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Abstract

Background: Quantitative plaque assessment based on 3D magnetic resonance (MR) vessel wall 

imaging (VWI) has been shown to provide valuable numerical markers of the burden and risk 

of intracranial atherosclerotic disease (ICAD). However, plaque quantification is currently time-

consuming and observer-dependent due to the demand for heavy manual effort. A VWI-dedicated 

automated processing pipeline (VWI-APP) is desirable.

Purpose: To develop and evaluate a VWI-APP for end-to-end quantitative analysis of 

intracranial atherosclerotic plaque.

Methods: We retrospectively enrolled 91 subjects with ICAD (80 for pipeline development, 10 

for an end-to-end pipeline evaluation, and 1 for demonstrating longitudinal plaque assessment) 

who had undergone VWI and MR angiography. In an end-to-end evaluation, diameter stenosis 

(DS), normalized wall index (NWI), remodeling ratio (RR), plaque-wall contrast ratio (CR), and 

total plaque volume (TPV) were quantified at each culprit lesion using the developed VWI-APP 

and a computer-aided manual approach by a neuroradiologist, respectively. The time consumed 

in each quantification approach was recorded. Two-sided paired t-tests and intraclass correlation 

coefficient (ICC) were used to determine the difference and agreement in each plaque metric 

between VWI-APP and manual quantification approaches.
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Results: There was no significant difference between VWI-APP and manual quantification in 

each plaque metric. The ICC was 0.890, 0.813, 0.827, 0.891, and 0.991 for DS, NWI, RR, CR, 

and TPV, respectively, suggesting good to excellent accuracy of the pipeline method in plaque 

quantification. Quantitative analysis of each culprit lesion on average took 675.7 s using the 

manual approach but shortened to 238.3 s with the aid of VWI-APP.

Conclusions: VWI-APP is an accurate and efficient approach to intracranial atherosclerotic 

plaque quantification. Further clinical assessment of this automated tool is warranted to establish 

its utility in the risk assessment of ICAD lesions.

Keywords

MRI; vessel wall imaging; intracranial plaque quantification; deep learning; vessel wall 
segmentation; centerline tracking

1 INTRODUCTION

Stroke is a leading cause of morbidity and mortality worldwide.1 Intracranial atherosclerotic 

disease (ICAD) remains a major risk factor for stroke occurrence. 3D high-resolution, 

dark-blood magnetic resonance (MR) vessel wall imaging (VWI) has become a non-invasive 

modality for directly assessing this pathological condition.2 VWI-based morphological 

plaque metrics, such as normalized wall index (NWI), vessel wall remodeling ratio (RR) and 

plaque-wall contrast ratio (CR) have been shown as useful quantitative markers of plaque 

burden and vulnerability.3–4 Despite the aid of existing image processing and visualization 

software, these quantitative analyses still involve heavily manual steps, including image 

reformation for generating vessel cross-sectional views, vessel lumen and wall contouring, 

and region-of-interest signal measurement. Therefore, plaque quantification on VWI is 

currently time-consuming and subject to inter- and intra-observer variations. A VWI-

dedicated automated processing pipeline (VWI-APP) is indispensable for fully unleashing 

the potential of this imaging modality in the clinical management of ICAD.

Previous studies on the development of automated plaque analysis methods focused on 

relatively large arterial vessels. For example, a conventional model fitting method was 

developed to quantify the wall thickness of the common carotid artery and descending aorta 

from axial MR images.5 The lumen centerline and radii for the target carotid artery are 

estimated by Hough Transform, and the boundaries of the lumen and outer wall are fitted by 

a 3D cylindrical B-spline surface. The algorithm is applicable for straight vessel segments 

and can have a misfit when the shape assumptions are violated in torturous intracranial 

arteries. Another group used the Dijkstra’s algorithm to find the internal and external carotid 

centerlines with medialness and intensity-based cost functions and segmented the lumen 

using geodesic active contours based on multispectral MR.6 However, the active contour-

based segmentation approach requires iterative computation with a long computational time. 

A more recent work focused on multi-contrast and multi-time point image registration to 

facilitate intracranial atherosclerotic plaque analysis, but still relied on manual delineation 

and physician’s observation.7
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Deep learning has increasingly been utilized to achieve automated lesion detection, fast 

centerline tracking, or vessel wall segmentation on VWI.8–9 Excellent accuracy and time 

efficiency have been demonstrated in individual tasks. Integrating state-of-the-art neural 

networks into a plaque analysis pipeline may help substantially improve the overall 

performance.

In this work, we developed and assessed an integrated VWI-APP to maximally automate 

the entire intracranial atherosclerotic plaque analysis workflow and provide quantitative 

morphological metrics.

2 MATERIALS AND METHODS

2.1 Subjects

Under an IRB approval, 91 patients diagnosed with ICAD were retrospectively identified 

from clinical PACS with additional inclusion criteria: 1) patients received both 3D T1-

weighted MR VWI and 3D time-of-flight (TOF) MR angiography (MRA) in the same 

imaging session, 2) both MR VWI and MRA images were of diagnostic quality. All 

images were acquired using a 3-Tesla whole-body system (MAGNETOM Prisma; Siemens 

Healthcare, Erlangen, Germany) and a 64-channel head-neck coil. MR VWI data were 

collected using a whole-brain VWI protocol with an isotropic spatial resolution of 0.55 

mm,10,11 and MRA data were collected with an isotropic spatial resolution of 0.6 mm after 

interpolation. Detailed imaging parameters are summarized in Supplementary Table S-1. 

The 91 patients were split into 80 for the development of centerline tracking (5 for training, 

10 for testing) and vessel segmentation (74 for training, 3 for validation, and 3 for testing) 

modules, 10 for an end-to-end evaluation, and 1 for demonstrating the use of VWI-APP in 

longitudinal plaque assessment.

2.2 Pipeline Modules

The pipeline consists of five modules (Figure 1): 1) “image registration” between VWI and 

MRA, 2) “centerline tracking” on MRA, 3) “vessel straightening and slicing” along the 

extracted centerline on VWI, 4) “vessel wall and lumen segmentation” on cross-sectional 

VWI slices, and 5) “plaque quantification”. The pipeline toolbox was implemented on 

3D Slicer (version 4.11.0), a free, open-source software package for imaging research.12 

Our technological innovations are mainly focused on modules 2) and 4), where centerline 

tracking utilizes the Dijkstra’s algorithm with an optimized cost function on MRA, and 

vessel lumen and wall segmentation incorporates the inclusion relationship between inner 

and outer vessel boundaries and provides feasible vessel morphology to support subsequent 

feature quantification.

2.2.1 Image registration—Image registration is performed to align bright-blood MRA 

with dark-blood VWI in preparation for accurate centerline tracking on MRA. Specifically, 

rigid registration with no initialization transform, available from 3D Slicer, is employed to 

align the two image sets. Mutual information is used to quantify similarity and is maximized 

during the registration process.
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2.2.2 Centerline tracking—Centerline tracking is formulated as a dynamic 

programming problem to identify the most viable path between the given start and end 

points, and the Dijkstra’s algorithm was to solve it.13 Specifically, the nodes are the user-

input start and end points of a selected vessel segment of interest. The Dijkstra’s algorithm 

is performed on the registered MRA, exploiting its high signal contrast between the artery 

and surrounding tissues. To improve the robustness in various MRA cases with a fixed set 

of hyperparameters, serving as the default selection in the software, MRA is further Z-score 

normalized, denoted as mranorm.

We propose a cost function for the Dijkstra’s algorithm based on MRA intensities as shown 

in Eq. (1):

ℒDijkstra =
c, mranorm < tℎrl;

exp−1 a ⋅ D , mranorm > tℎrℎ;
1, else .

(1)

The central logic is to establish two barriers for vessel centerline tracking: a) a foreground 

vs. background barrier established by image signal intensity threshold thrl to assign a 

high cost c to the background; and b) a centerline vs. edge barrier inside a vessel by the 

Euclidean distance transform D with an inverse exponential function. The coefficient a is 

an empirically chosen hyperparameter that controls the gap between center points and edge 

points. thrh is another empirically chosen threshold hyperparameter which is slightly higher 

than the background threshold thrl to ensure a good separation between two adjacent vessel 

segments during distance transform.

A coarse-to-fine scheme is adopted. It first performs centerline tracking on a down-sampled 

volume by 0.2 times, followed by cropping the whole volume into a cube encompassing 

the detected centerline and another round of centerline search on the full-resolution cropped 

cube. This scheme avoids long computational time on the entire volume search, and also 

enhances the tracking robustness to highly torturous vessels, where a direct cropping would 

otherwise miss some portions of a vessel structure.

The default hyper-parameters were set at c = 10−3, a = 5, thrl = 2, and thrh = 4, based on the 

training performance of 5 random samples.

2.2.3 Vessel straightening and slicing—Vessel straightening and slicing are 

performed along the derived centerline with a 3D Slicer extension.14 This module identifies 

the normal directions, aligns curve centers, and reconstructs contiguous cross-sectional 

slices with 128×128 in image size, 0.55 mm in thickness, and 0.1 mm in-plane resolution.

2.2.4 Vessel wall and lumen segmentation—Vessel wall and lumen segmentation is 

performed using our recently developed deep learning method that particularly models the 

inclusion relationship between the segmented classes with a multiple level set approach.15 

The network structure adopts a UNet structure with a ResNet backbone,16,17 and has a single 

output channel with sigmoid activation, as illustrated in Figure 2, for a level-set inference.
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The inclusion morphology between the inner and outer boundaries of the vessel wall is 

incorporated with a level-set function φ(x): R2 → R under different heights η1 and η2 , as 

illustrated in Figure 2. Each predicted class is inferred from indicator composition:

ylumen
′ = S η1 − y

yvesselwall
′ = S η2 − y ⋅ S y − η1

ybackground
′ = S y − η2

, (2)

where S is a relaxed indicator function.

The segmentation network is trained to minimize the objective:

L = Lfidelity + λLsmootℎ + γLLengtℎ, (3)

where LFidelity is the sum of soft Dice coefficient loss for each class, LSmooth encourages 

vessel wall encounter when transiting between the background and lumen, and LLength 

penalizes roughness of the vessel wall boundaries.18,19

The 2.5D UNet takes three consecutive slices as the input and output the class prediction 

for the middle slice. It has 32 base number of channels. For each convolution block, 

element-wise summation is used to incorporate information from the previous convolution 

layer to the last convolution layer. The network was trained with a learning rate of 10−4 over 

50 epochs, using Adam optimizer and a batch size of 32. The hyperparameters in the cost 

function were λ = 0.5 and γ = 0.5. The pipeline stores the structure and the weights of the 

trained network for inference. Note that the user is allowed to modify the vessel and lumen 

contours in 3D Slicer when appropriate.

2.2.5 Plaque quantification—Following the processing steps above, a vessel segment 

selected by the user will undergo plaque quantification. Our algorithm first proposes both 

the most stenotic slice and a reference slice across the vessel segment based on the lumen 

area. Users are allowed to modify these slice locations as appropriate. A group of clinically 

relevant morphological plaque metrics, i.e., diameter stenosis (DS), NWI, RR, CR, and total 

plaque volume (TPV) as illustrated in Supplementary Figure S-1, are then automatically 

derived and output. DS and NWI are the measures of plaque burden.20 RR reflects the extent 

of vessel narrowing or expansion associated with plaque growth.21,22 High CR value may 

be associated with intraplaque hemorrhage that indicates plaque vulnerability.5 TPV is an 

absolute measure of plaque burden. Given the area of individual slices readily available 

after vessel segmentation, the calculations of NWI, RR and TPV are straightforward. For 

DS quantification, the lumen diameter is calculated by approximating the vessel and lumen 

contours as circles.23 CR is calculated as the mean of a high signal intensity cluster in 

the most stenotic slice divided by that of the reference slice. The high cluster is obtained 

by thresholding, where intra-class variance is minimized, known as the Otsu’s thresholding 

approach.24 A connected component analysis (CCA) is further applied to retain a single 

cluster with the highest intensities in a slice. This process is illustrated in Supplementary 

Figure S-2.
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2.3 Pipeline Evaluation

We first evaluated the performance of the two key VWI-APP modules, i.e., centerline 

tracking and deep learning-based vessel segmentation. The end-to-end performance of 

the VWI-APP was then evaluated through a comparison with a computer-aided manual 

approach. Finally, the pipeline was applied to a patient with two VWI examinations 5 

months apart to demonstrate its utility in monitoring plaque morphological changes.

2.3.1 Evaluation of the centerline tracking module—This module was evaluated 

on 10 randomly selected patients. In each case, left and right intracranial internal carotid 

artery (ICA) and middle cerebral artery (MCA) (M1 and M2 segment) were included, with 

approximately 10 cm in total length for each side.

The centerline tracking algorithm was evaluated using the averaged l2 distance and the 

maximum l2 distance between the VWI-APP centerline and the centerline manually traced 

by a radiologist (8 years of experience in vessel wall image analysis). The point-wise 

correspondence was established by finding the nearest point of the VWI-APP centerline 

to each point in the manual centerline which typically consists of 10 to 15 points. The 

evaluation was performed on long vessel segments covering both the normal and stenotic 

segments.

2.3.2 Evaluation of the segmentation module—In each of 80 patients, the 

following arterial segments including the one that involved the identified plaque were used 

for network training (74), validation (3), and testing (3): the intracranial ICA, MCA, the 

intracranial vertebral artery, and the basilar artery. Each segment contributed 30 consecutive 

cross-sectional slices. The “ground truth” lumen and vessel wall were labeled by the same 

radiologist. The evaluation of the segmentation network adopted Dice similarity coefficient 

(DSC), 95 percentile Hausdorff distance (HD 95), and mean surface distance (MSD).

2.3.3 End-to-end evaluation—The end-to-end evaluation of VWI-APP was performed 

in 10 additional patients with symptomatic ICAD. The analysis was focused on the vessel 

segments where the culprit plaque was located, including the MCA M1 segment in 6 

patients and the intracranial ICA, MCA-M2, intracranial vertebral artery, and basilar artery 

in 4 patients, respectively. Each analyzed vessel segment was approximately 2 cm long.

A comparison in culprit lesion quantitative analysis was made between the VWI-APP 

approach and the manual approach performed by the same radiologist with a two-week 

time interval. During manual quantification, the centerline was manually traced followed 

by computer-aided vessel straightening and cross-sectional view generation in 3D Slicer 

(version 4.11.0).12 The cross-sectional images were then exported to Horos (version 

3.3.6) for manual measurement of area and signal intensity in hand-drawn regions of 

interest. With the VWI-APP approach, the radiologist was allowed to manually adjust 

segmentation contours and/or the locations of the most stenotic and reference slices. With 

both approaches, DS, NWI, RR, CR, and TPV were calculated. The time consumed by using 

each of the two approaches was recorded.
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2.3.4 Longitudinal plaque assessment—To demonstrate the usefulness of our 

toolbox, we selected a patient with acute left corona radiata infarction attributed to a culprit 

plaque in the left MCA M1 segment to analyze the changes in plaque features over a 

5-month time interval. Care was taken to ensure consistency of measurement locations 

between the two time points. The patient recovered well under medical treatment and did not 

have any recurrence during 18 months of follow-up.

2.4 Statistical Test

Two-sided paired t-tests with the significance level defined at α < 0.05 were used to 

compare each quantitative metric as well as the time consumed between the manual and 

VWI-APP approaches. Intraclass correlation coefficient (ICC) with the single-rater two-way 

mixed model between the two approaches and the corresponding 95% confidence intervals 

(CI_95) were reported.25 The mean absolute error (MAE) of DS, NWI, RR, CR, and TPV 

metrics were determined.

3 RESULTS

3.1 Centerline Tracking

The average and maximum l2 distance between the VWI-APP detected and manually traced 

centerlines for each of the 10 patients are shown in Table 1. Averagely, the developed 

algorithm achieved a deviation of 0.679-mm from the manual ground-truth in generating 

the centerline. The stenotic locations more commonly rendered challenges than normal 

counterparts due to the smaller lumen diameter and the resultant reduced MRA signal 

intensity. Illustrated in Figure 3 (a) are three test patients representing good, moderate, 

and poor tracking quality, respectively. Patient 2 and Patient 10 had larger discrepancies 

between the two approaches, presumably due to substantially weak vessel signals in MRA, 

as illustrated in Figure 3 (b). In such scenarios, manual adjustment at a few control points on 

the VWI-APP centerline can be performed using the software user interface.

3.2 Vessel Wall and Lumen Segmentation

The performance of the segmentation module is illustrated in Figure 4. The predicted 

segmentation well resembled the ground truth, and better preserved the geometric integrity. 

The DSC was 0.925 ± 0.048 for the lumen and 0.786 ± 0.084 for the vessel wall, 

respectively. The 95% HD was 0.286 ± 0.436 mm and 0.345 ± 0.419 mm, and the MSD was 

0.083 ± 0.037 mm and 0.103 ± 0.032 mm, respectively.

3.3 End-to-end Evaluation

Quantitative plaque metrics are reported in Table 2. There was no significant difference 

between VWI-APP quantification and manual quantification (DS: p = 0.543, NWI: p = 

0.058, RR: p = 0.161, CR: p = 0.539, TPV: p = 0.506). The ICCs were 0.890, 0.813, 0.827, 

0.891, and 0.991 for DS, NWI, RR, CR, and TPV measures, respectively, indicating good 

to excellent agreement with the manual ground-truth.25 When performing quantification 

of DS, NWI, RR, CR, and TPV, the average processing time for the 10 test subjects was 

significantly reduced from 675.7 s ± 204.0 s with manual quantification to 238.3 s ± 77.8 s 
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with VWI-APP quantification. In 3 out of 10 cases, manual adjustment was needed for the 

centerlines and/or vessel contours.

3.4 Longitudinal Plaque Assessment

Figure 5 illustrates the quantification of two longitudinal VWI scans from a patient. The 

quantitative measures were 57.91%, 0.773, 0.868, 1.709, and 125.58 mm3 for the first scan, 

and 24.60%, 0.682, 0.908, 1.225, and 105.44 mm3 for the second scan, for DS, NWI, RR, 

CR, and TPV, respectively. All the analyzed metrics clearly demonstrated a lesion-level 

improvement that was presumably associated with effective medical treatment.

4 DISCUSSION

In this work, we introduced an integrated VWI-dedicated image processing pipeline 

for automated quantitative analysis of intracranial atherosclerotic plaque. VWI-APP 

provides superior performance in quantification accuracy and efficiency with minimal 

user interaction. This tool would facilitate clinical workflow and further promote clinical 

adoption of MR VWI in the management of ICAD.

Our technical innovations lie in two of the five modules, specifically, the centerline tracking 

module and the vessel lumen and wall segmentation module. The centerline tracking module 

utilized the Dijkstra’s algorithm to find the minimum cost path between the given start and 

end points of a vessel segment,26 with customized cost functions. This method performed 

well in practice and can be preferred for its simplicity and interpretability over alternatives 

such as the deep learning-based methods for predicting direction and radius of an artery.27 

The default hyperparameter selection was found robust to various MRA volume cases. thrl 

= 2 and thrh = 4 were more sensitive than the other two hyperparameters to image signal 

intensity and can be slightly tuned within ±2 to different cases. Given that typical diameter 

is approximately 5 mm for ICA,28 1.9 to 3.5 mm for MCA M1 segment,29 and 1.1 to 2.1 

mm for MCA M2 segment,30 the average centerline distance discrepancy was lower than 

the vessel radius. The normal segment also had a mean distance smaller than the voxel 

size of isotropic 0.55 mm. The manual input of the start and end points in the centerline 

tracking module can be further automated by extracting the whole vessel tree, applying 

vessel wall segmentation based on VWI to the suspicious stenosis segments determined by 

MRA analysis, and performing quantitative analysis of each segment. A related work is a 

deep neural network integrated with vessel tree and centerline extraction and bifurcation 

detection using 3D MRA volumes.31

In the vessel lumen and wall segmentation module, we adopted our recently proposed 

segmentation method based on deep learning to capture and incorporate the inclusion 

relationship between classes.15 Typical lumen and vessel wall segmentation methods either 

fit active contours to the inner and outer wall boundary based on image intensities and 

gradients32–33 or infer the pixel-wise class membership for the lumen and the vessel wall 

with multiple output channels with deep networks.34,35 None of the existing methods 

accounts for the inclusion relationship between the inner and outer boundaries of the vessel 

wall and can result in clinically infeasible segmentation solutions such as isolated class 

pixels or lumen outside of the vessel wall. In contrast, our proposed method with the 

Zhou et al. Page 8

Med Phys. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



level-set inference logic can maintain good geometric integrity of the contours as well as 

segmentation accuracy, to support subsequent clinical quantification.

The time reduction and repeatability using the VWI-APP are compelling features. Our 

results showed that the manual approach for analyzing a single culprit lesion typically 

cost over 10 min. This time would be much longer for less experienced readers. In 

contrast, our automated approach achieved nearly 3-fold improvement. Besides, compared to 

human analyses which were reported to have moderate to excellent intra- and interobserver 

reliability with intraclass correlation coefficient varying from 0.57 to 0.99,36,37,38 VWI-APP 

offers intrinsic repeatability as an automated computational platform. Given that ICAD 

is often implicated in multiple arterial segments, whole-brain plaque quantification may 

become clinically necessary and feasible with this time-efficient analysis pipeline. We 

are actively incorporating new functional modules in the software, such as image quality 

checkpoints, multi-contrast and multi-time-point registration and visualization, and curved 

multi-planar reconstruction. Large-scale multi-institutional validations are warranted to 

establish the utility of this software tool. As a clinical-service oriented development, we 

are also actively investigating approaches to improve friendliness.

We demonstrated our initial experience in using VWI-APP to longitudinally track the plaque 

morphological changes during medical therapy. All interrogated plaque metrics based on 

VWI-APP indicated appreciable treatment effects. This automated analysis is in principle 

more reproducible than its manual counterpart and facilitate more objective and confident 

clinical decision. It is noteworthy that the utility of VWI-APP is not restricted to ICAD 

but possesses broad applicability for many cerebrovascular diseases that involve vessel wall 

pathological changes and may benefit from VWI.

Our work has the following limitations in its current form. First, the current pipeline was 

developed and assessed on intracranial vessels only. Extension to include the extracranial 

cervical arteries may be clinically desirable. We expect the centerline tracking algorithm to 

be readily adapted to this use with cervical VWI having larger vessel caliber and higher 

vessel wall contrast. Nevertheless, further parameter tuning may be necessary, and validation 

is needed. Second, the automated pipeline was evaluated against manual depiction by a 

single expert, which is subject to bias. In the future, multi-observer labeling and a consensus 

protocol may be used to improve the quality of evaluation. Last but not least, the current 

pipeline interacts with human observer via manual review and modification. In future work, 

each module can be extended to automatically flag predictions of lower confidence for 

further human intervention to improve workflow efficiency.

5 CONCLUSIONS

In this study, we developed an automated pipeline, VWI-APP, for end-to-end intracranial 

plaque quantification. The pipeline provides accurate centerline tracking and vessel structure 

segmentation, as well as expert-level clinical plaque quantification, with substantially 

reduced demand on human labor and analysis time.

Zhou et al. Page 9

Med Phys. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This work is supported in part by NIH/NHLBI R01 HL147355.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.

REFERENCE

1. Murphy SJX, Werring DJ. Stroke: causes and clinical features. Medicine. 2020;48(9):561–566. 
doi:10.1016/j.mpmed.2020.06.002 [PubMed: 32837228] 

2. Bodle JD, Feldmann E, Swartz RH, Rumboldt Z, Brown T, Turan TN. High-Resolution Magnetic 
Resonance Imaging: An Emerging Tool for Evaluating Intracranial Arterial Disease. Stroke. 
2013;44(1):287–292. doi:10.1161/STROKEAHA.112.664680 [PubMed: 23204050] 

3. Song JW, Pavlou A, Burke MP, et al. Imaging endpoints of intracranial atherosclerosis using 
vessel wall MR imaging: a systematic review. Neuroradiology. 2021;63(6):847–856. doi:10.1007/
s00234-020-02575-w [PubMed: 33029735] 

4. Chung JW, Cha J, Lee MJ, et al. Intensive Statin Treatment in Acute Ischaemic Stroke Patients with 
Intracranial Atherosclerosis: a High-Resolution Magnetic Resonance Imaging study (STAMINA-
MRI Study). J Neurol Neurosurg Psychiatry. 2020;91(2):204–211. doi:10.1136/jnnp-2019-320893 
[PubMed: 31371644] 

5. Gao S, van ‘t Klooster R, Brandts A, et al. Quantification of common carotid artery and 
descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated 
processing pipeline: Quantification of CCA and DAO. J Magn Reson Imaging. 2017;45(1):215–228. 
doi:10.1002/jmri.25332 [PubMed: 27251901] 

6. Tang H, van Walsum T, van Onkelen RS, et al. Semiautomatic carotid lumen segmentation for 
quantification of lumen geometry in multispectral MRI. Medical Image Analysis. 2012;16(6):1202–
1215. doi:10.1016/j.media.2012.05.014 [PubMed: 22841778] 

7. Guo Y, Canton G, Chen L, et al. Multi‐Planar, Multi‐Contrast and Multi‐Time Point Analysis Tool 
( MOCHA ) for Intracranial Vessel Wall Characterization. Magnetic Resonance Imaging. Published 
online January 31, 2022:jmri.28087. doi:10.1002/jmri.28087

8. Chen L, Canton G, Liu W, et al. Fully automated and robust analysis technique for popliteal artery 
vessel wall evaluation (FRAPPE) using neural network models from standardized knee MRI. Magn 
Reson Med. 2020;84(4):2147–2160. doi:10.1002/mrm.28237 [PubMed: 32162395] 

9. Shi F, Yang Q, Guo X, et al. Intracranial Vessel Wall Segmentation Using Convolutional Neural 
Networks. IEEE Trans Biomed Eng. 2019;66(10):2840–2847. doi:10.1109/TBME.2019.2896972 
[PubMed: 30716027] 

10. Yang Q, Deng Z, Bi X, et al. Whole-brain vessel wall MRI: A parameter tune-up solution to 
improve the scan efficiency of three-dimensional variable flip-angle turbo spin-echo: Expediting 
3D TSE-Based Whole-Brain Vessel Wall Imaging. J Magn Reson Imaging. 2017;46(3):751–757. 
doi:10.1002/jmri.25611 [PubMed: 28106936] 

11. Fan Z, Yang Q, Deng Z, et al. Whole-brain intracranial vessel wall imaging at 3 Tesla 
using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo: Whole-Brain Intracranial 
Vessel Wall Imaging at 3 T. Magn Reson Med. 2017;77(3):1142–1150. doi:10.1002/mrm.26201 
[PubMed: 26923198] 

Zhou et al. Page 10

Med Phys. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: A Platform for Subject-Specific Image Analysis, 
Visualization, and Clinical Support. In: Jolesz FA, ed. Intraoperative Imaging and Image-Guided 
Therapy. Springer New York; 2014:277–289. doi:10.1007/978-1-4614-7657-3_19

13. Dijkstra EW. A note on two problems in connexion with graphs. Numer Math. 1959;1(1):269–271. 
doi:10.1007/BF01386390

14. SlicerSandbox: Curved Planar Reformat. https://github.com/PerkLab/SlicerSandbox/blob/master/
CurvedPlanarReformat/CurvedPlanarReformat.py

15. Zhou H, Xiao J, Li D, Fan Z, Ruan D. Intracranial Vessel Wall Segmentation with Deep Learning 
using a Novel Tiered Loss Function Incorporating Class Inclusion. Medical Physics. Published 
online July 11, 2022:mp.15860. doi:10.1002/mp.15860

16. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image 
Segmentation. Published online 2015. doi:10.48550/ARXIV.1505.04597

17. Niethammer M, Kwitt R, Vialard FX. Metric Learning for Image Registration. In: 2019 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2019:8455–8464. 
doi:10.1109/CVPR.2019.00866

18. Vogel CR, Oman ME. Iterative Methods for Total Variation Denoising. SIAM J Sci Comput. 
1996;17(1):227–238. doi:10.1137/0917016

19. Chen X, Williams BM, Vallabhaneni SR, Czanner G, Williams R, Zheng Y. Learning 
Active Contour Models for Medical Image Segmentation. In: 2019 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR). IEEE; 2019:11624–11632. doi:10.1109/
CVPR.2019.01190

20. Xiao J, Padrick MM, Jiang T, et al. Acute ischemic stroke versus transient ischemic attack: 
Differential plaque morphological features in symptomatic intracranial atherosclerotic lesions. 
Atherosclerosis. 2021;319:72–78. doi:10.1016/j.atherosclerosis.2021.01.002 [PubMed: 33486353] 

21. Qiao Y, Anwar Z, Intrapiromkul J, et al. Patterns and Implications of 
Intracranial Arterial Remodeling in Stroke Patients. Stroke. 2016;47(2):434–440. doi:10.1161/
STROKEAHA.115.009955 [PubMed: 26742795] 

22. Mintz GS, Kent KM, Pichard AD, Satler LF, Popma JJ, Leon MB. Contribution of Inadequate 
Arterial Remodeling to the Development of Focal Coronary Artery Stenoses: An Intravascular 
Ultrasound Study. Circulation. 1997;95(7):1791–1798. doi:10.1161/01.CIR.95.7.1791 [PubMed: 
9107165] 

23. Ouhlous M, Lethimonnier F, Dippel DWJ, et al. Evaluation of a dedicated dual phased-array 
surface coil using a black-blood FSE sequence for high resolution MRI of the carotid vessel wall. J 
Magn Reson Imaging. 2002;15(3):344–351. doi:10.1002/jmri.10067 [PubMed: 11891981] 

24. Otsu N A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst, Man, 
Cybern. 1979;9(1):62–66. doi:10.1109/TSMC.1979.4310076

25. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients 
for Reliability Research. Journal of Chiropractic Medicine. 2016;15(2):155–163. doi:10.1016/
j.jcm.2016.02.012 [PubMed: 27330520] 

26. Diedrich KT, Roberts JA, Schmidt RH, Parker DL. Comparing Performance of 
Centerline Algorithms for Quantitative Assessment of Brain Vascular Anatomy. Anat Rec. 
2012;295(12):2179–2190. doi:10.1002/ar.22603

27. Wolterink JM, van Hamersvelt RW, Viergever MA, Leiner T, Išgum I. Coronary artery centerline 
extraction in cardiac CT angiography using a CNN-based orientation classifier. Medical Image 
Analysis. 2019;51:46–60. doi:10.1016/j.media.2018.10.005 [PubMed: 30388501] 

28. Krejza J, Arkuszewski M, Kasner SE, et al. Carotid Artery Diameter in Men 
and Women and the Relation to Body and Neck Size. Stroke. 2006;37(4):1103–1105. 
doi:10.1161/01.STR.0000206440.48756.f7 [PubMed: 16497983] 

29. Valvita R, Sadi B. Variations of shape, length, branching, and end trunks of M1 segment of middle 
cerebral artery. J Neurol Neurol Sci Disord. 2019;5(1):052–056. doi:10.17352/jnnsd.000034

30. Mut F, Wright S, Ascoli GA, Cebral JR. Morphometric, geographic, and territorial characterization 
of brain arterial trees: CHARACTERIZATION OF BRAIN ARTERIAL TREES. Int J Numer 
Meth Biomed Engng. 2014;30(7):755–766. doi:10.1002/cnm.2627

Zhou et al. Page 11

Med Phys. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/PerkLab/SlicerSandbox/blob/master/CurvedPlanarReformat/CurvedPlanarReformat.py
https://github.com/PerkLab/SlicerSandbox/blob/master/CurvedPlanarReformat/CurvedPlanarReformat.py


31. Tetteh G, Efremov V, Forkert ND, et al. DeepVesselNet: Vessel Segmentation, Centerline 
Prediction, and Bifurcation Detection in 3-D Angiographic Volumes. Front Neurosci. 
2020;14:592352. doi:10.3389/fnins.2020.592352 [PubMed: 33363452] 

32. Adame IM, van der Geest RJ, Wasserman BA, Mohamed MA, Reiber JHC, Lelieveldt BPF. 
Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images. 
Magn Reson Mater Phy. 2004;16(5):227–234. doi:10.1007/s10334-003-0030-8

33. Wang Y, Seguro F, Kao E, et al. Segmentation of lumen and outer wall of abdominal aortic 
aneurysms from 3D black-blood MRI with a registration based geodesic active contour model. 
Medical Image Analysis. 2017;40:1–10. doi:10.1016/j.media.2017.05.005 [PubMed: 28549310] 

34. Chen L, Zhao H, Jiang H, et al. Domain adaptive and fully automated carotid artery atherosclerotic 
lesion detection using an artificial intelligence approach (LATTE) on 3D MRI. Magnetic 
Resonance in Med. 2021;86(3):1662–1673. doi:10.1002/mrm.28794

35. Wu J, Xin J, Yang X, et al. Deep morphology aided diagnosis network for segmentation of carotid 
artery vessel wall and diagnosis of carotid atherosclerosis on black‐blood vessel wall MRI. Med 
Phys. 2019;46(12):5544–5561. doi:10.1002/mp.13739 [PubMed: 31356693] 

36. Wu F, Ma Q, Song H, et al. Differential Features of Culprit Intracranial Atherosclerotic Lesions: 
A Whole‐Brain Vessel Wall Imaging Study in Patients With Acute Ischemic Stroke. J Am Heart 
Assoc. 2018;7(15). doi:10.1161/JAHA.118.009705

37. Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional 
high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging. 2011;34(1):22–30. 
doi:10.1002/jmri.22592 [PubMed: 21698704] 

38. Shi Z, Zhao M, Li J, et al. Association of Hypertension With Both Occurrence and Outcome 
of Symptomatic Patients With Mild Intracranial Atherosclerotic Stenosis: A Prospective Higher 
Resolution MAGNETIC RESONANCE IMAGING Study. J Magn Reson Imaging. Published online March 
10, 2021:jmri.27516. doi:10.1002/jmri.27516

Zhou et al. Page 12

Med Phys. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The diagram of VWI-APP workflow and key techniques. Following image registration 

between MRA and VWI, the centerline of a selected vessel segment is automatically tracked 

on MRA. On the co-registered VWI, the segment is then straightened along the derived 

centerline and sliced into cross-sectional sections that later undergo vessel wall and lumen 

segmentation and plaque quantification. DS = diameter stenosis, NWI = normalized wall 

index, CR = plaque-wall contrast ratio, RR = remodeling ratio.
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Figure 2. 
The segmentation network uses a level-set logic to establish the inclusion relationship 

between the inner and outer boundary of the vessel wall. (a) UNet structure with skip 

connections in each convolution block to pass the features learned in previous layers; and (b) 

network single-channel output y and the corresponding lumen and vessel delineation.
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Figure 3. 
Qualitative illustration of centerline tracking results: (a) are the results of three 

representative test cases, where the blue and red lines are the manual and algorithm detected 

centerlines, respectively; (b) is an illustration of possible centerline tracking error caused by 

MRA signal loss, where the ground truth is the upper blue line, and the algorithm detected is 

the lower red line.
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Figure 4. 
Qualitative performance of the segmentation module by our proposed tiered segmentation 

method: each column is an example slice. Gray denotes the lumen, white the vessel wall, 

and black the background.
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Figure 5. 
Demonstration of plaque monitoring of a patient. There was a 5-month interval between 

baseline VWI (a) and follow-up VWI (b). The straightened vessel is shown in the left panels 

both before and after segmentation. The bottom right panel shows a cross-sectional slice 

with segmentation mask. Results of the plaque quantification are displayed in the upper right 

panel. The stenotic slice (red vertical line) was generated by the pipeline toolbox at the 

smallest lumen area across the whole segment, and the reference slice (blue vertical line) 

was manually adjusted. The follow-up VWI was registered to the baseline VWI, and (b) has 

the same stenosis and reference slice selection as (a).
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Table 1.

The average and maximum distances between the VWI-APP detected centerline and the manually traced 

centerline in 10 test patients.

Whole vessel (mm) Stenotic segment (mm)

Patient Average Maximum Average Maximum

1 0.437 1.281 0.623 1.281

2 2.062 10.400 4.229 10.400

3 0.343 0.640 0.310 0.349

4 0.622 2.310 0.319 0.394

5 0.434 1.196 0.663 1.196

6 0.403 1.393 0.452 0.736

7 0.335 0.643 0.317 0.438

8 0.447 1.622 0.609 1.622

9 0.420 0.764 0.428 0.695

10 1.292 7.296 0.370 0.650

Average 0.679 2.754 0.832 1.776

Standard deviation 0.562 3.332 1.201 3.059

Med Phys. Author manuscript; available in PMC 2024 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 19

Table 2.

End-to-end evaluation of VWI-APP in 10 patients with symptomatic ICAD.

DS (%) NWI RR CR TPV (mm3)

Patient Manual Pipeline Manual Pipeline Manual Pipeline Manual Pipeline Manual Pipeline

1 18.65 7.20 0.773 0.679 1.007 1.081 1.879 1.929 91.34 86.44

2 30.63 47.61 0.621 0.708 0.778 0.437 1.496 1.812 100.94 115.72

3 12.28 11.28 0.684 0.640 1.317 1.289 1.337 1.391 48.91 48.19

4 18.83 19.59 0.783 0.633 0.885 0.763 1.937 2.302 110.55 95.34

5 27.41 28.73 0.950 0.820 1.286 1.094 1.749 1.953 100.55 105.83

6 22.94 16.71 0.729 0.693 0.924 0.911 1.929 1.741 32.16 28.63

7 63.35 58.52 0.913 0.895 0.793 0.834 1.809 1.664 84.51 86.89

8 35.01 37.46 0.853 0.807 1.055 1.123 1.297 1.475 109.16 98.74

9 67.21 52.86 0.961 0.929 0.816 0.782 1.235 1.150 449.26 495.60

10 41.55 40.69 0.842 0.841 1.075 1.000 2.978 2.678 183.36 186.95

MAE 6.02 ± 6.10 0.064 ± 0.047 0.099 ± 0.095 0.188 ± 0.105 10.71 ± 12.81

ICC 0.890 0.813 0.827 0.891 0.991

CI_95 [0.62, 0.97] [0.41, 0.95] [0.45, 0.95] [0.62, 0.97] [0.96, 1.00]

DS = diameter stenosis; NWI = normalized wall index; RR = remodeling ratio; CR = plaque-wall contrast ratio; TPV = total plaque volume; MAE 
= mean absolute error; ICC = intraclass correlation coefficient; CI = confidence interval.
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