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Abstract

Background: The increasing use of activity trackers in mobile health studies to passively collect physical data has shown
promise in lessening participation burden to provide actively contributed patient-reported outcome (PRO) information.

Objective: The aim of this study was to develop machine learning models to classify and predict PRO scores using Fitbit data
from a cohort of patients with rheumatoid arthritis.

Methods: Two different models were built to classify PRO scores: a random forest classifier model that treated each week of
observations independently when making weekly predictions of PRO scores, and a hidden Markov model that additionally took
correlations between successive weeks into account. Analyses compared model evaluation metrics for (1) a binary task of
distinguishing a normal PRO score from a severe PRO score and (2) a multiclass task of classifying a PRO score state for a given
week.

Results: For both the binary and multiclass tasks, the hidden Markov model significantly (P<.05) outperformed the random
forest model for all PRO scores, and the highest area under the curve, Pearson correlation coefficient, and Cohen κ coefficient
were 0.750, 0.479, and 0.471, respectively.

Conclusions: While further validation of our results and evaluation in a real-world setting remains, this study demonstrates the
ability of physical activity tracker data to classify health status over time in patients with rheumatoid arthritis and enables the
possibility of scheduling preventive clinical interventions as needed. If patient outcomes can be monitored in real time, there is
potential to improve clinical care for patients with other chronic conditions.

(JMIR Form Res 2023;7:e43107) doi: 10.2196/43107
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Introduction

Rheumatoid arthritis (RA) is a progressive autoimmune disease
that causes irreversible joint damage, decline in functional status,
and premature mortality, and is one of the most serious
rheumatologic conditions in high-income countries [1]. Over
the past decade, there has been a trend toward mobile health
(mHealth) interventions that collect greater amounts of passive
and active data, as well as improve treatment results, for people
living with chronic illnesses such as RA [2]. For instance,
web-based patient self-assessments were found to strongly
correlate with rheumatologist assessments of RA activity, which
justified further exploration of their use as cost-effective tools
to monitor RA activity between outpatient visits [3]. In addition,
due to their rapidly increasing ownership, smartphones and
low-cost consumer devices have become widely used as
noninvasive self-assessment and rehabilitation tools for heart
failure, diabetes, and pulmonary disease [4-6]. In fact, in one
study, a majority of patients expressed willingness to even pay
for a RA self-management app [7]. Although the use of devices
and apps for outpatient care has great potential and telehealth
solutions have greatly motivated interest in remote health care
delivery, device fatigue and poor usability pose threats to
consistent and accurate recording of data that requires active
engagement with an app that requires patients to answer
questions [5,8]. Another trend that has emerged is the use of
activity trackers and artificial intelligence to further streamline
the process of passive data collection and machine learning for
clinical applications; research has shown that the use of
continuous-time activity trackers can be effective in a
telemonitoring application with a high level of adherence and
low attrition [9]. Activity trackers in general have also been
shown to promote self-care, habit formation, and goal
reinforcement, all of which foster physical activity and long-term
well-being [10,11]. Furthermore, activity tracker–derived data
collected during one study correlated significantly with clinically
relevant patient-reported outcomes (PROs), further justifying
the use of activity trackers to identify patients in need of clinical
intervention [9,12].

In this study, patient health scores were quantified using
Patient-Reported Outcomes Measurement Information System
(PROMIS) surveys. PROMIS is a National Institutes of Health
initiative devoted to developing and validating better
measurement tools for assessing patients’ pain, fatigue, sleep
disturbance, physical function, and other domains of health [13].
The usage of PROMIS surveys increased over the past decade,
largely due to their low barriers to completion and effectiveness
in measuring important patient-centered outcomes in clinical
care in an unbiased manner [14-16]. Numerous studies have
now established actionable PROMIS score thresholds
(distinguishing normal or mild from moderate or severe
symptoms). The use of PROMIS measures in primary care has
been shown to improve patient-provider communication by
giving patients a voice and optimizing clinical decision-making
[17]. Given that there are barriers that may limit the feasibility
of continually requiring patients to fill out PROs over time,
passive data collected from health activity trackers may provide
an important complement to PRO scores and other clinical data.

As an additional helpful tool in this setting, machine learning
algorithms have been widely used in clinical research for tasks
such as disease detection and outcome prediction, and statistical
models such as random forest (RF) and gradient-boosted
regression trees have previously proven useful in improving the
risk prediction accuracy for conditions such as cardiovascular
diseases [18,19]. These kinds of traditional machine learning
models are useful in making isolated decisions but do not
account for cases where trends over time can influence the
outcome. Hidden Markov models (HMMs), on the other hand,
are well-established temporal models that are effective in using
sequential data to predict events such as patient state changes
and disease progression over time [20].

In this analysis, we explored the usage of several machine
learning models to classify PRO scores over time in a study of
patients with RA [21]. More specifically, our goal was to
quantify the agreement between PRO scores and passively
collected data from Fitbit Versa (Fitbit Inc), a commercially
available activity tracker. If we found that tracking physical
metrics over time using activity trackers was meaningfully
correlated with key components of patients’ health, reliance on
actively collected self-reported health scoring could be
diminished, reducing participant burden to complete PRO
measures as frequently. In a prior study, wearable activity
trackers were used to passively measure changes that could be
used to provide estimates of the incidence and duration of gout
flares [22]. A related study trained baseline machine learning
models and HMMs with activity tracker–derived data in order
to predict PRO scores in a cohort of patients with stable ischemic
heart disease and found that the HMM outperformed the other
baseline models for a majority of PRO scores [23]. We hoped
to obtain similar results from our study, and herein we describe
our approach to data preprocessing, model construction, and
resulting analyses.

Methods

Data Acquisition
The Digital Tracking of Arthritis Longitudinally (DIGITAL)
study was an ancillary study of the ArthritisPower registry
(Advarra Institutional Review Board [IRB] protocol number
00026788). A cohort of 470 eligible patients with RA was
recruited by researchers at the Global Healthy Living Foundation
and the University of Alabama at Birmingham, and 278 (59.1%)
of them qualified for participation in the main study after
successfully meeting adherence thresholds during an initial
2-week lead-in period. The main study followed the 278
qualifying patients for 12 weeks (84 days), and each patient was
given a Fitbit Versa 2 to record physical metrics such as heart
rate, physical activity, calories burned, and sleep progression.
All collected data, including various PRO surveys that patients
were asked to fill out on a weekly basis, were inputted by
patients into a study-specific app (the ArthritisPower registry,
with a custom workflow unique to this study). Data were
analyzed and stored in the Health Insurance Portability and
Accountability Act–compliant Amazon Web Services cloud
and analyzed at the University of Alabama at Birmingham and
the University of California, Los Angeles (UCLA). Data were
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deidentified prior to being made available at UCLA. Analyses
were done to summarize trends between and within participants
over time, and descriptive statistics quantified adherence or
compliance rates for the various measures and technology as
well as any differences in the enrolled populations and those
compliant with the study protocol. The mean age of the patient
cohort was 50.2 (SD 11.1) years, the mean number of years
since RA diagnosis was 9.4 (SD 10.1), and 91.7% (n=255) of
subjects identified as female. Patient features included
demographics, race or ethnicity, gender, age, years since RA
diagnosis, comorbidities, and medications, and some of these
data were also used for training our machine learning models.
Based on adherence criteria we describe later in the Data
Imputation and Preprocessing section, we excluded 59 of these
278 patients, resulting in 219 patients in the final analytic data
set.

Activity Tracker Data
The Fitbit Versa 2 is a commercially available activity tracker
whose algorithms have been shown to accurately track metrics
relating to physical activity, sleep, and energy expenditure
[24-27]. Whenever the Fitbit Versa 2 was worn during the
clinical phase of the study, it passively collected patient metrics
and was synced to the ArthritisPower app continuously, but at
a minimum, occurred every 5 days. Overall, there were 15
distinct physical features that were used to train our machine
learning models, and the respective feature means and SDs
among patients using all available data are depicted in Table 1.
To account for noise and redundancy, each activity
tracker–derived feature was aggregated on a daily level (ie, a
24-hour interval, from 8 PM on one day to 8 PM on the next
day) based on the data collected with second- or minute-level
precision.

Table 1. Daily-aggregated features from Fitbit across patients.

Value, mean (SD)Feature

Sleep metrics

445.01 (130.02)Daily total sleep (minutes)

261.81 (78.14)Daily total light sleep (minutes)

84.89 (37.55)Daily total REMa sleep (minutes)

61.79 (27.57)Daily total deep sleep (minutes)

24.21 (15.28)Daily total wake (minutes awake during a sleep episode)

Physical metrics

5775.66 (4177.02)Daily total steps

2211.15 (615.05)Daily total calories

1259.68 (411.19)Daily total wearing (minutes)

66.25 (10.32)Daily minimum heart rate (beats per minute)

97.51 (12.51)Daily maximum heart rate (beats per minute)

Activity metrics

246.78 (117.55)Daily total activity (minutes)

226.93 (102.60)Daily light activity (minutes)

22.53 (24.57)Daily moderate activity (minutes)

24.71 (54.41)Daily heavy activity (minutes)

1201.98 (127.03)Daily sedentary activity (minutes)

aREM: rapid eye movement.

PRO Measures
PROMIS questionnaires are a library of instruments developed
and validated to measure domains of physical and mental health
[16]. In this study, patients were asked to actively input
information regarding 6 PROMIS scores on a weekly basis
through several questionnaires on the study-specific
ArthritisPower app [21]. Within the ArthritisPower app,
PROMIS computer adaptive testing instruments were used to
record scores relating to pain, physical function, fatigue, sleep
disturbance, and satisfaction with participation in discretionary
social activities (“social activity” for concision). The t score

metric was used to standardize each of these scores to a mean
of 50 and an SD of 10, with a range between 0 and 100 [15].
Most scores fall between scores of 20 and 80. In addition to
these 5 PROMIS scores, a score related to exercise frequency
and intensity was assessed through the in-app Godin
Leisure-Time Physical Activity Questionnaire [28,29]. For the
Godin score, a patient scoring ≥24 was considered active, and
a patient scoring <24 was considered inactive as a generalization
[30]. PROMIS computer adaptive testings have previously
shown efficacy in previous studies, in addition to low barriers
to form completion [14].
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“Symptom” (pain interference, fatigue, and sleep disturbance)
scores of 60 (1 SD above the average of 50) or higher were
defined as moderate to severe symptom severity [31]. Similarly,
“function” (physical function and social activity) scores of 40
(1 SD below the average of 50) or below were defined as
moderate to severe symptom severity, meaning less functional
ability than normal. In this study, multiclass classification
techniques were used to classify PRO state or score transitions
over time, and binary classification techniques were used to
determine whether patients’ PRO scores were above or below
the critical threshold for at least moderate symptom or functional
severity.

Data Imputation and Preprocessing
Missing data are a concern in any study that involves consistent
patient adherence to a study protocol over time. In this study,
missing activity tracker data could have resulted from patients
either forgetting to wear their devices or removing them for
charging, and missing weekly PRO scores could have resulted
from patients forgetting to fill out their PROMIS surveys on a
given week. Patients may have also gotten tired of completing
PRO surveys consistently as the study progressed.

At first, prior to any data preprocessing, each of the 15
smartwatch-derived feature columns consisted of daily
aggregated measurements. In other words, the original data set
had 12 weeks (84 days) of data for each of the 278 originally
qualifying patients in total, with each row corresponding to a
given day’s measurements of the activity tracker features.
However, weekly PRO measurements only presented themselves
once a week, and this meant that we needed to aggregate data
weekly rather than daily. To address this, we preprocessed the
data set such that each of the 15 physical feature columns was
split into 7 columns corresponding to the 7 days in a week. For
instance, the DailyTotalSleepMins column, which measured
how many minutes the patient was asleep in a given day, was
split into 7 “unmelted” columns (eg, DailyTotalSleepMins1,
DailyTotalSleepMins2, …, DailyTotalSleepMins7) such that
there would not be any missing PRO values for that given week
if the patient filled out all of their PROMIS surveys. It was first
decided that the criteria for dropping a given week of data prior
to model training and evaluation would be if there were at least
3 days of missing data for any of the 15 Fitbit-derived features.
We excluded patients from our data set who had more than 2
weeks of dropped rows at any time during the 12-week study
period. Based on these specifications, 59 of the 278 originally
qualifying patients were excluded, and thus, 219 patients ended

up remaining in the data set. In addition, prior to training our
machine learning models to generate predictions for each of the
PRO scores, we imputed remaining missing feature data based
on the corresponding feature means from the previous week.

To establish distinct states that correspond to PRO score ranges,
8 “bins” of scores were created within a range of 5 (0.5 SD)
units around the score’s established threshold for a given PRO
score. Specifically, we created 3 score groupings below the
threshold and 3 score groupings above the threshold, with 2
“catch-all” bins that grouped together all scores below and above
the 6 central score groupings. As an example, this grouping
process resulted in 8 unique states for the sleep disturbance
PRO score: 40 (grouped all scores that were below 40 together),
45, 50, 55, 60 (the threshold grouping), 65, 70, and 75 (grouped
all scores that were above 75 together). We manually merged
bins that had less than 40 observations with the adjacent bins
to avoid sparsity. When it came to measuring the success of the
machine learning models themselves, we trained and evaluated
each model 10 times and outputted the average metrics of those
10 rounds since the random seed of each iteration was different.

Independent Per-Week RF Model
A naïve approach to model creation would involve treating each
week independently, as PROMIS survey scores were generated
on a weekly basis. A 1-subject example of the independent
model is illustrated in Figure 1, as there would be 12 weeks of
evaluable data that are treated as independent observations. All
the features for the 7 days of the week were appended into a
single feature vector, which was then used to train the machine
learning models for the task of PRO score classification.
Ensemble methods such as RF, Adaboost, and gradient-boosted
regression trees have previously been shown to be robust over
unbalanced data sets and are capable of generating better
classification accuracies compared to other independent machine
learning models [32]. In this particular set of analyses, the RF
model was used to establish a baseline performance that the
HMM could potentially improve on. Through hyperparameter
tuning, we determined that each RF instance should consist of
100 estimators (decision trees), use the Gini Index as criteria
for splitting, allow a maximum depth of 25 to prevent
overfitting, and require at least 10 training samples as the
minimum threshold for splitting. In addition, through use of the
RF model, we were able to assess the relative importance of the
15 different activity tracker–derived features in carrying out
PRO score classification.
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Figure 1. Random forest schematics.

HMM With a Forward Algorithm
A significant shortcoming of models that treat each week
independently (such as the RF) is that they do not take temporal
factors into account, or how previous PRO score states influence
the current PRO score state. The use of the HMM addresses
this weakness and effectively incorporates temporal correlations
of PRO score states across weeks. As illustrated in Figure 2,
the HMM’s state at each week corresponded to the PRO score
state for that given week, with the activity tracker–derived

features treated as observations. Following the score grouping
detailed in the Data Imputation and Preprocessing section, we
indexed each of the unique scores or states starting from 1 and
created transition matrices by counting the S state transitions
from week to week. These transition matrices were then
normalized based on the Gaussian standard distribution and
were used to generate label predictions in the testing and
evaluation phase from the prediction probabilities generated by
the RF model.

Figure 2. Hidden Markov model schematics.

The forward algorithm computed the probabilities across states
at time t, with the maximum computed probability representing
the state classification,

where the weekly PRO score was treated as state yt with
observations of features xt [33]. The emission probability,
P(xt|yt), computed the probability of the observed feature vector
xt given state yt, computed from the RF classifier and P(yt).

At the first step, the transition probability distribution is
undefined, so the state probability was defined as:

S(y1|x1)∝P(x1|y1)P(y1)

For the task of binary classification, states were binarized
according to whether or not they were normal or mild (ie, within
10 units of the US population mean of 50) or moderate or severe,
based on the thresholds described in the PRO Measures section.
Because dichotomizing PRO score values loses some
information and adds noise, multiclass classification of PRO
score states was conducted as well without the binarization
process. For the binary classification task (distinguishing
between a “normal” and “severe” PRO score), we chose to use
the receiving operating characteristic area under the curve
(ROC-AUC) metric, as it would give us a comprehensive
understanding of the relationship between the true and false
positive rates as we vary the classification threshold. For the
multiclass classification task (PRO state prediction), we chose
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to use the Pearson correlation coefficient metric to evaluate the
statistical relationship between the models’ predicted state labels
and the true state labels, as well as the quadratic weighted Cohen
κ coefficient to measure agreement or consistency between
predicted state labels and true state labels. For each PRO score,
the RF and HMM were trained and evaluated 10 times each to
establish robustness in the observed metrics.

Role of the Funding Source
The funders of the study had no role in the data analysis, data
interpretation, or writing of this report.

Ethics Approval
For all patient-level data used in this study, we obtained patients’
written informed consent. Patients’ consent statements have
been kept on file. Our research activities related to this study
were governed by the University of Alabama at Birmingham
IRB (160708003).

Results

Between the HMM and RF models, the Pearson correlation
coefficient results from multiclass classification of PRO scores
are summarized in Table 2, quadratic-weighted Cohen κ
coefficient results from multiclass classification of PRO scores
are summarized in Table 3, and ROC-AUC results from binary
classification of PRO scores are summarized in Table 4.

For the multiclass classification task, we observed a consistent
trend of the HMMs attaining significantly higher Pearson

correlation coefficients and quadratic-weighted Cohen κ
coefficients than the corresponding RF across all PRO scores.
Using the HMM, the highest Pearson correlation coefficient
and quadratic-weighted Cohen κ coefficient values were 0.479
and 0.471, respectively, for classifying the weekly physical
function PRO score, and the lowest values were 0.204 and 0.200,
respectively, for classifying the weekly sleep disturbance PRO
score.

Regarding the binary classification task of distinguishing normal
or mild PRO scores from moderate or severe PRO scores, the
HMM outperformed the RF model to a significant (P<.05)
degree across all PRO scores. The highest overall ROC-AUC
score was achieved for the weekly exercise PRO score with the
HMM and RF models attaining ROC-AUC scores of 0.750 and
0.742, respectively. On the other hand, the lowest overall
ROC-AUC scores were 0.653 and 0.637, respectively, for the
weekly sleep disturbance PRO score. Relative feature
importance for the physical function and exercise PROs was
also recorded through the evaluation process, and relative feature
importance levels are depicted in Table 5. The top 3 important
features for the physical function PRO, in order of relative
importance, were total steps, total activity minutes, and
minimum heart rate, and the top 3 important features for the
exercise PRO were total steps, very (intense) activity minutes,
and minimum heart rate. Intuitively, it makes sense that these
features played an important role in classification for these PRO
scores, as these features especially would correlate strongly
with an individual’s overall physical activity and exercise levels
over time.

Table 2. Pearson correlation coefficient results for multiclass classification of PROa scores.

RFc, mean (SD)HMMb, mean (SD)Label

0.381 (0.0141)0.479d (0.0184)Weekly physical function PRO score

0.366 (0.0091)0.434d (0.0112)Weekly exercise score

0.235 (0.0167)0.376d (0.0309)Weekly fatigue PRO score

0.193 (0.0218)0.330d (0.0237)Weekly pain interference PRO score

0.160 (0.0310)0.316d (0.0331)Weekly social activity score

0.165 (0.0173)0.204d (0.0418)Weekly sleep disturbance PRO score

aPRO: patient-reported outcome.
bHMM: hidden Markov model.
cRF: random forest.
dDenotes significant improvement over RF.
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Table 3. Quadratic-weighted Cohen κ results for multiclass classification of PROa scores.

RFc, mean (SD)HMMb, mean (SD)Label

0.352 (0.0134)0.471d (0.0201)Weekly physical function PRO score

0.352 (0.0131)0.393d (0.0184)Weekly exercise score

0.181 (0.0161)0.370d (0.0305)Weekly fatigue PRO score

0.161 (0.0193)0.322d (0.0251)Weekly pain interference PRO score

0.111 (0.0216)0.313d (0.0326)Weekly social activity score

0.114 (0.0112)0.200d (0.0407)Weekly sleep disturbance PRO score

aPRO: patient-reported outcome.
bHMM: hidden Markov model.
cRF: random forest.
dDenotes significant improvement over RF.

Table 4. Area under the receiving operating characteristic curve values of binary classification of PROa scores.

RFc, mean (SD)HMMb, mean (SD)Label

0.742 (0.0091)0.750d (0.0105)Weekly exercise score

0.736 (0.0116)0.745d (0.0119)Weekly physical function PRO score

0.682 (0.0078)0.699d (0.0138)Weekly fatigue PRO score

0.664 (0.0190)0.673d (0.0221)Weekly social activity score

0.642 (0.0126)0.655d (0.0082)Weekly pain interference PRO score

0.637 (0.0138)0.653d (0.0188)Weekly sleep disturbance PRO score

aPRO: patient-reported outcome.
bHMM: hidden Markov model.
cRF: random forest.
dDenotes significant improvement over RF.
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Table 5. Feature importances for physical function and exercise PROa scores, ranked by relative importance for classification.

Exercise PROPhysical function PRO

Total steps (0.1065)Total steps (0.0983)

Very (intense) activity minutes (0.0925)Total activity minutes (0.0764)

Minimum HR (0.0751)Minimum HRb (0.0738)

Total activity minutes (0.0685)Maximum HR (0.0703)

Total sleep minutes (0.0664)Total calories (0.0672)

Light sleep minutes (0.0608)Light activity minutes (0.0647)

Total calories (0.0601)Total sleep minutes (0.0624)

REMc sleep minutes (0.0598)Light sleep minutes (0.0620)

Deep sleep minutes (0.0586)Deep sleep minutes (0.0608)

Light activity minutes (0.0567)Sedentary activity (0.0588)

Maximum HR (0.0556)Wake minutes during sleep (0.0579)

Wake minutes during sleep (0.0552)REM sleep minutes (0.0565)

Sedentary activity minutes (0.0513)Very (intense) activity minutes (0.0391)

Moderate activity minutes (0.0502)Moderate activity minutes (0.0338)

Total (Fitbit) wearing minutes (0.0250)Total (Fitbit) wearing minutes (0.0226)

aPRO: patient-reported outcome.
bHR: heart rate.
cREM: rapid eye movement.

Discussion

Principal Findings
In this analysis of passive data collected by a health activity
tracker device (Fitbit Versa 2), we found generally high
correlations with weekly PROMIS, other PROs related to RA,
and self-reported exercise. Correlations between the passive
data and the actively contributed PROs were highest for weekly
physical function score, weekly fatigue score, and the exercise
score from the Godin Leisure Time Exercise Instrument. This
might be expected given that the health activity tracker provides
the most information about actigraphy. Performance metrics
for the multiclass and binary tasks of classifying PRO scores
were significantly higher for the HMM compared to the RF.
This general trend makes sense, as the HMM essentially builds
from the independent RF model by factoring in sequential state
changes when it comes to predicting a PRO class for a given
week. A similar study, focused on classifying PRO scores in
patients with stable ischemic heart disease, generally observed
similar results, but in that study, the independent RF model
outperformed the HMM for some of the PRO scores [23]. The
results of our study could indicate that the HMM’s usage could
vary from disease to disease and that it is effective in using
activity tracker data to predict changes in RA symptom
progression or improvement in particular. Although our results
show promise for the use of temporal models for clinical
applications such as passive remote monitoring, there is always
room for future improvement. Even though the HMMs
consistently outperformed the independent RF models for the
multiclass classification task, the average Pearson correlation
coefficient of HMM predictions and true labels across all PRO

scores was 0.357, and the average quadratic weighted Cohen κ
coefficient was 0.345. Although these values should not be
regarded as “poor,” they suggest that physical activity trackers
may not capture all the relevant information needed to make
accurate predictions about changes in different aspects of a
patient’s disease state. As we saw, our models perform relatively
better for measures related to actigraphy since that type of data
was directly captured by the activity tracker. Data about mental
or emotional states were not incorporated into our models, which
might be possible by examining heart rate variability or
electrodermal activity and could potentially help with PRO
score classification for emotional states. Another objective for
future studies would be to further increase patient adherence
rates and reduce the percentage of missing data, as this is
generally one of the largest obstacles for accurate mHealth
telemonitoring, including our study [9]. With more precise data
about a patient’s state at a given point in time, statistical models
could be better tuned to classify PRO score states over time and
thus improve overall accuracy metrics and usefulness in a
clinical setting. In the future, similar studies could also be
carried out using deep learning methods such as
long-short-term-memory networks (a class of recurrent neural
networks), which have both shown prowess when dealing with
sequential clinical data and missing data [34,35]. These kinds
of approaches effectively model varying length sequences and
capture long-range dependencies and could serve as another
approach to classifying PRO scores over time [34]. A caveat is
that these types of deep learning methods require a large amount
of training data (ie, more patients in the clinical study) in order
to perform robustly, which was not available for this study. As
the efficacy of collecting clinical data from patients continues
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to improve over the next few years, such complex approaches
will become more and more attainable and practical.

PROMIS instruments themselves could also be a source of
potential improvement for model development. Even though
recorded PROs have face validity and provide useful information
about the patient experience, some doubts revolve around how
some PRO scores may be partially redundant with each other
and may not serve as the most effective way to inform treatment
decisions [36]. In addition, patients may experience response
fatigue when taking PROMIS surveys due to their
question-by-question format, which could lead to measurement
error and misclassification [37,38]. Improving the patient
experience while completing a more limited set of PROMIS
surveys could be a way to address the issues of low completion
rates and reduce response fatigue that may take place in clinical
studies such as this one. In a clinical setting, we envision a
hybrid approach where PRO data collection is complemented
by passive actigraphy measures, with sophisticated algorithms
applied to both, such as those that we used. As advances in
technology such as more widespread availability of the internet
and mobile devices become more prevalent, patient accessibility
increases, and thus, patients’ ability to participate in studies
related to PRO score classification and related clinical
intervention applications can improve [4].

A related use case for these kinds of models would be to detect
worsening from a patient’s baseline state over time. In a clinical
setting, it would serve greater usage to notify physicians when
a patient’s state has significantly worsened from an initially
measured state (ie, after the start of medication administration
or a previous physician checkup). In our analysis, patients’
initial state (time 0) was a random, unimportant time. However,
if “time 0” was instead marking the start of a new drug
treatment, then there would be an underlying slope of PRO
score trends and an expected trajectory of score improvements.
In a clinical study such as this, our models would be trained
and evaluated to detect the first week of significant decrease in
PRO scores from baseline or initial scores over the study period.

We acknowledge several study features that are useful to
contextualize this work. First, based on the demographics of

the ArthritisPower registry, participants are predominantly
White and have higher amounts of education (ie, at least some
college), so these results may or may not generalize to other
demographic groups, and they may be influenced by other social
determinants of health. Ongoing work in the registry is explicitly
recruiting a more diverse community of patients with respect
to these factors. Our sample size of only 219 patients was
admittedly modest to train a machine learning model, but the
number of patients recruited was constrained by project
resources. With larger sample sizes or the ability to pool across
several similar data sources (ie, from other ongoing studies
being conducted in the ArthritisPower registry), additional
features may emerge as important. As described earlier, we also
recognize that deep learning models may provide performance
improvements in some settings, which also would be facilitated
by a larger sample size.

Conclusions
Machine learning methods can be used to classify self-reported
PRO scores over time in patients with RA, and temporal
methods such as HMM have been shown to consistently
outperform independent models such as the RF for binary and
multiclass classification tasks. Our study indicates that passively
generated data from activity trackers can be useful in a machine
learning environment to classify health status over time and that
additional research should be conducted to further validate the
use of such frameworks for clinical applications such as remote
health monitoring and early intervention for patients with
chronic illnesses. Encouragingly, we note that clinical use of
monitored mobile apps and passive biosensor devices are now
reimbursable by insurance in real-world settings. Since 2019,
Medicare and other commercial insurance companies now
compensate providers for care provided through remote
physiologic monitoring and remote therapeutic monitoring
programs [39]. These potentially transformative opportunities
offer the potential to accelerate the adoption of approaches like
ours and move remote monitoring out of research settings and
into routine, clinical settings where they can positively impact
care.
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ROC-AUC: receiving operating characteristic area under the curve
UCLA: University of California, Los Angeles
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