable x. Next, the function call analysis follows

the control flow and detects function call encode() which takes a reference as parameter

as well. Consequently, the parameter e is annotated with the symbol of the calling function.

However, at this point we annotate the symbol of x instead of i because i is a reference as

well. After traversing the call graph for encode(), the analyze the function call of function

decode(). Again, parameter d is a reference. However, this time we annotate the symbol

of d with the member variable symbol of z. After finishing the function call analysis for

thread1, the analysis for thread2 takes place. The procedure is the same, however, instead

of annotating symbol x, symbol y is annotated.

                      Module M, ID 0
thread1

...

compute(x);

...

thread2

...

compute(y);

...

void compute(int &i)

{ 

  encode(i);

  i++;

  decode(z);

}

void decode(int &d)

{ 

... d++; ... 

}

void encode(int &e)

{ 

... e++; ... 

}

Annotated z
Annotated x, y

Annotated x, y

Member variables
int x, y, z;

Figure 3.13: Detailed annotation of references from Figure 3.12b

The function call and reference analysis takes places before the data conflict analysis starts.

During the data conflict analysis, member references and function references are treated

differently. Member references are lookup up through the constructor calls. For function

parameter references, we use the annotated variable symbols.
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Channel References

In the third case in Figure 3.12c, the two modules M1 and M2 communicate through the

channel C. To resolve the variables w and r, we combine the techniques of instance paths from

Figure 3.12a, variable symbol forwarding from Figure 3.12b, and the PCP from Section 3.1.1.

First, we notice that the variables w and r are references and they belong to a channel

function. So, we use the PCP technique to identify the channel instance ID of C. Next,

we use the RISC analysis to determine all instance paths of connected modules to channel

C, which are [M,0 → M1,0] and [M,0 → M2,0]. The reference arguments w and r are

annotated with the symbols of x and y through the function call analysis. Afterwards, we

iterate over all instance paths and check if one of the annotated variables is declared in any

module of the instance path. If this is the case, we determine the resolved variable and the

associated instance ID through the instance path.

For more complicated situations, we can combine the individual techniques. For instance in

Figure 3.12a, instead of having the variables x and y as module members of M they could

be also member references. In this case, we combine the techniques of Figure 3.12a and

Figure 3.12b.

3.2.2 Experiments

In this section, we discuss the evaluation of the proposed PCP and reference resolving tech-

niques in SystemC models. The following experiments show the reduction of false positive

(FP) data conflicts (DC) and event notifications (EN). Additionally, we show the speedup

between the sequential and the parallel execution without PCP (old), with PCP (pcp), and

with references resolving (ref). Our experiments consist of four different application exam-

ples, namely a video Mandelbrot renderer, a high-level video decoder, a Bitcoin miner, and a

NoC particle simulator. For the experiments with references in the model, we use references
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in the channel functions.

The execution times are measured on an Intel Xeon E3-1240 processor with 4 cores at 3.4

GHz. To obtain stable measurements, we have turned CPU frequency scaling and hyper-

threading off.

We evaluate the PCP extension with support for references and measure the reduced false

positive conflicts and gained simulation speedup. Specifically, first we run the experiments

with the PCP extension (pcp) and afterwards with PCP in combination with the imple-

mented referencing resolving techniques (ref). To emphasize the importance of reference

support, we use the same SystemC models for the evaluation as for the evaluation of the

PCP technique in Section 3.1.1. We changed the function parameters of the channel function

from regular variables to references and discuss this effect in terms of speedup as well. In

the following, we only discuss the data conflict, since there are no event references in the

models.

Video Player

The player example has a sequential execution time of 20.34 sec, parallel execution time

without reference support of 20.37 sec, and with reference support of 13.87 sec. This is a

speedup of 1.46x which is similar to the speedup of the experiments in the previous section.

The identical speedup is related to the nature of the communication in this example. The

channel interfaces for the read and write function take integer values as parameters. The

channels are communicating integer values the through channels. Copying an integer value

or the value of a reference doesn’t make any difference since addresses in C++ also are

integers. Consequently, we gain the same speedup.

The strict rule of marking all segments with writing access to references as a global conflict,

introduces 448 out of 484 data conflicts. After applying the reference resolving technique,
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the number of conflicts is reduced to 196 and 56.25% of false positive conflicts are eliminated.

In other words, the number of data conflicts are identical for the non reference and reference

version.

Mandelbrot Renderer

Table 3.4 shows the evaluation of the Mandelbrot application and the impact of the reference

analysis. First, we notice that without the reference analysis technique (pcp) 4,836 out of

4,900 segments are in conflict with each other which are 99% of the segments. After applying

the reference resolving techniques (ref), the number of conflicts is reduced by 4,430 conflicts

to 406 conflicts. In other words, more than 90% of the conflicts are false positive conflicts

and prevent an effective parallel simulation. The maximum speedup is 3.56x which is similar

to the speedup in the previous Section 3.1.1. Also, the communication interfaces use a plain

datatype, namely floating point numbers. Passing these values by references don’t affect the

simulation speed.

Table 3.4: Speedup of the Mandelbrot video renderer

Renderer units 1.pcp 1.ref 2.pcp 2.ref 4.pcp 4.ref 8.pcp 8.ref

Table size 441 441 784 784 1,764 1,764 4,900 4,900

DC 440 154 780 190 1,748 262 4,836 406

Speedup 1.00 1.00 1.00 1.67 1.01 2.87 1.01 3.43

Bitcoin Miner

The Bitcoin application uses channels with plain datatypes as the two previous examples.

So, the reference resolving technique produces the same results as in the previous section,

namely a speedup of 3.56x. The detailed results are presented in Table 3.6.
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Table 3.5: Reduced false positive conflicts and speedup through the PCP with reference
analysis of the NoC particle simulator

2x2.old 2x2.pcp 3x3.old 3x3.pcp
Entries in Table 14,641 14,641 73,441 73,441
Data conflicts (dc) 14,641 1,999 73,441 4,621
Event notifications (en) 843 843 1,893 1,893
False positive dc in number / percent 12,642 86.35% 68,820 93.71%
False positive en in number / percent 0 0.00% 0 0.00%
Execution time seq in sec 1515.42 673.50
Execution time par in sec 1516.37 766.18 672.17 372.14
Speedup 1.00 1.98 1.00 1.81

4x4.old 4x4.pcp 5x5.old 5x5.pcp
Entries in Table 231,361 231,361 564,001 564,001
Data conflicts (dc) 231,361 8,303 564,001 13,181
Event notifications (en) 3,363 3,363 5,253 5,253
False positive dc in number / percent 223,058 96.41% 550,820 97.66%
False positive en in number / percent 0 0.00% 0 0.00%
Execution time seq in sec 379.16 242.72
Execution time par in sec 380.49 129.20 245.14 185.00
Speedup 1.00 2.93 0.99 1.31

6x6.old 6x6.pcp
Entries in Table 1,168,561 1,168,561
Data conflicts (dc) 1,168,561 19,363
Event notifications (en) 7,563 7,563
False positive dc in number / percent 1,149,198 98.34%
False positive en in number / percent 0 0.00%
Execution time seq in sec 169.08
Execution time par in sec 177.88 59.19
Speedup 0.95 2.86
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Table 3.6: Speedup of the Bitcoin miner example

Worker 1.pcp 1.ref 2.pcp 2.ref 4.pcp 4.ref 8.pcp 8.ref

Table size 100 100 256 256 784 784 2,704 2,704

DC 97 84 253 129 781 237 2,701 501

Speedup 0.98 0.98 1.02 2.01 1.00 3.63 1.00 3.56

Network-on-Chip Particle Simulator

In the NoC particle simulator application, the individual tiles communicate particles and

the related particle information through dedicated data structures. The tiles always send a

chunk of particles in form of a std::vector<Particle> to minimize the communica-

tion overhead of single particle communication. In comparison to the previously discussed

examples, the communication interfaces of the NoC application do not use plain datatypes,

instead they use a std::vector<Particle>. So, compared to copy the particles by

value, communicating by reference avoids the duplication of particles and the creation of a

new vector. This phenomenon can be observed in terms of simulation time in the tables Ta-

ble 3.3 and Table 3.5. The sequential execution of the 8x8 NoC with references takes 262,58

sec and for the reference version only 129.20 sec. So, communicating them by reference safes

simulation time since only an address value is passed.

Table 3.5 shows the experimental results of the particle simulator for grid sizes from 2x2 up

to 6x6. The reference analysis reduces eliminates up to 98% of data false positive conflicts

and gains a speedup up to 2.93x. The simulation of the parallel version without references

for the 4x4 grid takes 195.82 sec, and the parallel version with references needs 59.19 sec. In

other words, we gain an additional speedup of 1.51x to the NoC version without passing by

reference.
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3.2.3 Summary

We a proposed a novel technique to resolve SystemC references which have been marked

as race conditions before. We evaluated this new approach on the same application set

as the PCP evaluation, however, channels used C++ references. We gained a speedup of

up to 2.86x for the parallel version of the particle simulator compared to the sequential

version. Additionally, we measured a speedup of 1.51x from the parallel particle simulator

with reference version to the parallel particle simulator without references.
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Chapter 4

Hybrid Analysis

In the previous chapter, we discussed static analysis techniques to reduce false positive

table entires. However, designers tend to provide model information only at run time, for

instance, the number of rows and columns of a grid. In this chapter, we discuss a hybrid

analysis technique to consider run time information as well. Additionally, we provide an

annotation scheme for libraries to support 3rd party source code.

4.1 Introduction

The increasing complexity of embedded systems slows down the design process of new prod-

ucts. Designers use simulation as a tool to validate prototypes. However, the dramatically

increasing simulation time has been identified as a bottleneck in the design process. Var-

ious approaches have been made to optimize the simulation performance. For instance,

the simulation reduced level has been decreased and communication has become more ab-

stract. Although state-of-the-art PCs have multi-core processors, most simulations are still

executing sequentially.
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SystemC [3] is a widely-used tool for simulating and modeling embedded systems. We

advocate an advanced approach to simulate SystemC models fully in parallel without losing

accuracy. This is in contrast to other limited techniques. For instance, techniques like time

decoupling have been proposed to boost the simulation performance. However, this method

results in inaccurate simulation results [25].

Our RISC compiler infrastructure analyzes a given design, identifies potential race condi-

tions, and transforms the sequentially written model into a parallel executable design. The

transformation happens automatically and the designer has no burden of partitioning the

model. We propose a hybrid analysis to consider all possible aspects of the design including

3rd party libraries.

4.1.1 Problem Definition

SystemC is the de facto standard library for modeling and simulating embedded systems.

The official simulation kernel performs the simulation in a sequential fashion. In other words,

only one simulation thread is active at any time. If several threads could be simulated in

parallel rather than sequentially, then we would obtain a significant decrease in the simulation

time.

First attempts have been made to run the simulation in a parallel fashion. A dedicated

compiler is used in [16] to analyze the design hierarchy and to identify the potential race

conditions among the individual threads. However, in order to perform these advanced

simulation techniques, two criteria must be satisfied. First, the entire source code must be

available for the static analysis. It cannot be partially provided in a library. Second, the

design must be statically explorable to identify the design hierarchy.
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Tile 1,1 Tile 1,2 Tile 1,y

Tile 2,1 Tile 2,2 Tile 2,y

Tile x,1 Tile x,2 Tile x,y

...

...

...

... ...

...

Grid

Simulation
Thread

Channel

Tile

Figure 4.1: General structure of a Network-on-Chip design model

The NoC paradigm is a widely-used design pattern. However, it violates these parallel

simulation requirements. Figure 4.1 shows a typical NoC which is assembled through a

hosting grid and tiles which are organized in rows and columns. A tile contains Intellectual

Property (IP) and communicates with other tiles located to the north, west, south, and east

of it. A tile can be a user-defined or a 3rd party IP element which is encapsulated in a

library. During the design space exploration, architects test various combinations of these

grid sizes and tile components. The number of rows and columns is often defined through

command line parameters. Thus, the tiles are allocated in two loops with the new operator

which is not statically analyzable. Evidently, these two limitations prevent the analysis for

an efficient parallel simulation.

In this chapter, we propose a solution in order to simulate designs in an accurate parallel

fashion. These models can include 3rd party libraries and code which is not statically

analyzable. In the new design flow, we perform a dynamic analysis which is followed by a

static analysis. Additionally, we provide the designer with the opportunity to annotate 3rd

party libraries. Such annotations are taken into account for the advanced design analysis

and allow the simulation of library code in a parallel fashion.
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4.1.2 Related Work

Parallel simulation of DES is a well-studied subject. Initial work has been contributed by

[23].

The concept of a SG for parallel simulation was first introduced in [16] for synchronous and

out-of-order parallel simulation. Later, the SG infrastructure was used for may-happen-in-

parallel analysis for safe ESL models in [17]. Both contributions require a complete design

model with a statically analyzable module hierarchy. In contrast, our approach supports 3rd

party libraries and non-statically analyzable module hierarchies in designs.

Time decoupling is a widely-used method that speeds up the simulation of SystemC models.

Parts of the model execute in an unsynchronized manner for a user defined time quantum.

However, this strategy is associated with inaccurate simulation results [25]. [54] and [55]

propose a technique to parallelize time-decoupled designs. This technique requires the de-

signer to manually partition and instrument the model in parts of time-decoupled zones. In

contrast, our approach supports a 100% accurate simulation of designs. Also, our compiler

automatically instruments the model.

A tool flow for parallel simulation of SystemC RTL models was proposed in [44]. The model

was partitioned according to a modified version of the Chandy–Misra–Bryant algorithm [12].

In contrast, our conflict analysis considers the individual statements of threads. Also, our

solution is not restricted to only RTL models.

An approach of static analysis for simulation of SystemC models on GPUs was provided in

[51]. In contrast, our approach combines static and dynamic analysis to obtain information

for the conflict analysis which is only available at run time.
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4.2 Hybrid Analysis

The transition from a sequential simulation towards a parallel simulation is an extensive

process. The design must be analyzed and prepared for potential race conditions to avoid

unpredictable data corruption. This requires a full understanding of the module hierarchy.

One option is to statically extract the module hierarchy and analyze the individual threads.

However, in most cases not all of the information can be explored statically. For instance,

during the design space exploration, designers test various prototypes to explore an optimal

design. Design parameters are passed via the command line to define the number of modules,

channels characteristics, and other needed information. The instances of modules, channels,

and ports are created through loops in a dynamic fashion. However, the essential parameters

are only available at run time, so they cannot be statically analyzed. The result would be

an incorrect model transformation which produces wrong simulation results.

Figure 4.2 shows our proposed design flow which supports command-line parameters and the

dynamic analysis for a fully accurate parallel simulation. Essentially, the tool flow is split

up into two major stages. The first stage performs a Dynamic Design Analysis and collects

the design hierarchy. The second stage allows the Static Conflict Analysis to integrate the

obtained data from the previous stage. As a result, the design is transformed into a thread-

safe design for fast parallel execution.
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design.cpp with command line parameters

instrumented_design.cpp

RISC - 
Dynamic Analysis
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instrumented_design.out
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RISC Parallelizer

g++

instrumented_design.cpp

RISC -
Parallel SystemC

SystemC

parallel_design.out

Dynamic

Design

Analysis

Static

Conflict
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Figure 4.2: Tool flow for the proposed hybrid analysis of design models

4.2.1 Static Conflict Analysis

We use static conflict analysis which is introduced in Section 1.4.

4.2.2 Dynamic Design Analysis

The purpose of the Dynamic Design Analysis is to provide data for the Static Conflict

Analysis which can only be obtained at run time. This data is structural design information

which, for example, is dependent on command-line parameters, or hidden deeply in nested
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loops. The results of this step are provided in a dynamic internal representation (DIR) file

and then used as a lookup table in the Static Conflict Analysis.

In detail, the DIR file includes the module hierarchy, the port mapping, and the mapped

variables of references. We represent this information as an abstract tree. Specifically, we

store the declaration name and the address for all declarations. In addition, we store the

address of the bounded channel for ports and the typename of the channel for the channels.

Listing 4.1 illustrates such a DIR file. Undoubtedly, we can identify that the reference ref

is mapped to the variable var. Also, we can identify that the port port is bound to the

channel chnl1 of the type MyChannelType. We can use the address as a lookup because

references and ports are only bound once. During the simulation, the specific address might

be different. However, the lookup will lead to the same variable.

1 top:0x111(
2 chnl1:0x222:MyChannelType, var:0x333
3 mod1:0x444(
4 var:0x555,ref:0x333,port:0x222
5 )
6 )

Listing 4.1: Example of a DIR file

We can partially analyze a design in three different ways, but each has its own limitations:

A) The C++ language has limited support of introspection. It is possible to identify the type

name of a variable at run time. However, it is not possible to identify the declaration name

of a variable. B) The SystemC library has an interface for the introspection of a design. It

is possible to identify all top modules at run time, and then traverse all the elements which

are derived from sc object in a hierarchical fashion. However, it is not possible to identify

plain old data types (e.g. float and int) or their respective declaration name. C) A static

analysis of the source code allows to identify modules and analyze all of their members.

However, the module hierarchy can only be explored with a severely limiting modeling guide

lines.
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In our approach, we perform a combined solution of A, B, and, C to generate a DIR file

where the designer has no modeling limitations. First, the RISC instrumentor reads the file

design.cpp and analyzes all the design elements statically. In other words, we have access

to the declarations and their names. For each module, we instrument functions to print

variables, ports, and other information. For instance, in the function void print vars()

{fprintf("var:%p",&var); ...}, we use the typeid support of C++ to obtain the

type name at run time. Through that process, we are able to generate the source code for

the instrumented design and build an executable.

Second, we modify the simulation kernel to allow it to undergo the Dynamic Design Analysis.

The simulation of a SystemC model is split into two major phases. In the first phase, the

elaboration starts where the module hierarchy and the port binding are established. In the

second phase, the simulation of the design is performed. The SystemC API provides a hook

between these two steps. We simulate the design with all command line parameters until

the elaboration is completed. Finally, we traverse the module hierarchy via the SystemC

introspection API and call the functions for the variable printing.

4.3 Library Handling

The simulator requires the following two bits of information in order to run in a parallel

manner. First, it needs to know the race conditions of each individual thread before the

simulation starts. Second, the simulator needs to know the current segment ID of each

thread. Before the simulator triggers the next segment of a thread, it is essential to check for

race conditions with all other active segments. These are two main obstacles for real world

SystemC designs which include standard and 3rd party libraries.

The first issue is that the Static Conflict Analysis needs access to the function bodies to iden-
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tify the race conditions for the individual threads. However, 3rd party intellectual property

(IP) is often shipped through libraries. The designer has access to the function signatures,

but the implementation is hidden in the library file. In other words, our static analysis cannot

identify potential wait() calls and race conditions. Consequently, a segment which calls

a library function is set in conflict with all other segments. For example, inherent function

calls like printf() and sqrt() would sequentialize the parallel simulation. Therefore, we

provide a function annotation scheme to include information about these library functions

for the static analysis.

The second issue is that the parallel simulator needs to know which segments are ready

to execute. One previously employed strategy was to statically instrument each individual

wait() call with the associated segment ID, e.g., wait(event,42);. The simulator

obtains the upcoming segment ID through the wait() call. However, this strategy cannot

be used for designs with 3rd party libraries. The RISC Parallelizer cannot instrument library

files. Instead, we provide a modified RISC simulation kernel to pass the segment ID through

the 3rd party library to the simulation kernel.

4.3.1 Function Annotation

We present an annotation scheme for function declarations to provide information for the

conflict analysis. Thus, the user can annotate via pragma statements two different pieces of

information, namely, the conflict status and the type of wait() function calls in a function

body. We consider a function as conflict-free if the corresponding function body has no

read/write access conflicts on any shared state with the other threads in the simulation

model. A segment which calls a function with the annotation of non-conflict-free results

in a conflict with all other segments. The simulator executes this segment sequentially and

safeguards a fully accurate simulation.
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Figure 4.3 shows four different options of annotating a function declaration with wait in-

formation. We designed the scheme to have full support of the SystemC built-in library

channels. In the first case, the function has no wait statement. This is the option for

non-blocking function calls. The next two cases cover the situation that the function has a

conditional or a non-conditional wait, for instance an sc buffer. The last case portrays a

more complicated channel type, an sc fifo, where the wait() call is in a loop.

no wait conditional

wait

unconditional

wait

looped

wait

Figure 4.3: Wait annotation for function declarations

The user also has the option not to provide any annotation for library functions. In this

case, we assume that the function is conflict-free and there are no wait statements in the

function. This behavior is expected for the Standard C Library and Standard Template

Library. We decided to make this the default mechanism to avoid annotating all standard

library functions.

4.3.2 Segment ID Passing

The parallel simulator needs the active segment ID of each individual thread during the

simulation. The approach of instrumenting wait() calls with an additional segment ID

parameter is only possible if the source code is available for all parts of the design. In other

words, we cannot instrument wait() calls which occur in the library.

Figure 4.4 illustrates our generalized solution for support of libraries. The thread carries
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the upcoming segment ID from the user domain to the parallel RISC SystemC library. We

instrument the function call setID(42) before the function call in the library domain

happens. In the RISC SystemC kernel, we get the segment id via getID(). This solution

provides the benefit that any 3rd party channel can be used without any modification.

setID(42)

send(...)
setID(43)

receive()
wait(...)

User Domain User Domain
3rd Party
IP Library

Standard
C Library

printf()

Sender Receiver

RISC - 
Parallel SystemC

Library

void wait()

{ ... = getID(); ... }

Figure 4.4: Different domains of a design

4.4 Experiments

4.4.1 Producer Consumer Example

We implemented the consumer producer example which is illustrated in Figure 4.4. Both the

sender and receiver crunch numbers and exchange them. The number of sender and receiver

pairs is scalable via the command line.

The regular RISC Parallelizer — without the Dynamic Design Analysis capabilities — cannot

process this design and returns an error message. The Dynamic Design Analysis creates the

correct module hierarchy and identifies the number of modules which is double the number

of communication pairs. The obtained speedup depends on the number of modules and the

ratio of communication and number crunching.
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4.4.2 Network-on-Chip Particle Simulator

We selected as a comprehensive example a NoC particle simulator to demonstrate the par-

allel simulation capabilities of our hybrid analysis. The abstract architecture of the particle

simulator is illustrated in Figure 4.1. The grid is assembled of tiles where each tile communi-

cates bidirectionally with a tile to its north, south, east, or west. For a 8x8 example, we have

64 tiles and one grid module. Each tile has one thread which computes the motion of the

individual particles in a certain area of the model. These particles move continuously in 2D

space. The moment when a particle crosses the boundary, the responsibility of computing

and updating the position of the particles shifts from one tile to its neighbor tile. The entire

design can be scaled up to any quadratic size. The user can define via the command line

the number of tiles as well as the number of particles, the gravity, and other options. The

individual tiles including ports and channels are dynamically created.

At the beginning of the simulation, the grid sends the initial particles to each individual

tile. This happens in a purely sequential fashion. Next, all tiles simulate the particles and

synchronize with their neighbors. A tile can be blocked due to its communication with one

of its neighbors. At the end of the simulation, all the tiles send the particles back to the

grid.

Static Design Analysis

The static analysis of the particle simulator causes an error message: ”Error: Array of

modules in line 231”. The RISC Parallelizer detects an array of pointers for tile modules.

However, it cannot identify how many instances are created. The same applies to the array

of ports and channels. The module hierarchy cannot correctly be extracted and the RISC

Parallelizer does not create an executable.
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Dynamic Design Analysis

The dynamic analysis is performed for different grid sizes. For the 8x8 particle simulator,

65 modules and 176 channels are correctly identified. The parallel simulation creates the

same results as the traditional sequential DES. In other words, the parallel simulation has

the same accuracy as the sequential simulation.

Table 4.1: Simulation speedup of the Particle Simulator

Speedup Time (in sec.)
Particles 10k 20k 40k 60k seq. 60k par. 60k
5x5 2.56x 3.58x 3.25x 2.97x 160.2 53.77
6x6 2.80x 4.88x 5.04x 4.34x 126.53 29.09
7x7 2.32x 3.91x 5.01x 4.87x 117.46 24.11
8x8 2.07x 4.12x 6.05x 6.39x 108.4 16.96

Table 4.1 shows the simulation speed of the individual particle simulators. We performed

all experiments on an Intel Xeon E3-1240 with 4 cores with 2 threads per core. Our test

infrastructure provides a theoretical speedup of maximum 8x. The speedup is dependent

on the number of particles and the grid size. For a 8x8 and 6x6 grid size a speedup of

6.39x respectively 5.04x is measured. The increasing speedup is dependent on the number of

particles in the simulation. More particles increase the number crunching and consequently

the execution time of the parallel threads. The sequential communication becomes a minor

part of the simulation.

The design has several sequential parts, which cannot be parallelized. One reason is due to

the initialization and final synchronization of the individual tiles. A second reason is due to

the communication which is performed in a double handshake fashion. This means a tile is

blocked until the receiving tile completes the communication.
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Table 4.2: Exchanged Particles of the Particle Simulator

7x7 8x8
Particles 20k 60k 20k 60k
seq. 467,728 1,321,247 497,111 1,356,083
par. 467,728 1,321,247 497,111 1,356,083

Table 4.2 shows the simulation characteristics of the sequential and parallel simulation to

demonstrate the accuracy. All simulations are performed with 20,000 and 60,000 particles

for a particle simulator of 6x6 and 8x8 tiles. Both, the sequential and the parallel simulation

have identical numbers of communicated particles.

4.5 Summary

In this chapter, we propose an efficient solution for accurate and parallel simulation of

SystemC models with 3rd party libraries. Our approach does not trade off simulation speed

for simulation accuracy as do time decoupled modeling techniques. In contrast to previous

compiler related work, our RISC infrastructure allows to simulate models which are not

statically analyzable. Also, we are now able to simulate models in parallel which include

3rd party libraries for the first time. The designer has to provide manual annotation for

function declarations which are taken into account by RISC. The annotated functions will

be mapped on a dedicated segment to handle the complexity of the unknown segment graph

for the function. We demonstrated a simulation speedup of 6.39x while maintaining 100%

accuracy.
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Chapter 5

Vectorization of System Level Designs

In chapter Chapter 3 and Chapter 4, we discussed static and hybrid analysis techniques to

increase the thread level parallelism. Now, we take date level parallelism into account to

simulate the individual threads at a higher speed. Specifically, we provide an algorithm to

analyze loops and to identify candidates for vectorization.

5.1 Introduction

The functional complexity of embedded systems has increased dramatically over the last

years. Additionally, many complex design properties like energy consumption or thermal

heating must be considered during the design process. Designers use simulation as a tool to

validate all kinds of characteristics of their prototypes. The combination of the increasing

complexity and the number of validated properties makes the simulation intensively time-

consuming.

SystemC [3] is the de facto standard for modeling, simulating, and validating embedded

systems. The Accellera reference implementation performs simulations in a sequential fash-
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ion. In other words, at any time of the simulation at most one simulation thread is active.

SystemC TLM-2.0 provides the concept of time decoupling to speed up simulations. Unfor-

tunately, the benefit of a speed boost comes at the price of simulation inaccuracy [25]. Other

work such as [53] and [54] propose a modified SystemC kernel that supports multithreading.

However, designers must manually identify and resolve all potential race conditions in their

models. Also, they have to ensure that the design is thread-safe. Consequently, overlooked

and not protected race conditions often lead to incorrect simulation results.

We propose an automated compiler approach for parallelizing the simulation using thread

and data-level parallelism to save simulation time. This approach is in contrast with ex-

isting works that require manual code transformation. First, our SystemC compiler [30]

performs a fully automatic analysis to identify and exploit the available thread-level par-

allelism. Additionally, our compiler performs an analysis for data-level parallelism based

on our SystemC-aware internal representation. The outcome is a report that lists source

code locations for vectorization optimization. Finally, our associated parallel SystemC li-

brary simulates the thread-safe design in out-of-order parallel fashion similar to [16]. The

data-level analysis is based on and guided by thread-level analysis which is aware of PDES

and specifically SystemC semantics. Note that this distinguishes our compiler from general-

purpose compilers (such as Intel icpc) that cannot automatically identify SIMD parallelism

in the source code.

To the best of our knowledge, this work is the first to apply and exploit SIMD vectorization

on top of thread-level parallel SystemC simulation.

5.1.1 Problem Definition

The official simulation kernel of SystemC schedules the individual threads in a sequential

fashion although parallel multi- and many-core platforms are available. Consequently, the
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simulation time of modern embedded systems becomes a bottleneck in the design flow.

Simulations may run for hours until unexpected events occur or the simulation crashes.

Designers try to fix the behavior and then they have to rerun the simulation from the

beginning. The results of their adjustments are available only after another long wait.

Tile 1,1 Tile 1,2 Tile 1,y

Tile 2,1 Tile 2,2 Tile 2,y

Tile x,1 Tile x,2 Tile x,y

...

...

...

... ...

...

Grid

Simulation
Thread

Channel

Tile

Vector Unit

PU PU PU PU

Data Pool

Instruction
Pool

Tile x,y

Data Level
Parallelization

Simulation
Thread

Figure 5.1: General structure of a NoC design model with vector units in tiles

Many attempts have been made to perform SystemC simulations in parallel. Most of these

solutions have two major limitations. First, the designer has to manually partition his design

into different domains. Through the lack of automation for parallelization, designers merge

the orthogonal concepts of design methodology and techniques to save simulation time.

Second, traditional parallel discrete-event simulation is limited to thread-level parallelism.

Vectorization units for high-performance computing are not utilized although they have been

available in standard Personal Computer (PC)s for 8 years. General-purpose compilers like

the Intel icpc have significantly higher difficulty in identifying potential parallelism because

they are not aware of the intricate SystemC semantics.

NoC design is a popular pattern in the embedded systems domain. Figure 5.1 illustrates a

typical NoC platform that is assembled by a hosting grid and tiles which are organized in

rows and columns. A tile communicates with the other tiles located to the north, west, south,
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and east. This architecture is well-suited for distributed algorithms. Often, tiles follow the

same computation pattern but they are computing different parts of the same problem. Such

a NoC supports parallel simulation in multiple ways. On one hand, thread-level parallelism

is given through the individual tiles which process in parallel. On the other hand, each tile

can perform faster through data-level parallelism.

In this chapter, we propose an automatic solution to run simulations in an ultimate parallel

fashion. We extend the SystemC compiler [30] which first reads a design and identifies the

associated design hierarchy. Next, it performs conflict analysis to identify potential race

conditions and partitions each thread into a set of segments [16]. Each segment considers

all statements that can be executed in a scheduling step of a thread. In addition to the

thread-level parallelism, we add analysis to identify data-level parallelism. More specifically,

our compiler identifies candidates for vectorization in the design by taking the information

from the thread-level analysis into account. Finally, the designer can decide whether or not

the identified code locations are suitable and worthwhile for vectorization.

5.1.2 Related Work

Parallel discrete-event simulation is a well-studied subject. Initial work has been contributed

by [23] on thread-level parallelism.

The concept of a SG for parallel simulation of threads was first introduced in [16] for syn-

chronous and out-of-order parallel simulation. Later, the SG infrastructure was used for

may-happen-in-parallel analysis for safe ESL models in [17]. In contrast, we are using the

SG to identify and exploit thread and data-level parallelism to achieve higher simulation

performance.

Time decoupling is a widely-used method which can speed up the simulation of SystemC
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models. Parts of the model execute in an unsynchronized manner for a user-defined time

quantum. However, this strategy generally suffers from inaccurate simulation results [25].

[54] and [55] propose a technique to parallelize time-decoupled designs. This technique

requires the designer to manually partition and instrument the model in segments of time-

decoupled zones. The authors state ”Preparation for time-decoupled parallel simulation was

done in less than one person-day.” [55]. In contrast, our approach supports a 100% accurate

simulation of designs and our compiler automatically instruments the design for parallel

execution in minutes. In other words, the designer does not need to be familiar with the

design to perform a safe and fast parallel simulation.

A tool flow for parallel simulation of SystemC RTL models was proposed in [44]. The model

was partitioned according to a modified version of the Chandy–Misra–Bryant algorithm [12].

In contrast, our conflict analysis considers the individual statements of threads. Also, our

solution is not restricted to RTL models.

An approach of static analysis for simulation of SystemC models on Graphics Processing Unit

(GPU)s was provided in [51]. In contrast, our approach performs an automatic analysis on

the thread and data-level parallelism. [11] proposes an automated transformation of RTL

applications to GPUs. Here, it is required that the RTL input description is synthesizable.

5.2 Parallel Computation

Parallel computation is a general strategy to optimize the execution time of programs. This

technique is applied on various levels e.g. instruction-level, data-level, and thread-level paral-

lelism, as well as through distributed computing. The objective of exploiting instruction-level

parallelism is to maximize instruction throughput. Here, a CPU is organized as a pipeline,

such as the traditional RISC hardware architecture. Each instruction is partially executed
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at a different stage in the pipeline. Data-level parallelism is often associated with the term

SIMD. Multiple operations of the same kind are executed in parallel with different data sets.

This technique is often used to parallelize low-level loops. At the thread-level parallelism,

the individual threads of a program are executing in parallel fashion. It must be verified

that no race condition occurs among the individual threads. Otherwise, the simulation is

compromised and incorrect behavior occurs. Finally, the computation can be distributed

over a network of PCs which is called distributed computing.

5.2.1 Thread Level Parallelism

The thread-level analysis identifies potential race conditions between the individual threads.

In detail, we partition each thread into segments which is more comprehensively introduced in

Section 1.4. A segment considers all potentially executed expressions between two scheduling

steps. A new scheduling step is triggered with a wait() function call which yields control

back to the simulation kernel. Figure 5.3 shows a SG of the simple source code in Figure 5.2.

0 void foo() { 

1   r++;

2   wait();

3   a=b+c;

4   if(condition){

5     i++;

6     wait();

7     j++;

8   } else {

9     b=x+y;

10  }

11  z=z*z;

12  wait()

13  y=z+4; }

Figure 5.2: Example Source Code

r++

a=b+c;

condition

i++

b=x+y;

z=z*z;

wait (line 2)

j++

z=z*z;

wait (line 6)

y=z+4;

wait (line 12)

Figure 5.3: Segment Graph of Figure 2

The SG has similarities with a control flow graph but differs significantly in semantics. A new
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segment is only started when a wait() function call occurs. For instance, the exemplary

graph in Figure 5.3 has four different segments where the first segment is the initial one and

the three others are initiated with wait() calls. Also, it is possible that a statement occurs

in multiple segments. The segments starting in line 2 and line 6 both include the statement

sqr=sqr*sqr.

After the SG is created for all threads, the data conflict analysis takes place. All read

and written variables are analyzed for each segment. Next, all segments are compared for

possible read-after-write and write-after-write conflicts. Finally, we pass the conflict table

to the parallel simulator for decision making at run time.

5.2.2 Data Level Parallelism

Vectorization, a.k.a. parallelization utilizes additional hardware units in parallel lanes to

speedup the computation. Multiple operations of the same type are executed with different

data in parallel. For instance, the Intel Advanced Vector Extensions (AVX) have a data

width of 256 bit and they can process up to eight 32 bit integer operations or four 64 bit

double operations in parallel. Due to some overhead of arranging data in lanes, data-level

parallelism pays off best in loops.

Various criteria must be satisfied to vectorize a loop. First, the loop contains only straight-

line code. In other words, each lane in the vectorization unit must perform the same oper-

ation. On one hand, goto and switch statements are not allowed because for each loop

iteration the control flow would change. On the other hand, if statements are allowed, if

they can be transformed into masked assignments. Second, vectorization includes unrolling

of loops. So a loop can be only vectorized if the number of loop iterations is countable.

Additionally, no loop index variable can be written in the loop body. Next, no data depen-

dent exit conditions are allowed e.g. if(...)break;. Finally, no backward-carried data
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dependencies (e.g. A[i]=A[i-1]+2;) can be in the loop body. A full list of vectorization

requirements is available in [1]. We do not follow function calls of built-in functions that

are available as vectorized versions. Built-in mathematical functions, such as sqrt() and

sin() are supported by the Intel icpc compiler for vectorization.

Listing 5.1 shows the structure of a canonical loop. The code fragment can be easily vec-

torized. Listing 5.2 shows two nested loops where the inner loop cannot be parallelized due

to the data conflicts. On one hand, the inner loop writes two variables. First, the scalar k

is modified, which cannot be vectorized. The parallel writing of the individual vector units

causes conflicts. Second, the writing of array[i] cannot be parallelized either. The inner

loop iterates over j and the writing of array[i] is interpreted as writing of a scalar. On

the other hand, the outer loop can be parallelized. First, the variable k is a local variable

in the loop body. Consequently, this variable is independent from the outer loop iterations.

Second, the inner loop wont be parallelized when the outer loop is parallelized.

1 int array[10];
2 for (int i = 0; i < 10; i++) {
3 array[i] = 42;
4 }

Listing 5.1: Canonical loop

1 int array[10];
2 for (int i = 0 ; i < 10; i++) {
3 int k;
4 for (int j = 0; j < 10; j++) {
5 k++;
6 array[i] = 42;
7 }
8 }

Listing 5.2: Nested loop

Our heuristic analysis produces a list of loops which are potential candidates for vectoriza-

tion. To confirm this, the designer must annotate them in the source code. Specifically,

a #pragma simd is inserted before the loop to be vectorized. We should emphasize that

this manual interaction is necessary because data-level parallelization requires application

knowledge that only the designer can provide. The underlying compiler (the Intel icpc)

can cover only C++ semantics. Our proposed compiler adds SystemC interpretation, but
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application-specific knowledge can only come from the human designer.

Algorithm 3 shows our proposed heuristic to identify data-level parallelism in a SystemC

application. The recursive algorithm takes as input a statement s and analyzes if all reachable

statements from s are vectorizable. The return value is a tuple where the first element

indicates whether or not the statements are vectorizable. The second element is the list

of the reachable statements. We provide as input statement the function body of each

individual simulation thread. This information is only available with the support of our

SystemC-aware compiler which also performs the thread-level analysis.
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Algorithm 3 Identification of SIMD loop candidates

1: function Vectorizable(s)
returns (isV ectorizable, expressions)

2: if s ∈ {goto, continue, break, label} then
3: return (NotVectorizable, ∅)
4: end if
5: if s ∈ {variabledeclaration, expression} then
6: (r1, e1)← ( Vectorizalbe, Expr(s))
7: for all f ∈ FuncCalls(s) do
8: (r2, e2)← Vectorizable(GetFuncDefBody(f))
9: (r1, e1)← (r1 ⊕ r2, e1 ∪ e2)
10: end for
11: return (r1, e1)
12: end if
13: if s ∈ {if} then
14: (r1, e1)← Vectorizable(IfBlock(s))
15: (r2, e2)← Vectorizable(ElseBlock(s))
16: return (r1 ⊕ r2,Condition(s) ∪ e1 ∪ e2)
17: end if
18: if s ∈ {switch} then
19: for all c ∈ Cases(s) do
20: Vectorizable(c)
21: end for
22: return (NotVectorizable, ∅)
23: end if
24: if s ∈ {compound} then
25: (r1, e1)← (Vectorizable , ∅)
26: for all s′ ∈ Statements(s) do
27: (r2, e2)← Vectorizable(s′)
28: (r1, e1)← (r1 ⊕ r2, e1 ∪ e2)
29: end for
30: return (r1, e1)
31: end if
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32: if s ∈ {for, while, do-while} then
33: if ¬IsCanonical(s) then
34: return (NotVectorizable, ∅)
35: end if
36: (rb, eb)← Vectorizable(Body(s))
37: rc ← ConflictCheck(eb), IncrVar(s))
38: if (rb = Vectorizable ∧ rc = Vectorizable) ∨
39: (rc = Vectorizable ∧
40: rb ∈ {ScalarConflict, VectorConflict}) then
41: Recommend this loop for vectorization
42: return (Vectorizable, eb)
43: end if
44: if rc = VectorConflict ∧ rb = VectorConflict then
45: return (VectorConflict, eb)
46: end if
47: if rc = ScalarConflict ∧ rb = ScalarConflict then
48: return (ScalarConflict, eb)
49: end if
50: return (NotVectorizable, ∅)
51: end if
52: end function

In Algorithm 3, our classification in the first tuple element has four different states which

belong to three different classes. The classes are Vectorizable, NotVectorizable, and Maybe

where Maybe includes ScalarConflict and VectorConflict. NotVectorizable considers the sit-

uations where the statement s includes directly or indirectly control flow statements such as

switch, goto, break, or label. These jump statements cannot be vectorized. The class

Maybe considers expressions which cannot be vectorized for the current loop but potentially

for enclosing loops. ScalarConflict reflects the situation in Listing 5.2 in Line 5. The

loop writes the scalar k and cannot be vectorized. However, a potential outer loop can be

vectorized as in Line 4. VectorConflict describes a similar situation where an array is written

but the loop variable does not match the array index variable, as loop variable j and array

index i in Listing 5.2. The status Vectorizable indicates that the statement is suitable for

vectorization.
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We introduce the operator ⊕(r1, r2) → r3 where all operands belong to any classification.

The result is the more conflicting classification e.g. V ectorizable ⊕ ScalarConflict →

ScalarConflict. If the result belongs to the set Maybe it can be either ScalarConflict

or VectorConflict. We decided to maintain both types instead of merging them into one, in

order to the provide more detailed information to the designer.

The core of the algorithm is the if-clause in Line 32 where we analyze if a loop is applicable

for vectorization. Specifically, three conditions must be satisfied. First, the loop iterations

must be countable. The function IsCanonical checks if this is the case. Second, all

nested statements must be supported. The recursive function call in Line 36 analyzes all

nested statements. Third, we have to check if all expressions are conflict-free. The function

ConflictCheck analyzes if all write operations target local variables or vectorizable arrays.

A loop is vectorizable under two circumstances: a) the second and the third check return

Vectorizable. b) the second check may result in ScalarConflict or VectorConflict, but the

result for the third is Vectorizable. This describes the situation where the inner loop is not

vectorizable but the outer is. Otherwise, we distinguish if the result belongs to the class

Maybe or NotVectorizable.

5.2.3 Tool Flow

First, our SystemC compiler reads the design design.cpp and translates it into a thread-

safe design risc design.cpp to achieve thread-level parallelism. Additionally, our com-

piler provides to the designer information with candidates for loop vectorization to exploit

data-level parallelism in the terminal. After selecting from the provided source code loca-

tions, the user inserts the statement #pragma simd in front of the chosen loops. Finally,

the design risc design.cpp is compiled with the Intel icpc.

The feedback of the designer is needed. An example is the following C function:
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1 void add(float *a,float *b,float *c,int n)
2 {
3 for (int i = 0; i < n; i++) {
4 a[i] = a[i] + b[i] + c[i];
5 }
6 }

Listing 5.3: Nested loop

Here, arrays passed as pointers can only be vectorized if the user asserts that there is no

vector dependence in the way. This is only possible with application knowledge, not by static

compiler analysis. Our proposed compiler, which is aware of SystemC and its concurrent

multi-threading semantics, can identify this loop as a potential candidate, but the final data

independence assertion must come from the user who knows the application specifics (i.e.

the pointers point to non-overlapping arrays).

5.3 Experiments and Results

We have implemented the approach outlined above and demonstrate the combined speedup of

thread and data-level parallelism on two different applications, namely a particle simulator

on a NoC and a video Mandelbrot renderer unit. For both applications, we measure the

sequential, the sequential with SIMD, the parallel, and the parallel with SIMD simulator

run times. On one hand, the experiments execute on an Intel Xeon E3-1240 multi-core

processor with 4 CPU cores. Each core has one simulation thread with a vectorization unit

of 256 bit width. On the other hand, we use an Intel Xeon PhiTM Coprocessor 5110P many-

core architecture. The coprocessor contains 60 cores where each core has a vectorization unit

of 512 bit. To obtain unambiguous measurements, we turn CPU frequency scaling off for all

experiments.

100



5.3.1 Network-on-Chip Particle Simulator

As a comprehensive example we select a NoC particle simulator model in SystemC to demon-

strate the parallel simulation capabilities of our thread and data-level parallelism analysis.

The abstract architecture of the particle simulator is illustrated in Figure 5.1. The grid

is assembled of tiles where each tile communicates bidirectionally with a tile to its north,

south, east, or west. For a 4x4 example, we have 16 tiles and one grid module. Each tile has

one thread which computes the motion of the individual particles in a certain area of the

model. The particles move continuously in 2D space. The moment when a particle crosses

the boundary, the responsibility of computing and updating the position of the particles

shifts from one tile to its neighbor tile. The entire design can be scaled up to any quadratic

size. The user can configure via the command line the number of tiles as well as the number

of particles, the gravity, and other options.

At the beginning of the simulation, the testbench sends the initial particles to each individual

tile. This happens in a purely sequential fashion. Next, all tiles simulate the particles and

then synchronize with their neighbor tiles. A tile is blocked when it communicates with one

of its neighbors. At the end of the simulation, all the tiles send the particle positions back

to the testbench.

First, our compiler performs a thread-level analysis of the design. Each thread is identified

and analyzed for race conditions with all other threads in the design. The resulting conflict

table is then passed to our parallel SystemC library which performs out-of-order scheduling.

Next, our infrastructure creates and inspects the call graph of all possible threads for vec-

torization. The data-level parallelism analysis generates a list of potential locations for the

vectorization. After inspection of the list, the function apply force() is selected for par-

allelization. This function computes the gravity influence of the individual particles on each

other. The Intel icpc compiler cannot directly identify this function for vectorization. Our
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analysis builds a call graph for each thread and filters it for possible candidate locations.

Suitable candidates are vetted by the designer using his application knowledge. To confirm

vectorization, the designer adds #pragma simd before the for-loop in question.
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Figure 5.4: Speedup of the NoC Particle Simulator

Experiment on the Multi-Core Host

Figure 5.4 shows the speedup for the particle simulator on the four core machine. First,

the blue line (diamonds) shows the speedup M for the sequential SIMD simulation between

1.6x and 2.1x. This confirms our SIMD discussion above where the maximal speedup of 4x

cannot be reached due to the needed overhead of packing and unpacking the lanes. The

increasing communication of particles among tiles results in lower parallelism (Amdahl’s

law) which explains the decreasing speedup. For a 7x7 grid size, 49 threads are active and

communicating synchronously bidirectional to the associated neighbor threads. So, intensive

core to core communication limits the parallelism.

The red line (squares) shows the thread-level speedup N , generally increasing with higher
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grid sizes. The measurement and the resulting total speedup (N × M) shown in green

(triangles) show a zig-zag pattern. Grid sizes with an even number of rows and columns

perform better than the grid sizes with odd number of rows and columns. This phenomenon

is due to the implementation of the particle simulator, in particular due to its communication

characteristics. Figure 5.5 compares the communication pattern of a 3x3 and 4x4 grid.
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Figure 5.5: Communication pattern of the Particle Simulator

First, for the 4x4 grid the odd rows are communicating with the neighbors to the south

(indicated as 1 ). In this case, eight communication pairs are active at the same time. Next,

the even rows communicate to their south neighbors. Here, the last row communicates

with the first row. Again, eight pairs are available for the parallel simulation (indicated as

2 ). So, at any point all four cores are fully utilized. The same applies for the horizontal

communication.

For the 3x3 grid, the simulation has different characteristics. First the odd rows start

communicating which is only the first row 1 . Three pairs are available for execution which

means that only three out of four cores are used. Next, the odd rows communicate 2 .

Again, only three pairs are available, one core stays idle. Finally, the last row communicates

with the first row 3 . In all phases, only three out of four cores are utilized. All over, the
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4x4 grid can gain higher speed up due to the higher core utilization.

This explanation applies for the other gird sizes as well. For instance, the 6x6 grid size with

36 threads can be better utilized than a 5x5 with 25 threads on a 4 core machine.

Finally, the green (triangle) line shows the combination of the parallel and SIMD technique

essentially the product of N ×M . The product of the sequential with SIMD and parallel

simulation show the combined speedup. The maximal speedup is 6.8x which is impressive

on 4 cores.

Experiment on the Many-Core Host

We simulated the particle simulator on the many-core architecture as well. The Intel Xeon

Phi 5110P Coprocessor hardware has a ring architecture of cores. Two cores are communi-

cating over a third core which hosts as a so-called tag directory. This communication scheme

causes a high traffic congestion. In our simulations, the speedup is marginal (below 5x) and

constantly decreases with the increasing number of threads. Similar results and the impor-

tance of a sophisticated thread to core mapping have been shown in [31] for this specific

architecture. So, we decide not to investigate the NoC benchmark further on this platform.

5.3.2 Mandelbrot Renderer

The Mandelbrot renderer is a parallel video application to compute the Mandelbrot set [32].

Basically, the DUT hosts a number of renderer units. Each unit computes a different slice

of the Mandelbrot image. At compile time, the user defines how many slices are available.

During the simulation, the DUT provides coordinates to the individual slices. A slice com-

putes the Mandelbrot set for the given coordinates and sends the results back. The DUT

receives the data from each unit and stores them. Finally, new coordinates are provided
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to all slices for the next frame. In contrast to the NoC particle simulator where tiles are

intensively communicating, the individual renderer units are fully independent.

Our compiler automatically applies the thread-level parallelism to the individual threads

of the renderer units. The data-level parallelism analysis identifies the central loop in the

function mandel row() as a candidate for vectorization, which we confirm.
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Figure 5.6: Speedup of the Mandelbrot Renderer

Experiment on the Multi-Core Host

Figure 5.6 shows the simulation speedup for the Mandelbrot renderer with up to 256 different

units on the 4 core machine. First, the sequential simulation with SIMD support (blue

diamonds) achieves a speedup M of about 1.7x. The increasing number of slices slightly

affect the speedup. Through the increasing number of threads in combination with the

data need of the vectorization units, higher memory traffic occurs. Next, the thread-level

parallelism (red squares) provides a speedup N of nearly 5.1x. This super-linear speedup is

possible due to the poor cache utilization of sequentially scheduling 256 threads on the 4-core
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machine. Table 5.1 shows the increase from 41.5 seconds to 59 seconds for this sequential

reference case. Finally, the combination of the thread and data-level parallelism N×M reach

a total of up to 8.8x.

Table 5.1: Simulation speedup for the Mandelbrot renderer on 4 core host architecture.

Slices 4 Core Machine

Execution Time / CPU Utilization Speedup
seq seq.simd par par.simd seq.simd par par.simd

1 41.53 100% 23.80 99% 41.74 99% 23.88 99% 1.74 0.99 1.74
2 41.66 99% 23.99 99% 25.14 165% 14.32 166% 1.74 1.66 2.91
4 41.91 99% 24.22 99% 14.53 297% 8.39 294% 1.73 2.88 5.00
8 42.36 99% 24.61 99% 12.28 354% 7.31 341% 1.72 3.45 5.79

16 43.07 99% 25.23 99% 11.74 372% 6.90 361% 1.71 3.67 6.24
32 44.58 99% 26.51 99% 11.44 381% 6.76 369% 1.68 3.90 6.59
64 46.69 99% 28.05 99% 11.41 382% 6.73 371% 1.66 4.09 6.94

128 50.85 99% 32.42 99% 11.46 381% 6.70 373% 1.57 4.44 7.59
256 58.99 99% 41.37 99% 11.43 382% 6.69 374% 1.43 5.16 8.82

Experiment on the Many-Core Host

Finally, we simulate the Mandelbrot renderer on the Intel Xeon Phi many-core architecture.

Figure 5.7 shows the simulation results. Due to the minimal communication needs compared

to the particle simulator, highest speedups are reached. The vectorization unit with 512 bit

can execute up to eight double-precision floating-point operations in parallel. A speedup

M of 6.9x is achieved. The thread-level parallelization increases strongly on the 60 cores

with a speedup N of 50x. Afterwards, the speed slows down. Due to the 60 physical cores

and use of hyper threads. Table 5.2 shows the increase from 393.97 seconds to 1.85 seconds

for this sequential reference case. Finally, the combination of the thread and data level

parallelization N ×M generates a speedup of up to 212x.
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Table 5.2: Simulation speedup for the Mandelbrot renderer on 60 core host architecture.

Slices 60 Core Machine with 4 Hyperthreads Each

Execution Time Speedup
seq seq.simd par par.simd seq.simd par par.simd

1 393.76 56.94 393.52 56.70 6.92 1.00 6.94
2 393.75 56.92 234.15 33.44 6.92 1.68 11.77
4 393.79 56.92 129.45 18.58 6.92 3.04 21.19
8 393.75 56.92 67.36 9.82 6.92 5.85 40.10

16 393.77 56.93 34.62 5.43 6.92 11.37 72.52
32 393.80 56.97 18.47 2.87 6.91 21.32 137.21
64 393.90 57.12 9.59 1.89 6.90 41.07 208.41

128 393.97 57.14 8.51 1.85 6.89 46.29 212.96
256 394.20 57.35 7.90 2.03 6.87 49.90 194.19
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Figure 5.7: Speedup of the Mandelbrot renderer on a many core architecture

5.4 Summary

In this chapter, we present our compiler infrastructure for the automatic parallelization of

SystemC models at the thread level. Additionally, our infrastructure performs an analysis

to identify source locations that are suitable for data-level parallelization. The vectorization
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analysis depends strongly on our SystemC aware compiler which identifies the simulation

threads of the individual models and channels. To the best of our knowledge, this work is

the first to apply and exploit SIMD vectorization on top of thread-level parallel SystemC

simulation. We demonstrated our techniques on NoC particle simulator and Mandelbrot

renderer SystemC benchmarks on a multi- and many-core architecture. On the 4 core ma-

chine, we achieved a speedup of up to 8.8x through the combination of thread and data-level

parallelism. On the 60 core architecture, we gained up to 212x of simulation speedup.
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Chapter 6

Conclusion

In this chapter, we discuss the contributions of this dissertation and briefly summarize them.

Additionally, we discuss the future work of the RISC compiler infrastructure.

6.1 Contributions

The key contributions of this dissertation are the following:

1. Creation of an open source compiler framework for analysis and parallel simulation of

IEEE SystemC models

2. Automatic generation of SystemC thread communication charts to visualize thread

and module dependencies [48]

3. Advanced conflict analysis for channel instance IDs and C++ references to distinguish

variables for reduced false positive conflicts [47]

4. Hybrid analysis approach to support 3rd party library code as well as dynamic elabo-
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ration of module hierarchies [50]

5. Identification and exploitation of opportunities to exploit thread and data level paral-

lelism for PDES [49]

6.1.1 Thread Communication Graphs

In Chapter 2, we addressed the time-consuming task of refining and documenting legacy and

3rd party source code. We proposed to automatically extract graphical charts from given

SystemC code to ease the understanding of the source code with a visual representation.

Specifically, we extracted the communication flow between the threads from the design model

by use of an automatic SystemC compiler infrastructure that statically analyzes the code.

6.1.2 Improved Static Analysis

In Chapter 3, we examined the effect of false positive conflicts in the data and event noti-

fication table for the simulation speed. Specifically, we discussed the treatment of channel

variables and references. For channel variables we introduced the concept of the PCP to

identify the instance ID of individual channels. For references, we provided a combina-

tion of AST annotation and the PCP analysis to determine the mapped reference variables.

Through these techniques we were able to eliminate up to 98% of false positive conflicts and

gain a speedup of 4x in simulator performance.

6.1.3 Hybrid Analysis

In Chapter 4, we discussed the need for a hybrid analysis in context of static analysis for

SystemC models. On one hand, the source code of libraries is often not available, however, it
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is needed for the static analysis. We provided an annotation scheme for libraries to provide

information for the static analysis. On the other hand, during the design space exploration

designers tend to provide model configurations dynamically. For instance, the number of rows

and columns of a NoC architecture is provided via command line arguments. We proposed

a dynamic analysis to extract structural information and used this information later in the

static analysis. We gained a speedup of up to 6x for a model which is not analyzable without

our newly introduced hybrid analysis.

6.1.4 Thread and Data Level Parallelism

In Chapter 5, we extended the traditional PDES and added data level parallelism to it. Our

RISC compiler infrastructure analyzes the model for potential loops for vectorization. As

the result, the designer gets a list of potential loops for vectorization and has to decide which

loops are applicable. We gained a speedup of 8x on a multi-core architecture with 4 cores

and a speedup of 212x on a many-core architecture with 60 cores.

6.1.5 Open Source Release

Unfortunately, in academia open source releases are rare because they are time costly and

require a high level of maintenance. In contrast, this dissertation provides all individual

contributions in an open source software package. Based on the given Linux C++ platform

and the 3rd party ROSE compiler infrastructure, we have implemented the SystemC IR, the

Segment Graph Generator, and the Backend Analysis software layers shown in Figure 1.5.

The RISC compiler framework had four open source releases with associated technical re-

ports over the last years. The current version is freely available at [30] and is still under

maintenance and extension by continuing group members.
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Comprehensive Test Suite

Another major engineering contribution of this dissertation is the testing infrastructure. In

collaboration with undergraduate students hundreds, of test cases for the SG generation

have been created. These test cases consider all kinds of loops, if-else statements, nested

control flow statements, member function calls, recursive function calls, global function calls,

and many other aspects. Additionally, hundreds of test cases for the data conflict and event

notification table have been created. These test cases consider variables in many contexts

e.g. function parameter references, module references, global and static variables, local

and member variables, namespace variables, variables in context of instance IDs, and other

situations. All these test cases run automatically and are used as regressions tests to maintain

the correct functionality of the RISC software package with every release.

6.2 Future Work

The overview and the future work of the RISC compiler infrastructure is sketched in Fig-

ure 1.15 on page 23.

In the current release, the RISC compiler does not support TLM 2.0 models which con-

tain, among other things, direct memory accesses. Additionally, the concept of channels

disappeared because they became modules which are connected to each other directly. This

technique aims at reducing the amount of context switches and gain simulation speed in a

sequential simulator. The RISC compiler requires communication between modules through

channels right now. The diagnostic for the conflict analysis should be extended to simulate

TLM 2.0 models in parallel as well.

Another aspect of future work is the handling of partial SGs. So far, the entire SystemC

model must be in one single file for instrumentation. However, library providers do not
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provide all of their source code and keep it protected. Thus it is needed to provide partial

SGs along with header files which are integrated into one complete SG later.
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