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Highlights: 20 

� Leaf C:N ratio decreased in southern China, but increased in western and northern China 21 

in the past 5 decades. 22 

� N deposition was a dominant factor driving C:N ratio change in most areas, while 23 

elevated CO2 dominated in low N deposition area. 24 

� Leaf C:N ratio shifts were more strongly constrained by N availability than by climate. 25 

 26 

Keywords: leaf C:N ratio, data-driven modelling, process-based modelling, nitrogen deposition 27 

  28 
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Abstract 29 

Climate change, elevating atmosphere CO2 (eCO2) and increased nitrogen deposition 30 

(iNDEP) are altering the biogeochemical interactions between plants, microbes and soils, which 31 

further modify plant leaf carbon-nitrogen (C:N) stoichiometry and their carbon assimilation 32 

capability. Many field experiments have observed large sensitivity of leaf C:N ratio to eCO2 and 33 

iNDEP. However, the large-scale pattern of this sensitivity is still unclear, because eCO2 and 34 

iNDEP drive leaf C:N ratio toward opposite directions, which are further compounded by the 35 

complex processes of nitrogen acquisition and plant-and-microbial nitrogen competition. Here, 36 

we attempt to map the leaf C:N ratio spatial variation in the past 5 decades in China with a 37 

combination of data-driven model and process-based modeling. These two approaches showed 38 

consistent results. Over different regions, we found that leaf C:N ratio had significant but uneven 39 

changes between 2 time periods (1960-1989 and 1990-2015): a 5% ± 8% increase for temperate 40 

grasslands in northern China, a 3% ± 6% increase for boreal grasslands in western China, and by 41 

contrast, a 7% ± 6% decrease for temperate forests in southern China, and a 3% ± 5% decrease 42 

for boreal forests in northeastern China. Additionally, the structural equation models indicated 43 

that the leaf C:N change was sensitive to ΔNDEP, ΔCO2 and ΔMAT rather than ΔMAP and 44 

ecosystem types. Process-based modeling suggested that iNDEP was the main source of soil 45 

mineral nitrogen change, dominating leaf C:N ratio change in most areas in China, while eCO2 46 

led to leaf C:N ratio increase in low iNDEP area. This study also indicates that the long-term leaf 47 

C:N ratio acclimation was dominated by climate constraint, especially temperature, but was 48 

constrained by soil N availability over decade scale. 49 

 50 

 51 
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1 Introduction 52 

 Leaf stoichiometry examines the relationships between organism structure and function 53 

(Sardans et al., 2012; Sterner and Elser, 2002). Leaf C:N ratio can be associated with important 54 

ecological processes such as litter decomposition (d’Annunzio et al., 2008), the ability to adapt 55 

to environmental stresses (Hessen et al., 2004; Woods et al., 2003), and enzymes activities of the 56 

plant photosynthesis (Evans, 1989; Evans and Poorter, 2001). Lower leaf nitrogen status (higher 57 

C:N ratio) increases non-stomatal limitations on photosynthesis through the impairment of 58 

carboxylation capacity, photochemical efficiency, and osmotic protection (Wright et al., 2005). 59 

In contrast, higher foliar N concentration (lower C:N ratio) may be associated with larger C-60 

assimilation and growth-rate capacities (Sterner and Elser, 2002). Given the tight connection 61 

between leaf C:N ratio and productivity at the canopy scale (Reich, 2012), leaf C:N ratio is an 62 

important parameter in terrestrial ecosystem model and plays a vital role in carbon sequestration 63 

projection (Caldararu et al., 2020; Ghimire et al., 2016; Meyerholt and Zaehle, 2015). 64 

Leaf C:N ratios are driven by variation in plant physiology, soil biogeochemistry, and 65 

plant community composition (Reich and Oleksyn, 2004). In the past 50 years, climate change 66 

(CLIM), elevating atmosphere CO2 (eCO2) and increased nitrogen deposition (iNDEP) were 67 

likely to have changed the biogeochemical interactions between plants, microbes and soil, which 68 

further modified plant leaf C:N ratio and their carbon assimilation capability. There are mainly 69 

two hypothesizes predicting ecosystem level leaf C:N ratio acclimation under environment 70 

change: (a) the climate envelope theory, and (b) the theory of trade-off between resources 71 

acquisition and conservation. The climate envelope theory assumes that local environment 72 

constrains the species trait range, thus environmental change is likely to filter out inappropriate 73 

species or trait range, resulting in plant trait being environment selected (Atkin et al., 2015; 74 
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Hijmans and Graham, 2006; Kattge and Knorr, 2007; Wright et al., 2005). For example, low leaf 75 

C:N ratio means an adaptation that enhances metabolic activity and growth rates under the low 76 

temperatures. Within species, populations from colder habitats often have greater leaf N (lower 77 

C:N ratio) (Reich and Oleksyn, 2004; Weih and Karlsson, 2001; Woods et al., 2003). So, it is 78 

likely that the ecosystem level leaf C:N ratio would increase under climate warming, and there 79 

would be similar sensitivities of leaf C:N ratio change in both spatial and temporal variation to 80 

environment factors. 81 

On the other hand, the theory of trade-off between resources acquisition and conservation 82 

assumes that plants will adjust relevant traits to optimize the balance between resources uptake 83 

and the cost of acquisition (Kong et al., 2014; Reich, 2014). Leaf N concentration typically 84 

reflect soil N availability (Vitousek et al., 1995), and more soil N means less cost of acquisition 85 

for plants to hold more N. This hypothesis is partly supported by short-term experiments. 86 

Warming experiments could increase leaf N concentration, which is linked to increases in N 87 

mineralization, cycling rates and availability due to enhanced soil microbial activity (Bai et al., 88 

2013). In CO2 enrichment experiments, decreasing leaf N concentration and therefore lower 89 

photosynthesis capacity were observed, especially in nitrogen limited environment (Ainsworth 90 

and Long, 2005; Crous et al., 2010; Ellsworth et al., 2004). By contrast, nitrogen fertilization is 91 

likely to restore leaf N concentration and to stimulate photosynthesis (Liu et al., 2011; McCarthy 92 

et al., 2006; Norby et al., 2003; Palmroth et al., 2006; Sigurdsson et al., 2013). Additionally, 93 

several global meta-analysis studies found that leaf C:N ratio shows a strong positive correlation 94 

to eCO2 and a negative correlation to nitrogen addition for nearly any species in any locations in 95 

the world (Du et al., 2019; Huang et al., 2015; Li et al., 2013; Yang et al., 2011; Yue et al., 96 

2017). Hence, climate warming tends to increase leaf N concentration (decrease leaf C:N ratio) 97 
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by accelerating the decomposition and mineralization of soil organic matter, which increases the 98 

availability of soil N. Meanwhile, eCO2 could enhance plant C acquisition but increase the 99 

burden of N uptake, leading a higher leaf C:N ratio. Human induced N addition (iNDEP) could 100 

also decrease the leaf C:N ratio by increasing soil N availability. Therefore, the trade-off theory 101 

implies the possibility that environment factors sensitivities of leaf C:N ratio change in spatial 102 

and temporal scales could be different. 103 

Despite its significance in understanding ecosystem dynamics, the large-scale pattern of 104 

long-term leaf C:N stoichiometry change under environment changes and its sensitivity to 105 

diverse environmental factors under natural conditions are still unclear. This uncertainty emerges 106 

from several reasons. First, as mentioned above, the mechanisms and processes related to leaf 107 

C:N ratio variation are complicated. Different hypotheses lead to opposite results. Second, the 108 

combined effects of environmental factors are difficult to predict. For instance, the opposite 109 

impacts of eCO2 and iNDEP may offset the final direction of change in leaf C:N stoichiometry, 110 

making the compound response to combined influences of climate, eCO2 and iNDEP weak and 111 

unclear (Yue et al., 2017). Third, synthesis are often based on small spatial scale short-term 112 

experiments, which seem to overestimate the response of long-term plant acclimation at larger 113 

spatial scales (Leuzinger et al., 2011).  114 

Among the limited number of in-situ field studies, their observations were inconsistent. 115 

Natural plants in China experienced nearly 30% increasing of leaf N concentration between 116 

1980s and 2010s (Liu et al., 2013). By contrast, in Russia and Western Europe, leaf N 117 

concentration had an 8% decrease (Jonard et al., 2015; Soudzilovskaia et al., 2013), and in 118 

America about 20% decrease in the similar time period (McLauchlan et al., 2010). Nonetheless, 119 

in recent years, thanks to efforts of the whole plant science community, more plant stoichiometry 120 
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trait data become available, which include the TRY database (https://www.try-121 

db.org/TryWeb/Home.php) (Kattge et al., 2011). This in conjunction with non-linear regression 122 

tools development for large-scale plant trait mapping (Butler et al., 2017; Moreno-Martinez et 123 

al., 2018) makes it possible to use data-driven methods to establish a large-scale map of leaf 124 

stoichiometry change, which would help us to understand the inconsistency in different plot scale 125 

studies under complex environment conditions, to discover the dominant environment factor of 126 

leaf C:N stoichiometry, and to test theories and hypotheses related to  leaf C:N stoichiometry 127 

change. On the other hand, given the observed large sensitivity of leaf C:N ratio to environment 128 

change, more and more land surface models (LSM) are replacing the fixed stoichiometry plant 129 

formulation with a flexible CN ratio capability to improve the estimates of gross primary 130 

productivity (GPP) or net primary productivity (NPP) (Caldararu et al., 2020; Ghimire et al., 131 

2016; Meyerholt and Zaehle, 2015). This advance in process-based modeling provides another 132 

tool to predict long-term leaf C:N ratio change at the large spatial scale under environment 133 

changes. Moreover, the sensitivity experiments by numerical model can also be used to test 134 

hypotheses related to leaf C:N ratio change. 135 

In this study, we employ both data-driven modeling and process-based modeling to map the 136 

large-scale leaf C:N ratio change and analyze their sensitivities to environmental factors. We 137 

selected China as the study region, given its NDEP experienced the largest increase in the world 138 

in the past thirty years (Liu et al., 2013) and uneven distribution in different regions, e.g., a 0.5 139 

gN m-2 yr-1 NDEP in Tibetan Plateau vs 5 gN m-2 yr-1 NDEP in eastern China (Fig S1). 140 

Moreover, the leaf trait data in China have covered a good spatial and temporal distribution (Fig 141 

S2).  142 

Our study was guided by the following questions: 143 
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1) What is the spatiotemporal pattern of leaf C:N ratio change in the past 50 years in 144 

China? Does it have large differences in different regions or for different plant 145 

functional types (PFT)? 146 

2) What was the most sensitive environment factor for leaf C:N ratio change in China, 147 

climate change, eCO2 or iNDEP? Were leaf C:N ratio change determined by climate 148 

envelope or determined by the balance between soil nitrogen supply and plant demand?   149 

3) Does process-based modelling agree with data-driven modeling in inferred leaf C:N 150 

pattern and changes? And how well does the hypothesis in the process-based model 151 

work? What is its implication to carbon cycling modelling?  152 

2 Material and Methods 153 

           In this study, we focus on the spatiotemporal variation of the ecosystem level leaf C:N 154 

ratio in China. We firstly collected in-situ plant traits data, and then used two methods to derive a 155 

spatiotemporal conterminous leaf C:N ratio map: (1) random forest based up-scaling of in-situ 156 

trait measurements, and (2) large scale process-based modeling using the Community Land 157 

Model version 5.0 (Lawrence et al., 2019). 158 

2.1 In-situ plant traits data collection and data gap-filling 159 

     The in-situ plant trait database in this study include two variables: leaf carbon 160 

concentration (LCC in mgC g-1) and leaf nitrogen concentration (LNC in mgN g-1). These traits 161 

data consist of two parts: one is obtained from the TRY database, and the other is collected from 162 

the literature using ISI Web of Knowledge, Google scholar and CNKI website. Overall, we 163 

collected 28406 records worldwide, where 24529 records were contributed from the TRY 164 

database (2978 plots in China), and the other 3931 records (all in China) were collected from the 165 
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literature. The detail of literature sources and plot location distribution are in Table S1 and 166 

Figure S2, respectively. 167 

To improve the data consistency through pre-processing, we eliminated unreasonable 168 

data and then gap-filled using the method from Moreno-Martinez et al., (2018) (see Appendix 1). 169 

Moreover, to explore the leaf trait temporal variation, we made two vital assumptions: 1) if there 170 

is not any temporal information in the original datasets, the measurement time of the plot was 171 

assigned as 2 years before publication time, following the method in Liu et al., (2013); and 2) the 172 

LNC and LCC trait measurement, mainly sampling fully expanded and hardened leaves 173 

(presumably photosynthetically more productive) from adult plants (Cornelissen et al., 2003), 174 

were representative of the decadal homeostatic status. The second assumption also helps to 175 

reduce the bias resulting from uncertainty in determining the sampling time. 176 

In the gap filling process, we used the python based random forest implementation 177 

sklearn.ensemble.RandomForestRegressor (https://scikit-178 

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html?highlight=ra179 

ndom%20forest#sklearn.ensemble.RandomForestRegressor) (Pedregosa et al., 2011) and 180 

segmented the predictors into 4 categories: taxonomic hierarchies, plant structure, multiple 181 

annual mean environment factors (representing long-term steady climate), and their decadal 182 

variance (representing temporal climate change) (See Table S2).  183 

For climate input data, we chose the monthly 0.5x0.5 degree CRU TS 4.02 global climate 184 

dataset for the period of 1950-2015 (https://crudata.uea.ac.uk/cru/data/hrg/) (Harris et al., 2014). 185 

The monthly cloudiness, frost day, potential evaporation, precipitation, diurnal temperature 186 

range, mean air temperature were acquired from the datasets. A yearly 0.9x1.25 degree global 187 

nitrogen deposition (NDEP) dataset produced by atmospheric chemical transport model was 188 



Confidential manuscript submitted to Science of the Total Environment 

 10

acquired from University Corporation for Atmospheric Research (NCAR) for the period of 1960-189 

2015, regrided to 0.25x0.25 degree, and then corrected using site observation from Lü and Tian 190 

(2007). The NDEP spatiotemporal pattern in China from the corrected dataset is consistent with 191 

other observation studies (See Fig. S1, Zhu et al. (2015) and Yu et al. (2019)). The global spatial 192 

average CO2 concentration time serial was acquired from NCAR for the period of 1960-2015. 193 

R2 score was used to evaluate the performance of the gap-filling processes. Fig. S3 194 

showed the performance in gap-filling with a high R2 both in training process (0.68 for LNC and 195 

LCC) and in validation process (0.62 for LNC and 0.64 for LCC). 196 

2.2 Random forest up-scaling of in-situ measurements of plant traits  197 

After data pre-processing, we up-scaled the in-situ measurement to the 0.25-degree grid 198 

according to the major PFT information for a given grid, and then interpolated the results to 199 

other grids using the random forest algorithm, following Moreno-Martinez et al., (2018) (see 200 

Appendix S2 for detail). In this process, an accurate high spatial resolution land cover data is 201 

essential, and for this we used the Land Use Harmonization 2 (LUH2, luh.umd.edu/data.shtml) 202 

PFT datasets, because it used a robust classification method, covering over 15 PFTs at a spatial 203 

resolution of 0.25 degree with sub-grid PFT information worldwide (Lawrence et al., 2016). 204 

Here, we assumed that there was no land use/cover change (LUCC) or plant functional type 205 

change in China in the past 5 decades. This assumption is partly supported by the LUCC studies 206 

for the past 3 decades (the expansion of cultivated land was less than 40 thousand km2 and the 207 

degradation of forest was less than 20 thousand km2 in the past 30 years in China, which are tiny 208 

numbers compared to the total rural area 8533 thousand km2 in China (Liu et al., 2010; Song and 209 

Deng, 2017), see Table S3). 210 
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The representativeness of climate and NDEP condition of global plot samples with 211 

respect to the China region was also tested in this study. The mean annual precipitation (MAP), 212 

mean annual air temperature (MAT), and PFT of plot samples and China region are presented in 213 

Fig. S4. The climate of plot samples has a similar distribution with the China region across 214 

different PFTs. For example, the MAT of boreal grassland ranges from -10.4 ℃ to 8.5℃ for plot 215 

samples vs from -7.9 ℃ to 11.1℃ for the China region. The MAP of grassland ranges from 250 216 

mm to 1550 mm for plot samples vs from 305mm to 1241 mm for the China region (See Table 217 

S5). The NDEP probability density curves across different PFTs are presented in Fig S5. The 218 

probability density curves of the plot samples are also representative of the typical distributions 219 

of China regions. 220 

Fig. S6 showed the performance in up-scaling, with R2 0.64 for LNC and 0.72 LCC in the 221 

training process, and 0.35 for LNC and 0.46 for LCC in validation process, respectively. The R2 222 

for up-scaling is also comparable to other studies with a range from 0.25 to 0.56 (Table S4). Next, 223 

given the relatively low spatial resolution of the CRU dataset (0.5 degree) applied to China at 224 

and to ensure the consistency with land surface model meteorology forcing, we employed the 225 

validated model (regression relationships) with a new climate dataset of a finer spatial resolution 226 

(0.25 degree) to predict a relatively finer up-scaled map for LNC and LCC (See 2.3 for the detail 227 

of the dataset).  228 

2.3 Process-based modelling: Community Land Model version 5.0 229 

  A state-of-the-art process-based model, Community Land Model version 5.0 (CLM5.0), 230 

was selected as an alternative method to analyze the leaf C:N ratio change in China. CLM5.0 is 231 

selected because 1) as a newly released simulation tool, CLM5.0 has the capability of simulating 232 

leaf carbon mass, leaf nitrogen mass, and leaf C:N ratio change with a process-based scheme of 233 
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flexible leaf stoichiometry; 2) CLM5.0 couples plant C, N and leaf stoichiometry explicitly, thus 234 

enabling us to analyze the impact of leaf stoichiometry on plant carbon and nitrogen cycle 235 

modelling. 236 

CLM5.0 is the default land component model for the Community Earth System Model 237 

version 2 (CESM2) (http://www.cesm.ucar.edu/models/cesm2/). As a land surface model, 238 

CLM5.0 represents processes such as soil and plant hydrology, river routing, coupled carbon and 239 

nitrogen cycling, and crop dynamics. We refer more detail of the CLM5.0 to its full technical 240 

description (http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf) (Lawrence 241 

et al., 2019) and below only give a brief introduction to leaf stoichiometry or flexible CN ratio 242 

parameterization in the model. CLM5.0 assumes that plant take up nitrogen at the cost of energy 243 

in the form of carbon (Doughty et al., 2018), which thence allows plant to adjust their CN ratio 244 

by making trade-off between nitrogen uptake and associated carbon expenditure (Ghimire et al., 245 

2016). This flexible CN ratio also results in a new nitrogen limitation scheme differing from 246 

CLM4.5 by removing the instantaneous down-regulation of potential GPP induced by 247 

insufficient soil mineral nitrogen to support plant demand. More details are described in 248 

Appendix S3.  249 

We conducted CLM5.0 simulations of China at 0.25o x 0.25o and half-hourly 250 

spatiotemporal resolution for the period from 1960 to 2015. In order to reduce the bias in climate 251 

forcing, we combined data from two sources, 1) daily surface air temperature (mean, maximum 252 

and minimum air temperature), relative humidity, wind speed and sunshine duration from 736 253 

stations across China from 1960 to 2015 procured from China Meteorological Administrations 254 

(http://cdc.nmic.cn). 2) China Gridded Daily Precipitation Product with a 25 km spatial 255 

resolution across China from 1960 to 2015 obtained from China Meteorological Administrations 256 
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(http://cdc.cma.gov.cn/dataSetLogger.do?changeFlag=dataLogger). These two datasets are then 257 

used to derive a forcing data at 0.25o x 0.25o degree and 3-hourly spatiotemporal resolution in 258 

China for the period from 1960 to 2015, following the method in Lei et al. (2014). We also 259 

replaced the default soil texture data with a local version at 1 km spatial resolution (Shangguan et 260 

al., 2012). Other input datasets, including land cover, nitrogen deposition, aerosol deposition, 261 

CO2 concentration, adopted the default configuration for CLM5.0 (Lawrence et al., 2019). For a 262 

consistent comparison, it is noted that we used the same climate, land cover, nitrogen deposition 263 

and CO2 concentration datasets in the data-driven approach.  264 

In order to separate the impact from different environmental factors, we devised 265 

simulations of four scenarios.  266 

� S0: static climate with all environmental factors being constant, 267 

� S1: climate change with other factors being constant, 268 

� S2: climate change and elevated atmosphere CO2 concentration, and 269 

� S3: climate change, elevated atmosphere CO2 concentration and nitrogen deposition 270 

change. 271 

Based on these four simulations, the influence of climate change (‘CLIM’) was estimated 272 

from the difference between S1 and S0. The effect of CO2 enrichment (‘eCO2’) was deducted by 273 

the difference between S2 and S1. And the impact of nitrogen deposition (‘iNDEP’) was 274 

estimated by the difference between S3 and S2. More details for the four-scenario model 275 

configurations are in Table S3.  276 

Besides S0-S3, we launched another scenario simulation to test the sensitivity of carbon 277 

and nitrogen cycle to leaf C:N ratio change (by the difference of S3 and S4): 278 
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� S4: model scheme with constant leaf C:N ratio, and forced by climate change, elevated 279 

atmosphere CO2 concentration and nitrogen deposition change. 280 

For scenario S3 was designed to simulate the real-world condition, an evaluation of 281 

simulated nitrogen and carbon cycling was conducted by comparing S3 and observation data.  282 

As for nitrogen cycle validation, the net soil mineralization (16 sites), plant nitrogen 283 

uptake (24 sites) and NOx emission (27 sites) fluxes data were collected for site scale validation. 284 

Natural biological nitrogen fixation (NBNF), nitrogen deposition and denitrification fluxes at 285 

nation scale were compared to other studies to validate the gross volume of the fluxes. Overall, 286 

CLM5.0 gives a reasonable nitrogen cycle modelling, with an appropriate R2 (>0.44) in site level 287 

validation (see Fig. S7) and consistent gross volume with other studies (see Table. S7). 288 

For carbon cycle validation, GPP and terrestrial ecosystem respiration (TER) data in 35 289 

flux sites were collected for site scale validation, and remote sensing based MODIS C6 GPP 290 

product (Running S., 2015) and GIMMS3g LAI product (Zhu et al., 2013) were selected for 291 

spatial pattern validation. R2 score was selected to evaluate the performance. Overall, CLM5.0 292 

gives a reasonable carbon cycle modelling, with a high R2 (>0.65) in site level validation (see Fig. 293 

S8) and a high R2 (>0.70) in spatial pattern validation (See Fig S9 and Fig S10). These 294 

performance of R2 are also comparable to other carbon cycle modeling studies (See Table S8). 295 

2.4 Analysis  296 

 As LCC, LNC and leaf C:N ratio are numerical ratios with significant differences 297 

between PFTs, we conducted the spatial pattern analysis by averaging over grids and PFTs rather 298 

than by over a region or whole nation. In addition, to make the modeling results more easily and 299 

simpler to understand, we rearranged the 15 PFTs classified in LUH2 into 5 PFTs, for example, 300 

by combining the 3 boreal forest PFTs (boreal evergreen needleleaf forest, boreal deciduous 301 
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needleleaf forest and boreal deciduous forest) into 1 PFT (boreal forest) (Fig. S11). In addition, 302 

due to the lack of leaf trait data for crops, and the complexity of land management in crop area, 303 

such as fertilization and seed technology improvement, we excluded crop land from this study. 304 

Moreover, given the data-driven model can only consider one PFT for one grid, we only 305 

analyzed the grids with major land cover proportion over 80%.  306 

 For temporal analysis, we separated the whole time period from 1960 to 2015 into 2 307 

parts: 1960-1990 and 1991-2015. We defined the relative change of the variable (ΔV) as the 308 

difference between the average values in these two periods (Eq 1). This time period 309 

segmentation was determined based on 2 reasons: 1) significant environment change occurred 310 

roughly after 1990 in China, e.g., nitrogen deposition (Liu et al., 2013) and air temperature 311 

warming (Piao et al., 2010); 2), comparing a relatively long time period can ameliorate the 312 

uncertainty due to insufficient leaf data samples in the early period, especially in the 1970s and 313 

1980s.  314 

1990 2015 1960 1989

1960 1989

V V
V

V

− −

−

−∆ =    (Eq. 1) 315 

  For statistical analysis, we used one-way ANOVA and Tukey’s test to analyze the 316 

influences of different PFTs. In order to examine the effects of different factors, such as PFT, 317 

MAT, MAP, NDEP and CO2 concentration, we used piecewise structural equation modelling for 318 

generalized linear regression models (Lefcheck and Freckleton, 2015), which was widely used in 319 

plant stoichiometry studies (Hu et al., 2021; Luo et al., 2021). In order to make the regression, 320 

boreal or temperate ecosystem was classified to 0 or 1, and grassland or forest ecosystem was 321 

classified to 0 or 1. The initial model was constructed based on the hypothesized relationships 322 

suggested in previous studies (Hu et al., 2021; Luo et al., 2021; Yuan and Chen, 2009). We fitted 323 

the component models of the piecewise structural equation model as generalized linear 324 
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regression models. Goodness-of-fit for the overall model was evaluated using Fisher's C statistic, 325 

and p > 0.05 showed a good fit. The standardized regression coefficient (β) for each path was 326 

then estimated, and the significance was tested.  327 

The whole process of piecewise structural equation modelling was performed using the R 328 

package “piecewiseSEM” (Lefcheck and Freckleton, 2015). All data analyses were performed 329 

using R v.4.0.1.  330 

3 Result  331 

3.1 Spatial variation of multi-annual mean leaf C:N ratio 332 

 For spatial variation, leaf C:N ratio in southern China was larger than that in northern 333 

China in general (Fig 1a, 1b, and 1c). Leaf C:N ratio differed among different PFTs (p < 0.05; 334 

Fig 1d). Temperate ecosystem had a higher leaf C:N ratio than boreal ecosystem, and forest 335 

ecosystem had a higher leaf C:N ratio than grassland ecosystem in China by nearly all 3 336 

approaches (temperate forest in southern China > temperate grassland in northwestern China > 337 

boreal forest in northeastern China > boreal grassland in the Tibetan Plateau). Among the three 338 

approaches, leaf C:N by plot sample data had the largest variation values with temperate forest 339 

(29.6 ± 5.6 gC gN-1) , temperate grassland (25.5 ± 7.4 gC gN-1), boreal forest (22.8 ± 4.7 gC gN-1) 340 

and boreal grassland (20.6 ± 5.2 gC gN-1), which was consistent to the results by CLM5.0 with 341 

temperate forest (28.9 ± 3.2 gC gN-1) , temperate grassland (23.8 ± 3.7 gC gN-1), boreal forest 342 

(23.3 ± 6.5 gC gN-1) and boreal grassland (20.8 ± 5.7 gC gN-1). The variation obtained by 343 

random forest approach was also consistent with other two approaches but with a smaller value 344 

with temperate forest (24.6 ± 1.2 gC gN-1) , temperate grassland (22.3 ± 1.2 gC gN-1), boreal 345 

forest (22.1 ± 2.0 gC gN-1) and boreal grassland (20.8 ± 0.8 gC gN-1). 346 
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 347 

Figure 1. Spatial variation of multi-annual mean leaf C:N ratio in China (1960-2015); (a) result 348 

by plot samples, (b) result by random forest (RF) model, (c) result by CLM5.0; (d) results from 349 

all above 3 approaches averaged by PFT. Different lowercase letters in the same color on error 350 

bars indicate significant differences across different PFTs at p < 0.05. 351 

3.2 Temporal variation of multi-annual mean leaf C:N ratio 352 

 For temporal variation of leaf C:N ratio change in the past 5 decades, grassland in the 353 

northwest experienced an increase in leaf C:N ratio, while forest in the southwest had a decrease 354 

(Fig 2a, 2b, and 2c). The plot samples presented a significant difference of leaf C:N ratio change 355 

between forest in the east (-9.3% ± 15.4%) and grassland in the west (+15.4% ±13.7%) (p<0.05, 356 

Fig 2a and 2d). The data-driven model result was consistent with respect to observed spatial 357 

distribution both in direction and magnitude with leaf C:N ratio decreasing for forest (-7.7% ± 358 

4.2%) and increasing for grassland (+5.4% ± 6.2%) (Fig 2b and 2d). Comparatively, CLM5.0 359 

roughly captured the direction of leaf C:N ratio change in most areas in China. However, the 360 
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magnitude of change was 50% lower in CLM5.0 than in the data-driven method (Fig 2c and 2d). 361 

If result from the data-driven model is regarded as observational benchmark, then CLM5.0 362 

prediction with flexible CN is generally reasonable but needs to improve the leaf C:N sensitivity 363 

to environment change. In spite of their methodological differences, these two modeling 364 

approaches both showed an increasing leaf C:N ratio for temperate grassland in northern China 365 

(about +5.3% ± 8.2%) and for boreal grassland in western China (about +3.3% ± 6.6%), while a 366 

decrease for temperate forest in southern China (about -7.7% ± 6.6%) and boreal forest in 367 

northeastern China (about -3.3% ± 5.5%) (Fig 2d).   368 

 369 

Figure 2. Temporal variation of multi-annual mean leaf C:N ratio in China; (a) result by plot 370 

samples, (b) result by random forest (RF) model, (c) result by CLM5.0; (d) results from all above 371 

3 approaches averaged by PFT. Different lowercase letters in the same color on error bars 372 

indicate significant differences across different PFTs at p < 0.05. 373 

 374 
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3.3 Leaf C:N ratio spatial sensitivities to environmental factors 375 

 According to simple linear regression models, MAT and MAP were significantly 376 

positively correlated to leaf C:N ratio spatial variation from all 3 approaches (p < 0.05, Fig S12). 377 

The different PFTs were also significant correlated to leaf C:N ratio spatial variation (p < 0.05, 378 

Fig 1). Besides, MAT and MAP dominated the PFTs spatial distribution (Fig S4). The structural 379 

equation models were used to diagnose the causal relationships between these factors (Fig 3). 380 

For direct effects, climate factors and PFT had comparable importance to leaf C:N variation (β 381 

and significance were similar). Furthermore, temperature related factors (MAT and boreal or 382 

temperate ecosystem) had stronger impact on leaf C:N variation than precipitation related factors 383 

(MAP and forest or grassland ecosystem). For indirect effects, MAT rather than MAP dominated 384 

the ecosystem types (boreal or temperate), and had a further impact on leaf C:N variation. The β 385 

and significance of the paths from all three approaches were consistent with each other, and the 386 

results indicate that MAT was the most important factor to the spatial variation of multi-annual 387 

mean leaf C:N ratio.  388 

 389 

Figure 3. Structural equation models of PFT and climate as predictors of multi-annual mean leaf 390 

C:N ratio spatial variation in China. Red lines = positive and significant; black lines = negative 391 

and significant; dashed lines = insignificant. Standardized regression coefficients for each path 392 
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are given, and results for goodness-of-fit tests are also reported underneath each plot (p > 0.05 393 

indicates a good fit); (a) by plot sample data, (b) by random forest model, (c) by CLM5.0 394 

3.4 Leaf C:N ratio temporal sensitivities to environmental factors 395 

According to simple linear regression models, ΔNDEP was significantly negatively 396 

correlated to leaf C:N ratio temporal variation (p < 0.05), and eCO2 was related to an increase in 397 

mean leaf C:N ratio from all 3 approaches (Fig S13). The leaf C:N temporal variation of plot 398 

sample data had no significant correlation with climate factors, by contrast a significantly 399 

negative correlation with ΔMAP and a significantly positive correlation with ΔMAT were 400 

observed from random forest model and CLM5.0. Structural equation models were used to 401 

eliminate the collinearity of the factors (Fig 4). For direct effects, ΔNDEP had the strongest 402 

effect to reduce Δleaf C:N (β range from -0.34 to -0.83, p < 0.05 ), by contrast ΔCO2 played an 403 

important role to increase Δleaf C:N (β range from 0.16 to 0.30, p < 0.05). ΔMAT also led to an 404 

increase in Δleaf C:N (β range from 0.18 to 0.32, p < 0.05), but ΔMAP had a weaker correlation 405 

to Δleaf C:N (β range from -0.05 to -0.12, p < 0.05). Furthermore, ecosystem types had no 406 

significant relationship with Δleaf C:N, although different PFTs presented significant difference 407 

in Δleaf C:N in Fig 2. This contradiction could be explained by the colinearity of ΔNDEP and 408 

PFTs’ distribution (r2 range from 0.48 to 0.62, p < 0.05), so that ΔNDEP rather than ecosystem 409 

types was likely the driving factor to Δleaf C:N. For indirect effects, ΔCO2 significantly 410 

correlated to ΔMAT (β = 0.96, p < 0.05) and ΔMAP (β range from 0.39 to 0.40, p < 0.05), and 411 

had a further impact on Δleaf C:N. The β values and significance of the paths from random forest 412 

model and CLM5.0 were consistent with each other, by contrast the Δleaf C:N relationships with 413 

ΔCO2 and climate were not significant by plot samples, probably due to the tiny sample size (n 414 



Confidential manuscript submitted to Science of the Total Environment 

 21

=72). Generally, the results indicate the importance of ΔNDEP, ΔCO2 and ΔMAT in leaf C:N 415 

ratio temporal variation. 416 

 417 

Figure 4. Structural equation models of PFT, climate, nitrogen deposition (NDEP) and CO2 418 

concentration as predictors of multi-annual mean leaf C:N ratio temporal variation in China. Red 419 

lines = positive and significant; black lines = negative and significant; dashed lines = 420 

insignificant. Standardized regression coefficients for each path are given, and results for 421 

goodness-of-fit tests are also reported underneath each plot (p > 0.05 indicates a good fit); (a) by 422 

plot sample data, (b) by random forest model, (c) by CLM5.0. 423 

4. Discussion 424 

4.1 Difference in leaf C:N spatial and temporal variation sensitivities to environmental factors  425 

In our study, we find that the spatial variation of multi-annual mean leaf C:N ratio has a 426 

strong correlation with long-term mean climate (especially MAT) and ecosystem types by plot 427 

sample data, random forest model and CLM5.0 (Fig 1 and Fig3). The spatial variation of leaf 428 
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C:N follows the climate envelop theory. The ecosystem in a colder environment tends to have a 429 

lower leaf C:N ratio, and MAT is likely to be a driving factor to influence ecosystem types and 430 

finally leaf C:N ratio. These results were consistent with the findings at global scale (Hu et al., 431 

2021; Reich and Oleksyn, 2004) and regional scale (Han et al., 2005; Luo et al., 2021; Tang et al., 432 

2018).  433 

However, the temporal variation sensitivities to environment factors are not consistent 434 

with the spatial variation sensitivities. We find that temporal Δleaf C:N was more sensitive to 435 

ΔNDEP, ΔCO2 and ΔMAT than to ΔMAP and ecosystem types with larger β and more 436 

significant path (Fig 4). This inference was also supported by scenario simulations using 437 

CLM5.0 (Fig 5). From CLM5.0, we inferred that the decreasing leaf C:N ratio in southern China 438 

was dominated by iNDEP, with very high ΔNDEP in the past 5 decades (from 1.5 gN m-2 yr-1 to 439 

5 gN m-2 yr-1) (Fig 5c, 5d and S1). eCO2 also induced significant leaf C:N ratio increase, 440 

especially in southwestern China where NDEP was lower (0.3 gN m-2 yr-1) (Fig 5b and 5d). 441 

Overall in most area in China, Δleaf C:N was determined by the relative strength between 442 

iNDEP and eCO2 (Fig 5d and 5e). These results are consistent with observations in Europe, 443 

reporting that tree leaf nitrogen concentration became lower in low nitrogen deposition area in 444 

north Europe, and by contrast, in central Europe where nitrogen deposition was higher, leaf 445 

nitrogen concentration did not decrease (Jonard et al., 2015; Mellert and Göttlein, 2012). 446 

 447 



Confidential manuscript submitted to Science of the Total Environment 

 23

 448 

Figure 5. Leaf C:N ratio sensitivities to environment factors by numerical experiments with 449 

CLM5.0; (a) climate change; (b) CO2 enrichment; (c) nitrogen deposition increase; (d) dominant 450 

factor in different region; (e) sensitivities from CLM5.0 averaged by PFT. 451 

The differences between spatial and temporal sensitivities also suggest that the climate 452 

envelop mechanism (leaf C:N constrained by climate and its change) may be more appropriate 453 

for long-term relationship between leaf traits and environment, when plant groups or species are 454 

given sufficient time to replace one another along environmental gradients (Yang et al., 2019), 455 

but not at the first order to influence the leaf C:N change in decade scale. By contrast, soil N 456 

uptake and supply in soil-microbe-plant biogeochemical processes are likely to dominate the leaf 457 

C:N change in decade scale. Soil nutrient availability dominating the maintenance of plant 458 

stoichiometric homeostasis was widely observed empirically (Luo et al., 2021; Schreeg et al., 459 
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2014; Yan et al., 2014; Yu et al., 2010). In this study, with CLM5.0 nitrogen cycle modelling 460 

results, soil N availably under environmental change was deduced to be dominated by iNDEP 461 

and warming. iNDEP was found as the most important nitrogen source that changed soil mineral 462 

nitrogen supply in China, especially in temperate ecosystems (50% contribution for temperate 463 

forest, 70% contribution for temperate grassland Fig 6d and Fig 6e), and was also the dominant 464 

factor to soil mineral nitrogen pool change (Fig S14a). In boreal ecosystems, nitrogen release 465 

from soil organic matter decomposition (net nitrogen mineralization) was the primary supplier to 466 

soil nitrogen, contributing 55% for boreal forest and 80% for boreal grassland (Fig 6e). The 467 

importance of atmospheric N deposition to soil mineral N was widely reported (Geng et al., 2021; 468 

Marty et al., 2017; Mgelwa et al., 2020), indicating that iNDEP increasing soil N availability 469 

could be a dominating mechanism to influence leaf C:N ratio change in China. Besides, our 470 

results also confirm previous studies that reported a dilution effect under eCO2 with a lower leaf 471 

N concentration (Deng et al., 2015; Sardans et al., 2017). This probably was related to 472 

progressive N limitation, PNL (Luo et al., 2004; Reich et al., 2006), and caused by the unbalance 473 

of soil N uptake demand and supply. 474 

 475 
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 476 

Figure 6. Soil mineral nitrogen supply temporal variation simulated by CLM5.0; (a) climate 477 

change; (b) CO2 enrichment; (c) nitrogen deposition increase; (d) dominant factor; (e) result 478 

averaged by PFT. Nmin is for net nitrogen mineralization; Ndep is for nitrogen deposition; Nfix 479 

is for biological nitrogen fixation; Nre is for nitrogen translocation, NOx is for NOx (NO and 480 

N2O) emission in denitrification process, Nrunoff is for soil nitrogen leaching loess. 481 

4.2 Implication to carbon cycle modelling 482 

 Recently, two major changes are being made to improve carbon cycle models, one is 483 

enabling flexible plant trait coupling (Fisher et al., 2015; Peaucelle et al., 2019; Scheiter et al., 484 

2013), the other focuses on incorporating nutrient limitation processes (Shi et al., 2016; Wang et 485 
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al., 2010; Zaehle et al., 2014; Zhu et al., 2019). Improving leaf stoichiometry and representing its 486 

flexibility is at the intersection of these two changes. 487 

First, we infer that the climate envelope theory of trait-environment interaction is likely 488 

not suitable for modeling leaf stoichiometry at decade scale. Therefore, we should be cautious on 489 

employing simple trait and environment regression relationships in dynamic vegetation models 490 

or land surface models (Verheijen et al., 2015; Walker et al., 2017). By contrast, results from the 491 

process-based model CLM5.0 which assumes nutrient acquisition to be balanced with metabolic 492 

cost are consistent with relationships inferred from both plot data and data-driven model (Fig 2), 493 

indicating the trade-off theory is likely more reasonable.  494 

The FUN model used in CLM5.0 is one of the first to represent the interaction between 495 

plant and microbe nutrient uptake interaction (Fisher et al., 2010; Shi et al., 2016), which is a 496 

possible scheme to reflect plant trade-off between resources acquisition and conservation. The 497 

scheme represented plant-microbial symbiosis explicitly, which was observed in more and more 498 

filed studies (Terrer et al., 2016; Terrer et al., 2018). Even though the process representation is 499 

very simple and empirical, it likely has improved the model performance by incorporating these 500 

complex interactions between plant, microbe and soil. 501 

Second, we corroborate previous studies that flexible plant CN ratio is likely to have a 502 

significant impact on modeled carbon cycle (Caldararu et al., 2020; Peaucelle et al., 2019; 503 

Walker et al., 2017). Vcmax25 is observed to be highly correlated to leaf C:N ratio change and 504 

presented an opposite direction to leaf C:N ratio change. Here CLM5.0 predicts that Vcmax25 in 505 

northwestern China has decreased about 10%, while in southeastern China has increased about 506 

10% caused by leaf C:N ratio change (Fig 7a). The increase of Vcmax25 was often higher than N 507 

uptake cost (Fig 7b). Therefore, the flexible CN scheme tends to increase plant carbon 508 
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assimilation for most areas, leading to higher NPP and LAI (Fig 7c and 7d). Further, CLM5.0 509 

predicts that grassland ecosystem responded more strongly in NPP and LAI than forest 510 

ecosystem (about 16% ± 20% vs 5% ± 8%)(Figure 7e). Hence, given the continuously 511 

increasing atmospheric CO2 concentration and N deposition in the world, the flexible plant 512 

stoichiometry scheme is essential in carbon cycle modelling and projection.     513 

 514 

Figure 7. Flexible CN ratio impact on carbon cycle modelling in CLM5.0; (a) Vcmax25; (b) 515 

nitrogen acquisition cost; (c) net primary productivity (NPP); (d) leaf area index (LAI); (e) 516 

results average by PFT. 517 
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4.3 Limitation and prospection 518 

We noticed that the data-driven model and the process-based CLM5.0 were making 519 

different predictions. Generally, the leaf C:N ratio sensitivities to both eCO2 and iNDEP in 520 

CLM5.0 are lower than those in the data-driven model. The increasing leaf C:N ratios in low 521 

NDEP area predicted by CLM5.0 are around 50% lower than in the data-driven model, and the 522 

decreasing leaf C:N ratios in high NDEP area are around 70% lower than in the data-driven 523 

model (Fig 2). The experimental manipulations of CLM5.0 also reported these weak LNC 524 

sensitivities (Wieder et al., 2019).  525 

Here, we reckon two possible reasons for these weak sensitivities. First, the meaning and 526 

representativeness of leaf C:N ratios in data-driven model and CLM5.0 are slightly different. The 527 

measurement data mainly sampled photosynthetic productive leaves of plant, which are likely to 528 

have a stronger LNC variation within canopy. Field measurement reported that the bottom 529 

canopy layer had a stronger LNC seasonal variation than upper canopy during the growing 530 

season (Coble et al., 2016). Leaf spectroscopy by remote sensing also revealed higher variation 531 

in sun-lit leaf LNC (Yang et al., 2016).The vertical LNC pattern within canopy is constrained by 532 

hydraulic conductance, bottom canopy leaves tend to have a higher LNC within canopy (Coble 533 

et al., 2016; Niinemets, 2012). These observations thus indicated that the higher canopy leaves 534 

formed by stimulated carbon assimilation under eCO2 have a larger chance to decrease LNC due 535 

to the coupling between nitrogen and water transport. By contrast, the process-based model 536 

CLM5.0 uses a big leaf model and assumes all leaves as one plant organ of the same nutrient 537 

variation, and is thus unable to represent the within canopy LNC difference.  538 

Second, there could be missing mechanisms in the LNC variation representation in 539 

CLM5.0. For example, field measurement revealed that elevated CO2 could limit nitrogen 540 



Confidential manuscript submitted to Science of the Total Environment 

 29

transportation from soil to leaf with less transpiration (McDonald et al., 2002; McGrath and 541 

Lobell, 2013), by contrast, iNDEP was likely to enhance transpiration (Zhou et al., 2017) to 542 

transport more nitrogen to canopy. Therefore, by lacking a linkage between nutrient-mass flow 543 

and transpiration, CLM5.0 tends to underestimate the LNC response to eCO2 and iNDEP. 544 

Furthermore, in field manipulation experiments, leaf C:N ratio was found to be most sensitive to 545 

both eCO2 and nitrogen addition, by contrast, woody structure tissues had the lowest sensitivity 546 

(Du et al., 2019; Xia and Wan, 2008; Yang et al., 2011). These observations indicate that plant 547 

carbon and nitrogen tissue allocation strategies could be very different. For woody plants, root 548 

and leaf tend to have less increase in biomass but larger increase in nitrogen concentration in 549 

nitrogen addition experiments, by contrast the stem and branch nitrogen concentrations increase 550 

at a rate 30% lower, but biomass is three times faster (Wang et al., 2017; Xia and Wan, 2008). 551 

Beyond lacking this mechanism, CLM5.0 is also incapable of capturing the different C:N ratio 552 

sensitivities across different plant tissues. In contrast to empirical observations, CLM5.0 shows a 553 

very similar carbon and nitrogen increasing response across different tissues to both eCO2 and 554 

iNDEP, thus the leaf C:N ratio sensitivity could be underestimate by this relatively fixed C and 555 

N allocation strategy (Fig S15, Fig S16).  556 

In order to make the modeling results more consistent with leaf trait observations, we 557 

recommend improvements in three aspects: 1) more carbon and nitrogen concentration trait 558 

measurements within different canopy layers and across different tissues should be acquired. 559 

They will help reveal how different the C:N ratio response to environment change within canopy 560 

layers and across tissues, and the mechanism behind them; 2) the process-based LSMs should 561 

focus on explicit representation of canopy structure and vertical leaf trait dynamics, and the big 562 

leaf model with static canopy scaling parameters was improper compared with observations 563 
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(Rogers et al., 2017). Fortunately, there are efforts underway to address this model insufficiency 564 

(e.g.,(e.g., Fisher et al., 2018; Koven et al., 2019)). 3) Further studies and quantitative relations 565 

should be explored on the linkage between transpiration, hydraulic conductance and plant 566 

nitrogen concentration profile, and the mechanism about difference in carbon and nitrogen 567 

allocation strategies across plant tissues. 568 

5 Conclusion 569 

 In this study, we employed both a data-driven model and a process-based model CLM5.0 570 

to map the leaf C:N ratio spatiotemporal variation in China in the past 5 decades. We found that 571 

leaf C:N ratio had a temporally significant but spatially uneven pattern of change. We found an 572 

increasing leaf C:N ratio for temperate grassland in northern China (about +5.3% ± 8.2%) and 573 

for boreal grassland in western China (about +3.3% ± 6.6%), by contrast a decrease for 574 

temperate forest in southern China (about -7.7% ± 6.6%) and for boreal forest in northeastern 575 

China (about -3.3% ± 5.5%). In addition, the structural equation models indicated that the 576 

temporal leaf C:N change was sensitive to ΔNDEP, ΔCO2 and ΔMAT rather than to ΔMAP and 577 

ecosystem types. These relationship were supported by CLM5.0 scenario analysis, where 578 

nitrogen deposition was the dominant factor that led to leaf C:N ratio decreasing in southern 579 

China. Elevating CO2 is likely to increase leaf C:N ratio in low NDEP area. Climate change has 580 

stronger impact in boreal area than in temperate area with more net nitrogen mineralization 581 

increases in boreal area under climate warming.  582 

Furthermore, the study also found the differences between leaf C:N spatial and temporal 583 

variation sensitivities, suggesting that the climate envelope theory was more suitable to predict 584 

long-term variation but had limitation to model trait-environment change in leaf C:N ratio at 585 

decade scale, and highlight the important role of nitrogen acquisition cost and soil nitrogen 586 
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availability in determining leaf C:N ratio. Finally, we inferred that there is significant impact of 587 

flexible leaf C:N ratio on plant and ecosystem carbon cycling, and it is important for models to 588 

incorporate plant and microbial interaction and their carbon cost during plant nitrogen uptake. 589 

The leaf C:N ratio response predicted by two models agree with filed observation, but CLM5.0 590 

showed weaker magnitude. The poor performance of CLM5.0 is likely due to insufficient 591 

representation of within canopy leaf trait dynamics, linkage between transpiration, hydraulic 592 

conductance and plant nitrogen concentration profile, and differences in carbon and nitrogen 593 

allocation strategies across plant tissues in CLM5.0, all of which should be further explored in 594 

future studies. 595 
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Figure. Temporal variation of multi-annual mean leaf C:N ratio in China (the difference between 3 

2 time period from 1960-1989 to 1990-2015); (a) result by plot samples, (b) result by random 4 

forest (RF) model, (c) result by CLM5.0; (d) results from all above 3 approaches averaged by 5 

PFT. Different lowercase letters in the same color on error bars indicate significant differences 6 

across different PFTs at p < 0.05. 7 




