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Two-Scale '3C Metabolic Flux Analysis for Metabolic
Engineering

David Ando and Hector Garcia Martin

Abstract

Accelerating the Design—Build—Test—Learn (DBTL) cycle in synthetic biology is critical to achieving rapid
and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn
phase involves using data obtained from the Test phase to inform the next Design phase. As part of the
Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular
metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing
future experimental designs and engineering methodologies. Furthermore, the measurement of intracellu-
lar metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how
carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux
analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data
from a **C labeling experiment and immediately turn it into a determination of cellular fluxes that points in
the direction of genetic engineering strategies that will advance the metabolic engineering process.

For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Model-
ing jJQMM) library, which provides an open-source, python-based framework for modeling internal
metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific
bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as
Flux Balance Analysis, **C Metabolic Flux Analysis, and it introduces the capability to use '*C labeling
experimental data to constrain comprehensive genome-scale models through a technique called two-scale
13C Metabolic Flux Analysis (2S-'*C MFA) [1]. In addition to several other capabilities, the JQMM is also
able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the
jQMM library is illustrated through a step-by-step demonstration, which is also contained in a digital
Jupyter Notebook format that enhances reproducibility and provides the capability to be adopted to the
user’s specific needs. As an open-source software project, users can modify and extend the code base and
make improvements at will, providing a base for future modeling efforts.
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1

Introduction

The capability to change an organism’s DNA through genetic
engineering has radically changed the nature of biology in the last
few decades. Synthetic biology was born in the twenty-first century
as a reinterpretation of genetic engineering applying systematic
design [2] and traditional engineering principles. One of those
engineering principles is the Design—Build-Test-Learn (DBTL)
cycle: a loop used recursively to obtain a design that satisfies the
desired specifications [3]. The DBTL cycle starts with the design
(D) of the biological system to produce the desired outcome. That
design is built (B) in the next phase from DNA parts and an
appropriate microbial chassis using synthetic biology tools. The
next phase involves testing (T) whether the biological system per-
forms as desired in the original design using a variety of assays (e.g.,
production measurement or/and omics profiling). It is extremely
unlikely that the first design behaves as desired, and further
attempts will most likely be needed to meet the desired specifica-
tion. It would be desirable not to do these posterior attempts
randomly, but rather to use the data generated in previous rounds
to converge towards engineering goals more quickly. This phase is
called the learn (L) phase of the DBTL cycle and is, arguably, the
hardest and most weakly supported step in current metabolic engi-
neering practice [3]. However, given the ever increasing amounts
of data provided by the postgenomics revolution and current
increasingly available high-throughput workflows, there is an
imperative need to efficiently use the test data to provide actionable
items for metabolic engineers: i.e. suggestions that can be acted
upon with available tools and protocols (e.g., to change a particular
gene’s RBS or knock out a particular gene in order to increase a
specific flux or to accelerate growth).

In this chapter we will show how to use metabolomic data
obtained from '3C labeling experiments to generate actionable
items to increase acetate production in E. coli. We will use the
JBEI Quantitative Metabolic Modeling library jJQMM) [4] to
calculate cellular fluxes and make predictions. The jQMM library
is currently capable of measuring and predicting internal metabolic
fluxes using three different techniques: *3*C Metabolic Flux Analysis
(**C MFA) [5], Flux Balance Analysis (FBA) [6], and two-scale '*C
Metabolic Flux Analysis (28-'3C MFA) [1]. First we will provide a
brief description of '3C labeling experiments, which provide the
needed experimental data, and which consist of cellular cultures in
which the feed (e.g., glucose) is labeled with carbon atoms that
have an extra neutron (i.e. carbon isotopes) at selected positions.
We will then succinctly describe how to measure the ensuing label-
ing in the metabolites in the studied cells (these are steps more
appropriately described as part of the test phase). Next we describe
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in detail how to use the labeling data from different metabolites in
the cell to infer what the cell’s internal metabolic fluxes are through
a technique called two-scale **C Metabolic Flux Analysis (2S-'°C
MFA). 28-'3C MFA introduces the capability to use experimental
13C labeling data to constrain comprehensive genome-scale models
(rather than small models of central metabolism as done with
traditional '*C MFA) by taking into account the system-wide bal-
ances of metabolites [7]. Finally, we will show how to use the
COBRA (Constraint-Based Reconstruction and Analysis) [8]
methods of MoMA (Minimization of Metabolic Adjustment) [9]
and ROOM (Regulatory On/Off Minimization) [10] to predict,
based on the measured flux profiles, which gene knockouts will
increase acetate production in E. col.

2 Materials

The general workflow for determining and plotting of metabolic
fluxes is shown in Fig. 1. First, a microbial culture is grown with
13C-labeled glucose. Next, mass spectroscopy is used for the analy-
sis of the distribution of '*C in metabolites taken from cell culture

Culture grown with '3C labeled
glucose

Mass Spec analysis of metabolite
mass distributions vectors (MDVs)

MDVs are formatted for input into
the QMM

25-13C Metabolic Fluxes
determined at genome scale

Fluxes plotted in the QMM or
Arrowland

Fig. 1 Overview of the workflow for 'C Two-Scale Metabolic Flux Analysis. The
Test phase of the workflow is in blue while the Learn phase steps are in red
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2.1 Computational
Requirements

2.2 Software
Installation
and Configuration

2.2.1 Self-Installation

to create Mass Distributions Vectors (MDVs) [11] for each
measured metabolite, which give the relative frequency of isotopo-
mers. Each isotopomer of a metabolite has a different number of
carbons with an extra neutron, and each isotopomer can have the
heavy carbon(s) at any carbon(s) located within the metabolite.
The different labeling patterns for the measured metabolites will
ultimately provide enough information to determine the internal
flux profile [1]. MDVs then need to be formatted for input into the
jQMM, so that metabolic fluxes can be calculated at the genome
scale using the 28-'3C methodology. For genome-scale models,
there are thousands of reactions, so fluxes can be more easily
understood via plotting in Arrowland software (http://public-
arrowland.jbei.org) or within the jQMM.

Procurement of a modern desktop computer or server system that
is capable of running heavy computational loads for extended
periods of time is necessary. The more available cores/CPUs in
the system the better, as the jQMM library is parallelized and can
leverage additional cores/CPUs to reduce computation time. Win-
dows, Mac, and Linux operating systems are all compatible with
running python code, which the jQMM is written in. Error-
correcting code RAM (ECC RAM) is recommended to reduce
the probability of faulty calculations over lengthy computations
due to errors in writing and reading to RAM memory. Xeon pro-
cessors from Intel for example, are specially designed for long
continuous computations at high CPU load, unlike the consumer
series of desktop processors sold by Intel such as the i7 and i5 series
(circa 2016).
28-13C MFA computations require the following:

1. At least 32 GB of RAM and 500 GB of free disk space.
2. Ownership of both GAMS and CONOPT solver licenses.
3. Python version 2.7 installed.

Installation of the required libraries for using the jQMM can be
done in two different ways: the traditional way, which includes a
self-installation on the hardware at hand, or via the use of a pre-
configured and preinstalled Docker container (http://www.
docker.com). We recommend using our pre-configured Docker
container for use of the JQMM as the flux modeling environment
will be immediately usable. However, for expert users or those who
wish to use a custom installation, a self-installation is readily
achieved.

First install the following jJQMM dependencies to the Python 2.7
environment:
1. libSBML: available at http://sbml.org/Software /libSBML

2. matplotlib: available at http://matplotlib.org/users/instal-
ling.html
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3. numpy: available at http: //www.scipy.org/scipylib /download.
html

4. jupyter: available at http://jupyter.org/

Download the jQMM library from https://github.com/
JBEI/jqgqmm and unpack the downloaded file. The jQMM is best
used through an interactive python (iPython) notebook server
called Jupyter Notebook (http://jupyter.org/), which is a web
application that allows for the interactive execution, visualization,
and documentation of python code. This integrated computing
format greatly enhances reproducibility of results. Next, the
jQMM library can be used by logging into the local Jupyter server
using a web browser and navigating to the jQMM folder, and then
running some of the example Jupyter notebooks contained within
the JQMM. If desired, the Jupyter server can be run directly from
the command line within a linux terminal via the command “jupy-
ter notebook”. GAMS and CONOPT licenses are needed and must
be obtained separately.

Docker (https://docs.docker.com/) is a technology that is based
on Linux containers that allows for building, running, testing, and
deploying applications such as the jQMM library into a complete
file system that contains everything it needs to run: code, runtime,
system tools, system libraries, and supporting data files. This guar-
antees that it will always run correctly and in the same way, regard-
less of the system environment it is running in. The jQMM docker
container can be run on virtually any cloud computing service such
as AWS (Amazon Web Services), Google Cloud Platform, and
Microsoft Azure. Additionally, the jQMM Docker container can
be conveniently run on a personal computer running either Micro-
soft Windows or the Mac operating system, although we discour-
age this practice for anything other than training purposes given
how slowly the QMM will run on personal computers.

If choosing to run the JQMM docker container on a web-based
platform one avoids the need of having to purchase an expensive
high-performance server system. Pricing for cloud computing ser-
vices is typically based on usage, which allows for the ability to
automatically adjust the usage of computational services to as much
or as little as needed, at any time. When choosing a type of instance
to use on a cloud based system we recommend instances which
focus on computational speed and not RAM size or disk drive
access speed. On the AWS, this includes the instances of type M4
and C4, with the C4 instance currently featuring the highest
performing processors and the lowest price /compute performance
ratio offered by AWS (circa 2016).

The jQMM docker container (available for download at
https://github.com/JBEI/jqgqmm) has all of the software needed
to run the jQMM library preinstalled and pre-configured to work
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2.3 3¢ Labeling

Experiments and Mass

Spectrometry Data
Analysis

out of the box. The GAMS and CONOPT solvers (http: /www.
gams.com/, http://www.conopt.com/), which are preinstalled,
are required to do flux analysis, but their usage requires purchase
of a GAMS license and CONOPT license separately. Once these
licenses are included with the GAMS and CONOPT solver installa-
tions the JQMM docker container will be fully functional.

The initial step for any '*C-based metabolic flux experiment is
performing a '*C labeling experiment with the organism of inter-
est. Since this step is more related to the Test phase than the Learn
phase of the DBTL cycle, we will only give a brief description, and
refer the reader to previous protocols [12, 13]. Cultures must use
minimal media, and can be grown using different types of labeling
for the feed (see Note 1). A common choice is to use 20% normal
glucose and 80% 1-'3C glucose, for example. Briefly, we recom-
mend that culture samples are prepared by taking an aliquot of the
cultured cells which were grown with *3C glucose and filtering with
a 0.45-pm pore-sized filter. The filter is then washed with Milli-Q
water to remove the cultured cells which are then placed in metha-
nol at 4 °C to halt metabolism. A solution at a ratio of 4 mL of
chloroform to 1.6 mL of Milli-Q water is mixed with the filtered
cells and then centrifuged at 2300 x gfor 5 min at 4 °C. To remove
high-molecular weight compounds the methanol layer is extracted
and then passed through a Millipore 5-kDa cutoff filter via centri-
fugation. Finally, the filtrate is lyophilized and then dissolved in
Milli-Q water before analysis on a mass spectrometry instrument.
The quantification of relative cellular metabolite isotopomer
concentration, consisting of MDVs for metabolites in cellular
metabolism (see Fig. 2 for an example), is done by determining the
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Fig. 2 Plot of wild-type E. coli MDVs from Toya et al. [12]: Experimentally measured MDVs are plotted in red
bars for each metabolite, while the MDVs implied by the predicted fluxes are shown in the blue bars.
Computational and experimental data match closely implying that the model is quantitatively correct
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relative concentration of each metabolite’s isotopomers via mass
spectrometry. Once chromatograms from a mass spectrometry
instrument have been analyzed and integrated such that the relative
frequency of each metabolite’s mass distribution has been deter-
mined, these data need to be prepared and formatted for input into
the jQMM library so that metabolic fluxes can be determined.

Once the measured MDVs have been determined and normalized
such that their sum is equal to one for each metabolite, they have to

be entered into a text document with the following format:

Amino acid Mass distribution

m0 ml m2 m3 mé m5 mé m7 m8
3pg M-0 0.387 0.408 0 0.204 - - - -
ala-L M-0 0.382 0.379 0.059 0.178 - - - -
asp-L M-0 0.297 0.429 0.273 0 0 - - -
dhap M-0 0.348 0.464 0 0.186 - - - -

The first two lines should remain fixed and are ignored by the
jQMM library, while the following lines need to include the MDV
information for every metabolite for which isotopomer data exists
in the following format:

1. First, the metabolite name using the metabolite abbreviation
used in the BIGG database (http://bigg.ucsd.edu) is specified
and followed by a tab character.

2. Next, the tab-separated relative frequencies of each metabolite
isotopomer are specified. The sum of all isotopomer frequen-
cies needs to add to 1 for each individual metabolite.

3. Isotopomers, which do not exist for a particular metabolite,
should be represented by a “-” (dash), and must not be entered
in as a zero value, which would indicate that such an isotopo-
mer does exist but is not present in the sample.

To define a metabolic model for the QMM to use in the modeling
of the particular organism being studied, navigate to the BIGG
database (http://bigg.ucsd.edu) and download a SBML version of
a metabolic model which is appropriate to the problem being
studied. Smaller models run much faster in the jQMM, while
more comprehensive genome-scale models are necessary for pro-
blems involving peripheral metabolism or which include the
28-'3C MFA analysis methodology. Retooling of the JQMM library
code may be required for the library to understand metabolite
names which do not follow the naming convention used in the
iJR904 metabolic model [14] format, with sample code already
included for using metabolite names from the iJO1366 [15] and
iAF1260 [16] models, which is located in the “sbmlio.py” python
code file located in the jJQMM “code/core” directory. Network
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2.4.3 Defining Exchange
Reaction Fluxes

2.4.4 Defining Carbon
Transitions in the Metabolic
Model

reactions, which come from a heterologous pathway that has been
engineered into a microbe, should be manually entered into the
downloaded SBML model.

Both measured fluxes through exchange reactions and the biomass
flux that correspond to the time that a sample was taken for '*C
isotopomer analysis are detailed in a ‘FLUX.txt’ file. A sample
exchange flux file is a follows:

BiomassEcoli: 0.70 [==] 0.76

GLCpts: 11.1 [==] 11.1

EX_glc(e): -11.1 [==] -11.1
EX_ac(e): 2.6 [==] 2.6

The Biomass flux is in units of 1 /h. and is normalized to equal
the growth rate while all other exchange fluxes are in units of
mMol/gdw/h (millimoles/grams of dry weight/hour). The glu-
cose uptake rate can be measured by the HPLC determination of
glucose concentration at two different times around the **C analy-
sis sample time. If the glucose concentration is measured as g, and
4> (in millimoles /volume) at times #; and #,, the glucose flux can be
approximated as (g, — 41)/gdw1/(, — #1), where gdw; is the
grams of dry weight of cells per unit volume at time #;. Similarly,
HPLC measurements can be used to determine fluxes of acetate,
lactate, and other organic acids excreted by the cell.

Atom transitions can be used to represent the fate of each carbon in
a reaction [5]. In the example reaction:

A (abc) --> B (ab) + C (c)

The uppercase letters represent the metabolites present in a
reaction, while the lowercase letters in parentheses represent the
atom transitions. (Note: It is not necessary to follow this conven-
tion of using uppercase for metabolites and lowercase for atom
transitions. The parentheses delimit the start and end of each
atom transition. Any alphabetic, numeric, or underscore character
comprising the regular expression [a—zA-Z0-9] can be included in
the metabolite names and atom transitions.) Irreversible reactions
are denoted by a ‘—>’ or ‘=>’" arrow and reversible reactions are
denoted by a ‘<—>’ or ‘<=>’ arrow. In the jQMM, multiple
reactions are separated by carriage returns or by placing a semicolon
at the end of each reaction equation.

For example, in:

AKGDH akg --> succoa + co2 abcde : bcde + a
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akg gets split into succoa and co2 in reaction AKGDH, with the
first four carbons going to succoa and the remaining carbon going
to co2.

For 2S-'3C-based metabolic flux analysis in the JQMM, one
needs to create a ‘REACTIONS.txt” file which contains the carbon
transition information for core reactions in the metabolic network
and which has the following format:

# Metabolic Exchange fluxes
&MLIST etohl[e] O

&MLIST acle] O

&MLIST lac-L[e] O

# Intracellular metabolite fluxes
&MLIST fdp O

&MLIST dhap O

&MLIST pep O

&MLIST r5p 0

&MLIST s7p 0

&MLIST mal-L 0

# Carbon source

&SOURCE glc-Dl[el

# Input Reactions

EX_glc(e) glc-D[e] <==> glcDEx abcdef : abcdef
GLCt2 glc-D[e] --> glc-D abcdef : abcdef

HEX1 glc-D --> gb6p abcdef : abcdef

# Carbon Transitions

GLCpts glc-D[e] + pep --> gbp + pyr abcdef + ABC : abcdef + ABC
PGI gbp <==> f6p abcdef : abcdef

PFK f6p --> fdp abcdef : abcdef

FBA fdp <==> g3p + dhap CBAabc : abc + ABC

Reactions which must be specified in the ‘REACTIONS.txt’
file, in terms of carbon atom transition information, are those
that utilize metabolites for which '*C isotopomer data are input
into the jJQMM library and for reactions which are considered to be
at the core of the metabolic network. Finally, this file also specifies a
metabolite which serves as the '*C carbon source (typically glucose,
i.e. gle-Dfe], via the &SOURCE command) and input reactions
which bring this *3C-labeled metabolite into the cell.

The type of labeled glucose used in the experiment, together with
its concentration relative to the amount of unlabeled glucose, is
detailed in a ‘FEED.txt’ file. A sample feed specification file con-
tains the following line:

0.4% Glucose: 30% 1-C 20% U 50% UN
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The 0.4% at the beginning of a feed definition specifies the total
glucose percentage of the initial cell culture. The percentage of 1-C
glucose, which has its first carbon atom labeled, is specified next,
together with the percentage of U glucose, which is uniformly
labeled among all the glucose carbon atoms, and finally the per-
centage of normal glucose which is completely unlabeled (UN).

3 Methods

The example Jupyter notebook which is included as an attachment
in the online version of this protocol, and which is also reproduced
in this section, contains a description of how to use the FluxModels
module in the QMM to do 2S-'*C MFA and then predict the
outcomes on acetate production of different reaction knockouts.
The notebook provides a convenient way to reproduce results and
is easily modified to fit the user’s specific needs (see Note 2). It is
broken into six different steps for turning experimental data into
actionable predictions for increasing a targeted biochemical via
genetic engineering:

1. Gathering input data

. Creating the Reaction Network

. Creating the two-scale metabolic model

. Calculating internal metabolic fluxes through 2S-'3C MFA

. Visualizing flux profiles

QN Ul R~ N

. Predicting which genes to knock out using MoMA and ROOM

-- Jupyter Notebook Start --

Predicting KO outcomes with 28-'*C MFA and COBRA methods

This Jupyter notebook presents a computable step-by-step
description of how to use metabolite data from *3C labeling experi-
ments to produce actionable insights to improve acetate produc-
tion in E. coli.

0. Setup

The first step involves specitying the correct path for the library:

In[l]:

$matplotlib inline

import sys, os

path = "/scratch/user"

pythonPath = path 4+ "/quantmodel/code/core"

if pythonPath not in sys.path:
sys.path.append(path + ’/quantmodel/code/core’)

os.environ["QUANTMODELPATH"] = path +’/quantmodel’
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We then need to import the needed classes for the notebook:

In[2]:

from IPython.display import SVG

import FluxModels as FM

import enhancedLists, ReactionNetworks, predictions, copy,

core

and then move to a defined working directory where output and
intermediate files will be kept:

In[3]:

cd /scratch/user.working_dir/tests

Out[3]:

/scratch/user.working_dir/tests

1. Gathering input data

As part of the test (T) phase of the DBTL cycle, we gather all the
relevant experimental data from the '*C labeling experiments (see
Subheading 2). These data involve:

1. A base genome-scale model that will act as the reference for all
other data types [14].

2. Exchange fluxes containing the measured fluxes of metabolites
being exchange by cells with the environment.

3. Transition information on the fate of each carbon in the core
reaction network [17].

4. Metabolite Inbeling information in the form of Mass Distribu-
tion Vectors (MDVs).

5. Metabolite labeling ervor information.
6. Feed lnbelinginformation on the type of labeled glucose the cell
culture was fed.

Discussion of these data types can be seen in Subheading 2.
For this demonstration, we will use the data from Toyaetal. [12]:

In(4]:
datadir = os.environ[’'QUANTMODELPATH' ]+’ /data/tests/Toya2010/
2S/wt5h/ "’

strain ='wt5h’

BASEfilename = datadir + 'EciJR904TKs.xml’
FLUXESfilename = datadir + 'FLUX'+strain+4’.txt’
TRANSITIONSfilename = datadir + ’‘REACTIONS’+strain+’.txt’
MSfilename = datadir + ‘GCMS’+strain+’.txt’
MSSTDfilename = datadir + ’'GCMSerr’-+strain+4’.txt’

FEEDfilename = datadir + 'FEED’'+strain4’.txt’
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2. Creating the Reaction Network

Once we have gathered all the needed input files, we can condense
all this information into a single sbml file. We will do this using a
reaction network from the ReactionNetworks module in the
jQMM library. A reaction network contains all information related
to the metabolic reaction network used for the simulation:

In[5]:

# Load initial SBML file

reacNet = ReactionNetworks.TSReactionNetwork (BASEfilename)

# Add Measured fluxes

reacNet.loadFluxBounds (FLUXESfilename)

# Add carbon transitions

reacNet .addTransitions (TRANSITIONSfilename, translate2SBML=True)
# Add measured labeling information
reacNet.addLabeling (MSfilename, 'LCMS’,MSSTDfilename,min
STD=0.001)

# Add feed labeling information

reacNet .addFeed (FEEDfilename)

# Limit fluxes to 500

reacNet .capFluxBounds (500)

# Create sbml file to store the two-scale model.

# All input files are combined in a tuple of the type:
(fileName, string of contents)

SBMLfile = ('EciJR904TKs'+strain+'TS.xml’, reacNet.write(’to
String’))

3. Creating the two-scale metabolic model

The next step is to use the SBML file we just created to create a two-scale
model [1] that we will use to calculate fluxes through 28-'*C MFA:

In(6]:
TSmodel = FM.TwoSCl3Model ((’'EciJR904TKs '+strain+’'TS.xml"’,

reacNet.write(’toString’)))

TSmodel now contains all the information needed to calculate
fluxes along with the methods to do this calculation and other
analysis [1].

4. Calculating internal metabolic fluxes through 28-'*C MFA
We can now use the find FluxesRanges method in TSmodel to find
the fluxes that best fit the experimentally obtained metabolite

labeling data (MDVs) and find the ranges of fluxes compatible
with this labeling data and the corresponding experimental error:
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In[7]:

fluxNames = TSmodel.reactionNetwork.Cl3ReacNet.reactionList.
getReactionNameList (level=1)

TSresult = TSmodel.findFluxesRanges (Nrep=30, fluxNames=flux

Names, procString='proc’)

Nrep represents the number of replicates used for the calcula-
tion. Since the problem to be solved is a nonconvex problem there
is no guarantee that a single run will find the best global fit. Hence
we run 30 independent processes and keep the one that best fits the
data. fluxNames indicates the fluxes for which full flux confidence
intervals will be calculated. procString indicates that the data (for
this case) needs no derivatization correction.

We can check how accurate the model is by comparing the
measured labeling distribution (MDVs, red) with the one predicted
through the computational model (blue) by using the plotExpvs-
CompLabelFragment method:

In[8]:
$%stime
TSresult.plotExpvsCompLabelFragment (titleFig='WT-reference’)

out[8]:
CPU times: user 824 ms, sys: 12 ms, total: 836 ms
Wall time: 831 ms

See Fig. 2.

or by using plotExpvsCompLabelXvsY, if we prefer to see these
fits as an X vs. T plot:

In[9]:
TSresult.plotExpvsCompLabelXvsY (titleFig = ‘WT-reference’)

Oout[9]:

See Fig. 3.

The closeness of the fit data and the experimental data validate
the use of this model.

Results are stored in a reaction network inside 7Sresuit and can
be explored through the reactionList methods.

For example, we can print the desired fluxes:

In[10]:
TSresult.reactionNetwork.reactionList.printFluxes (brief

="True",names="exchange")
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Fig. 3 Plot of experimentally measured MDVs versus the computationally predicted MDVs in an x-y plot
(different way to plot data in Fig. 2), which demonstrates that experimental and predicted MDVs are
comparable

Out[10]:

EX_h2o0_e_: 43.8140702078
EX_co2_e_: 26.0397076138
EX_02_e_: -24.3853340558
EX_h e : 12.3121388881
EX_glc_e_: -11.7
EX_nh4_e_: -8.93782429
EX_ac_e_: 4.3
BiomassEcoli: 0.83

EX pi_e_: -0.75665871
EX_acald_e_: 0.22513003
EX_sod_e_: -0.19343897
EX_succ_e_: 0.145316144053
EX_glyclt_e_: 0.0415
EX_urea_e_: 0.03486

Or we can retrieve the computationally predicted labeling dis-
tribution or the experimentally measured one:

In[l1]:
TSresult.EMUlabel[ 'pep’]

Out[11]:
array ([ 0.63083, 0.15962, 0.06024, 0.14931])

In[12]:
TSresult.fragDict[ 'pep’].mdv

Oout[12]:
array([ 0.624, 0.165, 0.06 , 0.151])
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An important test to make sure that the assumptions used in
the 28-'*C MFA properly hold is the External Labeling Variability
Analysis (ELVA) [1] test. This test checks that the reactions for
which no carbon transition information was available do not signif-
icantly distort the flux solution obtained.

In[13]:
resultELVA = TSmodel.ELVA(TSresult)

ELVA results can be plotted in an x—y graph showing the
experimentally determined isotope labeling which defines a confi-
dence interval that represents the maximum possible difference in
labeling that could be attributed to non-core reactions for the
current solution. The reactions that contribute an unacceptable
amount of uncertainty are then added to the core set and the
procedure can be repeated as necessary, until a core set of reactions
is found which fully justifies the two-scale approximation. In this
example, all reactions have only small fluctuations in predicted
computational labeling.

In[14]:
resultELVA.plotExpvsCompLabelxvsy (titleFig="WT", outputFileNam
e="ELVAComparisonWT.txt",6 save="ELVA-W.eps")

out[14]:

See Fig. 4.

The error bars in the y axis (computational error) are of the
same order of magnitude as the experimental error, hence justifying
the two-scale assumption [1].

5. Visualizing flux profiles

Once the metabolic fluxes have been calculated they can be under-
stood visually via their plotting on a flux map. In the jJQMM library
fluxes can be plotted via the commands:

In[15]:
TSresult.drawFluxes (’'wt.svg’,svgInFileName='TOYAexp.svg',

norm='EX_glc_e_")

out([15]:
svgin:

/scratch/david.ando/quantmodel/code/core/TOYAexXp.Svg

where “TOYAexp.svg’ is the base flux map contained in the jQMM
library [4]. The drawFluxes() method will indicate the flux magni-
tude on the base flux map in two ways: visually by changing the flux
arrow width according to the flux magnitude through a reaction,
and also numerically by showing the net flux value (with confidence
intervals) next to the reaction:
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Fig. 4 ELVA plot which shows an x-y graph of the experimentally determined isotope labeling versus the
computationally predicted labeling. The vertical error bars define the computational error that represent the
maximum possible difference in labeling that could be attributed to non-core reactions for the current solution.
In this example, all reactions have only small fluctuations in predicted computational labeling, confirming that
non-core reactions do not significantly contribute to core metabolite labeling [1]

The command ‘SVG’ displays the flux map in the Jupyter
notebook which is contained in the svg file which was saved locally.

In[l6]:
SVG (filename='wt.svg’)

Out[16]:

See Fig. 5.

In the near future, one will also be able to display fluxes using
the web browser-based flux plotting library Arrowland (http://
public-arrowland.jbei.org).

6. Predicting which genes to knock out using MoMA and ROOM

So far we have used targeted metabolomic data from *C labeling
experiments to infer the underlying internal metabolic fluxes in the
cel. We will now use these inferred fluxes along with two
Constraint-Based Reconstruction and Analysis (COBRA) methods
to predict which genes to knock out in order to increase the
production of acetate. These methods are MoMA (Minimization
of Metabolic Adjustment) and ROOM (Regulatory On/Off Mini-
mization). MoMA provides an approximate solution for a subopti-
mal growth flux state after a knockout has been made to an
organism, which is nearest in flux distribution to the unperturbed
state [9]. On the other hand, ROOM aims to minimize the number
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Fig. 5 Plot of 2S-"3C metabolic fluxes in the jQMM library using the TOYAexp.svg base flux map for a wild-type
strain of E. coli from Toya et al. [12]. This map can be interactively studied at Arrowland (https://public-
arrowland.jbei.org/, wtsh)

of significant flux changes with respect to the wild type to predict
resultant fluxes from a knockout of a reaction [10].

First we need to specify flexible flux bounds for the final solu-
tion in order to avoid biasing the knockout predictions:

In[17]:

reactionNetwork = copy.deepcopy (TSmodel .reactionNetwork)
reactionNetwork.changeFluxBounds ('GLCpts’ ,core.fluxBounds
(0, 25 ,False)[1l])

reactionNetwork.changeFluxBounds ('EX_glc_e_’ ,core.fluxBounds
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(-15,-0 ,True,True) [1])

reactionNetwork.changeFluxBounds ('BiomassEcoli’ ,core.flux
Bounds( 0, 25 ,False)[1])
reactionNetwork.changeFluxBounds ('EX_ac_e_’ ,core.fluxBounds

(0, 25 ,True,True) [1])

Then we can calculate the base flux profiles for MoMA and
ROOM:

In[18]:
TSresult = TSmodel.findFluxesStds (Nrep=30,Nrand=10)

We then specify a list of reactions to knock out and determine
resultant fluxes:

In[19]:
KOs = [’'RPE’, 'RPI’]

For reference, we determine the amount of acetate production
in the base WT strain:

In[20]:

fluxDict = TSresult.reactionNetwork.reactionList.getReaction
Dictionary ()

print ’‘predicted acetate flux = ’,fluxDict[’EX_ac_e_'].flux.

net.best

out[20]:
predicted acetate flux = 4.3

Perform MOMA and ROOM predictions over the set of spe-
cified knockouts:

In[21]:
for KO in KOs:

print KO, 'knockout:’

TS13CMOMA = predictions.predict (TSresult, KO, ’'MOMA’, reac
tionNetwork.getSBMLString () )

TS13CROOM = predictions.predict (TSresult, KO, ’'ROOM’, reac
tionNetwork.getSBMLString () )

fluxDict = TS13CMOMA.reactionNetwork.reactionList.getReac
tionDictionary ()
print ' MoMA predicted acetate flux = ', fluxDict[’'EX_ac_e_'].

flux.net.best

fluxDict = TS13CROOM.reactionNetwork.reactionList.getReac
tionDictionary ()
print ’ ROOM predicted acetate flux = ', fluxDict['EX_ac_e_"'].

flux.net.best

print '

print ‘'’
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out[21]:

RPE knockout:

MoMA predicted acetate flux 4.56474059324
ROOM predicted acetate flux = 6.87162731209

RPI knockout:
MoMA predicted acetate flux = 3.9427989398
ROOM predicted acetate flux = 4.17

As can be observed, knocking out the gene corresponding to
the RPE reaction is predicted to increase acetate production by
6.2% according to the MoMA methodology and by 60.0% when
using the ROOM methodology. As can be seen with an RPI knock-
out, both MoMA and ROOM predict a decline in acetate
production.

- - Jupyter Notebook End - -

4 Notes

1. Proper quality control of MDYV data is crucial to proper deter-
mination of fluxes. Experiments should be designed to include
internal controls, and should include several biological and
technical replicates.

2. Free open-source software tools, such as the jJQMM, provide
for universal accessibility and unlimited modification and cus-
tomization. Overall, we wish that the community can support
the JQMM’s further development by submitting bug fixes to
the github repo (https://github.com/JBEIl/jgmm) and
including any functional extensions that different research
groups have achieved.
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