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Detailed characterization of neural
selectivity in free viewing primates

Jacob L. Yates 1,2,3,4 , Shanna H. Coop1,2,5, Gabriel H. Sarch1,6, Ruei-Jr Wu2,7,
Daniel A. Butts 3, Michele Rucci 1,2 & Jude F. Mitchell 1,2

Fixation constraints in visual tasks are ubiquitous in visual and cognitive
neuroscience. Despite its widespread use, fixation requires trained subjects, is
limited by the accuracy of fixational eye movements, and ignores the role of
eye movements in shaping visual input. To overcome these limitations, we
developed a suite of hardware and software tools to study vision during nat-
ural behavior in untrained subjects. We measured visual receptive fields and
tuning properties from multiple cortical areas of marmoset monkeys who
freely viewed full-field noise stimuli. The resulting receptive fields and tuning
curves from primary visual cortex (V1) and areaMTmatch reported selectivity
from the literature which was measured using conventional approaches. We
then combined free viewingwith high-resolution eye tracking tomake the first
detailed 2D spatiotemporal measurements of foveal receptive fields in V1.
These findings demonstrate the power of free viewing to characterize neural
responses in untrained animals while simultaneously studying the dynamics of
natural behavior.

All animals with image-forming eyes acquire visual information
through eye movements1, which shapes the visual input2. However,
standard characterizations of neural processing of vision, to date,
require stabilization of the subject’s gaze—either through anesthesia/
paralytics3,4 or trained fixation on a central point5 (Fig. 1a)—or they
ignore eye movements entirely6. Even experiments that involve active
components of vision—such as covert attention, or the planning of
saccadic eyemovements—primarily involve analyses during instructed
saccades and fixation on a point7–9.

While these conventional paradigms have given us a highly suc-
cessful model of early visual processing10,11, it is unknown how well
those results generalize to describe natural visual conditions and they
have limited the study of visual processing to portions of the visual
field outside the center of gaze. Relatively few labs have attempted to
study visual processing during natural eye movements12,13, and none
have been able to interpret neural responses with respect to detailed
visual processing in the presence of natural eye movements. Recent

experimental work has demonstrated that eye movements modulate
neural selectivity substantially inmanybrain areas14,15. Moreover, visual
input is normally acquired through eye movements. Recent work
suggests this process is fundamental in formatting the visual input to
facilitate normal vision16–18. Furthermore, fixation paradigms come
with a substantial cost in our understanding of visual processing:
the visual stimulus the subject is looking at (the fixation point) is not
the stimulus under study19,20.

To study natural visionwithout any loss of detail or rigor, we have
developed a suite of integrated software and hardware tools to char-
acterize neural selectivity during natural visual behavior, and do so at a
resolution that exceeds standard fixation paradigms. Our approach,
“free viewing”, lets subjects lookwherever they pleasewithin the visual
display. We perform all analyses on a gaze-contingent reconstruction
of the retinal input. Although previous studies have “corrected” for
small changes in eye position by shifting the stimulus with the mea-
sured or inferred center of gaze, this hasonly been attempted for small
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displacements of the stimulus during instructed fixation21–23. Our
approach differs in that the subjects are free to explore the visual
scene, resulting inmorenatural dynamicsof visual input, and requiring
little to no specific training.

Previous attempts at free viewing have faced three main obsta-
cles: (1) the computational requirements to recover receptive fields
from full-field stimuli, (2) limitations in eye tracker precision, and (3)
errors resulting from eye-tracker calibration. Here, we show that
combining image-computable neural models with correction for eye
position from commercially available eye tracking is sufficient to
recover receptive field size and tuning in free-viewing animals. Addi-
tionally, we introduce a high-resolution eye tracker for non-human
primates and offline calibration using measured neurophysiology to
give sufficient resolution to study visual processing in foveal neurons
of primary visual cortex.

We demonstrate this approach here in marmoset monkeys. Mar-
mosets are small new-world primates with homologous visual archi-
tecture to largerprimates24 and similar eye-movement statistics25. They
are increasingly used as a model for neuroscience because of their
similarity to humans and benefits for genetic tools26. However, mar-
mosets are limited in their ability to fixate for prolonged periods. Our
approach circumvents this issue, making both standard and new
neural characterization approaches possible in marmoset, and also
resulting in a higher data-throughput per animal: generatingmore data
per unit time than fixation paradigms. More generally, this paradigm

provides an opportunity for rigorous study of visual neuroscience in
species where fixation paradigms may be impractical (such as ferrets,
tree shrews, and rodents).

We demonstrate the free-viewing approach to recover receptive
field properties to both primary visual cortex (V1) where neurons can
have high spatial and temporal resolution, and areaMT, a higher visual
area specialized for motion processing. Additionally, combined with
high-resolution eye tracking, it is possible to recover fine-scale spatial
receptive field structure of neurons in the central degree of vision (the
foveola) for the first time.

Results
The free-viewing paradigm
To study natural vision in untrained animals, we depart from conven-
tional approaches that stabilize the subject’s gaze behaviorally with a
fixation point. Instead, we present full-field natural and artificial stimuli
in 20 s trials while monitoring eye position and neural activity. Figure
1b illustrates the free-viewing approach: because the retinamoveswith
the eyes and visual neurons have receptivefields in a retinal coordinate
frame, we must correct for changes in eye position to correctly
represent the visual inputs to neurons. The relevant stimuli for a set of
neurons can be recovered offline using a gaze-contingent region of
interest (ROI) that moves with the eyes. Once the stimulus is recon-
structed within the gaze-contingent ROI, conventional analysis tools
can be used. In the following sections, we describe the successful

Fig. 1 | Free-viewing paradigm and gaze-contingent neurophysiology.
a Conventional fixation paradigm with flashed stimuli. Spike times are aligned to
stimulus onset and analyzed during a window during fixation. b Free viewing:
subjects freely view continuous full-field stimuli. Shown here is dynamic Gabor
noise. All analyses are done offline on a gaze-contingent reconstruction of the
stimulus with a region of interest (ROI). Analysis windows are extracted offline
during the fixations the animal naturally produces. c Simulation demonstrates how
uncertainty in the gaze position (due to accuracy and precision) would limit the
ability to map a receptive field. (Left) A model parafoveal simple cell (linear
receptive field, half-squaring nonlinearity, and Poisson noise) moves with the gaze.
Example gaze trace shown in cyan. RF inset is 1 d.v.a. wide. (Middle) errors in

precision are introduced by adding Gaussian noise to the gaze position. Errors in
calibration are introduced by a gain factor from the center of the screen. (Right)
The recovered RF using spike-triggered averaging (STA) on a gaze-contingent ROI.
Of course, with zero precision noise or calibration error, the STA recovers the true
RF. Adding either source of noise degrades the ability to recover the RF, however,
some features are still recoverable for awide rangeof noiseparameters at this scale.
RFs that are smaller or tuned to higher spatial frequencies require high-resolution
eye tracking. The yellow and cyan dots indicate two levels of accuracy that are
explored in Figs. 2 and 4, respectively. Animal drawings in panel a and b were
created with help from Amelia Wattenberger.
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application of this approach to recordings from V1 and MT of 4 mar-
moset monkeys (Callithrix Jacchus; 3 males, 1 female).

A considerable barrier to using free-viewing paradigms prior to
this work has been limitations in eye-tracking. Figure 1c demonstrates
the effect of eye tracking limitations by simulating the responses of a
model V1 simple cell with a receptivefield thatmoveswith the eyes and
adding common sources of noise. Of course, if the true gaze position
was perfectly known, the experimenter could recover the receptive
field because the gaze-contingent input would be identical to the input
with stabilized gaze. However, real eye trackers have noise that affects
theprecisionof theirmeasurements (top trace, precision). Eye trackers
must also be calibrated,which is only as accurate as the subject’s ability
to fixate on points on the screen presented during the calibration
procedure and has inherent error associated with it (bottom trace,
calibration). Adding these sources of noise affects the ability of the
experimenter to recover an RF from the free-viewing approach (Fig. 1c,
right panel).

A second obstacle to free viewing is computational limitations in
processing full-field high-resolution stimuli. A standardmonitor today
has 1920 × 1080 pixels. Generating artificial stimuli at high frame rates
and full resolution is now possible with gaming graphics processing
units (GPUs) and procedurally generated stimuli can be reconstructed
offline at full resolution for part of the screen.

In the following sections, we show that tailored artificial stimuli
combined with commercially available eye tracking can recover
defining properties of neurons in V1 and MT. We then show that high-
resolution eye tracking, combinedwith V1-basedoffline calibration can
recover detailed spatiotemporal RFs in the fovea of V1.

Retinotopy and selectivity in V1 during free-viewing paradigms
While the accuracy and precision of eye tracking impose limitations on
the scale of receptive fields that can be studied during free viewing, a
great deal can still be accomplished even with a standard eye tracker.
In this section, we show that full-field sparse noise stimuli and com-
mercially available eye tracking (Eyelink 1000) can be used to recover
the size, location and tuning of receptive fields (RFs). The sparse noise
stimulus allows us to efficiently estimate RF locations over a large
portion of the visual field, which is often all that is required for further
targeting neurons with behavioral paradigms, but also can be used to
further target analyses with high-resolution stimuli within an ROI.

We present sparse noise consisting of flashed dots or squares in
randompositions on each frame (Fig. 2a) during free viewing and use a
gaze-contingent analysis to align the stimulus to retinal coordinates.
Wemove a gridwith the location of gaze on each frame (Fig. 2a). As the
grid moves with the eyes, we then average the stimulus luminance
within each grid location on each video frame. This can be computed
rapidly with sparse noise using the position and sign of the dots that
are present on each frame of our noise stimulus. Our initial ROI is
28 × 16 degrees of visual angle (d.v.a.) with 1 d.v.a squarebins, centered
on the gaze location. This window covers a large portion of central
vision, including all possible retinotopic locations in our recording
chamber (and an equal area in the opposite hemifield).

We used regularized linear regression (methods) to estimate the
spatiotemporal RF. As illustrated by the spatial response profile at the
peak temporal lag (Fig. 2b), we can identify receptive fields at a coarse
spatial scale (1 d.v.a. bins) for two example neurons: one in the fovea
and one in the periphery. We then re-define a new ROI centered on
simultaneously recorded RFs and run the samebinning and regression
procedure at a finer spatial scale with 20 bins (median =0.2 d.v.a. bins)
spanning the new ROI (Fig. 2b, insets). Spatial RFs were typically
recovered with less than 5min of recording time. The median
recording time to recover spatial retinotopicmapswas only 2.39 [2.03,
8.33] minutes (n = 18 sessions). We then fit a 2D gaussian to the fine-
scale spatial map to recover the RF location and size (methods).
Though it is possible to train marmosets to perform conventional

fixation tasks25,27, muchof that timewould be unusable for analysis due
to breaks between the trials and limited trial counts. Using the free-
viewing approach here results in a substantial gain in the total ana-
lyzable neurophysiology data over fixation paradigms (Supplementary
Fig. 1). We determined a unit had an RF if (a) the linear RF explained
more variance on withheld data than the mean firing rate and (b) the
Gaussian fit to the RF had an r-squared greater than 0.4. Using these
criterion, the free-viewing analysis was sufficient to recover spatially
selective RFs in 189/322 (58.7%) of recorded units with a sufficient
number of spikes ( >200) and physiologically reasonable spike wave-
forms (see methods) frommarmoset V1 (Supplementary Table 1), and
demonstrated a comparable relationship between eccentricity and
size of RFs as reported from previous literature with anesthetized
marmosets (Supplementary Fig. 2).

We also measured visual feature selectivity during free viewing
using sinewave gratings. We presented full-field gratings that
were updated randomly on each frame (Fig. 2c) and performed sub-
space reverse correlation28 yielding the spatial-frequency RF for the
same example units, plotted in polar coordinates where angle repre-
sents stimulus orientation and radial distance represents spatial fre-
quency (Fig. 2d).We label units as having a significant RF following the
goodness-of-fit criterion (a) and (b) fromabove, except theGaussianfit
was replaced with a parametric model of orientation and spatial-
frequency tuning (see methods). This analysis produces selective
responses in 377/428 (88%) of units (Supplementary Table 1) and
worked well across the visual field. The subspace reverse correlation
also gave temporal response functions consistent with known V1
temporal response profiles (Fig. 2e). The median recording time used
for grating receptive fields was 11.03 [10.66, 16.33] minutes
(n = 18 sessions). The resulting distribution of preferred orientations
(Supplementary Fig. 2) was comparable to previous reports from
macaque and cat V129,30. Thus, the feature tuning of neurons in V1 can
be measured during free viewing with short recording times in mini-
mally trained marmosets using commercially available eye tracking
and standard calibration.

Free-viewing approach recovers receptive field properties in
area MT
The validity of this approach is not limited to simple visual features
that drive primary visual cortex, but can generalize to other features
and higher level visual areas. We demonstrate this here by measuring
motion-selective RFs for neurons recorded from area MT during 10
free-viewing sessions. Extra-striate areaMT is a higher-order visual area
with the vast majority of neurons exhibiting exquisite tuning to retinal
motion31. To measure motion-selective RFs, we adapted the sparse
noise stimulus described above to include motion. Rather than simply
appearing and disappearing on each frame, each dot was randomly
placed with asynchronous updating and then drifted drifted for 50ms
in one of 16 directions (Fig. 3a). Using the same gaze-contingent ana-
lysis window, we converted the spatiotemporal stimulus into separate
horizontal and vertical velocity components. This spatiotemporal
velocity stimulus was then used as the input to a linear nonlinear
poisson (LNP) model of the MT neuron spike trains (methods).

The LNP model trained on gaze-contingent velocity stimuli
recovered spatiotemporal velocity RFs for MT units (Fig. 3b). We
found detailed spatiotemporal measurements of the velocity selec-
tivity of MT neurons, which we decomposed into spatial maps of
direction selectivity (Fig. 3b), temporal selectivity (Fig. 3c), and
overall motion tuning (Fig. 3d, seemethods). Following the selection
criterion above, we labeled neurons as having selective RFs if the
linear RF cross-validated better than themeanfiring rate. This yielded
241/466 (51.72%) selective units (Supplementary Table 2). The
selective MT neurons in our sample were well fit by von Mises tuning
curves (mean r-squared = 0.62 + −0.02, n = 241 units). This highlights
that full-field stimuli can be engineered to target complex feature
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selectivity and that regression-based analyses can recover detailed
spatiotemporal measurements of that selectivity during uncon-
strained visual behavior.

High-resolution eye tracking for detailed 2D spatiotemporal
receptive fields in the fovea
No previous studies have accurately recovered the full spatiotemporal
receptive field structure of V1 neurons in primate foveal regions. This
gap is not due to negligence, but rather reflects limitations in the
accuracy of eye tracking in measuring small RFs. Even anesthetized,
paralyzed monkeys exhibit drift in eye position over the course of an
experiment. Further, the conventional approach to obtain accurate RF
estimates using fixation paradigms obscures study of foveal vision
because the center of gaze is occupied by the fixation point as the
stimulus. Another limitation to all previous studies is that fixation is
imperfect, with continuous eye drift and fixational eye movements,
which are substantial and would limit precision if uncorrected (Sup-
plementary Fig. 3). The free-viewing approachprovides an opportunity
to directly stimulate foveal vision to recover high-resolution RFs if it
used in conjunction with sufficiently accurate eye-tracking. Here, we
apply free viewing with high-resolution (both in terms of accuracy and
precision) eye tracking to measure detailed receptive fields in the
fovea of free-viewing marmosets.

To obtain precisemeasurements of gaze position, we adapted a
recently developed video eye tracker32,33 for use with marmosets.
The digital Dual Purkinje Imaging (dDPI) eye tracker uses a digital
CCD camera, IR illumination and GPU processing to track the 1st
and 4th Purkinje images achieving a 0.005 degree precision (RMS of
noise measured with an artificial eye) and is precise enough to

measure and correct for fixational drift and microsaccades
(Supplementary Fig. 3).

To achieve full-resolution receptive fields in the fovea, we center
an ROI on the retinotopic location of the recorded neurons (as in
Fig. 2) and then reconstruct the full stimulus (pixel by pixel) for every
frame within that ROI (as in Fig. 1b). Beyond flashed spatial dots or
gratings,we alsopresented trials inwhich the free-viewingbackground
consisting of flashed Gabor and Gaussian stimuli of varying phase,
orientation, and spatial scales. For 5 foveal recording sessions, we
reconstructed every frame of the experiment at pixel-resolution
(where pixels were 1.5 arcmin) within a gaze-contingent ROI.
This was done for every stimulus condition so that we had a gaze-
contingent movie of the stimulus at the projector refresh
rate (240Hz).

While the dDPI tracker used in the current study provided high
precision position signals, it required calibration to obtain an accurate
estimate of the actual gaze position. To calibrate high-resolution eye-
trackers, previous studies in humans use a two-stage calibration pro-
cedure, where the human subjects adjust their own calibration para-
meters in a closed loop34. As our marmosets were unlikely to perform
self-calibration without extensive training, we developed an offline
calibration method using V1 physiology directly. Briefly, we fit a con-
volutional neural network (CNN) model of V1 that included a recali-
brationof the eye tracker tooptimize themodelfits to gaze-contingent
neural activity across the recorded session. Specifically, the CNN pre-
dicts the spiking response of the entire population of simultaneously
recorded units given the spatiotemporal gaze-contingent stimulus
movie, which is reconstructed based on the eye tracker calibration
identified by the CNN (Fig. 4a). One critical aspect of this method is

Fig. 2 | Receptive fieldmapping and feature tuning inV1. a Retinotopicmapping
approach uses a 28 × 16° gaze-contingent grid with 1° spacing. This downsampled
stimulus is used to estimate the receptive field (RF) using linear regression with
binned spike counts.bThe spatiotemporalRF at the peak lag is shown as a heatmap
for foveal and peripheral example units. A region of interest (ROI) is set around the
peak value in the RFmap. This ROI is used to repeat the analysis at a .3° resolution,
which is shown in the insets. The black line denotes a contour from Gaussian fit at
2 standard deviations. c Subspace reverse correlation procedure for mapping

tuning. Full-field gratings are updated randomly at or near the frame rate. Linear
regression is used tomap from the frequency subspace to firing rates. The resulting
spatiotemporal weights are used to learn the tuning and temporal impulse
response. d Example joint orientation-frequency tuningmaps for the units in panel
b. Black lines indicate 50 and 75% contour lines from the parametric fit (methods).
eTemporal impulse response in spikes per second for preferred gratingsmeasured
with forward correlation.
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that we obtain better fits to the eye tracker calibration when we use
recordings from larger V1 populations. Therefore, using recordings
with high-density arrays as used in this current study represents a
distinct advantage. Importantly, the CNN is only used to learn the
correction grid for the eye-tracker calibration. The RFs we measure
here are conventional spike-triggered averages (STAs) and are not a
product of the CNN.

The key component of the CNN that corrects the calibration of
our eye tracker is a 2-layer “shifter” network35. The shifter network
takes the gaze position on each frame as input and produces a shared
shift to the spatial position of all units being reconstructed in our
recording session (Fig. 4a). Any errors in the behavioral calibration of
the eye trackerwillmanifest as shifts in theRF locations for all units as a
function of where the marmoset is looking, which will be learned by
the shifter network. Such corrections to the output of the dDPI eye
tracker end up being smooth functions of spatial position, as illu-
strated by the output of the shifter network for an example session
visualized as a function of gaze position (Fig. 4b). As was typical of our
sessions, the shifter network produced small shifts (maximum 7 arc-
min, median shift 1 arcmin) across a 10 d.v.a. range of gaze positions.
These calibration matrices (CMs) dictate how to correct the initial
experimental calibration. Across repeated fitting, the shifter network
produced highly reliable CMs, suggesting that the shifter was mea-
suring systematic changes in RF position as a function of themonkey’s

gaze position, likely both a result of small errors in the initial calibra-
tion established by the experimenter, and systematic deviations from
linearity of the calibration.

Once an accurate calibration was established, we reconstructed
the detailed retinal input to the receptive field at foveal precision. To
measure the RF, we computed the spike-triggered average (STA) sti-
mulus. To avoid potential issues of post-saccadic lens wobble36, we
excluded 50ms following each saccade from our analyses. We com-
pared the linear RF computed with spike-triggered averaging (STA)
with and without the improved CM correction. Figure 4c shows
example foveal RFs measured with and without correction. The
examples in Fig. 4c illustrate that the shifter network is necessary to
make detailed measurements in the fovea, as reflected by the RFs
measured with and without correction. RFs post correction had
amplitudes that were significantly larger than without correction
(geometric mean ratio = 1.38 [1.34, 1.41] n = 378, p < 2.12 × 10−209,
1-sample t-test t = 66.08).

To calculate whether a unit had a significant RF, we compared our
measured STAs to a null distribution computed using spikes from
before the stimulus onsets. Using a p <0.001 threshold, 378/621
(60.87%) of units had significant RFs. We found that at this scale, many
more units had significant RFs using squared pixel values (572/621
[92.11%]) suggesting they are visually responsive, but not well descri-
bed by a linear RF. Because errors in measured gaze position may

Fig. 3 | Receptive field mapping and tuning in MT. a Sparse motion-noise sti-
mulus was converted into a spatiotemporal velocity stimulus with separate hor-
izontal and vertical velocities using a gaze-contingent grid with 2° spacing. This
downsampled stimulus is used to estimate the receptive field (RF) using linear
nonlinear Poisson model (LNP). b The spatial map at the peak lag of the spatio-
temporal velocity RF from the LNP fits is shown as a vector plot for three example
units. Color indicates the vector amplitude (ranging from 0 to 1, with gray at 0.5).

c The temporal impulse response was measured both in and out of the RF by
projecting the (unnormalized) vector at the maximum and minimum amplitude of
the spatial RF on the preferred direction (unit vector). The three plots correspond
to the three example units in b. d Tuning curves were measured by masking the
stimuluswith half of themaxof the spatial RF andcomputing themeanfiring rate at
the peak lag for each direction shown. Error bars are 95% confidence intervals
measured with bootstrapping and blue lines are fits with a von mises function.
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manifest as a scrambling of the phase of the input, which would result
in a bias towards finding complex cells, we investigated the proportion
of simple and complex cells in our sample by fitting simple and com-
plex cell models to each cell and comparing the cross-validated log-
likelihoods (Supplementary Fig. 4). Using thismethod,we found81%of
our units were complex, consistent with previous reports from anes-
thetized marmoset measured outside the fovea37.

Our recordings from marmoset V1 are the first detailed 2D spa-
tiotemporal measurements of foveal cortical processing. Figure 4d
shows example single neuron spatiotemporal RFs. Across neurons, we
found a range of spatial and temporal receptive field properties that
are consistent with several classic findings of simple and complex cell
receptive field structure in V1, provided a substantial miniaturization
for the spatial scale.

To compare the RFs recovered during free viewing with
fixation more directly, we recorded the same units during fixation and
free viewing. Foveal RFs were too small to be recovered during stan-
dard fixation without correcting for measured eye movements.
However, if we corrected for miniature eye movements made

during fixation, we could still recover foveal RFs, and in that case we
find a close correspondence to the RF recovered during free viewing
(Supplementary Fig. 5).

These preliminary findings decisively demonstrate the power of
the free-viewing methodology when combined with high-resolution
eye tracking and neural eye tracker calibration. They also open a new
avenue of research for examining foveal scale visual representations
not only in V1 but also other visual area along the ventral processing
stream which specialize in higher acuity object vision.

Discussion
We introduced a free-viewing paradigm for visual neuroscience. This
approach is higher-yield (per unit recording time) than fixation-based
approaches formarmosets and yieldsmeasurements of spatial RFs and
feature tuning in minimally trained animals. It works with standard
commercially available eye trackers for standard descriptions in V1
(Fig. 2) and MT (Fig. 3). We also demonstrated this paradigm can be
extended to study foveal V1 neurons by introducing a high-resolution
video eye tracker based on the dual Purkinjemethod and a calibration

Fig. 4 | Neural eye-tracker calibration and high-resolution foveal receptive
fields. aConvolutionalNeuralNetwork (CNN) architectureused to calibrate the eye
tracker. The gaze-contingent stimulus within the ROI is processed by the nonlinear
subunits of the convolutional “Core”. The “Spatial Readout”maps from the core to
the spike rate of each neuron with a spatial position in the convolution and a
weighted combination of the feature outputs at that position. This is passed
througha staticnonlinearity to predict thefiring rate. The “Shifter”network takes in
the gaze position on each frame and outputs a shared shift to all spatial readout
positions during training. All parameters are fit simultaneously by minimizing the
Poisson loss. After training, the shifter output is used to shift the stimulus itself so

further analyses can be done on the corrected stimulus. b Calibration correction
grids for horizontal and vertical gaze position are created using the output of the
shifter network for one session. These are used to correct the stimulus for further
analysis. c Spatial receptive fields measured with spike-triggered average before
(top) and after (bottom) calibration for four example foveal units demonstrates the
importance of calibration for measuring foveal RFs. RFs were z-scored and plotted
on the same color scale before and after calibration. Grid lines are spaced every 20
arcminutes.d Example foveal spatiotemporal RFs. The axes bounds are the same as
in c. In both c and d, black lines indicate the center of gaze. Marmoset drawing in
panel a was created with help from Amelia Wattenberger.
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routine based on the output of V1 neurons. Combined with free
viewing, these methods are state-of-the-art in the measurement of 2D
spatiotemporal receptive fields of neurons in the foveal representation
of V1 (Fig. 4). Thus, the three immediate advantages to free viewing,
especially when combined with high-resolution eye tracking, are: (1)
application to untrained animals, (2) increased usable data per unit
recording time, and (3) measurement of foveal visual processing.
Further, although we only analyzed epochs of stable fixation between
saccades in the present study, the free-viewing paradigmwill also have
major advantages for studying the roleof eyemovements during visual
processing.

Free viewing is amenable to any animal model with almost no
training requirements. Here, we applied this approach to marmosets.
In the last decade, mice have emerged as a popular model for visual
neuroscience38. Despite the fact thatmicemove their eyes in a directed
manner39,40, the spatial position of gaze is rarely accounted for in
neurophysiological studies of visual cortex in mouse. As notable
exceptions to this, Lurz et al. and Parker et al. used a similar shifter
model to the one we employ to model mouse V135,41. The free-viewing
paradigm is a potentially promising future direction to expand rigor-
ous visual neuroscience to animal models with higher acuity and
smaller RFs than mice, but without the ability to perform trained
fixation (such as ferrets and tree shrews). This type of paradigm will
also support a direct comparison of visual processing andmodulatory
signals in multiple species, such as the role of locomotion in visual
processing for non-human primates.

Offline gaze-contingent analysis of neural data during free viewing
opens the possibility of studying neural computations in a range of
natural visual behaviors and exceeds the resolution set by fixation
studies. Although, previous studies have corrected for small changes in
gaze position by shifting the stimulus with the measured or inferred
center of gaze, this has only been attempted for small displacements of
the stimulus during instructed fixation21–23. Our approach differs in that
the subjects are free to explore the visual scene, and therefore, both the
calibration and the displacements must be accounted for. Importantly,
our use of visual cortex to calibrate the eye tracking differs from pre-
vious approaches such as neural-based eye tracking22 in that all of the
temporal dynamics of gaze are directly measured by a physical eye
tracker that is independent of receptive field properties, as opposed to
being dynamically inferred from neural activity. The CNN used neural
activity only to improve the calibration of the eye tracker, and played
no role in subsequent analyses of receptive fields, although its abilities
to more robustly predict nonlinear processing in V1 will be an advan-
tage to future studies. The added precision also makes it possible to
examine the role of fixational drift and eye movements, an essential
component of vision16. Further studies could assess, for example,
whether RFs in V1 are explicitly retinotopic or dynamically shift
to account for small fixational movements as proposed by recent the-
oretical work42. And as illustrated in Fig. 4, this approach affords
the opportunity to examine foveal receptive fields in primate V1 for the
first time. Despite its paramount importance for human vision, almost
nothing is known about neural processing in the foveal representation.

Throughout the manuscript, we have highlighted that free-
viewing paradigms can be used to recover receptive field properties
in multiple areas. Although the resulting receptive fields and tuning
properties are consistent with previous findings in V1 and MT, we did
not systematically compare fixation and free viewing except in one
session (Supplementary Fig. 5). Interestingly, we were not able to
recover foveal RFs using conventionalfixation approaches and, even in
the fixation condition, we had to correct for positional shifts due to
fixational eye movements. These results suggest that substantial
variability in the central visual field is driven by fixational eye move-
ments and future work should examine exactly how ignoring that

variability has contributed to estimates of signal and noise
correlations23 and how that variability contributes to the encoding
process in natural visual conditions.

Finally, one limitation of our approach is by letting the eye’smove
freely, there are no longer repeats of the same stimulus condition,
which is one of the main workhorses of systems neuroscience. How-
ever, fixational eyemovements preclude that reality, even where it has
been used previously23. With the development of higher speed cam-
eras and video displays, it will soon be possible to stabilize retinal
images during free viewing, thus affordingmore precise control of the
stimuli input to visual neurons than previously possible in fixation
paradigms. Examining natural behaviors that lack fixed repetitions is
possible with comparable rigor as conventional approaches as shown
here, when using appropriate neural models to fit the responses to
natural stimuli. In near future, the application of neural models during
natural behavior will finally allow us to gain deeper insight into the
dynamics of neural processing in natural contexts.

Methods
Surgical procedures
Data were collected from 4 adult common marmosets (Callithrix jac-
chus; one female and three males). All surgical and experimental pro-
cedures were approved by the Institutional Animal Care and Use
Committee at the University of Rochester in accordance with the US
National Institutes of Health guidelines. At least one month prior to
electrophysiological recordings, marmosets underwent an initial sur-
gery to implant a titanium headpost to stabilize their head during
behavioral sessions27.

A second surgery was performed under aseptic conditions to
implant a recording chamber. For the chamber implantation, mar-
mosets were anesthetized with intramuscular injection of Ketamine
(5–15mg/kg) and Dexmedetomidine (0.02-0.1mg/kg). A 3D-printed
chamber (http://www.protolabs.com) was then attached to the skull
with metabond (http://www.parkell.com) over coordinates guided by
cranial landmarks. A 3×4mm craniotomy was then drilled within the
chamber (http://www.osadausa.com). The dura was slit and exposed
tissue was covered with a thin layer (<2mm) of a silicone elastomer
(World precision instrument, https://www.piinc.com) as in Spitler and
Gothard (2008)43.

Electrophysiological recordings
Electrophysiological recordings were performed using multisite sili-
con electrode arrays. The arrays consisted of 1–2 shanks, each con-
taining 32 channels separated by 35 or 50 µm. The electrode arrays
were purchased from NeuroNexus (http://www.neuronexus.com) and
Atlas Neuro Engineering (https://www.atlasneuro.com). We recorded
fromneurons using a semi-chronicMicrodrive system.We adapted the
EDDS Microdrive System (https://microprobes.com) for use with sili-
cone arrays and to be removable. Our chamber and drive designs are
available online (https://marmolab.bcs.rochester.edu/resources.html).
A reference wire was implanted under the skull at the edge of the
chamber. The electrode arrays were lowered through the silicone
elastomer and into brain using a thumbscrew.

Data were amplified and digitized at 30 kHzwith Intan headstages
(Intan) using the open-ephys GUI (https://github.com/open-ephs/
plugin-GUI). The wideband signal was highpass filtered by the head-
stage at 0.1 Hz. We corrected for the phase shifts from this filtering
(Okun, 2017). The resulting traces were preprocessed by common-
average referencing and highpass filtered at 300Hz. The resulting
traces were spike sorted using Kilosort or Kilosort2. Outputs from the
spike sorting algorithmsweremanually labeledusing’phy’GUI (https://
github.com/kwikteam/phy). Units with tiny or physiologically implau-
sible waveforms were excluded.
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Eye-tracking and saccade detection
Gaze position was monitored using one of two eye-trackers. 28 ses-
sions did not involve high-resolution measurements in the foveal
representations. Gaze position was sampled at 1000Hz using an Eye-
link 1000 (SR Research). For 30 high-resolution sessions, a custom
digital Dual-Purkinje Imaging system (dDPI) was used. The dDPI uses a
collimated IR beam (ThorLabs) a dichroic mirror (Edmunds) and
samples 0.4 Megapixel images of the eye at 539 frames per second
(DMK 33UX287; The Imaging Source). Custom CUDA code running on
a gaming GPU (GTX 1080Ti; Nvidia) performs the algorithm described
in refs. 32, 33 to extract the gaze position. Briefly, the 1st and 4th
Purkinje images (P1 and P4) were identified and tracked using a two-
stage process. The first stage is to find the region of interest (ROI) for
each. The camera image is downsampled by a factor of 4 and P1 is
found by thresholding the 8-bit image at 200 and calculating the
center of mass of the pixels exceeding the threshold. The ROI for P4
was found via template matching on the downsampled frame. Fol-
lowing the initial ROI finding stage, the center of each Purkinje image
was calculated using the full-resolution image within each ROI by
center of mass for P1 and radial symmetric center for P4 (cite).

Methods for calibrating both eye-trackers before a behavioral
session were identical to those described previously25,27. Briefly, this
procedure sets the offset and gain (horizontal and vertical) of the eye-
tracker output manually. The calibration was refined offline using a
bilinear regression between the gaze position during a detected fixa-
tion and the nearest grid target (within a 1 degree radius) during the
calibration routine.

Saccadic eye movements were identified automatically using a
combination of velocity and acceleration thresholds as described in
ref. 44. The raw gaze position signals were re-sampled at 1 kHz, and
horizontal and vertical eye velocity signals were calculated using a
differentiating filter. Horizontal and vertical eye acceleration signals
were calculated by differentiation of the velocity signals using
the same differentiating filter. Negative going zero crossings in the
eye acceleration signal were identified and marked as candidate
saccades. These points correspond to local maxima in the eye velocity
signal. Eye velocity and acceleration signals were then examined
within a 150ms window around each candidate saccade. Candidate
saccades were retained provided that eye velocity exceeded 8°/s
and eye acceleration exceeded 2000°/s2 . Saccade start and end
points were determined as the point preceding and following the peak
in the eye velocity signal at which eye velocity crossed the 10°/s
threshold.

Visual stimuli and behavioral training
For all V1 recording sessions, visual stimuli were presented on a Pro-
pixx Projector (Vpixx) with a linear gamma. The luminance of the
projector ranged from 0.49 to 855 cd=m2 with a mean gray of 416
cd=m2. All stimuli were generated inMatlab (theMathworks) using the
Psychtoolbox 345. Stimulus and physiology clocks were aligned and
synchronized using a Datapixx (Vpixx) to strobe unique 8-bit words to
the Open Ephys system. Stimulus code is available online at (https://
github.com/jcbyts/MarmoV5).

Foraging task
All visual protocols besides the static natural images were run simul-
taneously with a “foraging” paradigm where marmosets obtained a
small juice reward (marshmallowwater) forfixating small (0.5–1.0 d.v.a
diameter) targets that would appear randomly in the scene. Reward
was granted any time themarmosets kept their gaze within a specified
radius of the center position of the target for more than 100ms. Tar-
gets consisted of either oriented Gabor patches (2 cycle/deg) or mar-
moset faces thatwere taken fromphotos of the colony. A single faceor
Gabor target was presented at all times. Once the target was acquired
for liquid reward it was immediately replotted at a new location

allowing the task to continue. Marmosets will naturally look at faces25

and these were used to encourage participation in the forage para-
digm. The position of the targets was generated randomly near the
center of the screen (either drawn from a 2D Gaussian at the center or
from an annulus with a 3 d.v.a. radius) to encourage the gaze to stay
near the center of the screen where eye-tracking accuracy and preci-
sion are highest. The amount of reward was titrated based on the
subject’s performance to ensure they did not get too much marsh-
mallow in a single session (5–10 µl per reward).

V1 retinotopic mapping and receptive field size
Retinotopic mapping stimuli consisted of full-field randomly flashed
full-contrast circles or squares (referred to as “dots” from here on).
Each dot was either white (855 cd=m2) or black (0.49 cd=m2), and
appeared at a random position anywhere on the screen. Across ses-
sions, the dot-size and number of dots per frame varied, but were fixed
within a session.

Offline gaze-contingent retinotopic mapping was performed in a
two-stage process using regularized linear regression46. First, we esti-
mated the RF at a coarse resolution and then re-sampled the stimulus
at a finer resolution within an ROI centered on the result of the first
stage. The coarse resolution RF was created by re-sampling the dot
stimulus on a gaze-contingent grid. This rectangular grid, Gx,y, con-
sisted of 405 locations spaced by 1 d.v.a. from −14 to 14 d.v.a along the
azimuthal axis and −8 to 8 d.v.a. of elevation. The re-sampled gaze-
contingent stimulus is a vector X tð Þ at frame t and was calculated by
summing over the dots on each frame

Xx,y tð Þ=
XN

i

f ðDi tð Þ � Gx,yÞ ð1Þ

whereDiðtÞ is a vector of the position of the i-th dot on frame t, and f is
a function that returns a vector of zeros with a 1 at the grid location
where the dot was centered. This method is fast and does not require
regenerating the full stimulus at the pixel-resolution. Additionally, by
summing the number of dots within each grid location, this analysis
ignored the sign of the dot (“black” or “white”) relative to the gray
background, which was designed to target cells that exhibited some
phase invariance (i.e., complex cells). We found that ignoring sign
generated more robust retinotopic mapping results with fewer
datapoints. We included neural recordings for analyses frommapping
stimuli that ranged widely in their duration, provided at least one
minute of data was collected.

We estimated the spatiotemporal receptive, Ksp, of each unit, i,
by using regularized linear regression between the time-embedded
gaze-contingent stimulus X and the mean-subtracted firing rate, R, of
the units binned at the frame resolution.

Kspi = XTX + λD
� ��1

XTRi

� �
ð2Þ

Where D is a graph Laplacian matrix corresponding to spatial and
temporal points in X and λ is a scalar that specifies the amount of
regularization. λ was chosen using cross-validation. This measures the
spatiotemporal receptive field (RF) in units of spikes per second per
dot. We then repeated this processes at smaller grid size centered on
the RF location recovered from the coarse stage. We found the RF
location by thresholding Ksp at 50% of its max an used the matlab
function regionprops to find the centroid and bounding box. We
scaled theboundingboxby2 and set 20bins to span that region,with a
bin size between 0.1–0.3 d.v.a (median =0.2 d.v.a). We then re-ran the
regression analysis to estimate thefinalRF.We thenfit a 2DGaussian to
the spatial slice at the peak lag using least-squares with a global search
over parameters and multiple starts. We converted the fitted
covariance matrix to RF area using area=πs1s2, where s1 and s2 are
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the sqrt of the eigenvalues of the covariance matrix. This reports the
area of an ellipse at 1 standard deviation.

Units were excluded if the mean shifted by more than 0.25,
meaning that the fitting procedure produced a Gaussian that was not
centered on the RF centroid. This resulted in 410/739 units with
measurable spatial RFs.

V1 tuning
To measure the neurons’ selectivity to orientation and spatial fre-
quency, we flashed full-field sinewave gratings. Gratings were pre-
sented at 25% contrast and were either drawn from the Hartley basis47

or were parameterized using a polar grid of orientations and spatial
frequencies. On each frame, only one grating was presented and up to
50% of the frames were a blank gray background. We represented the
frequency space on a polar basis. The basis consisted of 8 evenly
spaced von mises functions for orientation, and 4 nonlinearly stret-
ched raised cosine functions for spatial frequency. This basis served to
convert stimuli collected with the Hartley set and the polar grid to the
same space. We measured the grating receptive field Kgrating for
each unit using regularized linear regression (as described above for
the spatial mapping).

To measure the tuning curve of the units, we fit a parametric
model of the form:

Kgrating θ,ωð Þ=b+ M � bð Þe�κcos2 θ�θ̂
� �

�1e
� log 1 +ωð Þ�log 1 + ω̂ð Þð Þ2

2σ2 =ðeκ � 1Þ ð3Þ

Where θ is the orientation, ω is spatial frequency, θ̂ and ω̂ are the
orientation and spatial-frequency preference, respectively; b is the
baseline firing rate, M is the maximum firing rate, κ and σ scale the
width of the orientation and spatial-frequency tuning. This parametric
form combines a normalized von Mises tuning curve for orientation
that wraps every π and a log-gaussian curve for spatial-frequency
tuning (each normalized to have a maximum of 1 and a minimum
possible value of 0). We converted the dispersion parameters into
bandwidths as the full-width at half height of eachcurve. Tuning curves
were fit using nonlinear least-squares (lsqcurvefit in matlab).

MT velocity receptive fields and direction tuning
MTmapping stimuli consisted of sparse dotmotion noise. Every video
frame contained up to 32white dots thatwere 0.5 degrees in diameter.
Each dot was either replotted randomly or moved at 15 degrees/s in
oneof 16uniformly spaceddirectionswith a lifetimeof 5 frames (50ms
with frame rate at 100Hz). Marmosets performed the foraging task
while this motion-noise stimulus ran in the background.

To calculate the RFs, the dot displacement on each frame transi-
tion was split into horizontal and vertical velocity components at each
spatial location on a gaze-contingent grid with 2 d.v.a. wide bin size.
This produced two gaze-contingent spatiotemporal stimulus sequen-
ces of the same form asdescribed for V1 retinotopicmappingmethods
separate for horizontal and vertical velocities. Velocity receptive fields
weremeasured by fitting a Poisson Generalized LinearModel (GLM) to
the spike trains of individual MT units. The parameters of the GLM
include the RF of the unit and a bias parameter to capture baseline
firing rate. The RF parameters were penalized with to support spatial
smoothness and sparseness using the same Graph Laplacian penalty
used for retinotopic mapping and an L1 penalty. Example fitting and
analysis code is available at https://github.com/VisNeuroLab/yates-
beyond-fixation.

To measure the temporal integration of MT RFs, we first com-
puted the “preferred direction vector” of the unit as the weighted
average of the recovered RF at the peak lag. We then found the spatial
location with the largest amplitude vector and calculated the projec-
tion of the RF direction vector at that location onto the preferred

direction vector for all time lags. We repeated this for the spatial
location with the smallest amplitude vector.

To measure the direction tuning curves, we masked the stimulus
spatially at every location greater than half of themax of the spatial RF
and counted the number of dots drifting in each direction on each
frame. We then calculated the direction-triggered firing rate of each
unit through forward correlation between the directions on each
frame and the firing rate, normalized by the number of dots shown.
The tuning curve was taken to be the value for each direction at the
peak lag. Error bars were computed using bootstrapping and corre-
spond to 95% confidence intervals. We fit a von Mises function to the
firing rate R

R= b+A exp K cos θ� θ̂
� �

� 1
� �� �

ð4Þ

Where b is the baseline firing rate, A is the amplitude, K is the band-
width and θ̂ is the preferred direction.

Full-resolution stimulus reconstruction
Stimuli were reconstructed by playing back the full experiment. All
randomized stimuli were reconstructed using stored random seeds
and the replayed frames were croppedwithin the gaze-contingent ROI
using using Psychtoolbox function Screen(‘GetImage’). Randomized
stimuli includedflasheddots described earlier, aswell asflashedGabor
noises that will be described in detail below. All high-resolution ana-
lyses operated on this reconstruction. For the 5 sessions we analyzed
high-resolutionRFs, thewidth and height,w×h, of the ROIwas 70×70
pixels, where each pixel subtends 1.6 arcminutes.

Neural eye tracker calibration
The network used for calibrating the eye consisted of three parts: a
core neural network that forms a nonlinear basis computed on the
stimulus movies, a readout for each neuron that maps from the non-
linear features to spike rate, and a shifter network that shifts the sti-
mulus using the measured gaze position. The architecture here was
based on networks that have previously been successful for modeling
V1 responses35,48. The neural network machinery in this application
enabled us to optimize the weights in the shifter network and establish
correction grids that shift the eye tracker’s output into amore accurate
estimate of gaze position.

The CNN core consists of a four-layer neural network. Each layer
has a 2D convolutional stage, followed by a rectified linear (ReLU)
function andBatch normalization. Timewas embedded in the stimulus
using the channel dimension. The number of channels per layerwas 20
and the convolutional kernel sizes were 11, 9, 7, and 7 for the 4 layers
respectively. All convolutionswerewindowedwith a hammingwindow
to avoid aliasing in the CNN core. We found that the shifter fitting was
robust to the choice of core architecture but using smallermodels that
are more standard in neuroscience required optimizing hyperpara-
meters for the subunit filters, whereas standard CNN architectures
performed well without regularization.

The readout stagemaps activations of the core to the spike rate of
each neuron through an instantaneous affine transformation. To
reduce the number of parameters and make the readout interpretable
with respect to space, we used a factorized readout where each neu-
ron, i, has a vector of feature weights that correspond to the 20 output
channels from the final layer of the core, and a set of spatial weights.

The shifter network consists of a 2-layer network with 20 hidden
units with SoftPlus activation functions in the first layer and 2 linear
units in the second. It takes the measured gaze position on each frame
that was used for the stimulus reconstruction and outputs a horizontal
and vertical shift. The output of the shifter network was constrained to
be 0 for the gaze position 0,0. The output of the shifter is used to
sample from the stimulus using affine_grid and grid_sample functions
in Pytorch. All parameters were learned simultaneously by minimizing
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the Poisson loss using stochastic gradient descent with the Adam
optimizer49. A Pytorch implementation with examples is available at
(https://github.com/VisNeuroLab/yates-beyond-fixation).

The shifter calibration matrices were constructed by passing in a
grid of potential gaze positions from −5 to 5 d.v.a centered on the
center of the screen. These 2D correction grids were then used to
correct the stimulus on each frame for gaze positions within that
region. Specifically, the measured gaze position on each frame corre-
sponds to a location in the correction grid. That location corresponds
to an amount of shift. We used bilinear interpolation tomap from gaze
position to shift amount in the grid. The use of correction grids maps
the two-layer shifter network into an interpretable format and these
canbeused acrossmultiple stimulus sets to correct both themeasured
gaze position and the gaze-contingent stimulus reconstruction.

High-resolution receptive fields
Receptive fields were recovered for the high-resolution stimuli using
spike-triggered average (STA) on the pixels of reconstructed stimulus.
The stimuli used for these RFs was either a sparse noise or Gabor noise
stimulus. The sparse noise consisted of .1 d.v.a diameter black or white
dots positioned randomly on each framewith a density of 1.5 dots/deg2

on each frame. The Gabor noise consisted ofmultiscale Gabor patches
with carrier frequencies ranging from 1 to 8.5 cycles per degree and
widths (standard deviation of Gaussian) ranging from 0.05 to 0.132
d.v.a with a density of 2 Gabors/deg2. The STAwas computed 12 lags at
120 frames per second:

STAðτÞ= 1
N

X

t

Sðt � τÞ ð5Þ

whereN is the number of spikes, t is the frame index for each spike, S is
the stimulus frame, and τ is the lag. STAs were z-scored for visualiza-
tion with the same normalizing constants before and after calibration.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Full and preprocessed datasets are available from the corresponding
author (yates@berkeley.edu) upon reasonable request. An example
dataset is available at https://doi.org/10.6084/m9.figshare.22580566
Source data are provided with this paper.

Code availability
Code used to generate the visual stimuli and analyze the data are all
available on GitHub in the following repositories: https://github.com/
jcbyts/MarmoV5 and https://github.com/VisNeuroLab/yates-beyond-
fixation.
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