
UC Berkeley
UC Berkeley Previously Published Works

Title

A machine learning-based probabilistic computational framework for uncertainty 
quantification of actuation of clustered tensegrity structures.

Permalink

https://escholarship.org/uc/item/80k5b911

Authors

Ge, Yipeng
He, Zigang
Li, Shaofan
et al.

Publication Date

2023-03-05

DOI

10.1007/s00466-023-02284-0
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/80k5b911
https://escholarship.org/uc/item/80k5b911#author
https://escholarship.org
http://www.cdlib.org/


Computational Mechanics
https://doi.org/10.1007/s00466-023-02284-0

ORIG INAL PAPER

Amachine learning-based probabilistic computational framework
for uncertainty quantification of actuation of clustered tensegrity
structures

Yipeng Ge1 · Zigang He1 · Shaofan Li2 · Liang Zhang1 · Litao Shi1,3

Received: 27 August 2022 / Accepted: 8 February 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Clustered tensegrity structures integrated with continuous cables are lightweight, foldable, and deployable. Thus, they can be
used as flexible manipulators or soft robots. The actuation process of such soft structure has high probabilistic sensitivity. It is
essential to quantify the uncertainty of actuated responses of the tensegrity structures and to modulate their deformation accu-
rately. In this work, we propose a comprehensive data-driven computational approach to study the uncertainty quantification
(UQ) and probability propagation in clustered tensegrity structures, and we have developed a surrogate optimization model
to control the flexible structure deformation. An example of clustered tensegrity beam subjected to a clustered actuation is
presented to demonstrate the validity of the approach and its potential application. The three main novelties of the data-driven
framework are: (1) The proposed model can avoid the difficulty of convergence in nonlinear Finite Element Analysis (FEA),
by two machine learning methods, the Gauss Process Regression (GPR) and Neutral Network (NN). (2) A fast real-time
prediction on uncertainty propagation can be achieved by the surrogate model, and (3) Optimization of the actuated defor-
mation comes true by using both Sequence Quadratic Programming (SQP) and Bayesian optimization methods. The results
have shown that the proposed data-driven computational approach is powerful and can be extended to other UQ models or
alternative optimization objectives.

Keywords Clustered tensegrity structure · Machine learning · Uncertainty quantification and propagation · Optimization
inverse problem · Bayesian optimization

1 Introduction

Tensegrity structures have many advantages, such as
lightweight, deployable, and changeable stiffness, and thus
they find many applications in architecture, civil, aerospace,
and biomedical engineering [1–5]. Recent novel applications
are involved in soft robots that can walk on rough land, due
to their excellent resistance to impact [6–10]. A new trend to
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combine tensegrity structures and artificial intelligence tech-
nology is emerging with the rapid developments in robotics
and data science.

Tensegrity structures can be classified into two categories:
classical and clustered. The clustered tensegrity is integrated
by clustered (continuous) cables over the whole structure,
whereas the classical structure does not. In the past two
decades, extensive mechanics analyses and numerical simu-
lations were conducted by many authors [11–17] to investi-
gate the response of such structures. Existing computational
methods for clustered tensegrity include the Force Den-
sity Method (FDM) [12], the Dynamic Relaxation Method
(DRM) [14], and Finite Element Method (FEM) [15–17].
Material and geometric nonlinearities are both included in
the numerical analysis. Material nonlinearity arises from the
slack of cables or buckling of struts, while geometric nonlin-
earity comes from the large deformation and displacement
between its initial configuration and its deformed configura-
tion. The study conducted byMoored et al. [12] indicates that
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the number of internal mechanisms of clustered tensegrity
structures increases significantly in comparison to classical
structures [12]. For example, the state of prestress in the struc-
ture determines internal deformation mechanisms as well as
the stiffness of the clustered tensegrity. Focusing on clus-
tered tensegrity structures, Zhang et al. proposed a concise
co-rotational formulation that has a quadratic convergence
behavior [16]. The merit of the co-rotational formulation is
that alternative constitutive laws such as plasticity can be
considered directly in the local frame, and thus the existing
finite element and constitutive formulations can be directly
incorporated into the co-rotational framework. Kan et al.
developed an efficient ANC FEM to deal with the fric-
tion between clustered cables and pulleys [17], in which
the dynamic process of deployment was simulated, and the
effect of friction on deployment was investigated numeri-
cally. These studies revealed that the convergence property
of the numerical computations is sensitively dependent on
the state of prestress. A low prestress producing more inter-
nal mechanisms is detrimental to the convergence of the
computation algorithm. That is the main setback for the
state-of-the-art numerical analysis of clustered tensegrity
structures.

On the other hand, recently, a variety of data-driven com-
putational methods were proposed for mechanical analysis
as well as material and structural designs [18–26]. Kirch-
doerfer and Ortiz developed a data-driven computational
approach that was carried out directly from experimental
material data and pertinent constraints and conservation laws
[18]. An enhanced computational mechanics was proposed
by Oishi and Yagawa to optimize quadrature for the FEM
stiffness matrices, using a deep learning technology [19].
Oden and his co-authors developed a dynamic data-driven
computational framework based on Bayesian inference and
Karlmanfiltering.The framework includeduncertainty quan-
tification, model selection, and validation, and it was applied
to the prediction of damage in composites, tumor growth,
and evolution of COVID-19 [20–22]. Bessa et al. proposed
a comprehensive data-driven computational framework to
assist in the design and modeling of material properties and
microstructure of composites [23]. The data-driven frame-
work was extended to the design of ultra-thin shell structures
in the stochastic post-buckling range by using Bayesian
machine learning and optimization [24, 25]. A data-driven
approachwas proposed by Li et al. for the design of phononic
crystals with anticipated band gaps [26]. A multi-layer per-
ceptron was trained to establish an inherent relation between
band gaps and topological features, and then the trainedmod-
els were used for optimization.

Data-basedmachine learningmethodswere also proposed
for the gait planning of tensegrity robots. For example, Kim

Fig. 1 Sketch of clustered tensegrity fingers for capturing

et al. compared two techniques (greedy search and multi-
generation Monte Carlo method), which were employed to
find desired deformations and actuation strategies resulting
in robust rolling locomotion of the robots [7]. Surovik et al.
proposed Guided Policy Search (GPS), a sample-efficient
and model-free hybrid framework for optimization and rein-
forcement learning, which has been used to produce periodic
locomotion for a spherical 6-bar tensegrity robot on flat
or slightly varied surfaces [8]. Kimber et al. demonstrated
how unsupervised learning algorithms could be used to pro-
duce vibration-based locomotion [9]. By using a machine
learning algorithm able to discover effective gaits with a
minimal number of physical trials,Rieffel et al.made an easy-
to-assemble tensegrity-based soft robot capable of highly
dynamic locomotive gaits and studied the resilience behavior
in the face of physical damage [10].

However, these studies mentioned above are limited to
the classical tensegrity. The actuation design for a clustered
tensegrity with a prescribed function has been hardly seen
so far. One of the important reasons may be attributed to the
unstable convergence of numerical analysis, which prevents
the optimization design based on finite element analysis. In
addition, there are many uncertain factors, such as uncer-
tainties of material property, load, boundary and interaction
in real engineering [27–29]. Uncertainty quantification and
propagation in tensegrity structures were never studied
before. Quantifying these uncertainties how to propagate in a
clustered tensegrity structure could find an application in the
design of tensegrity fingers for capturing, which is shown in
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Fig. 1, in which PDF stands for probability density function
and the mechanism is actuated by shortening the long cable.

This paper aims at developing a novel data-driven com-
putational approach for both uncertainty quantification and
optimization designs of actuated clustered tensegrity struc-
tures. The rest of this paper is organized as follows. In
Sect. 2, we introduce a co-rotational finite element formu-
lation of clustered tensegrity structures, and the numerical
results are discussed. In Sect. 3, the data-driven computa-
tional framework is presented in detail, and an example of a
clustered beam is employed to illustrate the application. The
proposed computational framework is a comprehensive one,
which includes a series of knowledge-based components and
technologies, such as the design of experiments, uncertainty
propagation, surrogate models, sensitivity analysis, and real-
time prediction. As an application of the proposed model,
subsequently, an optimization design of the clustered tenseg-
rity beambased on the surrogatemodel is discussed inSect. 4.
Finally, we conclude the paper with some remarks and per-
spectives.

2 Co-rotational finite element formulation

2.1 Tangent stiffness matrix

Tensegrity structures could include clustered (continuous)
cables (as shown in Fig. 2a) or not (as shown in Fig. 2b).
The structure including clustered cables is called clustered
tensegrity, whereas the other is called classical tensegrity.
While static analysis of clustered tensegrity is considered,
three basic assumptions are usually adopted to simplify the
model as follows [12, 14, 16],

• Pulleys are frictionless.
• All the loads are applied at pin-joints.
• The displacement is large, but the strain is such small that
a linear stress–strain relation can be used.

Since pulleys are frictionless, each sub-element in one
clustered cable (which can be regarded as a super element)
have the same internal force. By the co-rotational approach,
the tangent stiffnessmatrix of a clustered cable can be derived
by variation calculation for the internal force vector. The
formulation was proposed by the authors before [16]. Here
we present it directly. For a clustered cable including n sub-
elements, the stiffness matrix can be given by

Ke � K̃t1 + K̃t1 + K̃t2, (1)

K̃t1 �
n∑

ei�1

TT
eiKlTei , (2)

K̃t1 �
n∑

ei�1

n∑

ej�1

TT
eiKlTej (ei �� ej), (3)

K̃t2 � A0σ

le

[
A − 1

l2e
ce(x ′)ce(x ′)T

]
. (4)

In Eqs. 2–4, the subscript ei and ej denote the sub-
elements included in the super element e. T is a transfor-
mation matrix consisting of direction cosines and sines. Kl

is the local stiffness matrix of each sub-element, A is a con-

stant matrix

[
I3×3 −I3×3

−I3×3 I3×3

]
and ce(x ′) is an elementwise

direction cosine vector. A, l, E and σ are the area of cross-
section, rest length, Young’s modulus, and engineering stress
of a cable, respectively. Other matrices and vectors can be
found in the authors’ previous work [16]. In Eq. 1, the first
part K̃t1 denotes the material stiffness of the n sub-elements.

The second part K̃t1 describes the stiffness effect of one sub-
element on others, and it is induced by the relative sliding
between clustered cables and pulleys. The third part K̃t2 is
the stress stiffness that is included in a conventional geomet-
rically nonlinear formulation. It should be pointed out that if
the second part is removed from Eq. 1, Ke will change to be
the stiffness matrix of n classical (short) cables connected by
pin-joints.

The nodal internal force of a super element e (a clustered
cable) is given by

fe �
n∑

ei�1

TT
ei fei . (5)

fei is the internal force vector of each sub-element. With
the tangent stiffness matrix and internal force vector, nonlin-
ear finite element analysis can be conducted for a clustered
tensegrity structure by the Newton–Raphson scheme. Note
that all the cables have no resistance to compression, and it
must be dealt with in the computer program.

2.2 Actuation and response of a clustered tensegrity
beam

A clustered tensegrity beam is selected as an example in the
paper to illustrate the application of a data-driven computa-
tional approach. As shown in Fig. 3, the structure includes 4
clustered cables, 32 short cables, and 12 struts. The structure
is self-equilibrated by prestress that is introduced by shorten-
ing the two top clustered cables by 2.55% of the rest length.
To deform the structure, actuations are applied to four clus-
tered cables. The actuation is assumed to be quasi-static, and
thus the inertial effect is neglected. Numerical simulation is
carried out by using the co-rotational (CR) finite element
formulation. The two top clustered cables are shortened by
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Fig. 2 Clustered and classical
cables with n + 1 nodes: a The
clustered cable grouped by n
cable elements; b The classical
pin-joint structure composed of n
cable elements

Fig. 3 A clustered tensegrity
beam including four clustered
cables: a A perspective view;
b A top view; c A side view
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Fig. 4 Deformed shapes of the clustered tensegrity beam under different actuations: a, c and e A side view; (b), d and f A top view

10%, while the two bottom ones are extended by 10%. The
actuation is implemented gradually by an increment of 1%.
Three snapshots of deformed shapes produced by 1%, 5%,
and 10% actuations are plotted in Fig. 4. A large deflection
occurs along axis-zwhen the actuation is up to 10%. Besides,
a deflection along axis-y also becomes larger and larger with
the increase of actuation.

Unfortunately, the FEA of the clustered tensegrity often
encounters the problem of convergence, which is caused by
mechanismmodes [12]. FEAof the clustered tensegrity beam
(shown in Fig. 3) could get multiple solutions, as shown in
Fig. 5. Figure 5a shows an upward deflection that is desired
for the application of a flexible manipulator, while Fig. 5b
shows an irregular deformed configuration that cannot be

used. The two configurations are obtained by setting different
lengths of loading steps.

Further, we try on large amounts of simulations for a thor-
ough investigation. In the first group of simulations, gravity is
considered. 100,000 actuations are changed randomly within
the interval [1%,1 0%]. The top two clustered cables have the
same actuation A_14, while the bottom two have A_23. A
statistical pie chart of the first group of simulations is plot-
ted in Fig. 6a. It can be found that the result of an upward
deflection takes up 98.4%, the irregular deformation 1.4%,
and the unconvergence only 0.2%. In the second group, grav-
ity is neglected. 100,000 actuation combinations for the four
independent clustered cables, (A_1, A_2, A_3, and A_4),
are randomly drawn from a uniform distribution within the
interval of [1%,30%]. The statistical pie chart is plotted in

123



Computational Mechanics

Fig. 5 Deformed configuration producedby actuations:aAstable struc-
ture; b A collapsed irregular structure

Fig. 6b. It can be seen that about half of the simulations pro-
duce an upward deflection, and irregular deformation takes
up 49.4%. To overcome such difficulty an effective surro-
gate model is needed. Bayesian method has its advantages
because they deal with noisy observations by inferring a
smooth average response and quantifying uncertainty[25].
Without losing generality, the neural network model as an
example of another way of building a surrogate model has
also been purposed and discussed.

In addition, the unstable convergence prevents the opti-
mization design of actuation based on FEM, in that the
finite element equilibrium equation needs to be solvedwithin
each iteration to update the objective function. This problem
will be solved later in this paper, by proposing an efficient
data-driven computational approach that is available for the
optimization of actuation.

3 Data-driven computational framework

A comprehensive data-driven computational approach is
proposed for analysis anddesignof clustered tensegrity struc-
tures in this section. It includes three parts, which are the
design of experiments, surrogate models, and uncertainty
propagation.Aflowchart of the framework is plotted inFig. 7.
Next, each part will be explained in detail.

Fig. 6 Statistical pie chart of 100,000 FEM simulations: aWith gravity;
bWithout gravity

3.1 Design of experiments

The design variables are the actuation of clustered cables
and temperature in classical cables. As shown in Fig. 3a,
the four clustered cables can be divided into two groups.
The first group includes the two clustered cables (No. 1 and
No. 4) on the top surface, while the second group includes
the two (No. 2 and No. 3) on the bottom. Actuations are
denoted by A_14 and A_23, respectively. Note that clus-
tered cables No. 1 and No. 4 are always shortened, while
No. 2 and No. 3 are always extended. Temperature loads are
divided into three groups. The temperature load applied to
classical cables on the top surface is denoted by T_top. Sim-
ilarly, T_bottom is for classical cables on the bottom surface,
while T_middle is for the cables between the top and bot-
tom surfaces. The input variable x is five-dimensional, i.e.,
x � [

A_ 14, A_ 23, T_ top, T_ middle, T_ bottom
]
. The

range of actuation is [9%, 10%], and the temperature changes
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Fig. 7 Flow chart of the
data-driven computational
approach

within [0, 150◦C]. The dataset of input variables is designed
as A×T � 100×125 � 12, 500. Without any prior knowl-
edge of the problem, space-filling designs treating all the
input variable domains uniformly are the first choice [30].
Among all the sampling methods, Latin Hypercube Sam-
pling and the Sobol sequence are widely adopted because of
their high efficiency and ease of use [31, 32]. Herewe employ
the Sobol sequence to produce the input data. Figure 8 shows

DoEs for the two-dimensional actuation variables and three-
dimensional temperature variables obtained by the Sobol
sequence within the bounds given before. After the space of
input design variables is defined, the next step is to collect its
related quantities of interests (QoIs), q. The data pairs and q,[(
x1, q1

)
,
(
x2, q2

)
, ...,

(
xN , qN

)]
create the database that

is required in the training of machine learning methods. N is
the total number of samples in the design space. In this study,
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Fig. 8 Design of experiments
with 100 actuations and 125
temperatures, produced by Sobol
sequence: a A_ 14 and A_ 23;
b T_top and T_bottom;
c T_bottom and T_middle;
d T_top and T_middle

we focus on the displacements at the free end (the displace-
ments at node 23) of the tensegrity beam, with q � [u, v,
w].

12,500 simulations are carried out. The material property
of cables and bars are presented in Table 1. One simulation
costs about 0.3 s, and the preparation of input dataset costs
about 1 h. The uncertainty of deformation (the displacement
at node 23) is shown in Fig. 9. For clarity, the states of defor-
mation are sorted in ascending order by the magnitude of
displacement. In the plot, a box plot is used, where the cen-
tral mark is the median of quantity. It shows the 25th and
75th percentiles with the box edge, and the top and bottom
dash line represent the maximum and minimum. Each box is
obtained by the combination of a unique actuation and differ-
ent temperatures. In summary, Fig. 9 indicates that the effect
of uncertainty of temperature (T_top) on deflection-z is high,
while the effect of temperature on deflection-y is negligible.

3.2 Surrogate models

Uncertainty quantification and propagation for a problem
with high dimensionality require a huge amount of computa-
tion on DoEs. However, conventional FEA is too expensive
for such stochastic study which usually involves thousand
to million of simulations. Machine Learning methods allow
building efficient surrogate models by using a predetermined
DoEs analysis dataset. Even though the training dataset
obtained byDoE analysis is still relatively large, it needs to be
prepared only once, and the constructed surrogate model can
be used for prediction and optimization design. For the sur-
rogate models, the inputs are actuations of four long cables
and the output is the deflection of the tensegrity beam (aver-
age displacement-z at nodes 18 and 23). In this paper, both
Gaussian Process Regression (GPR) [33] and Neural Net-
work (NN) [34] are employed to construct surrogate models,
and their performance is compared.

To build the surrogate models, the 12,500 FEM simula-
tions are separated into a 10,000 sample training set and a
2,500 sample validation set.
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Table 1 Material property of
members Member Material Cross-sectiosn

area(cm2)
Young’s
modulus(kN/cm2)

Weight(kN/cm3)

Struts Aluminum 255 7000 2.7 × 10–5

Cables Stainless-steel 0.5026 11,500 7.85 × 10–5

Fig. 9 Uncertainty quantification of displacements subjected to temper-
ature variation: a displacement-y; b displacement-z

Gaussian Process Regression (GPR) is a type of Bayesian
non-parametric regression method that allows flexible rep-
resentation of the posterior distribution of independent
variables by utilizing Gaussian Processes (GPs) which are
distributions over functions [32], such that

f ∼ GP(μ(x), k(x, x′)). (6)

μ : Rd → R is the mean function and k : Rd × Rd → R
is the covariance function. In this paper, k is chosen to be the

Radial Basis Function (RBF) kernel. GPR significantly con-
tributes toward modeling various problems flexibly. Here a
separate GPR is trained for each output-dependent variable.
However, the computation is expensive for a large-scale prob-
lem.

Neural Network (NN) maps the input vector x into output
y, through a number of linear transformations. The mapping
is achieved through the activation function σ (Wx +b), where
are the node weight vector and b the offset bias. Both must
be found during the learning process. Interested readers are
referred to the literature [35] for the details. In this study, a
Neural Network with 2 hidden layers, each consisting of 50
neurons, is constructed. Mean square error is selected as the
loss function. A two-stage optimization strategy is adopted
for training. TheNeural Networkmodel is firstly trainedwith
the Adam optimization method [36] for 5,000 iterations. In
the second stage, a derivative-based L-BFGS optimization is
used to further improve the accuracy of model fitting [37].

Relative errors such as E and R2 are selected as the error
metrics to estimate the accuracy of the two methods. Specif-
ically, they are calculated as

Eqi � 1

N

N∑

1

∣∣q̂i − qi
∣∣

|qi | , (7)

R2
qi �

N∑
1

(
q̂i − qi

)2

N∑
1

(
qi − q̂i

)2
. (8)

where qi , qi is the quantity of interests and its mean, respec-
tively, while q̂i is estimated by the surrogate model. E shows
the relative error between FEM and surrogate models, while
assessing how strong the linear relationship is. Figure 10
presents the errors of displacement-y and displacement-z at
node 23 obtained by the two methods, using different sizes
of DoEs. It can be found that the errors are both very small
as the number of training data increases to 1,000. The rela-
tive error of GPR reaches around 1× 10−5%, while NN has
an error about 1 × 10−2%. Figure 11 shows the comparison
between FEM and surrogate models trained by 1,000 sam-
ples. GPR has R2 � 0.9999 for both displacement-y and
-z, while NN has R2 � 0.9932 and R2 � 0.9989 respec-
tively for displacement-y and -z. It is concluded that GPR
has better accuracy than NN when they are both used for a
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Fig. 10 Error of displacements predicted by Gaussian Process Regres-
sion and Neural Network: a displacement-y; b displacement-z

small training dataset. Nevertheless, the accuracy of NN is
still enough high for an application in engineering. However,
to train 1,000 samples costs 147.3 s by NN, while GPR costs
630.3 s. When the training samples increase to 100,000, NN
costs about 1,000 s, while GPR costs several hours. In addi-
tion, the inference time to predict 100,000 new points by NN
is only about 3.0 ms which is faster than GPR by three orders
of magnitude. The prediction by NN is real-time, and thus it
is adopted for the optimization design in the next section.

3.3 Uncertainty propagation

The trained surrogate model can be used to quantify
the uncertainty of response (uncertainty propagation) with
Monte Carlo simulation. Monte Carlo simulation for uncer-
tainty propagation calculates the desired quantity by ran-
domly drawing from the specified uncertainty distributions
of input variables. A_14 and A_23 are set to be 10%, and
assumed to suffer from a random mechanical error φ, i.e.,

A_14 � A_23 � 0.1 − φ. (9)

Fig. 11 Comparison of results obtained by surrogate models and FEM:
a displacement-y; b displacement-z

φ obeys two random distributions: (a) a Sobol distribution
within [0,1%,]; (b) an exponential distributionwith an expec-
tation of 0.001. In the two cases, the probability distribution
functions (PDF) of actuation A_14 (A_23) can be plotted in
Fig. 12a and b, respectively. QoI is the displacement along
direction-z at node 23. The trained NN surrogate model in
previous section is employed to complete the prediction of
QoI. The histogram and its related kernel density estimation
are shown in Fig. 12c and d. The results are accumulated
by using 10,000 new samples for input variable distribution.
QoI presents a normal distribution (Fig. 12c) when the actu-
ation obeys a Sobol distribution (Fig. 12a); QoI presents an
approximately exponential distribution (Fig. 12d) when the
actuation obeys an exponential distribution (Fig. 12b). The
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Fig. 12 Uncertainty propagation in the clustered tensegrity beam pre-
dicted by the Neural Network surrogate model: a PDF of actuation

obeying a Sobol distribution; b PDF of actuation obeying an exponen-
tial distribution; c PDF of displacement-z obtained by case (a); d PDF
of displacement-z obtained by case (b)

Table 2 Statistics of
displacement-z under different
actuation distributions

Statistical values (cm) Sobol distribution Exponential distribution

FEM Neural network FEM Neural network

Mean 52.60 52.60 50.10 50.11

Std 0.64 0.64 1.34 1.33

Min 48.48 48.50 46.42 46.41

Max 54.03 54.01 53.88 53.88

25% 52.20 52.19 49.15 49.15

50% 52.63 52.63 50.08 50.08

75% 53.08 53.08 51.06 51.06

123



Computational Mechanics

reference solution is obtained byMCswith the same samples
byFEM.Additionally, the statistical results are listed inTable
2, which shows the FEM reference solution and Neural Net-
work prediction are in good agreement. The reference MCs
need additional 10,000 FEM simulations, which costs about
2695 s, while the NN surrogate model takes only 3.0 ms.

4 Bayesian optimization for the design
of actuation

4.1 Model design

A global sensitivity analysis on the four actuations (A_1,
A_2,A_3, andA_4, each acting on the related clustered cable
independently) is carried out to determine the key variables
before the optimizationdesign. Interested readers are referred
to Appendix A for the implementation of global sensitivity
analysis. Here, we just present the result. Figure 13 plots first
order and total sensitivity indices calculated by 10,000 FEM
simulations whose DoEs are obtained by Sobol sequence for
four actuations within the bound [0,30%]. It indicates that
actuations to the two clustered cables (A_1 and A_4) on the
top surfaces havemuch stronger effects on the displacement-z
than the two bottom ones (A_2 and A_3). Therefore, actu-
ations to the two top clustered cables are separated, while
the two bottom ones are bounded together and denoted by
A_23, in consideration that the computational cost increases
exponentially with the dimension of design variables.

Subsequently, 100,000 simulations by FEM sampled with
Sobol sequence in the 3-dimensional (A_1, A_23, and A_4
within the bound [0,30%]) input variable space are carried
out. The converged results of the simulation are divided into
groups: (a) an upward deflection and (b) an irregular config-
uration. The classification of a huge dataset is achieved by
the HDBCAN algorithm that is introduced in Appendix B.
After the classification, 98,365 data with an upward deflec-
tion are used for training to construct a surrogate model by
the Neural Network. The training process costs about 1000 s.
In the following text, the surrogate model will be used for the
optimization design and is denoted by a function,

q�(u, v, w) � Hnn(A_ 1, A_ 23, A_ 4). (10)

4.2 Bayesian optimization

A myriad of optimization methods is available in the litera-
ture. Typically, they can be classified into derivative-based
or derivative-free optimization methods. Derivative-based
methods usually have a faster convergence rate [38, 39].
Derivative-free methods are mainly reserved for applications
where direct access to the derivatives of DoIs do not exist or

Fig. 13 Sensitivity indices of displacements (Actuation: 4-
dimensional): a displacement-y; b displacement-z

is too time-consuming to compute [40]. Here, we adopt a
derivative-free Bayesian optimization method that attempts
to find the global optimumwithin aminimum number of iter-
ations [41]. It incorporates prior belief about f and updates
the prior with samples drawn from f to get a posterior that
better approximates f . Bayesian optimization also uses an
acquisition function that directs sampling to areas where an
improvement over the current best observation is likely.

In Bayesian optimization, a prior is incorporated with the
objective function. The posterior is cheap to evaluate and is
used to propose points in the search space where sampling is
likely to yield an improvement. Proposing sampling points in
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Fig. 14 The range of
displacement-z (A_1, A_23 and
A_4 within the bound [0, 30%])

the search space is done by acquisition functions. There are
many different choices of the acquisition functions, such as
the maximum probability of improvement (MPI), expected
improvement (EI) and upper confidence bound (UCB) [42].
Here, we use UCB which is most widely used. It is defined
as

uUCB(x ; ξ ) � μ(x) + ξσ (x). (11)

ξ is a positive trade-off parameter; μ(x) and σ (x) are the
mean and standard deviation of the GPR posterior predic-
tion. The first summation term in Eq. (11) is an exploitation
term and the second summation term is an exploration term.
Exploitationmeans sampling where the surrogate model pre-
dicts a high objective, while exploration means sampling at
locations where the prediction uncertainty is high. Exploita-
tion and exploration both correspond to high acquisition
function values and the goal is to maximize the acquisition
function to determine the next sampling point. The parameter
ξ determines the amount of exploration during optimization.
The recommended default value of ξ � 0.01 is used here.

4.3 Numerical results

The optimization objective is to find an actuation strategy,
which would achieve a maximum deflection-z while keeping
a minimal deflection-y of the clustered tensegrity beam. The
optimization is formulated as follows,

(12)
max . c (A_ 1, A_23, A_ 4) � |w|

|v| + |w|
s.t . q � (u, v, w) � Hnn (A_ 1, A_23, A_ 4)

A_ 1, A_23, A_ 4 ∈ [0, 0.3]

.

In the equations above, w denotes the average of
displacement-z at nodes 18 and 23 (at the free end), and v
is the average of displacement-y. The first constraint con-
dition represents the equilibrium, expressed by the trained
surrogate model. The second indicates that the actuations
are limited to the bound [0, 0.3].

The contour plot interpolated from the training dataset is
shown in Fig. 14. It can be found that the maximum aver-
age displacement-z at nodes 18 and 23 is about 144 cm, as
the displacement-y vanishes. The question is what actuations
should be applied? Both the derivative-based optimiza-
tion(SQP[43] and BFGS[37]) and Bayesian optimization
converge to the same result. The optimized displacement-
z at the free end is 146.85 cm, while the displacement-y is
1.00 cm. The design variables are A_ 1 � A_23 � 0.3 and
A_4 � 0.16.

Comparison of the clustered tensegrity beams before and
after optimization is shown in Fig. 15. Compared with
Fig. 15c and d, it can be observed that a deflection along
direction-y is almost eliminated. Four identical beams can
be assembled to form a flexible capturing mechanism, as
shown in Fig. 16. The optimized one has a smaller clearance,
comparing Fig. 16c and d. After the optimization the opening
space formed by the ‘fingertips’ are greatly reduced. In the
final design, the opening gap has been limited to 18.22 cm,
and its area has been compressed down to 332 cm2 from
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Fig. 15 Comparison of actuated deformations before and after optimization: a and c A side view; b and d A top view

2910 cm2. The optimization result is significant for captur-
ing a smaller object.

Convergence curves of both derivative-base optimiza-
tion(SQP and BFGS) and Bayesian optimization are plotted
in Fig. 17. Bayesian optimization took about 2 min, while,
thanks to the efficient neural network model, the derivative-
based optimization finished in less than 30 s. The conver-
gence behaviors are quite different. 200 initial value points
via the Latin Hypercube sampling are employed to start the
multi-start SQP algorithm [43], which takes over 2,000 func-
tion evaluations to get the global optimum.On the other hand,
Bayesian optimization adopts the upper confidence bound
as the optimization criteria. Unlike the random search in
SQP, Bayesian optimization efficiently reaches the global
optimum via less than 40 function evaluations. In addition,

the differences in sampling strategies are clear in their inter-
mediate solution distributions. We sample 200 intermediate
solutions in the optimization process and draw the histogram
for both methods. As shown in Fig. 18, SQP shows an almost
‘uniform’ distribution for all local minimums, which is cor-
responding to the uniform distribution of initial value points.
Similar behavior is observed in theBFGS results. InBayesian
optimization, although the exploration strategy built in the
acquisition function tends to explore a wider solution space,
it shows a clear concentration of sampling around the optimal
value of z � 146.85 cm.

It needs to be pointed out that even though Bayesian opti-
mization takes fewer function evaluations, but the overall
exploration algorithm takes longer time to finish. Benefit-
ing from the efficiency of the neural network model, the
derivative-based method, such as SQP and BFGS converged
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Fig. 16 Capture mechanism consisting of four tensegrity beams before and after optimization: a and c A side view; b and d A top view

within 30 s. When processing speed is an important factor,
the neural network surrogate model may be a more favored
choice.

5 Concluding remarks

This paper presents a data-driven computational approach
that overcomes the difficulties encountered by the conven-
tional FEA and promotes the design of actuation to clustered
tensegrity structures. Uncertainty propagation of clustered
actuation and temperature stress on structural response is
investigated in detail by the Monte Carlo method based on

an efficient surrogate model. Importantly, a surrogate model-
based optimization is carried out by using the Bayesian
optimization method that can get the optimized solution effi-
ciently. The result of optimization shows that the actuated
deformation can be controlled accurately by adjusting the
clustered actuations, and thus the data-driven computational
approach could find an application to design of tensegrity-
based flexible manipulators. The prediction and optimization
based on the surrogate model are both in real time.

Implementation of the proposed data-driven computa-
tional approach utilize many statistical tools. Firstly, Sobol
sequence is employed to produce input database of DoEs.
Secondly, a clustering algorithm is adopted for data selection
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Fig. 17 Convergence curves: a SQP; b BFGS; c Bayesian optimization

to distinguish the desired upward-deflected configuration and
irregular deformed shape. Thirdly, global sensitivity analysis
is used to reduce the dimensions of design variables. Some
improvement is worthwhile to be considered in the future,
such as.

• The input dataset can be produced with real probabilistic
or non-probabilistic models from experiments rather than
the Sobol sequence.

Fig. 18 Histogram of iterative solutions: a SQP; b BFGS; c Bayesian
optimization
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• The prestress or physical properties of cables and struts
could be considered as the design variables.More complex
objective functions or constraints should be embedded into
the optimization designs of tensegrity-basedmanipulators,
such as the stability of structures.

• Experiments are necessary for real-time model validation
based on the way of Bayesian inference.
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Appendix A

Global sensitivity analysis

Global Sensitivity Analysis (GSA) is employed to quan-
tify the uncertainty of QoIs with respect to input variables,
their individual contributions, or the contribution of their
interactions. GSA is significant for reorganizing DoEs in
the data-driven computational framework and for reducing
dimension in optimization design. There are many methods
for calculating such index [44–46]. In this example, Sobol’s
method, a variance-based method is adopted [47]. It helps to
get not just the individual parameter’s sensitivities but also
gives a way to quantify the affect and sensitivity from the
interaction between parameters. The main idea for the com-
putation of sensitivity indices is to decompose the function
into summands of increasing dimensionality, namely,

(13)

y � f0 +
∑

i

fi (xi )

+
∑

i

∑

i< j

fi j (xi , xj)... + f1, 2...(xi , xi , ...xk),

where k is the number of independent variables. The sensi-
tivity of each input is often represented by a numeric value,
called the sensitivity index. The first-order index measuring
contribution to the output variance by a single input variable
alone can be calculated by

Si � Vxi (Ex∼i (y|xi )
V(y)

, (14)

V(y) � Vxi (Ex∼i (y|xi )) + Exi (Vx∼i (y|xi )). (15)

In Eqs. (15) and (16), Vxi (·) and Exi (·) denote variance
or mean of argument (·) taken over xi , respectively, while
Vx∼i (·) and Ex∼i (·) denote the same quantities taken over all
factors except xi .

Fig. 19 Sensitivity indices of displacements (Actuation: 2-dimensional,
Temperature: 3-dimensional): a displacement-y; b displacement-z

Additionally, the total-order index measures the contribu-
tion to the output variance caused by amodel input, including
both its first-order effects (the input varying alone) and all
higher-order interactions. The total-order index is given by

ST i � Ex∼i (Vxi (y|x∼i)

V(y)
. (16)

X∼i is a N × (din − 1) matrix of all factors but xi , where N
is the sample size.

The calculated Sensitivity indices with 100,000 DoEs are
plotted in Fig. 19. As observed, the sensitivity of T_bottom
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(temperature subjected to cables on the bottom surface) to
displacements at node 23 is negligible. Of all the input vari-
ables, the sensitivity is much larger for actuation than for
temperature. One input variable could have different sensi-
tivities to different QoIs. For example, A_14 (actuation to
clustered cables on the top surface) exhibits a high sen-
sitivity to displacement-z, but a relatively low sensitivity
to displacement-y. A_23 shows the highest sensitivity to
displacement-y. Qualitative analysis is helpful for optimiza-
tion design to reduce the dimension of variables.

Appendix B

HDBSCAN algorithm

After putting all 100,000 DoEs through FEA, the resulting
QoIs are drawn as a scatter plot in Fig. 20a. Due to uncon-
vergence and the collapse of the structure, not all of the
100,000 DoEs can be used for training. HDBSCAN (Hier-
archical Density-Based Spatial Clustering of Applications
with Noise) is an unsupervised clustering algorithm used for
outlier detection in data selection [48]. It extends DBSCAN
by converting it into a hierarchical clustering algorithm and
then using a technique to extract a flat clustering based on the
stability of clusters [49]. It is quite different from the classical
K-mean clustering [50], which relies on strong assumptions
about the data: The total number of clusters K is prescribed
by the user without any insight from the data, and the data
is assumed scattering around these K cluster centroids fol-
lowing a Gaussian distribution. Following the literature [51,
52], five steps of the HDBSCAN algorithm are explained as
follows,

• Step 1: Estimate the density of distributed data.

Estimate the density of distributed datawithmutual reach-
ability distance dmreach - k(a, b) � max{corek(a), corek(b),
d(a, b)}, where corek(a) means the distance between a and
its k-th nearest neighbor, d(a, b) is the distance between a
and b. Here the mutual reachability distance is an estima-
tion of the Probability Density Function (PDF) of the data,
λ � 1

dmreach−k
. A smaller value in d implies a larger PDF λ.

• Step 2: Build a minimum spanning tree for the data.

Consider the data as a weighted graph with the data points
as vertices and an edge between any two points with a weight
equal to the mutual reachability distance of those points. In
such a minimum spanning tree, no lower weight edge could
connect the components.

• Step 3: Build the cluster hierarchy.

Fig. 20 Outlier detection by a clustering algorithm,HDBSCAN: aTotal
data; b The selected data

Given the minimal spanning tree, sort the edges of the
tree by distance in increasing order and then iterate through,
creating a new merged cluster for each edge.

• Step 4: Condense the cluster tree.

The first step in cluster extraction is condensing down the
large and complicated cluster hierarchy into a smaller tree
with a little more data attached to each node. The minimum
cluster size is taken as a user prescribe parameter to the algo-
rithms.

• Step 5: Extract the clusters.
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Now, for each cluster compute the stability as∑
p∈cluster

(
λp − λbirth

)
, whereλbir th is the valuewhen the clus-

ter split off and became its own cluster, λp is the value at
which that point ‘fell out of the cluster’. Declare all leaf
nodes to be selected clusters. Work up through the tree in the
reverse topological sort order. If the sum of the stabilities of
the child clusters is greater than the stability of the cluster,
then we set the cluster stability to be the sum of the child
stabilities. Otherwise, we declare the cluster to be a selected
cluster and unselect all its descendants. Once we reach the
root node, we call the current set of selected clusters our flat
clustering, and the algorithm is finished.

The HDBSCAN algorithm makes a few implicit assump-
tions about the data and asks the user to give the minimum
cluster size as the only control parameter. In this study, we
used the Python implementation provided by McInnes [52].
Here, failure cases are regarded as noise, and the minimal
cluster size is set to be 40. The results are separated into four
groups, and the largest group which contains all the viable
solutions to the DoEs has a total of 98,365 samples which
take up over 98.4% of the data, as shown in Fig. 20b. The
converged results from the first two groups are selected to
create the training database for the data-driven studies. It is
worthwhile tomention that even though no convergence con-
straints are given, all the selectedDoEsmeet the convergence
tolerance.
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