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ABSTRACT OF THE DISSERTATION
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Two classes of state estimation schemes, variational (4DVar) and ensemble

Kalman (EnKF), have been developed and used extensively by the weather fore-

casting community as tractable alternatives to the standard matrix-based Kalman

update equations for the estimation of high-dimensional systems. Variational

schemes iteratively minimize a cost function with respect to the state estimate,

using efficient vector-based gradient descent methods, but fail to capture the mo-

ments of the PDF of this estimate. Ensemble Kalman methods represent well

the principal moments of the PDF, accounting for the measurements with a se-
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quence of Kalman-like updates with the covariance of the PDF approximated via

the ensemble. Here, we first introduce a tractable method for updating an en-

semble of estimates in a variational fashion, capturing correctly both the estimate

and the leading moments of its PDF. We then extend this variational ensem-

ble framework to facilitate its consistent hybridization with the ensemble Kalman

smoother. Finally, it is shown that the resulting Hybrid (variational/Kalman) En-

semble Smoother (HEnS) significantly outperforms the existing 4DVar and EnKF

approaches used operationally today for high-dimensional state estimation.

The second part of this dissertation examines the best possible intercon-

nect topologies for switchless multiprocessor computer systems. We focus first

on hexagonal interconnect graphs and their extension to problems on the sphere.

Eight families of efficient tiled layouts have been discovered that make such inter-

connects trivial to scale to large cluster sizes while incorporating no long wires.

In the resulting switchless interconnect designs, the physical proximity of the cells

created and the logical proximity of the nodes to which these cells are assigned

coincide perfectly, so all communication between physically adjacent cells during

the PDE simulation require communication over just a single hop in the compu-

tational cluster. Lastly, we attempt to generalize two classes of directed graphs

into a unified theory in which the well-known cartesian and butterfly graphs are

special cases of a more general class of interconnect that better spans the design

parameter space.

xvii



Part I

The Hybrid Ensemble Smoother

(HEnS)

1



Chapter 1

Theoretical Foundations

Joseph Cessna and Thomas Bewley

Abstract. Two classes of state estimation schemes, variational (4DVar)

and ensemble Kalman (EnKF), have been developed and used extensively by the

weather forecasting community as tractable alternatives to the standard matrix-

based Kalman update equations for the estimation of high-dimensional nonlinear

systems with possibly nongaussian PDFs. Variational schemes iteratively mini-

mize a finite-horizon cost function with respect to the state estimate, using effi-

cient vector-based gradient descent methods, but fail to capture the moments of

the PDF of this estimate. Ensemble Kalman methods represent well the princi-

ple moments of the PDF, accounting for the measurements with a sequence of

2
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Kalman-like updates with the covariance of the PDF approximated via the en-

semble, but fail to provide a mechanism to reinterpret past measurements in light

of new data. In this paper, we first introduce a tractable method for updating

an ensemble of estimates in a variational fashion, capturing correctly both the

estimate (via the ensemble mean) and the leading moments of its PDF (via the

ensemble distribution). We then extend this variational ensemble framework to

facilitate its consistent hybridization with the ensemble Kalman smoother. Fi-

nally, it is shown (on a low-dimensional model problem) that the resulting Hybrid

(variational/Kalman) Ensemble Smoother (HEnS), which inherits the tractable

extensibility to high-dimensional systems of the component methods upon which

it is based, significantly outperforms the existing 4DVar and EnKF approaches

used operationally today for high-dimensional state estimation.
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1.1 Introduction

The estimation and forecasting of chaotic, multiscale, uncertain fluid sys-

tems is one of the most highly visible grand challenge problems of our generation.

Specifically, this class of problems includes weather forecasting, climate forecast-

ing, and flow control. The financial impact of a hurricane passing through a ma-

jor metropolitan center regularly exceeds a billion dollars. Improved atmospheric

forecasting techniques provide early and accurate warnings, which are critical to

minimize the impact of such events. On longer time scales, the estimation and

forecasting of changes in ocean currents and temperatures is essential for an im-

proved understanding of changes to the earth’s weather systems. On shorter time

scales, feedback control of fluid systems (for reasons such as minimizing drag, max-

imizing harvested energy, etc.) in mechanical, aerospace, environmental, energy,

and chemical engineering settings lead to a variety of similar estimation problems.

While this paper makes no claims with regards to addressing the particular details

of any of these important applications, it does introduce a new Hybrid (varia-

tional/Kalman) Ensemble Smoother (HEnS) for the estimation and forecasting of

such multiscale uncertain fluid systems that might well have a transformational

effect in all of these areas.
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1.1.1 Historical developments

Much of the research today in state estimation (a.k.a. data assimilation) for

multiscale uncertain fluid systems is focused on short- to medium-range weather

forecasting. Towards this end, the methods available for this class of problems

have matured greatly in the past 25 years. To set the stage, we must first mention

a few related developments.

The full, correct answer to the state estimation of nonlinear systems with

finite (and, thus, nongaussian) uncertainties dates back to the late 1950s (see [55]).

As described clearly on page 164 of [32], it combines two simple steps:

(i) between measurement updates, the full probability density function (PDF) in

phase space is propagated via the Kolmogorov forward equation (a.k.a. Fokker-

Planck equation);

(ii) at measurement updates, the PDF is updated via application of Bayes’ theo-

rem.

During step (i), the PDF stretches and diffuses; during step (ii), the PDF is refo-

cused. An efficient modern implementation of this idea using a grid-based method,

leveraging effectively the fact that the PDF is usually nearly zero almost every-

where in phase space, is given in [8]; unfortunately, such methods are numerically

intractable for systems with states of order n & 10, even with modern supercom-

puting resources.
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Particle filters (PF; see [52]) approximate the solution of such Bayesian

estimation strategies using a Lagrangian approach. With such methods, a set of

candidate state trajectories is followed to track the evolution of the probability dis-

tribution in time, and associated with each particle is a weight, which is modified

via Bayes’ theorem at each measurement update (while normalizing such that the

weights always add to one). Unfortunately, application of such updates for suc-

cessive measurements invariably leads to most weights being driven towards zero

as the algorithm proceeds, a phenomenon known as degeneracy. To counter this

tendency in order to maintain adequate resolution of the significant (nonzero) por-

tion of the PDF, resampling of the PDF with a new distribution of particles (with

equalized weights) is, from time to time, required. A variety of such resampling

algorithms have been proposed. When using a large number of particles (necessary

when attempting to resolve a nongaussian PDF of the state estimate), the sam-

pling importance resampling algorithm proposed in [18] is commonly used. When

using small number of particles N (specifically, for N = 2n +1, used when consid-

ering a state estimate of order n with a Gaussian PDF), an unscented transform

(see [33], [34]) can be used to resample while preserving exactly the covariance of

the original distribution. Unfortunately, PFs are also numerically intractable in

large-scale systems.

Kalman filters (see [57], [55], [36], [37], [3]) substantially simplify the full

state estimation problem in the common situation in which the random variables
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are all well approximated by Gaussian PDFs. In this case, the PDF of a given

random variable, of order n, can be specified completely by keeping track of its

mean (of order n) and its covariance (of order n2), which enormously simplifies

the complexity of the state estimation problem. With modern computational re-

sources, Kalman filters can thus be deployed for systems with states of order up

to n ∼ 1000. Note that Extended Kalman filters, designed for nonlinear systems,

are simply Kalman filters, designed based on linearization of the nonlinear system

about the expected state trajectory, with the nonlinearity tacked back on in the

eleventh hour.

Traditional Kalman and extended Kalman filters were investigated by [24]

for atmospheric applications, with nonlinear high-dimensional systems of order

n & 105. These applications necessitate the computation of a reduced-rank ap-

proximation of the covariance matrix at the heart of the Kalman filter in order

to be computationally tractable. Such reduced-rank approximations are known in

the controls community as Chandresarkhar’s method, and were introduced by [35].

1.1.2 Variational methods

Since the mid 1980s, the field of state estimation has seen two revolution-

ary advancements: variational methods and ensemble Kalman methods. Today,

these two classes of methods, in roughly equal proportion worldwide, are used

operationally for practical real-time atmospheric forecasting.
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The first variational methods introduced were spatial (three-dimensional)

variational methods (3DVar; see [42] and [48]), which provide an optimization

framework that may be used to fit a large-scale model to a “snapshot” in time

of available data. This was soon followed by the development of spatial/temporal

(four-dimensional) variational methods (4DVar; see [17] and [50]), in which this

optimization framework is extended to account for a time history of observations.

This 4DVar framework has the effect of conditioning the resulting estimate on all

included data, in a manner consistent with the Kalman Smoother (see [41], [51]

and [15]).

Note that 4DVar was developed in parallel, and largely independently, in

the controls and weather forecasting communities. In the controls community, the

technique is referred to as Moving Horizon Estimation (MHE; see [46]). MHE was

developed with low-dimensional ODE systems in mind; implementations of MHE

typically search for a small time-varying “state disturbance” or “model error” term

in addition to the initial state of the system in order reconcile the measurements

with the model over the period of interest. 4DVar, in contrast, was developed

with high-fidelity (that is, high-dimensional) discretizations of infinite-dimensional

(PDE) systems in mind; in order to maintain numerical tractability, implementa-

tions of 4DVar typically do not search for such a time-varying model error term.

Both 4DVar and MHE suffer from the fact that they only provide an updated

mean trajectory, and not any updated higher-moment statistics. However, during
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the minimization process, it is possible to build up an approximation to the cost

function Hessian. For convex variational problems, this Hessian is directly related

to the inverse of the updated covariance matrix. Several of these methods are

outlined in [23] and include the randomization method (which uses the statistics

of perturbed gradients), the Lanczos method (which exploits the coupling between

Lanczos vectors and conjugate gradient directions), and the BFGS method (which

explicitly builds up the Hessian during minimization). All three of these methods

fail to provide an effective means for propagating the updated statistics forward in

time, and thus are not typically tractable for variational schemes that cycle over

multiple, successive windows.

Another technique that has been introduced to accelerate MHE/4DVar im-

plementations is multiple shooting (see [40]). With this technique, the horizon

of interest is split into two or more subintervals. The initial conditions (and,

in some cases, the time-varying model error term) for each subinterval are first

initialized and optimized independently; these several independent solutions are

then adjusted so that the trajectories coincide at the matching points between the

subintervals.

1.1.3 Ensemble Kalman methods

The more recent development of the Ensemble Kalman Filter (EnKF) (see

[19], [29], [30], [20]) has focused much attention on an important refinement of
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the (sequential) Kalman method in which the estimation statistics are intrinsically

represented via the distribution of a cluster or “ensemble” of state estimates in

phase space, akin to the particle filters mentioned previously but without sepa-

rate weights for each ensemble member. As with particle filters, the simultaneous

simulation of several perturbed trajectories of the state estimate eliminates the

need to propagate the state covariance matrix along with the estimate as required

by traditional Kalman and extended Kalman approaches. Instead, this covariance

information is approximated based on the spread of the ensemble members (with

equal weights) in order to compute Kalman-like updates to the position of each

ensemble member1 at the measurement times (for further discussion, see §1.2.3).

Since its introduction, the EnKF has spawned many variations and modi-

fications that seek to improve both its performance and its numerical tractability.

For example, Kalman square-root filters update the analysis only once, in a man-

ner different than the traditional perturbed observation method. Some square-root

filters introduced include the ensemble adjustment filter of [4], the ensemble trans-

form filter of [9], and the ensemble square-root filter of [60]. Work has also been

done (see [39]) to further relax the linear Gaussian assumptions with regards to

the interpolation between the observation and the background statistics.

Another essential advancement in the implementation of the EnKF is the

idea of covariance localization, as discussed in [27] and [47]. With covariance

1That is, rather than updating individual weights for each member separately, as done at in
particle filters.
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localization, spurious correlations of the uncertainty covariance over large distances

are reduced in an ad hoc fashion in order to improve the overall performance of

the estimation algorithm. This adjustment is motivated by the rank-deficiency

of the ensemble approximation of the covariance matrix, and facilitates parallel

implementation of the resulting algorithm.

The Ensemble Kalman Smoother (EnKS) [21] is the analogous ensemble ex-

tension of the standard Kalman Smoother. With the EnKS, updates are performed

on past estimates based on future observations in a manner similar to the EnKF.

With the EnKS, the smoothed updates are a function of time correlations between

two ensemble estimates at the appropriate times. Although each individual up-

date is tractable, it becomes infeasible to update entire trajectories after each new

observation; as a result, a fixed-lag or fixed-point EnKS is traditionally used in

lieu of a full smoother. Another smoother in this class, the Ensemble Smoother

(ES; see [59]), uses ensemble statistics to calculate a variance minimizing estimate,

but in practice, for nonlinear systems, performs poorly even when compared to the

standard EnKF.

For nonlinear systems, the ensemble Kalman framework is suboptimal due

to its reliance on a Kalman-like measurement update formula, which is predicated

on a Gaussian distribution of the estimate uncertainty. The more general Particle

Filter (PF) method described in §1.1.1, in contrast, is a full Bayesian approach,

with the PDF approximated in a Largrangian fashion akin to the ensemble Kalman
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framework. The Particle Kalman Filter (PKF) method proposed by [28], which

attempts to combine the PF and EnKF approaches in order to inherit the nongaus-

sian uncertainty characterization of the PF method and the numerical tractability

of the EnKF method, appears to be promising; this method could potentially

benefit from further hybridization with a variational approach, as proposed below.

1.1.4 Hybrid methods

The two modern schools of thought in large-scale state estimation for mul-

tiscale uncertain systems [namely, space/time variational methods (§1.1.2) and en-

semble Kalman methods (§1.1.3)] have, for the most part, remained independent,

despite their similar theoretical backgrounds. The weather forecasting commu-

nity has made considerable efforts to compare and contrast both the performance

and the theoretical foundation of these two methods (see, e.g., [43], [11], [38], and

[25]). While these comparisons are enlightening, it is quite possible that the op-

timal method for many large-scale state estimation problems cases may well be

a hybridization of the two frameworks, as suggested by [25]. We have identified

three recent attempts at such hybridization:

1. the 3DVar/EnKF method of [26],

2. the 4DEnKF method of [31], and

3. the E4DVar method of [61].
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The 3DVar/EnKF algorithm introduced by [26] utilizes the ensemble framework

to propagate the estimate statistics in a nonlinear setting, but does not exploit

the temporal smoothing characteristics of the 4DVar algorithm. The 4DEnKF

(4D Ensemble Kalman Filter) introduced by [31] provides a means for assimilating

past (and non-uniform) observations in a sequential framework, but does not in-

trinsically smooth the resulting estimate or fully implement the 4DVar framework.

The E4DVar (Ensemble 4DVar) method discussed by [61], which is the closest ex-

isting method to the hybrid smoother proposed here, runs a 4DVar and EnKF in

parallel, sequentially shifting the mean of the ensemble based on the 4DVar result

and providing the background term of the 4DVar algorithm based on the EnKF

result; however, this method does not attempt a tighter coupling of the ensemble

and variational approaches by using an Ensemble Kalman Smoother to initialize

better (and, thus, accelerate) the variational iteration.

The three attempts at hybridization discussed above struggle with the in-

ability of traditional variational iterations to update correctly the statistics of the

PDF (covariance, etc.). This is crucial for a consistent2 hybrid method, thus mo-

tivating the precise formulation of ensemble variation methods in §1.3 below. The

VAE (Variational Assimilation Ensemble) method of [6] runs a half-dozen per-

2The word “consistent” is used in a precise fashion in this paper to mean an estimation method
that reduces to exactly the Kalman filter in the case that the system happens to be linear, the
disturbances happen to be Gaussian, and (in the case of an ensemble-based method) a sufficient
number of ensemble members is used.
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turbed decoupled 4DVar or 3DFgat3 assimilations in parallel to estimate error

covariances, and is the closest existing method we have found in the literature

to a true ensemble-variation method. However, to the best of our knowledge, the

current paper lays out the first complete mathematical foundation for a pure varia-

tional method that provides consistent, updated ensemble statistics upon algorithm

convergence.

We can now classify the full taxonomy of ensemble-based methods (see

Figure 1.1). Until now, these methods have been split into two distinct fami-

lies: ensemble variation methods (suggested previously, but described formally

for perhaps the first time in §1.3) and the well-known ensemble Kalman methods.

Each family consists of filter variants (En3DVar and EnKF) and smoother variants

(En4DVar and EnKS).

The proposed new algorithm, the Hybrid Ensemble Smoother (HEnS), is a

consistent4 and tightly-coupled hybrid of these two types of ensemble smoothers.

HEnS uses the EnKS to precondition an appropriately defined En4DVar iteration.

Essentially, the EnKS solution is used as a good initial condition for the ensemble

variation problem, which in turn improves upon this smoothed estimate in a man-

ner that would have been impossible using either method independently. In earlier

work done by our group (see [12]), the 4DVar/MHE framework was inverted, pro-

3That is, 3D First Guess at the Appropriate Time (3DFgat), an intermediate variational
method with complexity somewhere between that of 3DVar and 4DVar [see [22]].

4Again, meaning that it reduces to exactly the Kalman filter under the appropriate
assumptions.
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Ensemble Variation Methods Ensemble Kalman Methods

Ensemble-Based Methods

En3DVar En4DVar EnKS EnKF

HEnS

Figure 1.1: Ensemble-based methods can be classified into two distinct families.
Ensemble Variation Methods (§1.3) are vector-based methods that iteratively min-
imize an appropriately-defined cost function to produce either a filtered (En3DVar)
or a smoothed (En4DVar) estimate. Ensemble Kalman Methods (§1.2) use the en-
semble statistics to approximate the full (but computationally intractable) matrix-
based Kalman updates. The new Hybrid Ensemble Smoother (HEnS) is a consis-
tent hybrid of the smoother variants of these two methods, a described in §1.4.
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moting retrograde time marches (that is, marching the state estimate backward in

time and the corresponding adjoint forward in time), which facilitated an adaptive

(i.e., multiscale-in-time) receding-horizon optimization framework, dubbed EnVE

(Ensemble Variational Estimation). Though the motivation behind this original

work was sound, performance suffered, in part as a result of the inability of the vari-

ational formulation used to update correctly the higher-moment statistics of the

ensemble; the present formulation corrects this significant shortcoming associated

with the EnVE formulation.

Section 1.2 reviews the general forms of both the ensemble Kalman meth-

ods and the traditional variational methods. Section 1.3 describes the theoretical

foundations for the ensemble variation methods, and identifies their relationship

with the well-known KF and KS results. Building upon this, Section 1.4 describes

the new hybrid smoother, HEnS, in detail. Finally, Section 1.5 contains a compar-

ative example, performed on the low-dimensional chaotic Lorenz system, showing

the performance of the various methods in a time-averaged setting. Two follow-up

papers are planned which will detail the implementation of the HEnS algorithm on

1D, 2D, and 3D chaotic PDE systems, and introduce a unique adaptive observation

algorithm which builds directly upon the hybrid framework discussed here.
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1.2 Theoretical Background

1.2.1 Notation

As described above, the Hybrid Ensemble Smoother (HEnS) is a consistent

data assimilation method that combines the key ideas of the sequential Ensemble

Kalman Smoother (EnKS) and an ensemble variant of the batch (in time) vari-

ational method known as 4DVar in the weather forecasting community and as

Moving Horizon Estimation (MHE) in the controls community. These methods

are thus first reviewed briefly in a fairly standard form. Without loss of generality,

the dynamic model used to introduce these methods is a continuous-time nonlinear

ODE system with discrete-time measurements:

dx(t)

dt
= f(x(t),w(t)), (1.1a)

yk = Hx(tk) + vk, (1.1b)

where the measurement noise vk is a zero-mean, white, discrete-time random pro-

cess with auto-correlation

R
v
(j; k) = E{vk+j v

T
k } = Rδj0, (1.2)
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with covariance R > 0, and the state disturbance w(t) is a zero-mean, “nearly”-

white5 continuous-time random process with auto-correlation

R
w
(τ ; t) = E{w(t + τ)wT (t) } = Qδσ(τ), (1.3a)

where δσ(τ) =
1

σ
√

2π
e−τ2/(2σ2), (1.3b)

with spectral density Q ≥ 0 and time correlation σ such that 0 < σ ≪ 1. Is also

assumed that w(t) and vk are uncorrelated.

The noisy measurements yk are assumed to be taken at time tk = k∆t

for a fixed sample period ∆t. For the purpose of analysis, these observations are

assumed available for a long history into the past, up to and including the present

time of the system being estimated, which is often renormalized to be t = tK = T .

It is useful to think of tK as the time of the most recent available measurement,

so, accordingly, this measurement will be denoted yK at the beginning of each

analysis step. This sets the basis for the indexing notation used in this paper:

k = K represents the index of the most recent measurement, 1 ≤ k ≤ K is the set

of indices of all available measurements, and k > K indexes observations that are

yet to be taken. Continuous-time trajectories, such as x(t) (the “truth” model),

are defined for all time, but are frequently referenced at the observation times only.

Hence, the following notation is used:

x(k∆t) = x(tk) = xk. (1.4)

5The case for infinitesimal σ is sometimes referred to as “continuous-time white noise”, but
presents certain technical difficulties [7].
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1.2.2 Uncertainty Propagation in Chaotic Systems

Estimation, in general, involves the determination of a probability distri-

bution. This probability distribution describes the likelihood that any particular

point in phase space matches the truth model. That is, without knowing the ac-

tual state of a system, estimation strategies attempt to represent the probability

of any given state using only a time history of noisy observations of a subset of the

system and an approximate dynamic model of the system of interest. Given this

statistical distribution, estimates can be inferred about the “most likely” state of

the system, and how much confidence should be placed in that estimate. Unfor-

tunately, in this most general form, the estimation problem is intractable in most

systems. However, given certain justifiable assumptions about the nature of the

model and its associated disturbances, simplifications can be applied with regards

to how the probability distributions are modeled. Specifically, in linear systems

with Gaussian uncertainty of the initial state, Gaussian state disturbances, and

Gaussian measurement noise, it can be shown that the probability distribution

of the optimal estimate is itself Gaussian [see, e.g., [3]]. Consequently, the entire

distribution of the estimate in phase space can be represented exactly by its mean

x̄ and its second moment about the mean (that is, its covariance), P , where

P = E
[
(x− x̄)(x− x̄)T

]
. (1.5)
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This is the essential piece of theory that leads to the traditional Kalman Filter

(KF; see [36] and [37]).

Sequential data assimilation methods provide a method to propagate the

mean x̄ and covariance P forward in time, making the appropriate updates to

both upon the receipt of each new measurement. Under the assumption of a

linear system and white (or, in continuous time, “nearly” white) Gaussian state

disturbances and measurement noise, the uncertainty distribution of the optimal

estimate is itself Gaussian, and thus is completely described by the mean estimate

x̄ and the covariance P propagated by the Kalman formulation. It is useful to

think of these quantities, at any given time tk, as being conditioned on a subset

of the available measurements. The notation x̄k|j represents the mean estimate at

time tk given measurements up to and including time tj . Similarly, P
k|j

represents

the corresponding covariance of this estimate. In particular, x̄
k|k−1

and P
k|k−1

are

often called the prediction estimate and prediction covariance, whereas x̄
k|k

and

P
k|k

are often called the current estimate and the current covariance. Note that

x̄
k|k+K

, for some K > 0, is often called a smoothed estimate, and may be obtained

in the sequential setting by a Kalman smoother [see, [51] and [3]].

As mentioned previously, for nonlinear systems with relatively small uncer-

tainties, a common variation on the KF known as the Extended Kalman Filter

(EKF) has been developed in which the mean and covariance are propagated,

to first-order accuracy, about a linearized trajectory of the full system. Essen-
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tially, if a Taylor-series expansion for the nonlinear evolution of the covariance

is considered, and all terms higher than quadratic are dropped, what is left is

the differential Riccati equation associated with the EKF covariance propagation.

Though this approach gives acceptable estimation performance for nonlinear sys-

tems when uncertainties are small as compared to the fluctuations of the state

itself, EKF estimators often diverge when uncertainties are more substantial, and

other techniques are needed.

At its core, the linear thinking associated with the uncertainty propagation

in the KF and EKF breaks down in chaotic systems. Chaotic systems are char-

acterized by stable manifolds or “attractors” in n-dimensional phase space. Such

attractors are fractional-dimensional subsets (a.k.a. “fractal” subsets) of the entire

phase space. Trajectories of chaotic systems are stable with respect to the attrac-

tor in the sense that initial conditions off the attractor converge exponentially to

the attractor, and trajectories on the attractor remain on the attractor. On the

attractor, however, trajectories of chaotic systems are characterized by an exponen-

tial divergence–along the attractor–of slightly perturbed trajectories. That is, two

points infinitesimally close on the attractor at one time will diverge exponentially

from one another as the system evolves until they are effectively uncorrelated.

Just as an individual trajectories diverge along the attractor, so does the

uncertainty associated with them. This uncertainty diverges in a highly non-

Gaussian fashion when such uncertainties are not infinitesimal (see Figure 1.2).
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Figure 1.2: Non-Gaussian uncertainty propagation in the Lorenz system. The
black point in the center shows a typical point located in a sensitive area of this
chaotic system’s attractor in phase space, representing a current estimate of the
state. The thick black line represents the evolution in time of the trajectory from
this estimate. If the uncertainty of the estimate is modeled as a very small cloud
of points, centered at the original estimate with an initially Gaussian distribution,
then the additional magenta lines show the evolution of each of these perturbed
points in time. A Gaussian model of the resulting distribution of points is, clearly,
completely invalid.
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Estimation techniques that attempt to propagate probability distributions under

linear, Gaussian assumptions fail to capture the true uncertainty of the estimate

in such settings, and thus improved estimation techniques are required. The En-

semble Kalman Filter, in contrast, accounts properly for the nonlinearities of the

chaotic system when propagating estimator uncertainty. This idea is a central

component of the hybrid ensemble/variational method proposed in the present

work, and is thus reviewed next.

1.2.3 Ensemble Kalman Filtering

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation

method useful for nonlinear multiscale systems with substantial uncertainties. In

practice, it has been shown repeatedly to provide significantly improved state es-

timates in systems for which the traditional EKF breaks down. Unlike in the KF

and EKF, the statistics of the estimation error in the EnKF are not propagated

via a covariance matrix, but rather are approximated implicitly via the appropri-

ate nonlinear propagation of several perturbed trajectories (“ensemble members”)

centered about the ensemble mean, as illustrated in Figure 1.2. The collection of

these ensemble members (itself called the “ensemble”), propagates the statistics of

the estimation error exactly in the limit of an infinite number of ensemble mem-

bers. Realistic approximations arise when the number of ensemble members, N , is

(necessarily) finite. Even with a finite ensemble, the propagation of the statistics is
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still consistent with the nonlinear nature of the model. Conversely, the EKF prop-

agates only the lowest-order components of the second-moment statistics about

some assumed trajectory of the system. This difference is a primary strength of

the EnKF.

In practice, the ensemble members x̂j in the EnKF are initialized with

some known statistics about an initial mean estimate x̄. The ensemble members

are propagated forward in time using the fully nonlinear model equation (1.1a),

incorporating random forcing wj(t) with statistics consistent with those of the

actual state disturbances w(t) [see (1.3)]:

dx̂j(t)

dt
= f(x̂j(t),wj(t)). (1.6)

At the time tk (for integer k), an observation yk is taken [see (1.1b)]. Each ensemble

member is updated using this observation, incorporating random forcing vj
k with

statistics consistent with those of the actual measurement noise, vk [see (1.2)]:

dj
k = yk + vj

k. (1.7)

Given this perturbed observation dj
k, each ensemble member is updated in a man-

ner consistent6 with the KF and EKF:

x̂j
k|k

= x̂j
k|k−1

+ P e
k|k−1

HT (HP e
k|k−1

HT + R)−1(dj
k −Hx̂j

k|k−1
), (1.8)

6Note that some authors (see, e.g., [20]) prefer to replace R in (1.8) with R
e, where

R
e =

(Vk) (Vk)T

N − 1
and Vk =

[
v

1

k
v

2

k
· · · v

N

k

]
.

Our current research has not revealed any clear advantage for using this more computationally
expensive form.
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Unlike the EKF, in which the entire covariance matrix P is propagated using the

appropriate Riccati equation, the EnKF estimate covariance P e is computed “on

the fly” using the second moment of the ensembles from the ensemble mean:

P e =
(δX̂) (δX̂)T

N − 1
, where δX̂ =

[
δx̂1 δx̂2 · · · δx̂N

]
,

δx̂j = x̂j − x̄, and x̄ =
1

N

∑

j

x̂j, (1.9)

where N is the number of ensemble members, and the time subscripts have been

dropped for notational clarity7.

Thus, like the KF and EKF, the EnKF is propagated with a forecast step

(1.6) and an update step (1.8). The ensemble members x̂j(t) are propagated for-

ward in time using the system equations [with state disturbances wj(t)] until a new

measurement yk is obtained, then each ensemble member x̂j(tk) = x̂j
k is updated

to include this new information [with measurement noise vj
k]. The covariance ma-

trix is not propagated explicitly, as its evolution is implicitly represented by the

evolution of the ensemble itself.

It is convenient to think of the various estimates during such a data assim-

ilation procedure in terms of the set of measurements that have been included to

obtain that estimate. Just as it is possible to propagate the ensemble members

forward in time accounting for new measurements, ensemble members can also be

propagated backward in time, either retaining the effect of each measurement or

7Note also that the factor N−1 (instead of N) is used in (1.9) to obtain an unbiased estimate
of the covariance matrix [see [7]].
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subtracting this information back off. In the case of a linear system, the former

approach is equivalent to the Kalman smoother, while the later approach simply

retraces the forward march of the Kalman filter backward in time. In order to

make this distinction clear, the notation X̂j|k will represent the estimate ensemble

at time tj given measurements up to and including time tk. Similarly, x̄j|k will

represent the corresponding ensemble mean; that is, the average of the ensemble

and the “highest-likelihood” estimate of the system.

While the EnKF significantly outperforms the more traditional EKF for

chaotic systems, further approximations need to be made for multiscale systems

such as atmospheric models. When assimilating data for 3D PDEs, the discretized

state dimension n is many orders of magnitude larger than the number of ensemble

members N that is computationally feasible (i.e., N ≪ n). The consequences of

this are twofold. First, the ensemble covariance matrix P e is guaranteed to be sin-

gular, which can lead to difficulty when trying to solve linear systems constructed

with this matrix. Second, this singularity combined with an insufficient statistical

sample size produces directions in phase space in which no information is gained

through the assimilation. This leads to spurious correlations in the covariance that

would cause improper updates across the domain of the system. This problem can

be significantly diminished via the ad hoc method of “covariance localization” men-

tioned previously, which artificially suppresses these spurious correlations using a

distance-dependent damping function.
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1.2.4 Ensemble Kalman Smoother (EnKS)

The Ensemble Kalman Smoother (EnKS) is built upon the theoretical foun-

dations of the EnKF. The key difference lies in its ability to update past estimates

based on future observations. Thus, we end up with smoothed estimates x̂j
p|k

,

where p is not necessarily less than k. Given a new observation yk at time tk and

forecasted ensemble x̂j
k|k−1

at that time, the smoothed estimate x̂j
p|k

is given by the

following update equation:

x̂j
p|k

= x̂j
p|k−1

+ Se
k−1

HT (HP e
k|k−1

HT + R)−1(dj
k −Hx̂j

k|k−1
), (1.10a)

where Se
k−1

is the time covariance matrix between the estimate at the observation

time tk and the estimate at the smoothing time tp, which is given by

Se
k−1

=
(δX̂

p|k−1
) (δX̂

k|k−1
)T

N − 1
, (1.10b)

with the definitions for δX̂ given in (1.9). Note that, when tp = tk, the time

covariance matrix Se
k−1

reduces to the standard covariance matrix P e
k|k−1

, and thus

the EnKS update (1.10a) reduces appropriately to the standard EnKF update

(1.8). This highlights an important property of the EnKS: even for highly chaotic,

nonlinear systems, the EnKS provides the same estimate at the most recent mea-

surement as the EnKF (in the limit of an infinite number of ensemble members).

This result is expected in the linear setting, but is a major shortcoming of the
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EnKS when applied to the typical nonlinear systems. This shortcoming is rectified

by the hybrid method presented in Section 1.4.

1.2.5 Variational Methods

For high-dimensional systems in which matrix-based methods are compu-

tationally infeasible, vector-based variational methods are preferred for data as-

similation. 3DVar is a vector-based equivalent to the KF. In both 3DVar and KF,

the cost function being minimized is a (quadratic) weighted combination of the

uncertainty in the background term and the uncertainty in the new measurement.

If the system is linear, the optimal update to the state estimate can be found an-

alytically, though this solution requires matrix-based arithmetic (specifically, the

propagation of a Riccati equation), and is the origin of the optimal update gain

matrix for the KF. When this matrix is too large for direct computation, a local

gradient can instead be found using vector-based arithmetic only; 3DVar uses this

local gradient information to determine the optimal update iteratively.

Similarly, 4DVar is the vector-based equivalent to the Kalman Smoother.

In 4DVar, a finite time window (or “batch process”) of a history of measurements

is analyzed together to improve the estimate of the system at one edge of this

window (and, thus, the corresponding trajectory of the estimate over the entire

window). Unlike sequential methods, a smoother uses all available data over this

finite time window to optimize the estimates of the system. This has the con-
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sequence of refining past estimates of the system based on future measurements,

whereas with sequential methods any given estimate is only conditioned on previ-

ous observations.

For analysis, let the variational window be defined on t ∈ ( 0, T ]. Addition-

ally, let there be K measurements in this interval, with measurement indices given

by the set

M = { k | tk ∈ ( 0, T ] } ⇒ M = { 1 , 2 , · · · , K }. (1.11)

Without loss of generality, it will be assumed that there are measurements at the

right edge of the window (at t
K

= T ), but not at the left (at t0 = 0). Then, the

cost function J(u) that 4DVar minimizes (with respect to u) is defined as follows:

J(u) =
1

2
(u− x̄

0|0
)T P−1

0|0
(u− x̄

0|0
) +

1

2

K∑

k=1

(
yk −H x̃k

)T
R−1

(
yk −H x̃k

)
,

(1.12)

where the optimization variable u is the initial condition on the refined state

estimate x̃ on the interval t ∈ ( 0, T ]; that is,

dx̃(t)

dt
= f(x̃(t), 0), (1.13a)

x̃
0

= u. (1.13b)

The first term in the cost function (1.12), known as the “background” term, sum-

marizes the fit of u with the current probability distribution before the optimiza-

tion (i.e., the effect of all past measurement updates). Like with the KF, x̄
0|0

is
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the estimate at time t
0

not including any of the new measurements in the win-

dow, and the covariance P
0|0

quantifies the second moment of the uncertainty in

that estimate. Assuming an apriori Gaussian probability distribution of this un-

certainty, the background mean and covariance exactly describe this distribution.

The second term in the cost function (1.12) summarizes the misfit between the

estimated system trajectory and the observations within the variational window.

Thus, the solution u to this optimization problem is the estimate that best “fits”

the observations over the variational window while also accounting for the existing

information from observations prior to the variational window.

In practice, a 4DVar iteration is usually initialized with the background

mean, u = x̄
0|0

. Given this initial guess for u, the trajectory x̃(t) may be found

using the full nonlinear equations for the system (1.13). To find the gradient of the

cost function (1.12), consider a small perturbation of the optimization variable,

u ← u + u′, and the resulting perturbed trajectory, x̃(t) ← x̃(t) + x̃′(t), and

perturbed cost function, J(u) ← J(u) + J ′(u′). The local gradient of (1.12),

∇J(u), is defined here as the sensitivity of the perturbed cost function J ′(u′) to

the perturbed optimization variable u′:

J ′(u′) =
[
∇J(u)

]T
u′. (1.14)

The derivation included in the Appendix illustrates how to write J ′(u′) in this

simple form, leveraging the definition of an appropriate adjoint field r(t) on t ∈
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( 0, T ], providing the following gradient:

∇J(u) = P−1
0|0

(u− x̄
0|0

)− r
0
. (1.15)

The resulting gradient can then be used iteratively to update the current esti-

mate via a suitable minimization algorithm (steepest descent, conjugate gradient,

limited-memory BFGS, etc.).

Being vector based makes 4DVar well suited for multiscale problems, and as

a result is currently used extensively by the weather forecasting community. How-

ever, it has several key disadvantages. Most significantly, upon convergence, the

algorithm provides an updated mean estimate x̄
0|K

, but provides no clear formula

for computing the updated estimate uncertainty covariance or its inverse, P−1
0|K

.

That is, the statistical distribution of the estimate probability is not contained

in the output of a traditional 4DVar algorithm. It can be shown that, upon full

convergence for a linear system, the resulting analysis covariance P
0|K

is simply

the Hessian of the original cost function (1.12) [see, e.g., [10]]. However, this is

merely an analytical curiosity; computing the analysis covariance in this fashion re-

quires as much matrix algebra as would be required to propagate a sequential filter

through the entire variational window, defeating the purpose of the vector-based

method.

Additionally, as posed above, the width of the variational window is fixed

in the traditional 4DVar formulation. Thus, the cost function and associated n-
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dimensional minimization surface are also constant throughout the iterations. For

nonlinear systems, especially chaotic systems, this makes traditional 4DVar ex-

tremely sensitive to initial conditions. Because of the chaotic nature of these

systems, the optimization surface, especially if T is large, is highly irregular and

nonconvex (that is, fraught with local minima). The gradient-based algorithms

associated with 4DVar are only guaranteed to converge to local minima. Thus,

if the initial background estimate is located in the region of attraction of one of

these local minima, the solution of the 4DVar algorithm will tend to converge to a

suboptimal estimate.

1.3 Ensemble Variation Methods

As pointed out in Section 1.2.5, one of the major weaknesses of the stan-

dard variational assimilation schemes is the inability of these methods to update

the higher moment estimate statistics. Given both a background mean and co-

variance, 3DVar and 4DVar simply return an updated mean; the corresponding

updated covariance has thus far only been found via computationally involved

Hessian analysis [10] or schemes coupled with a Kalman-like covariance propaga-

tion [61]. Here, we lay out the mathematical foundations for a consistent class of

variational methods that, much like the Ensemble Kalman methods, use a finite

cloud of points to represent implicitly both the background and analysis estimate
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statistics. Unlike the Ensemble Kalman methods, this new class of Ensemble Vari-

ation methods uses an ensemble of variational problems to solve iteratively the

complete data assimilation via the minimization of an appropriately defined cost

function. It is shown that, under the standard assumptions of linear dynamics and

Gaussian noise and disturbances, these Ensemble Variation methods reduce to the

well-known optimal results of the standard Kalman Filter and Kalman Smoother.

1.3.1 Ensemble 3D Variational Assimilation (En3DVar)

Given a measurement yk at time tk, we will represent our estimate statistics

with a finite ensemble of N members such that the sample mean and sample

covariance are consistent (in the limit as N → ∞) with the (assumed) known

background mean and covariance. Thus, we have a collection of ensemble members

x̂j
k|k−1

conditioned on all prior observations { yp | p < k } that build a sample

covariance given by P e
k|k−1

. With this, we can define an En3DVar component cost

function for each ensemble member as:

Jj(u
j) =

1

2
(uj − x̂j

k|k−1
)T (P e

k|k−1
)−1 (uj − x̂j

k|k−1
)

+
1

2
(dj

k −Huj)T R−1 (dj
k −Huj), (1.16)

where the control variable uj for each ensemble member is (at the minimum) the

updated estimate x̂j
k|k

, now conditioned on the new measurement yk. As with

the EnKF and EnKS, each ensemble member is assimilated with additional noise
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added onto the (already noisy) measurement, i.e.,

dj
k = yk + vj

k. (1.17)

The total cost function J is given as the sum of the component cost func-

tions Jj for each ensemble member j. Because the component cost functions are

only coupled through the specified (and fixed) background ensemble members x̂j
k|k

and the covariance matrix which they approximate, P e
k|k−1

, each Jj can be mini-

mized independently, creating an optimization problem that is trivial to parallelize

on modern high performance computing hardware. Similar to traditional 3DVar,

each component cost function is minimized by finding the local gradient and then

using a suitable descent algorithm; again, these component-wise minimizations are

completely decoupled from one ensemble member to the next.

In summary, En3DVar is performed at a given time tk by assimilating an

ensemble of 3DVar problems, one for each ensemble member. Each individual

component 3DVar problem is uniquely characterized by its own perturbed back-

ground state x̂j
k|k−1

and its own perturbed measurement dj
k. The component cost

functions are coupled through the background ensemble covariance matrix P e
k|k−1

,

the measurement noise covariance matrix R, and the original, unperturbed (but

still noisy) measurement yk. It is shown in the following section that the unique

solution to this problem (in the limit as N → ∞) is a new ensemble with cor-

responding sample statistics (mean and covariance) that are consistent with the
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well-known optimal Kalman results.

Theorem 1 (Equivalence of En3DVar to the Kalman Filter). In the limit of an

infinite number of ensemble members (i.e., N →∞), the En3DVar problem defined

above converges to the equivalent Kalman filter solution.

Proof. Because each component cost function is minimized independently, we will

examine the unique solution of just one for the purpose of this proof. Note that

(1.16) is convex in uj . The gradient of the jth component cost function with respect

to the initial state uj is given by

∇Jj = (P e
k|k−1

)−1 (uj − x̂j
k|k−1

)−HT R−1 (dj
k −Huj). (1.18)

Typically, the cost function is minimized iteratively via a gradient descent method,

but for the purpose of analysis here, we can find the minimum directly by setting

the ∇Jj = 0 and solving for the updated estimate uj = x̂j
k|k

at the minimum:

0 = (P e
k|k−1

)−1 (x̂j
k|k
− x̂j

k|k−1
)−HT R−1 (dj

k −Hx̂j
k|k

) (1.19a)

0 = (P e
k|k−1

)−1 (x̂j
k|k
− x̂j

k|k−1
) + HT R−1 H (x̂j

k|k
− x̂j

k|k−1
)

− HT R−1 (dj
k −Hx̂j

k|k−1
) (1.19b)

(x̂j
k|k
− x̂j

k|k−1
) =

[
(P e

k|k−1
)−1 + HT R−1 H

]−1
HT R−1 (dj

k −Hx̂j
k|k−1

) (1.19c)
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Assuming that all inverses indicated exist, the identity

[
(P e

k|k−1
)−1 + HT R−1 H

]−1
HT R−1 = P e

k|k−1
HT

[
H P e

k|k−1
HT + R

]−1
(1.19d)

can be substituted into (1.19c) to get the form

x̂j
k|k

= x̂j
k|k−1

+ P e
k|k−1

HT
[
H P e

k|k−1
HT + R

]−1
(dj

k −Hx̂j
k|k−1

), (1.20a)

K ≡ P e
k|k−1

HT
[
H P e

k|k−1
HT + R

]−1
, (1.20b)

x̂j
k|k

= x̂j
k|k−1

+ K (dj
k −Hx̂j

k|k−1
). (1.20c)

Recall that (1.20c) is the unique solution for the jth ensemble member.

Thus, we can think of the ensemble of solutions x̂j
k|k

as a random variable that

is itself conditioned on two other random variables, x̂j
k|k−1

and dj
k. Note that the

gain matrix K is identical to that of the Kalman Filter. To see the rest of the

equivalence with the Kalman Filter, we take the sample mean of the result.

x̄
k|k

=
1

N

N∑

j=1

x̂j
k|k

=
1

N

N∑

j=1

x̂j
k|k−1

+ K

(
1

N

N∑

j=1

dj
k −H

1

N

N∑

j=1

x̂j
k|k−1

)

= x̄
k|k−1

+ K (yk −H x̄
k|k−1

) (1.21)

Although we obtain the Kalman update (1.21) for the estimate mean by using

En3DVar, it is important to note that the traditional 3DVar algorithm (involving

only an iterative update of the mean) would also have provided us with this result.

The real strength of En3Dvar lies in its ability to also implicitly update the estimate
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covariance, something that was not possible with traditional 3DVar. To see this

equivalence, we take the sample covariance of the updated ensemble x̂j
k|k

,

P e
k|k

=
1

N − 1

N∑

j=1

( x̂j
k|k
− x̄

k|k
) ( x̂j

k|k
− x̄

k|k
)T . (1.22a)

Substituting in the definitions of x̂j
k|k

from (1.20c) and x̄
k|k

from (1.21) and sim-

plifying, we get

P e
k|k

= (I −KH) P e
k|k−1

(I −KH)T + K Re KT + Φ + ΦT ,

Φ =
1

N − 1

N∑

j=1

{
( I −K H ) ( x̂j

k|k−1
− x̄

k|k−1
)(dj

k − yk)
T KT

}
. (1.22b)

The final terms Φ + ΦT in (1.22b) arise from spurious correlations between the

background error and the measurement noise. In a similar manner to the EnKF,

as the number of ensembles increase, these terms disappear, leaving the expected

Kalman Filter covariance update equation, i.e.,

lim
N→∞

Φ = 0, (1.23a)

P e
k|k

= ( I −K H ) P e
k|k−1

( I −K H )T + K Re KT . (1.23b)

Thus, we have shown that, by iteratively assimilating an ensemble of 3DVar prob-

lems with both perturbed background states and perturbed measurements, we are

able to compute both the analysis mean and covariance. This algorithm is both

tractable for high dimensional systems (in the sense that it is vector-based) and

very easily parallelized (in the sense that each individual problem can be solved

independently).
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1.3.2 Ensemble 4D Variational Assimilation (En4DVar)

Given a time history of measurements
{

yk | tk ∈ ( 0, T ]
}
, as with the

En3DVar case, we will represent our estimate statistics with a finite ensemble of

N members such that the sample mean and sample covariance are consistent (in

the limit as N →∞) with the (assumed) known background mean and covariance

at the left edge of the time window t
0
. We can then define an analogous En4DVar

cost function over the window, for the jth ensemble member, that balances the

misfit between a set of perturbed observations and the deviation from a perturbed

background initial condition as follows:

Jj(u
j) =

1

2
(uj − x̂j

0|0
)T (P e

0|0
)−1 (uj − x̂j

0|0
)

+
1

2

K∑

k=1

(dj
k −H x̃j

k)
T R−1 (dj

k −H x̃j
k). (1.24)

Much like traditional 4DVar, each ensemble member is constrained over the window

by the model, and the control variable uj serves as the initial condition for its

trajectory.

dx̃j(t)

dt
= f(x̃j(t), 0), (1.25a)

x̃j
0

= uj . (1.25b)

Each initial ensemble member x̂j
0|0

acts as its own perturbed background, and

each ensemble member is assimilated with its own set of perturbed measurements

{
dj

k = yk + vj
k | tk ∈ ( 0, T ]

}
.
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The total cost function J is given as the sum of the component cost func-

tions for each ensemble member. Because the component cost functions are only

coupled through the specified (and fixed) background ensemble members x̂j
0|0

and

the covariance matrix which they approximate, P e
0|0

, each Jj can be minimized

independently, creating an embarrassingly parallel optimization problem. Similar

to traditional 4DVar, each cost function is minimized by finding the local gradient

and using a suitable descent algorithm. Finding the gradient of (1.24) requires

the use of an appropriately-defined adjoint field. The derivation parallels that of

standard 4DVar (as illustrated in the Appendix), and gives the jth gradient as:

∇Jj(u
j) = (P e

0|0
)−1 (uj − x̂j

0|0
)− rj

0
, (1.26)

where rj
0

is the initial condition of the jth adjoint field found via a background

march from t
K

to t
0

of the adjoint equations. Thus each iteration of En4DVar

requires a forward march of the ensemble through the optimization window fol-

lowed by a backward march of an ensemble of adjoints to find each component

gradient. The decoupled nature of these marches is what facilitates the efficient

parallel global solution.

Due to the fact that En4DVar accounts for all observations within the assim-

ilation window, it is, by nature, a smoother. Upon completion of the minimization,

we are provided with a new ensemble of points x̂j
0|K

, conditioned on these mea-

surements. From this ensemble, statistical measures such as the sample mean and
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covariance can be extracted.

Theorem 2 (Equivalence of En4DVar to the Kalman Smoother). In the limit of an

infinite number of ensemble members (i.e. N → ∞) and under the assumptions

of linear dynamics and Gaussian noise and disturbances, the En4DVar problem

defined above converges to the equivalent Kalman smoother solution.

Proof. The proof is straightforward and follows directly from that of Theorem 1,

however, due to the addition of the time dynamics, it tends to become notationally

cumbersome. In the interest of brevity, we have elected to omit it here.

1.4 Hybrid Ensemble Smoother (HEnS)

As was initially illustrated in Figure 1.1, we have identified two families

of ensemble-based assimilation methods: the ensemble variational methods (con-

sisting of En3DVar and En4DVar) and the ensemble Kalman methods (consisting

of the EnKF and the EnKS). In theory, both families address the same problem.

Further, as we have shown in the simplified case with linear dynamics and Gaus-

sian uncertainties, they converge to the same solution. However, when the system

is highly nonlinear, all bets on optimality of the solutions are off, and we do not

necessarily expect each method to provide identical solutions.

In the case of nonlinear systems, one might thus wonder which method

typically provides the best answer. The best answer, however, may in fact not come
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from one individual method, but rather from a consistent hybrid of both methods.

This is the idea behind the development of the Hybrid Ensemble Smoother (HEnS),

which is a consistent hybrid between the two smoothers, En4DVar and EnKS.

A key motivation for HEnS is the iterative nature of the En4DVar method.

Once the component cost functions (1.24) are defined appropriately using the

known background ensemble, any initial condition uj can be used to begin the

gradient-based minimization. Typically, the best guess we have at the start of an

iteration is the background itself (i.e., uj = x̂j
0|0

), because no other information

is known. However, if we were to first run the EnKS through the entire window

( 0, T ], we would develop an intermediate smoothed estimate x̂j
0|K

. That is, the

output of the EnKS at the left edge of the window is the best estimate at that time,

given all measurements in the optimization window as determined by the EnKS

framework. Again, under the appropriate assumptions, this smoothed estimate

would be optimal, but, due to the nonlinear nature of the system and the neces-

sarily finite ensemble size, the EnKS typically finds a suboptimal solution to the

smoothing problem. Consequently, this intermediate smoothed estimate can then

be used as the initial condition for the specified En4DVar minimization problem

in lieu of the background state. If there is any more information to be extracted

from the observations, this iterative minimization will attempt to do just that.

Theorem 3 (Consistency of HEnS). In the limit of an infinite number of ensem-

ble members (i.e. N → ∞), and under the assumptions of linear dynamics and
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Gaussian noise and disturbances, the HEnS formulation described above converges

to both the Kalman smoother solution and the equivalent En4DVar solution.

Proof. Under the above assumptions, the En4DVar cost function is convex, and

thus contains only one minimum. Provided the cost function is defined appropri-

ately, the En4DVar iteration will converge to this global minimum, regardless of

initial condition–even if the output from the EnKS is used to initialize the mini-

mization, as done with HEnS. Therefore, HEnS will converge to the same solution

as En4DVar under the assumptions stated. The proof of the equivalence to the

Kalman smoother then follows immediately from Theorem 2.

An important consequence of Theorem 3 is that the HEnS framework will

do no worse than the EnKS solution alone.

In summary, HEnS is a consistent hybrid of both EnKS and En4DVar.

Essentially, HEnS uses a (typically) suboptimal smoothed estimate from the EnKS

to initialize an En4DVar minimization. Because the output from the EnKS is

much closer to the expected minimum than the original background estimate, the

En4DVar iteration is less likely to converge to spurious local minima, far from the

optimal estimate, and thus produces more a more accurate estimate than either

smoother would by itself. HEnS can be implemented in three straightforward steps:

1. Given a set of measurements
{

y
1
, · · · ,y

K

}
on the window [ 0, T ] and a back-

ground ensemble x̂j
0|0

at the left edge of the window, define the appropriate
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En4DVar component cost functions.

2. March a fixed-point EnKS through the window, smoothing the estimate at

the left edge of the window to produce an intermediate smoothed estimate

x̂j
0|K

conditioned on all observations in the window.

3. Use the intermediate smoothed estimate output from the EnKS as the initial

condition uj for an En4DVar minimization over the same window, using the

previously-defined component cost functions. This will potentially provide

a better smoothed estimate over the entire window for the full nonlinear

system.

As with any assimilation strategy, the output of HEnS from a previous window

can be used as the background estimate for a subsequent window, cycling the

algorithm.

1.4.1 Advantages in forecasting

In data assimilation applications that involve forecasting, the most impor-

tant estimate is always the most recent one. This is, of course, the estimate that

is used as an initial condition for any open-loop forecast (into the future).

In the linear setting, the most recent filtered estimate is identical to the

most recent smoothed estimate because they have both been conditioned on the

same set of measurements (which are all necessarily in the past). It is for this
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reason alone that smoothers have been largely ignored by the operational weather

forecasting community. Up until now, their computational expense has not been

justified by providing an improved estimate upon which a forecast could be made.

Although this conclusion is certainly true in the linear world, much informa-

tion is to be gained, even at the most recent time, by revisiting old measurements

in light of new data. Even in the EnKF setting, the suboptimal updates made at

any given time are a function of the ensemble member trajectories used. If those

trajectories were improved (say, through the use of a smoother), then it might

be possible to perform more accurate updates, which in turn would increase the

accuracy of the estimate at a future time.

Unfortunately, the formulation of the EnKS does not leverage this idea, and

(in the limit of an infinite ensemble size) returns exactly the same estimate at the

right edge of the window. HEnS, however, is not so constrained. By improving

the smoothed estimate initial condition at the left edge of the window, HEnS also

improves the estimate throughout the window, and specifically reduces the error

in the most recent estimate, providing a more accurate long-term forecast.

1.4.2 Hybrid Ensemble Filter (HEnF)

It is worth noting that, in a manner analogous to the hybridization of

the two smoothers (En4DVar and the EnKS), a hybrid filter can be defined by

combining En3DVar and the EnKF. The resulting algorithm, appropriately dubbed
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HEnF, would use the EnKF to precondition an En3DVar iteration. That is, at a

given measurement time, the EnKF update would be used as an initial condition

for the subsequent En3DVar minimization. However, because neither filter update

necessarily takes into account the dynamics of the system, it is not apparent to

the authors that such additional computation would provide a better solution. As

a result, we have neglected to highlight the HEnF in this discussion.

1.5 Representative Example

The two primary new ideas described in this paper, En4DVar and HEnS,

are now compared, via computational experiments, to both EnKF and EnKS. We

have already shown analytically that, in the linear setting, all four methods provide

consistent solutions; however, in a nonlinear setting with significant uncertainties,

these different approaches provide substantially different results.

The Lorenz equation (see [44]) is used here as a simple model of a non-

linear system with self-sustained chaotic unsteadiness8 in order to perform this

comparison. The Lorenz equation is a system of three coupled, nonlinear ordinary

8That is, the system considered maintains its nonperiodic, finite, bounded unsteady motion
with no externally-applied stochastic forcing.
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Figure 1.3: A typical run is shown for the Lorenz experiment. On the left, each as-
similation method is compared to the truth trajectory via very noisy measurements
of x2. From this, the estimate error (top-right) and error energy (bottom-right)
are calculated. Note that the EnKF and EnKS are not necessarily equivalent at
the right edge of the window due to the finite ensemble size.
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Figure 1.4: This is the converged error plot after several weeks of statistically av-
eraging on a modern desktop computer (3 GHz Core Duo) for the experimental
Lorenz test case on EnKF, EnKS, En4DVar, and HEnS. At the left edge of the
window, we see that En4DVar decreases the error from the background, but con-
vergence to local minima prevents it from competing with EnKS and HEnS. By
initializing an En4DVar minimization with the output from the EnKS, we can see
that, statistically, HEnS reduces the error by an additional 50%.
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Figure 1.5: This is the converged variance plot for the experimental Lorenz test
case on EnKF, EnKS, En4DVar, and HEnS. The trace of the covariance matrix
for each method is plotted as a function of time (averaged over several runs).
En4DVar on its own does not perform as well as the other methods. However,
when En4DVar is combined with EnKS to make HEnS, a substantially improved
time-averaged performance is realized.
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differential equations given by:

dx(t)

dt
=





σ (x2 − x1)

−x2 − x1x3

−βx3 + x1x2 − βφ




, (1.27)

where σ, β, and φ are tunable parameters. Solutions of these equations approach

a well-defined manifold or attractor of dimension slightly higher than two. Per-

turbed trajectories converge exponentially back onto the attractor, while adjacent

trajectories diverge exponentially within the attractor, creating the familiar chaotic

motion in the Lorenz system. Note that, for convenience, the system equations of

(1.27) are transformed slightly from the traditional form such that the attractor is

approximately centered at the origin.

In this comparison, we quantify the time-averaged statistics of the four

assimilation methods under consideration. That is, we run a very large number of

trials and calculate both the average error of the estimate as well as the average

energy of the estimation error (a.k.a. the variance) over all of these trials. A typical

run simulates a truth trajectory over a fixed window, taking noisy measurements

at set intervals; then, each method (EnKF, EnKS, En4DVar, and HEnS) is used on

the resulting data set, initialized with its own independent background. Appealing

to the ergodicic nature of the Lorenz system, the output at the right edge of the

window for each method (and the truth model) is then used as the input for the

next run on the subsequent time window. Consequently, a series of assimilation



50

windows are evaluated on various intervals all over the attractor. The statistics

of this process are then used to calculate the expected performance characteristics

on this nonlinear chaotic system.

For the results shown, the model parameters used are σ = 4, β = 1, and

φ = 48. Only the second state x2 is measured, and the measurement noise variance

used R = 5 (which, as seen in Figure 1.3, is quite substantial). The assimilation

window has width T = 0.5, and five observations are taken (at intervals of ∆t =

0.1) centered in this window. The starting conditions for the truth and estimate

ensemble backgrounds are not significant, as the converged statistics are not a

function of the starting point used in the simulation. The nonlinear model is

assumed to be perfect (that is, Q = 0), and thus any ensemble forecasting would

be done with a simple evolution of the unforced equations from the most recent

state estimate. All of the cases were run with N = 300 ensemble members, but

similar results were found with significantly fewer ensemble members. A typical

run is shown in Figure 1.3.

Statistical steady state was achieved via several weeks of statistical averag-

ing on a modern desktop computer (3 GHz Core Duo). The converged statistics

above are illustrated in Figures 1.4 and 1.5. One can see immediately that, on

average, HEnS significantly outperforms the other three methods in terms of both

accuracy (lower error) and precision (lower variance).
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1.6 Conclusion

A new, hybrid method (dubbed the Hybrid Ensemble Smoother, or HEnS)

for state estimation in nonlinear chaotic systems has been proposed. This new

method is based on a new variational formulation of the ensemble smoother,

dubbed En4DVar, initialized leveraging the (traditional, non-variational) formula-

tion of the ensemble Kalman smoother (EnKS). In essence, a traditional EnKS is

used to initialize the new variational formulation of the ensemble smoother. The

method introduced are proven to be consistent, meaning that they all reduce to the

Kalman filter under the appropriate simplifying assumptions (that is, linear sys-

tem, Gaussian state disturbances and measurement noise, and a sufficiently large

number of ensemble members). However, the proposed new estimation method,

HEnS, is shown, on average, to significantly outperform existing methods in a

representative estimation problem on a nonlinear chaotic system.

The reason for this remarkable success is that HEnS provides an effec-

tive mechanism for revisiting past measurements in light of new data, leveraging

a smoother effectively to reinterpret past measurements based upon a more re-

fined past state estimate, and thereby improving significantly the present state

estimate. In essence, HEnS combines the powerful retrospective analysis of a

variational method with the effective synthesis of the principle directions of un-

certainty, as summarized by an ensemble-based method. An important ingredient
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to the method’s operational effectiveness is the initialization of the variational

analysis with the solution from a EnKS computation, which is far better than

initializing this variational analysis simply with an EnKF computation based on

older measurements.

Note finally that the HEnS method is based solely on variational and en-

semble Kalman components that are already used heavily for operational weather

forecasting, and are applied routinely, in real time, to systems with state dimen-

sion larger than 106. Thus, HEnS naturally inherits this effective scalability to very

large-scale chaotic systems, and holds significant promise to improve the accuracy

of such estimation and forecasting efforts.

1.7 Acknowledgements

The authors gratefully acknowledge the generous financial support of the

National Security Education Center (NSEC) at Los Alamos National Laboratory

(LANL) and numerous helpful discussions with Chris Colburn (UCSD), David

Zhang (UCSD), Dr. Frank Alexander (LANL), and Prof. Daniel Tartakovsky

(UCSD).

This chapter is, in part, a reprint of the material as it will appear in:

Cessna, J. and Bewley, T. (2010) A Hybrid (variational / Kalman) ensemble

smoother for the estimation of nonlinear high-dimensional discretizations of PDE



53

systems. Under preparation, IEEE Transactions on Automatic Control.

The dissertation author is the primary investigator and author of this publication.



Chapter 2

Numerical Implementation

An important property of the HEnS algorithm is its ability to scale well

to high dimensional systems. Much like the standard EnKF, when dealing with

multiscale systems, we can only afford to compute a small number of ensemble

members relative to the state dimension, i.e. N ≪ n. In these cases, the only

tractable method of computing an analysis requires a scalable parallel implemen-

tation of the algorithm. Typically, each ensemble member will be placed on a

subset of the available nodes in the computational cluster, and information will

be shared through a suitable message passing routine, e.g. MPI. In the following

sections, we illustrate some of the key numerical issues involved with the imple-

mentation of each of the HEnS components in an MPI setting.

54
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2.1 EnKF Implementation

Much research has been done in the direction of implementing the EnKF

(and consequently the EnKS) in these high dimensional situations. The key chal-

lenge for the ensemble Kalman methods is their dependence on state correlations

found through sample statistics of the available ensemble. When the number of

ensembles is necessarily small relative to the state dimension, these sample correla-

tions are often poor and lead to filter divergence. This problem is averted through

the ad hoc method of covariance localization, as is discussed in further detail in

Section 1.1.3. Due to the ad hoc nature and wide range of such methods, we will

defer the implementation details of such a filter to their respective authors. This

section will focus specifically on the parallel implementation of the EnKF update

equations–without localization–using the Message Passing Interface (MPI), allow-

ing for uniform load distribution on, and minimal communication between, the

massively parallel computational resources required to apply the EnVE algorithm

to multiscale systems.

In general, the ensemble X̂
i|k

is comprised of N ≪ n ensemble members.

Each of these ensemble members x̂j
i|k

is located on its own processor (or proces-

sors) with a corresponding process number. In practice, for testing purposes, an

additional process is also used for the “truth” model simulation, which is done in

parallel with the EnKF march. Thus, the MPI environment is constructed of N +1



56

processes, with process j denoted by pj . For convenience, the “truth” model is run

on p0, while each ensemble member x̂j
i|k

is run on its corresponding process, pj.

The EnKF consists of two main steps: a forward march of the ensemble to

predict the estimate at the next measurement, and an appropriate update to the

forecasted estimate due to each measurement. Recall that the discretized system

of interest is given by (1.1a) and (1.1b). The forecasting step of the EnKF is

the march from X̂
k−1|k−1

to X̂
k|k−1

(not including the measurement update). In

the MPI setting, this is done by simply marching each ensemble member forward

in time–using an appropriate time-stepping algorithm–according to the governing

equation:

dx̂j(t)

dt
= f(x̂j(t),w(t)). (2.1)

The disturbances w(t) are modeled appropriately using an appropriate random-

number generator, and each ensemble member is disturbed independently from

the other ensemble members. In an MPI setting, the computation time of each

process is assumed independent from the other processes. Hence, the time required

to propagate the N ensemble members in this framework is equivalent to a single

simulation on a single processor.

Next, the measurement update at time tk must be performed. To update

the ensemble X̂
k|k−1

to reflect the newest measurement (thereby giving X̂
k|k

), a



57

corresponding update must be done on each individual ensemble member as follows:

x̂j
k|k

= x̂j
k|k−1

+ P e
k|k−1

HH( H P e
k|k−1

HH + R)−1(dj
k −H x̂j

k|k−1
). (2.2)

To evaluate this equation, the three main components of the update are first de-

veloped independently as:

x̂j
k|k

= x̂j
k|k−1

+ L
(1)
k

(
L

(2)
k

)−1
zj

k, (2.3)

L
(1)
k = P e

k|k−1
HH L

(1)
k ∈ ℜn×m, (2.4)

L
(2)
k = H P e

k|k−1
HH + R L

(2)
k ∈ ℜm×m, (2.5)

zj
k = dj

k −H x̂j
k|k−1

zj
k ∈ ℜm. (2.6)

Note that the matrices L
(1)
k and L

(2)
k depend upon the entire ensemble.

First, examine the structure of P e
k|k−1

. This covariance is built up from the

individual ensemble members such that:

P e
k|k−1

=
1

N − 1

[
( x̂1

k|k−1
− x̄

k|k−1
) · · · ( x̂N

k|ik1
− x̄

k|k−1
)
]
×

[
( x̂1

k|k−1
− x̄

k|k−1
) · · · ( x̂N

k|k−1
− x̄

k|k−1
)
]H

=
1

N − 1

[
δx̂1

k|k−1
· · · δx̂N

k|k−1

] [
δx̂1

k|k−1
· · · δx̂N

k|k−1

]H
,

⇒ P e
k|k−1

=
1

N − 1

N∑

j=1

δx̂j
k|k−1

(δx̂j
k|k−1

)H . (2.7)

Note that P e
k|k−1

∈ ℜn×n; for high-dimensional systems, building up this matrix is

computationally intractable but, as shown below, unnecessary in the implemen-

tation if the terms are computed in the appropriate order. As is seen in (2.7),
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the covariance can be computed as a sum of outer products of the deviations of

each ensemble member from the ensemble mean (that is, of the ensemble state

perturbation vectors δx̂j
k|k−1

). Thus, (2.4) can be written:

L
(1)
k =P e

k|k−1
HH

=
(
H P e

k|k−1

)H

=
1

N − 1

(
H

N∑

j=1

δx̂j
k|k−1

(δx̂j
k|k−1

)H
)H

=
1

N − 1

N∑

j=1

δx̂j
k|k−1

( H δx̂j
k|k−1

)H ,

⇒ L
(1)
k =

1

N − 1

N∑

j=1

δx̂j
k|k−1

( δŷj
k|k−1

)H , (2.8)

where H δx̂j
k|k−1

= δŷj
k|k−1

∈ ℜm is the ensemble output perturbation vector. The

matrix H is the linearization of the output operator h : ℜn → ℜm. Note that,

for the multiscale chaotic systems of interest, m ≪ n (that is, the number of

measurements is much smaller than the dimension of the state), so the storage

and communication of the output perturbation vectors δŷj
k|k−1

can be assumed to

be negligible compared to the storage and communication of the state and state

perturbation vectors. At this point, locally on each process pj , the ensemble state

perturbation δx̂j
k|k−1

must be computed along with the ensemble output perturba-

tion δŷj
k|k−1

.

Similarly, the first term in L
(2)
k , namely H P e

k|k−1
HH , can be computed in

a manner consistent with L
(1)
k , exploiting the structure of the ensemble covariance
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matrix.

H P e
k|k−1

HH =H

(
1

N − 1

N∑

j=1

δx̂j
k|k−1

(δx̂j
k|k−1

)H

)
HH

=
1

N − 1

N∑

j=1

( H δx̂j
k|k−1

)( H δx̂j
k|k−1

)H ,

⇒ H P e
k|k−1

HH =
1

N − 1

N∑

j=1

δŷj
k|k−1

( δŷj
k|k−1

)H . (2.9)

This term is calculated as a sum over all the processes of the outer product of the

ensemble output perturbation with itself (recall that this vector has already been

computed on each process). In addition to the H P e
k|k−1

HH term, L
(2)
k contains the

measurement covariance matrix R. This matrix, in general, may be a function of

time, but a model for R is assumed to be known.

The structure of many MPI clusters facilitates reasonably efficient all-to-all

communication (in which data is passed from every node to every other node in

the cluster at the same time). For instance, in a cluster with a toroidal switchless

interconnect, all-to-all communication is only slightly more expensive than one-

to-all communication (in which one node sends data to ever other node). This is

because, in a switchless interconnect torus, during one-to-all communication the

data is sent sequential from one node to the next, down the line, while all the other

nodes wait. Thus, the time required for a one-to-all communication is the time

required for the data to travel all the way down the line of nodes. However, during

all-to-all communication, data is cycled down the line from every node. Thus,
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every node is always busy, but the total communication time is still only the time

it takes for data to travel once down the line.

In the interest of minimizing data transfer, all the ensemble output per-

turbation vectors δŷj
k|k−1

are thus transferred to every node, where L
(2)
k can be

computed locally. This requires only one all-to-all communication call for the en-

semble output perturbation vectors. Conversely, if the summation components of

L
(2)
k were computed locally, an all-to-all communication of the entire matrix would

be necessary, increasing communication significantly while decreasing computation

only slightly.

In the EnKF framework, each individual ensemble member is assimilated

with a noisy measurement. The noisy measurement on process pj is denoted dj
k

and is found by adding random noise on top of the original measurement (from the

truth model), with statistics consistent with the known properties of the sensors:

dj
k = yk + vj

k. (2.10)

The statistics of the added noise mirror the known measurement noise of (1.1b).

This gives the forcing to each ensemble member estimate zj
k as

zj
k = dj

k −H x̂j
k|k−1

= yk + vj
k − ŷj

k|k−1
, (2.11)

where ŷj
k|k−1

is the ensemble output vector on each process. Hence, the calculation

of this vector can be done locally; no message passing is required, other than to

provide each process with the truth model measurement yk.
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At this point, a simple linear system needs to be solved [due to the
(
L

(2)
k

)−1

term] on each process. This solve is straightforward because L
(2)
k ∈ ℜm×m is both

symmetric and relatively small. Many algorithms exist for the efficient solution

of such systems. Note that, with the assumption R > 0, the matrix L
(2)
k is, in

general, nonsingular, and thus the solution to the following system exists and is

unique:

uj
k =

(
L

(2)
k

)−1
zj

k ⇒ L
(2)
k uj

k = zj
k. (2.12)

With the computation of uj
k done locally on each process, the update equa-

tion (2.3) can again be rewritten as:

x̂j
k|k

= x̂j
k|k−1

+ L
(1)
k uj

k. (2.13)

Substituting in the definition of L
(1)
k from (2.8), this update becomes:

x̂j
k|k

= x̂j
k|k−1

+

[
1

N − 1

N∑

i=1

δx̂i
k|k−1

( δŷi
k|k−1

)H

]

uj
k

= x̂j
k|k−1

+

N∑

i=1

[
( δŷi

k|k−1
)H uj

k

N − 1

]

δx̂i
k|k−1

,

⇒ x̂j
k|k

= x̂j
k|k−1

+
N∑

i=1

γij
k δx̂i

k|k−1
(2.14a)

where γij
k =

( δŷi
k|k−1

)H uj
k

N − 1
. (2.14b)

In its final form, the measurement update equation (2.14) updates each ensem-

ble member via a linear combination of each ensemble state perturbation vector

δx̂j
k|k−1

. This form eliminates the need for any additional storage arrays. The
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update can be computed in an all-to-all round robin format, where the ensemble

state perturbation vector on each process is shifted one hop to the adjacent pro-

cess. Then, the corresponding update is computed on every process, and the data

is shifted again. Overall, the total communication is equivalent to a single all-to-all

send of the ensemble state perturbation vector, but because the computation is

done in between each message hop, there is no accumulating storage necessary.

2.1.1 EnKS Implementation

The full implementation of the EnKS is omitted here to due its similarity

with that of the EnKF update as discussed in the previous section. Recall that

the EnKS update equation is given by

x̂j
p|k

= x̂j
p|k−1

+ Se
k−1

HT (HP e
k|k−1

HT + R)−1(dj
k −Hx̂j

k|k−1
), (2.15a)

where Se
k−1

is the time covariance matrix between the estimate at the observation

time tk and the estimate at the smoothing time tp, it is given by

Se
k−1

=
(δX̂

p|k−1
) (δX̂

k|k−1
)T

N − 1
. (2.15b)

Using this form of the update equation, the numerical steps necessary for its im-

plementation follow directly from that of the standard EnKF. Thus the full imple-

mentation of the fixed-lag EnKS (necessary in the HEnS algorithm) requires two

ensemble Kalman updates at each new measurement time: first, the smoothed es-

timate at the back edge of the window is updated according to the above equations
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(which required the un-updated filtered ensemble); second, the filtered estimate at

the front edge of the window is updated according to the traditional EnKF equa-

tions. Note that many of the computational steps of the two updates are identical,

and thus the total cost is much less than that of two independent updates. The

completion of this process over a batch of measurements provides two ensemble

estimates, both conditioned on all available measurements, one at the front edge

of the window and one at the back edge of the window (which, of course, will then

be used as the initial condition for the En4DVar step of the HEnS).

2.2 En4DVar Implementation

In this section, we will first go over the general implementation of En4DVar

for high-dimensional systems. This assumes the only available initial condition

is the ensemble background. Lastly, we discuss the steps necessary to initialize

En4DVar with something besides the background (e.g. a smoothed estimate found

from the EnKS, as is done with the HEnS).

In either case, the delicate issue is the treatment of the background term

in the cost function, P e
0|0

. In the traditional En4DVar cost function,

Jj(u
j) =

1

2
(uj − x̂j

0|0
)T (P e

0|0
)−1 (uj − x̂j

0|0
)

+
1

2

K∑

k=1

(dj
k −H x̃j

k)
T R−1 (dj

k −H x̃j
k), (2.16)

this background terms serves to penalize deviations from the background mean
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inversely proportional to the uncertainty in that direction. However, due to the

small number of tractable ensemble members, this matrix is in general singular,

and thus non-invertable. In these cases, we must use the pseudo-inverse, giving a

new cost function,

Jj(u
j) =

1

2
(uj − x̂j

0|0
)T (P e

0|0
)+ (uj − x̂j

0|0
)

+
1

2

K∑

k=1

(dj
k −H x̃j

k)
T R−1 (dj

k −H x̃j
k). (2.17)

In directions of uncertainty that are spanned by our reduced subset of ensembles,

the pseudo-inverse behaves identically to that of the inverse, giving us the desired

behavior. However, in the null space of P e
0|0

, the pseudo-inverse applies no penalty

to deviations in that direction. This is the opposite of what we would desire. The

reduced number of ensemble members that we have all lie on a low dimensional

manifold of the high-dimensional state space. Because none of these members,

by definition, lie off this manifold, we can expect to have some certainty that the

solutions we find tend to stay in the vicinity of this manifold as well. Consequently,

we should desire a heavy penalty for any solution moving off this manifold. To

combat this contradiction that arises from using the pseudo-inverse, we must put

a hard constraint on the optimization, not allowing any updates in the directions

off the manifold, or, better put, require all updates to be in the range of the
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ensemble perturbations δX̂
0|0

i.e.

uj ← x̂j
0|0

+ δX̂
0|0

wj (2.18a)

where wj ∈ ℜN (2.18b)

and thus (uj − x̂j
0|0

) = δX̂
0|0

wj. (2.18c)

Plugging this hard constraint (2.18c) back into our cost function (2.17), we get a

new cost function parametrized by the weights on the columns of δX̂
0|0

,

Jj(w
j) =

1

2
(wj)T (δX̂

0|0
)T (P e

0|0
)+ δX̂

0|0
wj

+
1

2

K∑

k=1

(dj
k −H x̃j

k)
T R−1 (dj

k −H x̃j
k). (2.19)

This cost function can be further simplified by constructing the reduced singular

value decomposition (SVD) of δX̂
0|0

and recalling its relationship to the background

sample covariance (P e
0|0

)+, i.e.

δX̂
0|0

= U Σ V T where UT U = V T V = I, (2.20a)

P e
0|0

=
1

N − 1
(δX̂

0|0
) (δX̂

0|0
)T =

1

N − 1
U Σ2 UT , (2.20b)

and thus (P e
0|0

)+ = (N − 1) U Σ−2 UT . (2.20c)
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Now, substituting (2.20) into (2.19), we get a simplified expression for the cost,

Jj(w
j) =

1

2
(wj)T V Σ UT U Σ−2 UT U Σ V T wj

+
N − 1

2

K∑

k=1

(dj
k −H x̃j

k)
T R−1 (dj

k −H x̃j
k). (2.21a)

=⇒ Jj(w
j) =

N − 1

2
(wj)T V V T wj +

1

2

K∑

k=1

(dj
k −H x̃j

k)
T R−1 (dj

k −H x̃j
k).

(2.21b)

Lastly, defining a new variable ωωωj ∈ ℜN−1 such that ωωωj = V T wj we arrive at the

final reduced cost function

Jj(ωωω
j) =

N − 1

2
(ωωωj)T ωωωj +

1

2

K∑

k=1

(dj
k −H x̃j

k)
T R−1 (dj

k −H x̃j
k). (2.22)

As with traditional En4DVar, each ensemble member is constrained by the

underlying model, and the control variable ωωωj serves to define the initial condition

for its trajectory.

dx̃j(t)

dt
= f(x̃j(t), 0), (2.23a)

x̃j
0 = x̂j

0|0
+ δX̂

0|0
wj

x̃j
0 = x̂j

0|0
+ U Σ V T wj

x̃j
0 = x̂j

0|0
+ U Σ ωωωj

In practice, however, the columns of U are of dimension n. Therefore, they are

too expensive to compute for multiscale systems. On the other hand, the columns

of V are of dimension N and can be easily found via an eigendecomposition of the
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symmetric (N ×N) matrix (δX̂
0|0

)T δX̂
0|0

. In addition, returning to our definition

of the SVD (2.20a), we see that U = δX̂
0|0

V Σ−1. Thus each ensemble trajectory

can be initialized as

x̃j
0 = x̂j

0|0
+ δX̂

0|0
V ωωωj (2.23b)

For standard En4DVar, we can proceed from here, initializing ωωωj = 0 and

thus using the background as the only known initial condition. The adjoint is

found and forced in an identical manner to that previously described for tradi-

tional 4DVar. Thus, at each iteration, after a forward march of the state and the

appropriate backward march of the adjoint, we are provided with the sensitivity

of the cost function to the initial condition. To extract the necessary gradient

(with respect to ωωωj) we utilize (2.23b), to find a clear relationship between our low

dimensional optimization space and the initial state. Thus, the final gradient is

given by:

∇Jj(ωωω
j) = (N − 1)ωωωj − V T (δX̂

0|0
)T rj

0
. (2.24)

2.2.1 Extension to HEnS

With traditional En4DVar, we initialize the optimization with the back-

ground ensemble and thus, according to (2.23b), the initial condition for the op-

timization ωωωj
0 = 0. From here, the optimization is straightforward. With HEnS,

though, we want to use the output from the smoother x̂j
0|K

as the initial condition.

However, this smoothed estimate is not guaranteed to lie on the subspace spanned
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by the ensemble perturbation, i.e., it is not necessarily true that

[
∃ ωωωj ∈ ℜN−1 | x̂j

0|K
= x̂j

0|0
+ δX̂

0|0
V ωωωj

]
. (2.25)

In this situation, the best we can do is to find the closest estimate to that of the

smoothed one, such that it does lie in the range of δX̂
0|0

, this is done through the

proper use of the pseudo-inverse as follows,

ωωωj
0 = Σ−2 V T (δX̂

0|0
)T ( x̂j

0|K
− x̂j

0|0
). (2.26)
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Chapter 3

Structured Computational

Interconnects

Joseph Cessna and Thomas Bewley

Abstract. The present paper is part of a larger effort to redesign, from

the ground up, the best possible interconnect topologies for switchless multipro-

cessor computer systems. We focus here specifically on hexagonal interconnect

graphs and their extension to problems on the sphere, as motivated by the design

of special-purpose computational clusters for global weather forecasting. Eight

families of efficient tiled layouts have been discovered which make such intercon-

nects trivial to scale to large cluster sizes while incorporating no long wires. In the

70
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resulting switchless interconnect designs, the physical proximity of the cells cre-

ated (in the PDE discretization of the physical domain) and the logical proximity

of the nodes to which these cells are assigned (in the computational cluster) coin-

cide perfectly, so all communication between physically adjacent cells during the

PDE simulation require communication over just a single hop in the computational

cluster.
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3.1 Introduction

There are two paradigms for interconnecting processing elements in multi-

processor computer systems: switched and switchless.

Switched multiprocessor computer systems are the easiest to field and use

in general-purpose applications, and are thus today the most popular. Fast cluster

switching hardware has been developed by Infiniband, Myrinet, and Quadrics, and

inexpensive (“commodity”) switching hardware is available leveraging the standard

gigabit ethernet protocol from Cisco. Unfortunately, in a switched computer sys-

tem, the switch itself is a restrictive bottleneck in the system when attempting to

scale to large cluster sizes, as messages between any two nodes must pass through

the switch, and thus the throughput demands on the switch increase rapidly as the

cluster size is increased. Nonuniform memory access (NUMA) architectures, first

pioneered by Silicon Graphics, attempt to circumvent this quagmire by introduc-

ing a hierarchy of switches, thus allowing some of the “local” messages (that is,

between two nodes on the same “branch” of a tree-like structure) to avoid passing

through the full cascade of switches (that is, to avoid going all the way back to

the “trunk”). This NUMA paradigm certainly helps, but does not eliminate the

bottlenecks inherent to switch-based architectures.

Switchless multiprocessor computer systems, on the other hand, introduce

a “graph” (typically, some sort of n-dimensional “grid”) to interconnect the nodes
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of the system. In such a system, messages between any two nodes are relayed along

an appropriate path in the graph, from the source node to the destination node.

To accomplish such an interconnection in a beowulf cluster, relatively inexpensive

PCI cards are available from Dolphin ICS [1]; however, the use of such hardware

in today’s high-performance clusters is fairly uncommon. The massively parallel

high-performance Blue Gene design, by IBM, is a switchless three-dimensional

torus network with dynamic virtual cut-through routing [2].

In the history of high-performance computing, switchless interconnect ar-

chitectures have gone by a variety of descriptive names, including the 2D torus,

the 3D torus, and the hypercube. Almost all such designs, including the IBM Blue

Gene and the Dolphin ICS designs discussed above, imply an underlying Cartesian

(that is, rectangular) grid topology in two, three, or n > 3 dimensions.

Quite recently, the startup SiCortex broke away from the dominant Carte-

sian interconnect paradigm, launching a novel family of switchless multiprocessor

computer systems designed around the Kautz graph [54]. The Kautz graph is the

optimal interconnect solution in terms of connecting the largest number of nodes

of a given “degree” (that is, with a given number of incoming and outgoing wires

at each node) for any prescribed maximum graph “diameter” (that is, the maxi-

mum number of hops between any two nodes in the graph). If one considers the

wide range of possible graphs that may be used to interconnect a large number of

computational nodes, the Cartesian graph may be identified as one extreme, with
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the simplest local structure possible but a poor graph diameter, whereas the Kautz

graph may be considered the other extreme, with a complex logical structure that

sacrifices local order but exhibits the optimal graph diameter.

In certain unstructured applications, the optimal graph diameter offered by

the Kautz graph is attractive, though such systems become difficult to build as

the cluster size is increased due to the intricate weave of long wires spanning the

entire system.

Many problems of interest in high performance computing, however, have

a regular structure associated with them. A prime example is the discretization

of a partial differential equation (PDE). When distributing such a discretization

on a switchless multiprocessor computer systems for its parallel solution, one gen-

erally divides the domain of interest into a number of finite regions, or Voronoi

cells, assigning one such cell to each computational node. An important observa-

tion is that such computations usually require much more communication between

neighboring cells than they do between cells that are physically distant from one

another. Thus, the practical effectiveness of proposed solutions to (i) the definition

of the Voronoi cells, and (ii) the distribution of these cells over the nodes of the

cluster (together referred to as the “load balancing problem”) is closely related

to both the physical proximity of the cells created in the PDE discretization and

the logical proximity of the nodes to which these cells are assigned in the compu-

tational cluster. A graph with local structure, such as the Cartesian graph, can
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drastically reduce the average number of hops of the messages it must pass during

the simulation of the PDE by laying out the problem in such a way that these two

proximity conditions coincide; a graph without such local structure, such as the

Kautz graph, does not admit an efficient layout which achieves this condition.

The present line of research thus considers alternative (noncartesian) graphs

with local structure exploitable by PDE discretizations, while keeping to a mini-

mum both (a) the number of wires per node [to minimize the complexity/expense

of the cluster], and (b) the graph diameter [to minimize the cost of whatever

multi-hop communication is required during the PDE simulation].

This particular paper is motivated by the needs presented by global weather

forecasting problems defined over a sphere; note that some of the largest purpose-

built computational clusters in the world are dedicated to this application. Loosely

speaking, the present paper explores the best ways to put a fine hexagonal grid

on a sphere, and then explores how to realize this discretization efficiently on an

easily-scaled layout of computational hardware without using any long wires.

The work considered may be applied immediately at the system level. With

the further development of appropriate hardware, it may also be applied at the

board level or even the chip level. Other chip-level noncartesian interconnect

strategies which have been investigated in the literature include the Y architecture

and the X architecture. The Y architecture for on-chip interconnects is based on

the use of three uniform wiring directions (0o, 120o, and 240o) to exploit on-chip
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routing resources more efficiently than the traditional Cartesian (a.k.a. Manhattan)

wiring architecture [13, 14]. The X architecture is an integrated-circuit wiring

architecture based on the pervasive use of diagonal wires. Note that, compared

with the traditional Cartesian architecture, the X architecture demonstrates a wire

length reduction of more than 20% [58].

3.2 Cartesian interconnects

Two criteria by which switchless interconnects are measured are cluster

diameter and maximum wire length [16]. Loosely speaking, the former affects

the speed at which information is passed throughout the graph, whereas the latter

affects the cost of each wire used to construct the interconnect, as described further

below.

Because each node can communicate directly only with its logical neighbors,

we characterize information as moving in hops: it takes one hop for information

to travel from a given node to its immediate neighbor, two hops for information to

travel to a neighbor of a neighbor, etc. The diameter of a graph is the maximum

number of hops between any two nodes in the graph. For example, Figure 3.1

illustrates a 1D Cartesian graph with a periodic connection. Each node can send

information to its neighbor to the right, and receive information from its neighbor

to the left. This type of connection is called a unidirectional link, because infor-
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mation can only flow in one direction. Many switchless clusters use bidirectional

links, through which a node can both send and receive data.

The expense of the hardware required to complete a hop often increases

quickly with the physical length of the wire between the nodes. To reduce this

cost, it is thus desirable to minimize the maximum wire length. In Figure 3.1, the

link connecting nodes 1 and N traverses N nodes, which makes scaling this layout

to large N costly. The problem of long wires can be circumvented by folding

the graph. By keeping the same logical connection, but folding the graph onto

itself along its axis of symmetry, one can produce the graph shown in Figure 3.2.

Here, the interconnect is identical to that of Figure 3.1 (and, thus, so is the graph

diameter), but now the longest wire only spans the distance between two nodes,

independent of N , thus facilitating scaling of the cluster to large N .

Noting the repetitive pattern in Figure 3.2, we identify a self-similar tile

that can be used to build the interconnect. This tile is composed of two nodes

and four wires (two sending and two receiving). Figure 3.3a illustrates how four of

these tiles, along with simple end caps, can be combined to produce the original

interconnect of Figure 3.1. An important feature of the tiled configuration is its

scalability; note how it can be extended to much larger interconnects with the

same topology, such as the 32 node graph in Figure 3.3b.

We now consider a four-connected periodic 2D Cartesian graph, known as

a torus, in which each node has four unidirectional links, two for sending and two
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1 2 3 4 5 6 7 8 

Figure 3.1: A simple 1D periodic Cartesian interconnect with unidirectional links.
The diameter of this graph is seven hops. Note that a long wire is needed to
make the periodic connection; the length of this wire increases as the cluster size
increases.

1 2 3 4 5 6 7 8 

Figure 3.2: By folding the simple 1D interconnect of Figure 3.2 in half while
keeping the same logical connection, the effect of the periodic connection may be
localized. In this case, the longest wires only span the distance between two nodes
in the folded structure, regardless of the number of nodes in the graph.

Figure 3.3: By identifying the local structure of the folded 1D interconnect of
Figure 3.2, a tile may be designed that contains two nodes and four wires. This
tile, together with simple end caps, may be extended to larger interconnects with
the same topology. Here, we extend from 8 nodes (top) to 32 nodes (bottom).
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for receiving, as illustrated in Figure 3.4a. Similar to the 1D graph of Figure 3.1,

the diameter of this 2D graph is six hops, but now interconnects 16 nodes instead

of 8. The periodic connections of this 2D graph create many long wires that span

the entire width of the interconnect. These long wires can be eliminated by folding

the graph onto itself along both axes of symmetry.

From the folded 2D graph, we again identify local structure that facilitates

tiling. The tiles for the 2D Cartesian torus contain four nodes and the associated

communication links. Figure 3.5 shows how these tiles, together with simple end

caps, may be assembled to produce the original 2D periodic Cartesian graph, and

scaled to larger graphs of the same topology.

The three key steps illustrated by example in this section are:

a (i) folding a graph to minimize the maximum wire length,

a (ii) identifying repetitive local structure in the folded graph, and

a (iii) defining a self-similar tiling to facilitate scaling.

The remainder of this paper extends these three steps to hexagonal interconnects

with a variety of useful periodic closures. The three-connected graphs so generated,

in which each node is connected to an odd number of nearest neighbors, lack the

symmetry required to configure an effective interconnect using unidirectional links.

As a result, each link in the remainder of this discussion is intended to represent

either a bidirectional link or a pair of unidirectional links (one in each direction).
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3 34 4

3 34 4

1 212

1 212

Figure 3.4: The idea of folding the interconnect to minimize the maximum wire
length extends directly to higher dimensions. Here, a 2D periodic Cartesian graph
(top) is folded onto itself in both directions of symmetry. Again, the longest wires
only span the distance between two nodes in the folded structure.
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Figure 3.5: A four-node tile can be extracted from the interconnect of Figure 3.4b.
This tile, combined with simple end caps, can be extended to larger intercon-
nects with the same topology. Here, we extend from 16 nodes (top) to 256 nodes
(bottom).
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In §3.3.1, we consider the interconnects that arise from periodically connecting

the hexagonal graph in the directions of the Cartesian unit vectors, much like the

graphs of Figure 3.4, to produce a toroidal class of interconnects. In §3.3.2, we

then examine the tilings that arise by periodically closing a hexagonal graph in

three directions instead of two. Finally, §3.3.3 examines a variety of methods for

wrapping a sphere with a (mostly) hexagonal graph.

3.3 Hexagonal interconnects

Hexagonal (three-connected) graphs may be used in lieu of Cartesian (four-

connected) graphs to create 2D interconnects with a significantly reduced number

of wires (and, thus, a significantly reduced cost). We now show that such graphs

can be developed with essentially no increase in the overall complexity of the

layout, and can easily be extended from toroidal closures, as discussed above, to

triply-periodic closures, and then to spherical closures.

3.3.1 Toroidal closure

The simplest method for laying out a 2D periodic hexagonal interconnect is

shown in Figure 3.6a. By making a periodic connection in the direction of one of

the Cartesian unit vectors, we make a tubular topology similar to that of a carbon

nanotube. This nanotube-like structure is then closed upon itself about its other



83

axis of symmetry, forming a torus. Like the Cartesian torus, one can modify this

closure by applying varying amounts of twist in one or both periodic directions

before closing the graph. Such twists might prove useful in future applications,

but for brevity are not considered further here.

Tiling the toroidal closure. As with the Cartesian torus, the periodic

connections in the toroidal nanotube illustrated in Figure 3.6a create long wires

that span the width of the entire graph, thus hindering scalability. To eliminate

these long wires, a folding strategy is again used to reveal local structure and

identify a tiling, as illustrated in Figure 3.6b. Unlike the Cartesian case (due

primarily to the anisotropy of the topology with respect to the closure applied), we

now define two distinct tiles, each with four nodes. However, the overall complexity

of the tiling is on par with that of the Cartesian interconnect discussed previously.

It is observed that the hexagonal tilings of the family illustrated in Figure 3.6

(with bidirectional links) have essentially the same diameter as the corresponding

Cartesian tilings with the same number of nodes. Hence, by moving to a hexagonal

interconnect, we develop a graph with the same diameter but only 3/4 of the wiring

cost/complexity.

3.3.2 Triply-periodic closure

Although we can improve upon Cartesian interconnects with hexagonal

graphs while still using a Cartesian closure strategy, as discussed above, it is more
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Figure 3.6: A 2D hexagonal grid is anisotropic about its Cartesian axes of sym-
metry. Nonetheless, periodic connections can be made in the directions of the
Cartesian unit vectors (left). This closure produces a topology called a toroidal
nanotube. By folding about the Cartesian axes, two distinct tiles can be identified
to construct the interconnect (right). This interconnect has the same diameter the
corresponding Cartesian torus with the same number of nodes, but uses 25% fewer
wires.
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natural to select a closure for the hexagonal graph that better reflects its inherent

symmetries. Towards this end, we now examine the triply-periodic closure of the

plane hexagonal graph. This study forms the foundation upon which our study

of spherical closures (§3.3.3) is based. Solutions to this problem build from two

distinct classes of hexagonal graphs on the equilateral triangle, denoted in this

work as Class A and Class B structures:

A) The Class A structures place the midpoints of the links on the edges of the

equilateral triangle, as illustrated in Figure 3.7. The degree of this structure is

defined as the number of midpoints that lie on each edge of the triangle.

B) The Class B structures place the edges of the hexagons on the edges of the

equilateral triangle, as illustrated in Figure 3.8. The degree of this structure is

defined as the number of hexagons touching each edge of the triangle.

It is straightforward to join six Class A or Class B structures, as illustrated in

Figures 3.7 and 3.8, to form a hexagon, as illustrated in Figure 3.9. The periodic

connections on this hexagon are easily applied: in the case of Class A, the wires

on opposite sides of the hexagon are connected; in the case of Class B, the nodes

on opposite sides of the hexagon are taken to be identical (in both cases, moving

orthogonal to each side of the hexagon, not diagonally through the center point).

The resulting graphs are denoted PA∗ and PB∗, where the ∗ denotes the degree

of the six Class A or Class B structures from which the triply-periodic hexagonal
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graph is built.

Tiling the triply-periodic closure. As in the previous examples, the

triply-periodic graphs of Figure 3.9 can be tiled via folding about the three axes

of symmetry and identifying the repetitive local structure of the folded graph.

This process eliminates all long wires which grow as the graph size is increased.

For Class A, the new tile so constructed, denoted Tile E in Figure 3.10, contains

six nodes instead of four, leading to the tiled PA∗ family illustrated in the first

four subfigures of Figure 3.19. For Class B, the new tile so constructed contains

18 nodes; as illustrated in the last four subfigures of Figure 3.19, and for later

convenience, we may immediately split this 18-node tile into three identical smaller

tiles, denoted Tile F in Figure 3.10. The tilings are completed with simple end

caps.

3.3.3 Spherical closure

We now discuss the most uniform techniques available to cover a sphere

with a (mostly) hexagonal grid.

Note first that each An structure of Figure 3.7 has V = n2 vertices (that

is, nodes) and E = 1.5n2 edges (that is, wires between nodes), whereas each Bn

structure of Figure 3.8 has V = 3n2 vertices and E = 4.5n2 edges. If each corner

of an An structure is joined with five other identical An structures, then each

An structure contributes effectively F = 0.5n2 faces (that is, hexagons) to the
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A1 A2 A6

Figure 3.7: Three Class A structures (that is, hexagonal graphs on the equilateral
triangle) with degree = 1, 2, and 6.

B1 B2 B4

Figure 3.8: Three Class B structures with degree = 1, 2, and 4.

PA2 PB1

Figure 3.9: The two families of triply-periodic hexagonal interconnects. The PA∗
family is built from six Class A structures and has connected edge links whereas
the PB∗ family is built from six Class B structures and has coincident edge nodes.
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E

G

F

Figure 3.10: The three fundamental tiles, denoted E, F , and G, upon which the
tilings of the triply-periodic (§3.3.2) and spherical (§3.3.3) closures of the hexagonal
interconnect are based.
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overall graph, whereas if each corner of a Bn structure is joined with five other

Bn structures, then each Bn structure contributes F = 1.5n2 faces to the overall

graph. In both cases, we have V − E + F = 0, which is characteristic of a planar

graph.

Euler’s formula V −E + F = 2 relates the numbers of vertices, edges, and

faces of any convex polyhedron. The upshot of Euler’s formula in the present

problem is that it is impossible to cover a sphere perfectly with a hexagonal grid.

By this formula, any attempt to map a hexagonal grid onto the sphere will lead to

a predictable number of “defects” (that is, faces which are not hexagons).

The three most uniform constructions available for generating a mostly hex-

agonal graph on a sphere are given by pasting a set of identical An structures of

Figure 3.7, or Bn structures of Figure 3.8, onto the triangular faces of a Tetra-

hedron, Octahedron, or Icosahedron (see Figure 3.11); these three constructions

form the basis for the remainder of this study. Note that this approach joins each

corner of the structure selected with two, three, or four other identical structures,

and leads to 4 triangular faces, 6 square faces, or 12 pentagonal faces embedded

within an otherwise hexagonal graph. The resulting graph is easily projected onto

the sphere. All graphs so constructed, of course, satisfy Euler’s formula. Some

of the graphs so constructed occur in nature as nearly spherical carbon molecules

known as Buckyballs.

Table 3.1 shows the number of nodes in these graphs as a function of their
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T O

I

Figure 3.11: The three Platonic solids with triangular faces. From left to right:
Tetrahedron (4 faces), Octahedron (8 faces), and Icosahedron (20 faces). The
faces of these polyhedra can be gridded with either Class A or Class B triangular
graphs (see Figures 3.7 and 3.8) to build tiled spherical interconnects based on the
fundamental tiles introduced in Figure 3.10.
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Table 3.1: Number of nodes in a hexagonal interconnect. For the same symmetry
and degree, the Class B topologies have three times as many nodes as Class A. Note
also that OA1 is a cube, IA1 is a dodecahedron, and IB1 is a buckminsterfullerene.

D
e
g
re

e

Symmetry and Class

Periodic Tetrahedral Octahedral Icosahedral

A B A B A B A B

1 6 18 4 12 8 24 20 60

2 24 72 16 48 32 96 80 240

3 54 162 36 108 72 216 180 540

4 96 288 64 192 128 384 320 960

...
...

...
...

...
...

...
...

...

k 6 k2 18 k2 4 k2 12 k2 8 k2 24 k2 20 k2 60 k2
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symmetry (P , T , O, or I), class (A or B), and degree (k). For each case, the

number of nodes increases with k2. For a given symmetry and degree, the Class

B graph contains three times as many nodes as the Class A graph.

For general-purpose computing on switchless multiprocessor computer sys-

tems, spherical interconnects (§3.3) are not quite as efficient as planar interconnects

(§3.2) with either toroidal closure or triply-periodic closure, as spherical intercon-

nects have slightly higher diameters for a given number of nodes. However, as

mentioned previously, spherical interconnects are poised to make a major impact

for the specific problem of solving PDEs on the sphere, which is an important class

of computational grand challenge problems central to a host of important ques-

tions related to global weather forecasting, climate prediction, and solar physics.

In fact, some of the largest purpose-built supercomputers in the world are ded-

icated to such applications, and thus it is logical to design some computational

clusters with switchless interconnects which are naturally suited to this particular

class of applications.

Some of the graphs developed here lend themselves particularly well to

efficient numerical solution of elliptical PDEs via the iterative geometric multigrid

method; Figure 3.12 illustrates six graphs that may be used for such a purpose

(OA2p for p = {0, 1, · · · , 5}). Note that the Octahedral symmetry of these grids

introduces a key property missing from the Tetrahedral and Icosahedral families of

spherical interconnects: due to the square defect regions of the Octahedral graphs,
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a red/black ordering of points is maintained over the entire graph. That is, half of

the points may be labeled as red and the other half labeled as black, with red points

having only black neighbors and black points having only red neighbors. This

ordering allows an iterative smoothing algorithm known as Red/Black Gauss Seidel

to be applied at each sub step of the multigrid algorithm and facilitates remarkable

multigrid convergence rates and efficient scaling on multiprocessor machines to very

large grids.

Although the idea of building the interconnect of a multiprocessor computer

system in the form of a hexagonal spherical graph is still in its infancy, people have

known about and used such graphs to discretize the sphere in the numerical weather

prediction community for many years; see, e.g., [5], [53], and [56]. In particular,

the model developed by the Deutscher Wetterdienst (DWD) is an example of an

operational meteorological code that implements the dual of a hexagonal graph

with icosahedral symmetry (see [45]). These previous investigations have almost

exclusively used graphs with Icosahedral symmetry, as such graphs undergo the

least deformation when being projected from the polyhedron (on which they are

built) onto the sphere (where they are applied). Minimizing such graph deforma-

tion is beneficial for improving accuracy in numerical simulations. However, as

mentioned above, our research indicates that Octahedral graphs, which admit a

valuable red/black ordering not available in Icosahedral graphs, might, on balance,

prove to be significantly better suited in many applications.
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OA1
OA2

OA4 OA8

OA16 OA32

Figure 3.12: A representative family of spherical interconnects. All six graphs are
members of the OA2p family (three of the square “defect” regions are visible in
each graph). From top-left to bottom-right the degree is 20, 21, 22, 23, 24, and 25.
The thick black lines show the logical interconnect. The light gray lines illustrate
the respective Voronoi cell for each node, indicating the region of the physical
domain that each node is responsible for in a PDE simulation on a sphere.
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Tiling the spherical closure. As illustrated in Figure 3.12, spherical

graphs are quite complicated; their practical deployment for large N would be

quite difficult without a scalable tiling strategy. Thus, in a manner analogous to

that used in §3.3.1 and §3.3.2, we now transform these graphs to discover local

patterns and identify self-similar tilings that make such constructions tractable

and scalable.

To illustrate the process, consider first the TB2 interconnect as a represen-

tative example, as depicted in Figure 3.13. Note first that we replace the “folding”

idea used in §2, §3.1, and §3.2 with a “stretching” and “grouping” strategy. The

stretching step may be visualized by imagining all links in the spherical graph un-

der consideration as elastic, then imagining the transformation that would result

from grabbing all of the nodes near one of the vertices of the polyhedron, or near

the center of one of the faces of the polyhedron, and pulling them out to the side

(while maintaining the connectivity) until the resulting stretched graph may be

laid flat. The resulting spider web-like structure is known as a Schlegel diagram.

For the TB2 Schlegel diagram in the top-right of Figure 3.13, the outer

edge of the diagram is a triangle that corresponds to the nodes near one of the

vertices of the tetrahedron of the unstretched graph, and near the center of the

diagram is a hexagon that corresponds to nodes near the middle of the opposite

face of the tetrahedron.

The next step in tiling a spherical graph is to identify repetitive structure.
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TB2

TB2 TB2

TB2
Tiling

Schlegelgraph

flowchart

Figure 3.13: In order to determine a tiling for a given spherical interconnect graph
(top-left), a Schlegel diagram (top-right) is first constructed by stretching and
flattening the graph onto the plane while maintaining the same logical connec-
tions. From this, locally similar groups of nodes can be grouped into a revealing
“flowchart” (bottom-left) that ultimately makes the tiling evident (bottom-right).
In the case of TB2 illustrated here, with the exception of the top of each column
of the flowchart, the nodes are connected identically to the PA∗ case, leading to
a tiling with the E tiles of Figure 3.10. This tiling is then completed with F tiles
from Figure 3.10 along one side, together with the appropriate end caps.
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In the Schlegel diagram of Figure 3.13, after considerable deliberation, we have

grouped the nodes in sets of six. This grouping is not unique, but it is with the

choice shown that a simple tiled structure reveals itself. In general, nodes that

are approximately the same distance from the center of the Schlegel diagram tend

to be lumped together. From the selected grouping, we can create the flowchart

shown on the lower-left of Figure 3.13. In this flowchart, all obvious hexagonal

structure is removed, but now the groups of paired nodes are brought together in

what will eventually become their tiled form. Significantly, the logical structure of

the flowchart (as well as the Schlegel diagram) is identical to the original spherical

interconnect. Note that flow from bottom to top on the flowchart corresponds to

in-to-out flow in the Schlegel diagram.

With the exception of the top set of nodes in each column of the flowchart,

the connections between the other six sets of nodes match those of the PA∗ case.

That is, the first node in each group is connected to the first node in the neighboring

groups, etc. As a result, we can use the same E tiles (see Figure 3.10) to construct

this part of the graph as were used in the PA∗ constructions. The remaining two

sets of nodes can be incorporated using the F tile used in the PB∗ constructions.

After making simple end connections, the completed tiling is shown on the bottom-

right of Figure 3.13. In this case, the overall tiling builds out to a right triangle.

For each interconnect family, we perform a similar procedure for the first

few graph degrees until a pattern emerges, first stretching/flattening the graph to
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Figure 3.14: An equivalence between a pair of E tiles and a pair of F tiles. Typi-
cally, we use the E tiles whenever possible; however, the equivalence between these
two pairings helps to unify the Class B tilings of the various different families.

Figure 3.15: For any of the OB∗ family of tilings (here, OB1 is shown), we can
replace the E tiles along the shorter diagonal using the equivalence depicted in
Figure 3.14. This allows us to identify the bifurcation axis that splits the tiling
into two smaller tilings in the TB∗ tilings of the appropriate degree.
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Figure 3.16: (top) The IBn graph may be subdivided into four smaller tilings
[two TBn and two PBn] via a series of simple switches applied to the electrical
connections between the tiles along the three diagonals shown; a similar subdivision
to four smaller tilings [two TAn and two PAn] may also be accomplished with the
IAn tiling after the transformation illustrated in Figure 3.14 is applied along the
appropriate diagonals. (bottom) The IBn tiling, for n even, may also be subdivided
a different way [to two TBn and two OA(n/2)]; a similar subdivision [to two TAn
and two OB(3n/2)] may also be accomplished with the IAn tiling, for n even,
after the transformation in Figure 3.14 is applied appropriately. Such subdivisions
are useful for running four small jobs on the cluster simultaneously.
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make a Schlegel diagram, then identifying repetitive local structure by grouping

the nodes in an in-to-out flowchart of the Schlegel diagram, and finally defining a

tiling to facilitate scaling. Though this was an involved process, by so doing, we

have discovered the simple and easily scaled families of tilings depicted in Figures

3.21 - 3.25.

Interesting and surprising correlations exist between the various simple

tilings which we have discovered. We first observe that each symmetry family

shares a common overall shape: the T ∗ ∗ family builds out to right triangles,

the O ∗ ∗ family builds out to parallelograms, and the I ∗ ∗ family builds out to

“six-sided parallelograms”.

By identifying an equivalence between a pair of E tiles and a pair of F tiles,

as depicted in Figure 3.14, we are also able to identify interfamily relationships

between the tilings as well. Applying this substitution along the shortest diagonal

of the OB∗ family, as illustrated in Figure 3.15, shows immediately how the OB∗

tiling can be built up from two tilings of the TB∗ family. Equivalently, the OA∗

family can be built from two TA∗ tilings of the appropriate degree.

Similarly, as illustrated in Figure 3.16, the I ∗ ∗ family of tilings can be

built up from two T ∗ ∗ tilings and either two P ∗ ∗ tilings or two O ∗ ∗ tilings.

Such subdivisions could be useful for running four smaller jobs on the cluster

simultaneously without reconfiguration.

We have focused in §3.3.3 on applying the triangular Class A and Class B
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TA5 TA8

TA6 TA9

TA7 TA10

Figure 3.17: The pattern for the TA∗ interconnects is not immediately apparent,
so we have included the next six tilings for clarity. Note that the longest leg has an
obtuse tile at the point and enough equilateral triangles to bring the total tile count
along that edge equal to the degree of the tiling. By allowing non-equilateral tiles
only along the edges of the tiling, the resulting tiling is unique for each degree. This
pattern will reemerge as we look at interconnects with octahedral and icosahedral
symmetry.
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Figure 3.18: The truncated tetrahedron, the only Archimedean solid with only
triangular and hexagonal sides.
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structures from Figures 3.7 and 3.8 to the triangular faces of three of the Platonic

solids (Figure 3.11). However, other constructions are also possible. For instance,

the truncated tetrahedron (Figure 3.18) has only hexagonal and triangular sides,

and thus can be covered with triangular Class A or Class B structures on its trian-

gular faces and six Class A or Class B structures (see Figure 3.9) on its hexagonal

sides. The resulting Class A graphs have 28k2 nodes, and the resulting Class B

graphs have 84k2 nodes (cf. Table 3.1). These graphs each have 12 pentagonal

faces embedded within an otherwise hexagonal graph, just like the icosahedron;

however, they are slightly less uniform and do not admit a red/black ordering of

points—it is currently unclear whether or not such alternative constructions have

any significant advantages.

3.4 Summary

The present line of research considers the topology of the interconnection

of processing elements in switchless multiprocessor computer systems. The design

of such switchless interconnects is a problem that has been considered for decades;

however, the question of scalability of such designs is of heightened importance to-

day, as modern computer systems take parallelization to new levels. Note that the

three fastest computer systems in the world today each has hundreds of thousands

of nodes, whereas typical computer clusters in academic and industrial settings are
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PA1

PA4

PA2

PA3

Figure 3.19: The first four members of the PA∗ family of interconnects; each builds
out to an equilateral triangle. Note that the PA∗ construction illustrated here is
built using E tiles (see Figure 3.10).
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PB1

PB4

PB2

PB3

Figure 3.20: The first four members of the PB∗ family of interconnects; each
builds out to an equilateral triangle. Note that the PB∗ construction illustrated
here is built using F tiles (see Figure 3.10).
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TA1
TA2

TA3

TA4

Figure 3.21: The first four members of the TA∗ family of interconnects; each builds
out to a right triangle.
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TB1

TB2

TB3

TB4

Figure 3.22: The first four members of the TB∗ family of interconnects; each builds
out to a right triangle.
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OA1

OA2

OA3

OA4

Figure 3.23: The first four members of the OA∗ family of interconnects; each builds
out to a parallelogram. This family may be constructed by connecting two TA∗
tilings along the longest leg, as described in Figure 3.15.
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OB1

OB2

OB3

OB4

Figure 3.24: The first four members of the OB∗ family of interconnects; each
builds out to a parallelogram. This family may be constructed by connecting two
TB∗ tilings along the longest leg, as described in Figure 3.15.
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IA1
IA2

IA3

IA4

Figure 3.25: The first four members of the IA∗ family of interconnects; each builds
out to a “six-sided parallelogram”. This family may be constructed by connecting
two TA∗ and two PA∗ tilings, or two TA∗ and two OB∗ tilings, as described in
Figure 3.16.
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IB1 IB2

IB3

IB4

Figure 3.26: The first four members of the IB∗ family of interconnects; each builds
out to a “six-sided parallelogram”. This family may be constructed by connecting
two TB∗ and two PB∗ tilings, or two TB∗ and two OA∗ tilings, as described in
Figure 3.16.
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today growing from thousands to tens of thousands of nodes. It is for this rea-

son that, we believe, a revisiting of the topology used in switchless multiprocessor

computer systems is in order, and special-purpose topologies for clusters built for

special-purpose applications, such as global weather forecasting, are warranted.

The present paper focused on the optimal ways to cover a sphere with a

fine hexagonal grid. Euler’s formula leads to a predictable number of “defects”

(non-hexagons) within the otherwise hexagonal grid; the three choices that may

be developed with maximal uniformly incorporate 4 triangles (distributed at the

corners of a Tetrahedron), 8 squares (distributed at the corners of an Octahedron),

or 12 pentagons (distributed at the corners of an Icosahedron) into the otherwise

hexagonal grid. The present work systematically examined all three of these cases

(denoted T ∗∗, O∗∗, and I ∗∗), and discovered two convenient families of tilings for

each case (denoted ∗A∗ and ∗B∗). These tilings are repetitive structures, which

greatly eases their scaling to large cluster sizes (∗ ∗ n for n ≫ 1), and contain

no long wires, thereby facilitating fast link speeds and reduced cluster cost and

complexity even as the cluster size scales to hundreds of thousands of nodes.

In the resulting switchless interconnect designs, the physical proximity of

the cells created (in the PDE discretization on the sphere) and the logical prox-

imity of the nodes to which these cells are assigned (in the computational cluster)

coincide perfectly, so all communication between physically adjacent cells during

the PDE simulation require communication over just a single hop in the compu-
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tational cluster. Such an interconnect should provide near-perfect scaling with

cluster size in operational problems; that is, refining the overall grid by a factor

of n while also increasing the overall cluster size by a factor of n will result in an

essentially unchanged execution speed. Such scaling is the holy grail of parallel

computing, and is enabled in the present case by the careful design of a computa-

tional interconnect topology that is well matched to the physical problem to which

the computational cluster is dedicated.
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Chapter 4

Three Classes of Directed Graphs

Joseph Cessna and Thomas Bewley

Abstract. With directed graph topologies, such as those used in FPGA

applications, two competing design constraints are the ability to spread information

across the graph in a global sense versus the requirement to have path redundancy

and local (nearest neighbor) communication. For information spread, the general

class of butterfly graphs are used because they optimally connect each node to

every other node in a minimal manner. As a consequence, butterfly graphs lack

any path diversity or sense of locality without the addition of subsequent stages. In

the other extreme, cartesian-based graphs contain much local structure and high

path redundancy. However, they do this by relinquishing the ability to quickly

114
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communicate across the graph. This paper attempts to generalize these two classes

of directed graphs into a unified theory in which the cartesian and butterfly graphs

are special cases of a more general class of interconnect that better spans the design

parameter space. We seek not to suggest a correct solution, but rather provide

useful trade-offs between the desired properties that will necessarily vary from

application to application.
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4.1 Background & Terminology

Regular directed graphs consist of a set of nodes containing an equal number

of emanating and terminating directed links. These type of graphs are useful

for general information theory, and, more specifically for field-programmable gate

array (FPGA) applications. In FPGAs, a large amount of parallel information is

fed through the graph, one stage at a time, to efficiently solve a global problem.

A better understanding of the design trade-offs of these graphs with respect to

information spread and path redundancy could help lead to more efficient, problem-

specific designs.

The directional graphs we will consider are derived from more general

(n+1)-dimensional topologies that contain a flow direction x0, along which we can

locate discrete sets of nodes lying in the sequence of orthogonal n-dimensional hy-

perplanes. We think of information flowing forward, along this direction, passing,

in turn, through each orthogonal hyperplane (or stage) of the graph. For finite

graphs, each stage contains the same number of nodes. We can then define the

total cardinality of the graph as ( N0×N1 × · · · ×Nn ), where N0 is the number of

stages in the graph, M = ( N1 × · · · ×Nn ) is the number of nodes in each stage,

and Nk is the kth cardinality (i.e. the number of nodes in the kth dimension of each

stage). Thus, the size (total number of nodes) of the graph is N0 ×M .

Necessarily, a node in a given stage must only connect to nodes in the
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Figure 4.1: Two traditional directed graphs are shown; information is assumed
to flow from left to right. The 2D cartesian graph (top, 8 × 8) and the 2-ary
4-fly (bottom, 4 × 2 × 2 × 2) represent the opposite extremes with regards to
performance characteristics. The cartesian graph contains exclusively local links,
and consequently has a lot of path diversity. In contrast, the butterfly graph
spreads information across the nodes much more efficiently, but lacks any sense of
locality from stage to stage and contains no path diversity.
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immediately preceding and following stages; it may not connect to any nodes in its

same stage. The connection between stages is governed by the overall topology of

the graph and will vary from stage to stage in a repeating pattern. The number of

distinct connections between stages is a function of the dimension n of the stages

themselves. For the directed graphs of interest, a node will connect to exactly s

nodes in both the forward and backward direction. Thus, s defines the degree of

the graph. For this paper, we will focus exclusively on directed graphs of degree

s = 2 and s = 3.

A node in a given stage connects to its s forward neighbors along a channel.

Two nodes are said to be connected if there exists an ordered set of channels in

the flow direction only (i.e. a path) that connects a node in one stage to another

node in a subsequent stage. It is important to note that paths only move in the

flow direction. Redundant paths occur when two nodes can be connected by more

than one unique path. These redundant paths are important because they decrease

bottlenecks in the graph and thus increase the graph’s overall robustness. A graph

with many redundant paths is usually efficient at performing local data operations

such as simple comparisons or additions.

On the other hand, an increase in path redundancy necessarily is associated

with a decrease in the spread of a graph. The spread is a measure of how quickly

information from one node reaches the other nodes in subsequent stages. Saturation

occurs when the information from one node spreads to every node in a future stage.
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Figure 4.2: The generalized degree-2 directed graph. Each stage is n-dimensional,
and the total cardinality is (N0 ×N1 × · · · ×Nn). When n = 1 this graph reduces
to the 2D cartesian graph and when Nk = 2, ∀k > 0, this graph reduces to the
well-known 2-ary butterfly. The full connectivity is defined recursively in Figure
4.3.
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Figure 4.3: The generalized degree-2 directed graph is best graphically defined
recursively through the combination of the two basic building blocks shown above.
At the lowest level, these building blocks reduce to a single node.
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Figure 4.4: The generalized degree-3 directed graph. Each stage is n-dimensional,
and the total cardinality is (N0 × N1 × · · · × Nn). When Nk = 3, ∀k > 0, this
graph reduces to the well-known 3-ary butterfly. The full connectivity is defined
recursively in Figure 4.5.
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Figure 4.5: The generalized degree-3 directed graph is best graphically defined
recursively through the combination of the two basic building blocks shown above.
At the lowest level, these building blocks reduce to a single node.
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The saturation length is the number of traversed stages required until saturation

is achieved. A graph with a low saturation length has a high communication rate

across all nodes and thus can efficiently perform global data operations such as

data transposes.

4.2 General Classes

A 2D cartesian graph (see top of Figure 4.1) has nodal degree s = 2 and

contains N0 = q stages with dimension n = 1. The total cardinality of the graph

is ( q × p ), there are M = p nodes per stage, and the size of the graph is q p.

The cartesian graph has a high saturation length of q − 1 when compared to a

comparable butterfly graph due to the high number of redundant paths. These

paths are a byproduct of the local nature of the cartesian interconnect.

In contrast, a traditional p-ary q-fly butterfly graph[16] (see bottom of

Figure 4.1) has nodal degree s = p and contains N0 = q stages with dimension

n = q−1. The total cardinality of the graph is ( q×p×· · ·×p ), there are M = p q−1

nodes per stage, each flow normal cardinality is equal to the nodal degree Nk = p,

and the size of the graph is qM . As a result, it can be shown that the butterfly

graph provides the minimum saturation length of any graph with stage size p q−1.

However, each node has only one unique path to the nodes of the saturated stage

and thus lacks any path diversity (and consequently local nature).
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Figure 4.6: The generalized degree-3 double-twist directed graph. Each stage is
n-dimensional (for n even), and the total cardinality is (N0 × N1 × · · · × Nn).
When n = 2 this graph reduces to the well-known 3D cartesian graph. The full
connectivity is defined recursively in Figure 4.7
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Figure 4.7: The generalized degree-3 double-twist directed graph is best graphically
defined recursively through the combination of the two basic building blocks shown
above. For one of the building blocks, the definition varies at the odd and even
levels. At the lowest level, though, these building blocks still reduce to the basic
node.
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To achieve the minimal saturation length, the traditional degree-2 butterfly

graph places many unnecessary restrictions on the parameters of the graph (e.g.

the dimension of each stage, the cardinality of each dimension). While keeping

the nodal degree, overall size, and number of stages of the graph constant, we can

relax the constraints on the dimension and allow freedom to pick each dimension’s

cardinality individually, subject to

n∏

k=1

Nk = M. (4.1)

This allows us to define an entire family of degree-2 graphs that include on one

extreme the butterfly graph and on the other the simple 2D cartesian graph. This

family is illustrated in Figures 4.2 and 4.3. As one might expect, the choices of both

dimension and cardinality have a direct effect on the local versus global nature of

the resulting graph, and therefore allow for much design flexibility.

In a similar manner, the degree-3 butterfly graph can be generalized by also

removing the dimensionality and cardinality constraints, subject to the overall size

constraint of (4.1). This produces another family of directed graphs that span the

range from entirely local to fully global connectivity. However, unlike the degree-2

case, this family does not reduce to 3D cartesian, as one might expect. This family

of directed graphs is shown in Figures 4.4 and 4.5.

In both the generalized degree-2 and degree-3 classes, the connectivity be-

tween stages can be thought of as spanning only one dimension at a time, in turn

cycling through each dimension. Thus, the connectivity pattern repeats itself every
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n stages. An interesting third class of directed graphs can be found by allowing the

channels between adjacent stages to span two dimensions at a time. This requires

a degree-3 node and an even number of dimensions in the graph’s stages. With

this design, the interconnect pattern repeats itself every n/2 stages. As a result,

we are able to obtain more local path redundancy with higher-dimensional stages

that in turn lead to shorter saturation lengths. This family of graphs is illustrated

in Figures 4.6, 4.7 and 4.8. As it turns out, for n = 2 this family of graphs reduces

to the well known 3D cartesian topology.

4.3 Discussion & Summary

The properties of the three families of graphs are summarized in Table 4.1.

For a given graph, we look at the spread of information, starting from a single

node and flowing forward through the graph. To separate the issue of periodic

connections, an infinite cardinality was assumed during the calculations. In gen-

eral, adding the necessary constraint of finite cardinality will increase overall path

redundancy at the cost of reducing the expected spread shown in the table. The

finite cardinality is addressed further in Figure 4.9. The shaded cells highlight

the areas of optimal spread in each graph; in these regions, the information is

spreading to the maximum number of nodes possible. As a result, there is no path

redundancy. The unshaded cells illustrate where each graph diverges from the
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Figure 4.8: The weave in the (k + 1)th dimension is combined with an additional
weave in the kth dimension as defined above. This shortens the repetitive intercon-
nect pattern between stages and allows for more path diversity while maintaining
a sufficient global spread.

Figure 4.9: The signal propagation through a directed graph with the A+
5 topology.

The illustrated graph has a total cardinality of ( 12× 4× 4× 4× 4 ), thus each of
the 12 stages of the graph contain M = 256 nodes with periodic connections across
each of the flow normal dimensions. Here, a signal is injected into the upper-left
corner and travels down through the graph. The shaded blocks represent the gates
that are reached by the signal at each subsequent stage. In this example, the
original signal saturates all 256 gates at the 12th stage. This illustrates how the
periodic connections associated with finite cardinality serve to further reduce the
predicted spread of Table 4.1 by increasing path redundancy.
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Table 4.1: Optimal information spread for select directed graphs.

Directed Graph n Gates Reached at Each Stage (N1 = N2 = · · · = Nn =∞) g10 g20

G
en

er
al

iz
ed

d
eg

re
e-

2

Z2, V
90
2 1 2 3 4 5 6 7 8 9 10 11 66 231

A+
3 , V

90
3 2 2 4 6 9 12 16 20 25 30 36 161 946

V
90
4 3 2 4 8 12 18 27 36 48 64 80 300 2,800

V
90
5 4 2 4 8 16 24 36 54 81 108 144 478 6,797

V
90
6 5 2 4 8 16 32 48 72 108 162 243 696 14,325

V
90
7 6 2 4 8 16 32 64 96 144 216 324 907 27,110

V
90
8 7 2 4 8 16 32 64 128 192 288 432 1,167 46,836

V
90
9 8 2 4 8 16 32 64 128 256 384 576 1,471 76,126

V
90
10 9 2 4 8 16 32 64 128 256 512 768 1,791 119,772

V
90
11 10 2 4 8 16 32 64 128 256 512 1,024 2,047 176,122

G
en

er
al

iz
ed

d
eg

re
e-

3

W
90
2 1 3 5 7 9 11 13 15 17 19 21 121 441

W
90
3 2 3 9 15 25 35 49 63 81 99 121 501 3,301

W
90
4 3 3 9 27 45 75 125 175 245 343 441 1,489 17,185

W
90
5 4 3 9 27 81 135 225 375 625 875 1,225 3,581 70,857

W
90
6 5 3 9 27 81 243 405 675 1,125 1,875 3,125 7,569 245,545

W
90
7 6 3 9 27 81 243 729 1,215 2,025 3,375 5,625 13,333 741,161

W
90
8 7 3 9 27 81 243 729 2,187 3,645 6,075 10,125 23,125 1,978,545

W
90
9 8 3 9 27 81 243 729 2,187 6,561 10,935 18,225 39,001 4,855,001

W
90
10 9 3 9 27 81 243 729 2,187 6,561 19,683 32,805 62,329 ∼ 1.1× 107

W
90
11 10 3 9 27 81 243 729 2,187 6,561 19,683 59,049 88,573 ∼ 2.5× 107

s 3

Z3 2 3 6 10 15 21 28 36 45 55 66 286 1,771

A+
5 4 3 9 18 36 60 100 150 225 315 441 1,358 22,165
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standard butterfly graph, introducing more locality and robustness to the graph

at the expense of overall global spread. The final two columns of the table show

the total number of nodes reached in stages 0–10 and 0–20, respectively. These

numbers give a measure of the short versus long range spread of each particular

graph; the difference between these two spreads is highlighted when comparing

the W
90
4 graph to the A+

5 topology. Across the board, through the first ten stages,

the W
90
4 graph reaches more nodes, giving it a larger short range spread. Thus,

the A+
5 graph contains more local structure and more path redundancy over this

range. However, comparing g20 for each graph, one can see that past ten stages,

the spread of A+
5 quickly outpaces W

90
4 . This means that the third family in some

sense has the best of both worlds: a relatively high local path redundancy followed

by a large long-range spread. While this may seem obviously superior, there still

is no perfect graph. Rather, one must understand the needs of a particular appli-

cation and select a topology appropriately. This research attempts simply to unify

some of the existing design decision and to provide intermediate alternatives.
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Appendix A

Mixed Discrete/Continuous

Adjoint Derivation

The full derivation of the gradient ∇J(u) is included here due to the un-

usual setting considered (that is, of a continuous-time system with discrete-time

measurements). Perturbing the nonlinear model equations (1.1a) and linearizing

about x̃(t) gives:

dx̃′(t)

dt
= A

(
x̃(t)

)
x̃′(t) with x̃′

−K
= u′ (A.1)

⇒ L x̃′ = 0 where L =
d

dt
−A

(
x̃(t)

)
. (A.2)

Similarly, the perturbed cost function is:

J ′(u′) =(u− x̄
0|0

)T P−1
0|0

u′ −
K∑

k=1

(yk −Hx̃k)
T R−1 Hx̃′

k. (A.3)
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The perturbed cost function (A.3) is not quite in the form necessary to extract

the gradient, as illustrated in (1.14). However, there is an implicitly-defined linear

relationship between u′ and x̃′(t) on t ∈ ( 0, T ] given by (A.1). To re-express this

relationship, a set of K adjoint functions r(k)(t) are defined over the measurement

intervals such that, for all k ∈ [ 1 , K ], the adjoint function r(k)(t) is defined on

the closed interval t ∈
[
t

k−1
, t

k

]
. These adjoint functions will be used to identify

the gradient. Towards this end, a suitable duality pairing is defined here as:

〈 r(k) , x̃′ 〉 =

∫ t
k

t
k−1

(r(k))T x̃′ dt. (A.4)

Then, the necessary adjoint identity is given by

〈 r(k) , L x̃′ 〉 = 〈 L∗ r(k) , x̃′ 〉+ b(k). (A.5a)

Using the definition of the operator L given by (A.2) and the appropriate integra-

tion by parts, it is easily shown that

L∗ r(k) = −dr(k)(t)

dt
− A

(
x̃(t)

)T
r(k)(t), (A.5b)

b(k) = (r(k)
k

)T x̃′
k
− (r(k)

k−1
)T x̃′

k−1
. (A.5c)

Returning to the perturbed cost function, (A.3) can be rewritten as:

J ′(u′) =(u− x̄
0|0

)T P−1
0|0

u′ −
K−1∑

k=1

(yk −H x̃k )T R−1 H x̃′
k − J ′

K
, (A.6a)

J ′
K

=
[
HT R−1 (y

K
−H x̃

K
)
]T

x̃′
K
. (A.6b)
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Looking at the adjoint defined over the last interval, r(K)(t), the following criteria

is enforced:

L∗ r(K) = 0 ⇒ 〈 L∗ r(K) , x̃′ 〉 = 0, (A.7a)

r(K)
K

= HTR−1 (y
K
−H x̃

K
). (A.7b)

Substituting (A.2) and (A.7a) into (A.5a) for k = K gives:

b(K) = 0

⇒ (r(K)
K

)T x̃′
K
− (r(K)

K−1
)T x̃′

K−1
= 0,

⇒
[
HT R−1 (y

K
−H x̃

K
)
]T

x̃′
K

= (r(K)
K−1

)T x̃′
K−1

, (A.8)

which allows us to re-express J ′
K

in (A.6b) as

J ′
K

= (r(K)
K−1

)T x̃′
K−1

. (A.9)

Note that (A.7a) and (A.7b) give the full evolution equation and terminal condition

for the adjoint r(K) defined on the interval t ∈ [ t
K−1

, t
K

]. Hence, a backward march

over this interval will lead to the term r(K)
K−1

contained in (A.9).

The perturbed cost function (A.6a) can now be rewritten such that

J ′(u′) =(u− x̄
0|0

)T P−1
0|0

u′ −
K−2∑

k=1

(yk −H x̃k )T R−1 H x̃′
k − J ′

K−1
, (A.10a)

⇒ J ′
K−1

=
[
HT R−1 (y

K−1
−H x̃

K−1
) + r(K)

K−1

]T
x̃′

K−1
. (A.10b)

Enforcing the following conditions [cf. (A.7)] for the adjoint on this interval,
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r(K−1)(t),

L∗ r(K−1) = 0, (A.11a)

r(K−1)
K−1

= HT R−1 (y
K−1
−H x̃

K−1
) + r(K)

K−1
, (A.11b)

it can be shown via a derivation similar to (A.8) that

J ′
K−1

= (r(K−1)
K−2

)T x̃′
K−2

, (A.12)

which is of identical form as (A.9). Thus, it follows that each of the adjoints can be

defined in such a way as to collapse the sum in the perturbed cost function (A.3)

as above, until the last adjoint equation r(1) reduces the perturbed cost function

to the following:

J ′(u′) =(u− x̄
0|0

)T P−1
0|0

u′ − (r(1)
0

)T x̃′
0

(A.13)
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with the adjoints over the K intervals being defined as:

dr(K)(t)

dt
= −A

(
x̃(t)

)T
r(K)(t), where

r(K)
K

= 0 + HT R−1 (y
K
−H x̃

K
),

dr(K−1)(t)

dt
= −A

(
x̃(t)

)T
r(K−1)(t), where

r(K−1)
K−1

= r(K)
K−1

+ HT R−1 (y
K−1
−H x̃

K−1
),

...

dr(1)(t)

dt
= −A

(
x̃(t)

)T
r(1)(t), where

r(1)
1

= r(2)
1

+ HT R−1 (y
1
−H x̃

1
). (A.14)

Upon further examination, the system of adjoints (A.14) all have the same form.

Each backward-marching adjoint variable r(k) is endowed with a terminal condition

that is the initial condition of the previous adjoint march r(k+1) plus a correction

due to the discrete measurement y
k

at the measurement time t
k
. Thus, the total

adjoint march can be thought of as one continuous-time march of a single adjoint

variable r(t) backward over the window [ t
0
, t

K
], with discrete “jumps” in r at each

measurement time tk. That is, (A.14) can be rewritten as:

dr(t)

dt
= −A

(
x̃(t)

)T
r(t), (A.15a)

which is marched backward over the entire interval t ∈ [ t
0
, t

K
] with r

K
= 0. At
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the measurement times (tk for k ∈M) the adjoint is updated such that

rk ← rk + HT R−1 (yk −H x̃k ). (A.15b)

Then, this definition of the adjoint can be substituted into (A.13) to give:

J ′(u′) = (u− x̄
0|0

)T P−1
0|0

u′ − rT
0

x̃′
0
, (A.16)

⇒ J ′(u′) =

[
P−1

0|0
(u− x̄

0|0
)− r

0

]T

u′, (A.17)

where (A.17) is found by noting that x̃′
−K

= u′. Then finally, from (1.14) and

(A.17), the gradient sought may be written as:

∇J(u) = P−1
0|0

(u− x̄
0|0

)− r
0
. (A.18)

The resulting gradient1 can then be used iteratively to update the current esti-

mate via a suitable minimization algorithm (steepest descent, conjugate gradient,

limited-memory BFGS, etc.).

1Omitted in this gradient derivation is the substantial flexibility in the choice of the gradient
definition (1.14) and the duality pairing (A.4). There is freedom in the choice of these inner
products (e.g. by incorporating derivative and/or integral operators as well as weighting factors)
that can serve to better precondition the optimization problem at hand without affecting its
minimum points. This ability to precondition the adjoint problem is discussed at length in [49].
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