
UC San Diego
Technical Reports

Title
Encode-then-encipher encryption: How to exploit nonces or redundacy in plaintexts for
efficient cryptography

Permalink
https://escholarship.org/uc/item/80n3m1fj

Authors
Bellare, Mihir
Rogaway, Phillip

Publication Date
2000-03-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/80n3m1fj
https://escholarship.org
http://www.cdlib.org/

Encode-then-encipher encryption:

How to exploit nonces or redundacy in plaintexts

for e�cient cryptography

Mihir Bellare

�

Phillip Rogaway

y

October 1999

Abstract

We investigate the following approach to symmetric encryption: �rst encode the message

in some trivial way (eg., prepend a counter and append a checksum), and then encipher the

encoded message. Here \encipher" means to apply a cipher (i.e. pseudorandom permutation)

F

K

, where K is the shared key. We show that if the encoding step incorporates a nonce (counter

or randomness), in any way at all, then the resulting encryption scheme will be semantically

secure. And we show that if the encoding step incorporates redundancy, in any form at all,

then, as long as the receiver veri�es the presence of this redundancy in the deciphered string,

the resulting encryption scheme achieves message authenticity. The second result helps explain

and justify the prevalent misunderstanding that encrypting messages which have redundancy

is enough to guarantee message authenticity: the statement is actually true if \encrypting" is

understood as \enciphering."

Encode-then-encipher encryption can be used to robustly and e�ciently exploit structured

message spaces. If one is presented with messages known a priori to contain something that

behaves as a nonce, then privacy can be obtained with no increase in message length, and no

knowledge of the structure of the message, simply by enciphering the message. Similarly, if

one is presented with messages known a priori to contain adequate redundancy, then message

authenticity can be obtained with no increase in message length, and no knowledge of the

structure of the message, simply by enciphering the message.

Keywords: Ciphers, Encoding, Modes of Operation, Provable Security, Symmetric Encryption.

�

Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,

California 92093, USA. E-Mail: mihir@cs.ucsd.edu URL: www-cse.ucsd.edu/users/mihir.

y

Dept. of Computer Science, Engineering II Bldg., One Shields Ave., University of California at Davis, Davis,

CA 95616, USA. E-Mail: rogaway@cs.ucdavis.edu URL: www.cs.ucdavis.edu/~rogaway/

1

Contents

1 Introduction 3

2 De�nitions 5

3 Encoding Schemes 8

4 Enciphering Encoded Messages 10

5 Privacy from Rare/Collision-Free Encodings 10

6 Authenticity from Sparse Encodings 11

References 15

2

1 Introduction

Enciphering vs. encrypting. Many popular books on cryptography describe \encryption" as

applying a key-indexed permutation F

K

to the plaintext M , thereby obtaining the ciphertext

C = F

K

(M). Yet, if the goal of encryption is privacy (as it is usually assumed to be), then our

community has long since recognized that, being deterministic, realizing encryption in this way

cannot possibly achieve the strong security guarantees that one would hope for (semantic security

and beyond [5, 1]; for example, if the same message is encrypted twice an adversary should not be

able to detect this). So from this point forward we'll avoid using the word \encryption" when what

we have in mind is to apply a key-indexed permutation F

K

.

A family of permutations F = fF

K

g will be called a cipher. Applying one of these functions F

K

is enciphering (not encrypting). Applying F

�1

K

is deciphering (not decrypting). In this paper,

\good" for an enciphering method means approximating (in the usual ways [6]) a family of random

permutations. On the other hand, \good" for an encryption scheme means achieving privacy

properties at least as strong as semantic security. As indicated above, good enciphering never, by

itself, makes for good encryption.

Despite the last statement, there seems to be a widespread belief that enciphering a message

is, somehow, almost as good as encrypting it. When messages are somehow \structured," or the

message space has \enough entropy," maybe enciphering does the job. Is there any scienti�c basis

for such a belief?

In this paper we investigate the circumstances under which good enciphering really does make

for good encryption. This leads us to introduce encoding schemes as a way to conceptualize what

is happening when you encipher structured messages. Let us describe what are encoding schemes,

and how they relate to enciphering.

Encode-then-encipher encryption. Start with a good cipher that operates on messages of

any length at all. (In other words, F

K

, for a random K, \looks like" a random length-preserving

permutation.) Now to encrypt M , �rst \encode" it into some string M

�

. The encoding might be

really trivial|like prepending a counter, or appending some 0-bits, or maybe doing both. The

encoding might even be the identity function. All that is demanded of an encoding method is that

it does not \lose" information: you can \decode" M

�

to recover M , and you can recognize when a

string is and is not the encoding of some message. To encrypt message M under key K, encipher

the encoded message M

�

using F

K

, yielding ciphertext C = F

K

(M

�

). To decrypt a ciphertext C

decipher it to �nd M

�

= F

�1

K

(C), and then decode M

�

to get either a message M or an indication

that M

�

is not the encoding of any message. We call this style of encryption \encode-then-encipher

encryption." This is not a popular way to encrypt, though it is certainly a very natural paradigm.

Our results. In this paper we investigate how properties of the encoding scheme and the enci-

phering scheme can give rise to security properties of the resulting encryption scheme.

Suppose �rst that the encoding scheme adds in a nonce|usually a counter or a random value.

The nonce can be added into the message in any way at all. All one needs is that the \collision

probablity"|the chance that two encoded messages come out the same"|be small. We prove in

Theorem 5.1 that enciphering such encodings provides semantic security.

Next we look at encoding scheme which result in encoded messages which have enough redun-

dancy. This means that \most" stringsM

�

will be considered \bad." We prove in Theorem 6.1 that

the resulting encryption scheme will now achieve message authenticity. It is as though the sender

had sent a MAC along with his transmission. Interestingly, this theorem requires that the cipher be

a strong pseudorandom permutation [6]. We show in Theorem 6.2 that an ordinary pseudorandom

permutation won't do.

3

The actual results above are quantitative. The show how much privacy and authenticity is

guaranteed as a function of (easily-calcuated) numbers associated to the encoding scheme, and as

a function of the (quanti�ed) security of the underlying cipher.

Justifying some old intuition. At some level it would seem to be folklore that enciphering

strings which employ nonces or redundancy makes for good encryption. In the security literature

one sees many statements to the e�ect that we assume that messages to be encrypted employ

adequate redundancy, or we avoid replay attacks by including a nonce in the message we encrypt.

Our results help formalize what such authors may have had in mind, since the statements above

become meaningful and true when \encryption" means \enciphering" and when the roles of nonces

and redundancy are formally de�ned.

Is the encoding process \real"? In some applications of encode-then-encipher encryption

we imagine that the encoding step will be an ostensible part of encrypting: the piece of software

which encrypts M will encode it �rst, and then encipher the encoded message. For example, the

encryption engine might take in a messageM , prepend a counter, append a checksum, and encipher

the resulting string. But encode-then-encipher encryption is actually more interesting when the

encoding and decoding operations do not occur within the customary boundary of the encryption

engine. For example, the encryption software may be presented with an already-formatted IP

packet M

�

. Its payload is the message M one should get on decoding M

�

, but the encryption

software itself knowns nothing about where is the payload or how to extract it. Still, the encoding

and decoding processes really did occur, albeit within a di�erent piece of code. Finally, the encoding

step may exist purely as a conceptualization. For example, if messages are supposed to be English-

language sentences then the encoding step can be regarded as the the identity function on the space

of proper English-language sentences, while the decoding function takes a string M

�

and returns

M = M

�

if it is English, or else an indication that this is not an English sentence. Probably this

decoding operation can only performed by a human! Nonetheless, even in this case the language

of encodings makes sense.

In general, the encoding of messages should be seen as a model for how the messages that we

are enciphering might arise. This model is a more useful and general approach than trying to

equip an unknown message space with a distribution. For example, a distrbution on messages can

not handle ideas like inserting a counter into the message. The encoding/decoding model let's us

naturally and generally discuss all the relevant properties about how messages might look.

Why encode-then-encipher? Encode-then-encipher encryption can be used to provide short

ciphertexts with a high degree of independence on message-formatting conventions. It can be used

to provide a convenient migration path for legacy protocols. Let us explain.

In various application, particularly in networking, a \packet format" will have been de�ned,

where this packet format includes redundancy and/or nonces, but has no �elds for cryptographic

purposes (eg., �elds for an IV or MAC). Now suppose a need arises to add in privacy or authenticity

features. At the same time, there will often be a real-world constraint not to grow or re-de�ne the

packet format.

Using encode-then-encipher you probably do not have to. If packets are known to repeat rarely

or not at all (eg., packets always contain a sequence number) then semantic security is automatically

guranteed just by applying a good cipher. And if packet formats already include redundancy (which

they typically do if for no other reason than to simplify parsing) then there may be no need to

add in a separate MAC; once again, good enciphering (this time, with a strong pseudorandom

permutation) is enough. And because it is irrelevant how and where the nonce and redundancy

appeared in the packet format, privacy and authenticity will be retained, with no protocols changes

4

at all, if packet formats should subsequently change in some details.

The result is that encode-then-encipher encryption would leave packet sizes alone (our ciphers

are understood to be length-preserving), and they would leave packets looking identical (after

deciphering) to the way they looked before. This allows for modular software changes with minimal

code disruption. The code which enciphers as a way to encrypt doesn't know (or care) where is the

sequence number (say) or what �elds where can take on what values. Such indi�erence makes for

robust and simple software, and thus an easier migration path for adding in security features.

Constructing variable-input-length ciphers. To encrypt with the encode-then-encipher

approach you need to encipher strings which may be long or short, and whose lengths may vary from

one enciphering to the next. The cipher should look like a random length-preserving permutation

� :M

�

!M

�

. This may sound just like a block cipher, but it is actually quite di�erent, because

the domain includes strings of di�erent lengths. One construction is given in [3], and others are

possible.

A notion of authenticity for encryption schemes. We brie
y point out one �nal con-

tribution of this paper, which is the notion of authenticity de�ned in Section 2. The usual way

that message authenticity has been de�ned (eg., [2]) assumes that each message M is accompanied

by a tag (the message authentication code) � . The adversary wants to produce a hitherto unseen

message M

0

and a valid tag �

0

for it. But this setting does not apply to us, where the messages

being authenticated are never made visible. In the new setting the adversary's goal is to get the

receiver to accept as authentic a string C |with a possibly unknown \meaning" M| where the

adversary has not already witnessed C. In fact what we need is a new notion (or measure) of

security for a symmetric encryption scheme.

Several de�nitions of privacy for symmetric encryption schemes are given in [1]. Here we

are suggesting a notion of authenticity for an encryption scheme. Namely, consider a symmetric

encryption scheme in which the decryption algorithm is allowed to reject ciphertexts to indicate

that they are unauthentic. We take the setting of [1] in which the adversary gets to see (via an

oracle) ciphertexts of messages of her choice encrypted under a key K. We then say that she wins

if she can produce a valid ciphertext (meaning one which the decryption function under K does

not reject) which was never an output of the encryption oracle.

Version history. The �rst version of this paper dates to December 1998. This version, dating

from October 1999, was submitted to Eurocrypt 2000 in November 1999.

2 De�nitions

Notation and conventions. A message space M is a subset of f0; 1g

�

for which x 2M implies

that x

0

2 M for all x

0

of the same length of x. We also require the existence of an e�cient (say

linear time) algorithm to decide membership inM. A ciphertext space C is a subset of f0; 1g

�

. A

key space K is a set together with a probability measure on that set. Writing K K means to

choose K at random according to this probability measure.

When we speak of the running time of an algorithm by convention we mean the actual running

time plus the size of the length of the description of that algorithm.

Ciphers and PRFs. Let K, M and C be a key space, message space, and ciphertext space. A

pseudorandom function (PRF) is a collection of functions F = fF

K

j K 2 Kg, each F

K

:M ! C

sharing the same domain M and range C. We assume that jF

K

(M)j = `(jM j) depends only on

jM j. We call ` the length function of the PRF.

5

A cipher is a PRF F = fF

K

j K 2 Kg in which each F

K

:M ! C is one-to-one and onto. In

this case, F

�1

K

denotes the inverse of F

K

(�). A cipher is length-preserving if F

K

(M) = jM j for all

K 2 K and M 2M. For simplicity, all ciphers in this paper are assumed to be length-preserving.

A block-cipher is a cipher with domain (and range) f0; 1g

n

. The number n is called the block length.

LetM be a message space and let ` be a length function. We de�ne two \reference" PRFs:

Rand(M; `) A random function � from this set is determined as follows: for each M 2M let �(M)

be a random string in f0; 1g

`(jM j)

.

Perm(M) A random function � from this set is determined as follows: for each number i such

thatM contains strings of length i, let �

i

be a random permutation on f0; 1g

i

. Then de�ne

�(M) = �

i

(M), where i = jM j.

Thus � Rand(�; �) is used to choose a random function and � Perm(�) is used to choose a

random permutation. The arguments indicate the desired domain and range.

Security of PRFs and ciphers. We follow the formalization of [4], adapted to concrete security

as in [2]. A distinguisher is a (possibly probabilistic) algorithm A with access to an oracle O. Let A

be a distinguisher and let F = fF

K

j K 2 Kg be a PRF with key space K and length function `.

Then we let

Adv

prf

F

(A) = Pr[K K : A

F

K

(�)

= 1]� Pr[� Rand(M; `) : A

�(�)

= 1]

denote the advantage of A in distinguishing F from a random function. We let

Adv

prp

F

(A) = Pr[K K : A

F

K

(�)

= 1]� Pr[� Perm(M) : A

�(�)

= 1]

denote the advantage of A in distinguishing F from a random permutation. De�ne

Adv

prf

F

(t; q; �) = max

A

fAdv

prf

F

(A)g and Adv

prp

F

(t; q; �) = max

A

fAdv

prp

F

(A)g

where the maximum is taken over all adversaries which run in time at most t and ask at most q

oracle queries, these queries totaling at most � bits.

We also need the notion of a strong-PRP, as de�ned by Luby and Racko� [6]. Here the distin-

guisher gets not only an oracle for the function, but also one for its inverse. Let F = fF

K

j K 2 Kg

be a PRP with key space K and length function `. Then we let

Adv

sprp

F

(A) = Pr[K K : A

F

K

(�);F

�1

K

(�)

= 1]� Pr[� Perm(M) : A

�(�);�

�1

(�)

= 1]

denote the advantage of A in distinguishing F from a random permutation. De�ne

Adv

sprp

F

(t; q; �) = max

A

fAdv

sprp

F

(A)g

where the maximum is taken over all adversaries which run in time at most t, make at most q

queries to the two oracles combined, and all these queries together total at most � bits.

Throughout, if the distinguisher inquires as to the value of oracle f at a pointM 62 M then the

oracle responds with the distinguished point ?. Since we assume that there is a (simple) algorithm

to decide membership inM there is in fact no point for the adversary to make such inquiries.

Encryption-or-authentication schemes. Fix a key space K, a message space M, and a

ciphertext space C. An encryption-or-authentication scheme is a triple of algorithms, denoted

� = (Keygen;Send;Receive), as we now describe.

The key-generation algorithm Keygen is a probabilistic algorithm that produces a key K 2 K.

Algorithm Send can be either probabilistic or stateful. If probabilistic it takes a key K 2 K

and a message M 2 f0; 1g

�

, and it
ips some coins r 2 f0; 1g

�

. The algorithm then returns

C = Send

K

(M; r). If stateful the algorithm takes a key K 2 K and a message M 2 f0; 1g

�

, and

it uses its internal state r 2 f0; 1g

�

. The algorithm then returns C = Send

K

(M; r), and it may

modify its internal state to some new state, r

0

. Either way, C can be either a binary string in C

6

or the distinguished symbol ?. The value ? is used if M 62 M or (if this is a stateful encryption

scheme) the state r indicates that the message M can not be sent (when, for example, too many

messages have already been sent).

Algorithm Receive takes K 2 K and C 2 f0; 1g

�

and computes M = Receive

K

(C) where M

is either a string in M or the distinguished symbol ?. A return value of ? is used to indicate

that C is regarded as inauthentic. We call C valid if Receive

K

(C) 2 M and we call C invalid if

Receive

K

(C) = ?.

We also permit applying Send

K

to (?; r), which results in a return value of ?. Likewise,

applying Receive

K

to ? is permitted and this gives a return value of ?.

We require the following: if C = Send

K

(M; r) and C 6= ? then Receive

K

(C) =M .

When we think of the goal of � as privacy, or a combination of privacy and message authenticity,

then we call � an encryption scheme and name its components by � = (Keygen;Encrypt;Decrypt).

When we think of the goal of � as authenticating messages then we call � an authentication scheme

and we name its components by � = (Keygen;Authenticate;Recover). But we emphasize that there

is no formal distinction between an encryption scheme and an authentication scheme under this

formalization.

Privacy. Several formalizations for the security of a symmetric encryption scheme under chosen-

plaintext attack were provided in [1] and compared in terms of concrete security. We will use one

of these notions, namely \real-or-random" security.

The idea is that an adversary cannot distinguish the encryption of text from the encryption of

an equal-length string of garbage. For the formalization, let � = (Keygen;Encrypt;Decrypt) be an

encryption scheme and let A be an adversary with an encryption oracle. If the encryption scheme

is probabilistic then fresh random choices are made for each query. If the encryption scheme is

stateful then the state is properly initialized and then adjusted with each query. De�ne

Adv

priv

�

(A) = Pr

h

K Keygen : A

Encrypt

K

(�)

= 1

i

� Pr

h

K Keygen : A

Encrypt

K

(

$

j�j

)

= 1

i

:

In the �rst game, the oracle, given a message, returns its encryption under key K; in the second

game the oracle, given a message, ignores it except to record its length n, and then returns the

encryption of a random message of length n. The advantage of A is a measure of the adversary's

ability to tell these two worlds apart. We de�ne

Adv

priv

�

(t; q; �) = max

A

fAdv

priv

�

(A)g

where the maximum is over all adversaries who run in time at most t and ask at most q oracle

queries, where these queries total at most � bits.

Authenticity. A sender who holds a message M wants to send a string C to a receiver with

whom he shares a key K. The sender wants to do this in such a way that the receiver can recover M

from C and the receiver can be con�dent that C (and M) really does originate with the sender.

That is, if C does not originate with the sender then the receiver should �gure this out and C

should be deemed a forgery.

To formalize this an adversary will be given a way to generate authenticated messages of her

choice: M

1

7! C

1

;M

2

7! C

2

; : : : ;M

q

7! C

q

. She will \win" if she computes a new string C (that is,

C 62 fC

1

; : : : ; C

q

g) which would be deemed authentic by the receiver.

We remark that this notion of authenticity di�ers from a message authentication code (MAC)

in several way. A MAC is a tag t which accompanies the message M which it authenticates.

So appending a MAC |letting C = (M; t)| is one way to accomplish message authentication.

Here the message M is recovered from the authenticated message C in a particularly trivial way;

you don't even need the key to do this. But there is a deeper di�erence between a MAC and a

7

general message authentication scheme. In formalizing the security of a MAC the adversary makes

a number of queries to a MAC-generation oracle, with each query mapping the message M

i

to its

tag t

i

. After that the adversary has to come up with a new message M and a tag t such that

the receiver will deem (M; t) authentic. In particular, the adversary must \know" the message M

that is being forged, insofar as the adversary outputs it along with t. In contrast, an adversary

attacking message authentication scheme in the general sense we are de�ning wins even if she does

not know what is the message M which is being forged. All that is required is that there is such a

message underlying C|that is, the receiver will recover something in the message space M (and

not an indication that C is bogus).

Formally, let � = (Keygen;Authenticate;Recover) be an authentication scheme and let A be

an adversary who is given oracle access to Authenticate. After interacting with that oracle the

adversary outputs a string C. We say C is new if C was not the response to any earlier oracle

query asked by A. Adversary A is said to be successful if C is new and valid, and we measure the

probability of this:

Adv

auth

�

(A) = Pr[K Keygen ; C A

Authenticate

K

(�)

: C is new and Recover

K

(C) 6= ?] :

The quality of � in authenticating messages is measured by the function

Adv

auth

�

(t; q; �) = max

A

fAdv

auth

�

(A)g

where the maximum is over all adversaries who run in time at most t and make at most q�1 oracle

calls, these totalling a most � � jCj bits, where C is the length of A's output. For simplicity, we

assume that an adversary A attacking the authenticity of � will only output a string which is new.

3 Encoding Schemes

Syntax. Fix message spaces M;M

�

. An encoding scheme (\on M", or \from M to M

�

") is a

pair of algorithms S = (Encode;Decode) as we now describe.

Algorithm Encode can be either probabilistic or stateful, while Decode is neither. First assume

that Encode is probabilistic (not stateful). Then each time Encode is called on an input M 2 M

the algorithm
ips some coins, r, and returns a string M

�

= Encode(M; r) 2M

�

. We assume that

for any string M 2M and any coins r, we have that jEncode(M; r)j = `(jM j) for some function `,

the \length function" of the encoding scheme.

Algorithm Decode takes as input M

�

2 f0; 1g

�

. It returns either a binary string M 2M or the

distinguished symbol ?. If Decode(M

�

) is a binary string we say that M

�

is valid , while we say

that M

�

is invalid if Decode(M

�

) = ?. We demand that for any M 2M and any r, we have that

Decode(Encode(M; r)) =M .

We allow that Encode and Decode be presented with any string at all, even ones outside ofM

andM

�

. If you try to encode a string M 62 M then the result is the distinguished value ?. If you

try to decode a string M

�

62 M

�

then the result is the distinguished value ?. We further establish

the convention that you can encode or decode ?, which once again returns ?.

For simplicity in theorem statements we assume that Encode and Decode are e�ciently com-

putable, say in linear time.

Rare-collision encodings. Let S = (Encode;Decode) be an encoding scheme and let `(n) be

its length function. Let �(q) : N ! R be a function. We say that S is �-colliding if for and any

number q and any (computationally unbounded) adversary A who asks q queries the probability of

some two of these queries receive the same valid response is at most �(q):

Pr[(M

�

1

; : : : ;M

�

q

) Responses A

Encode(�)

: 9 i < j s.t. M

�

i

6= ?, M

�

j

6= ?, and M

�

i

=M

�

j

] � �(q) :

8

We shall say that hM

�

1

; : : :M

�

q

i \collide" if some pair of these strings are the same and are di�erent

from ?. The reader may prefer to think of M

1

= M

2

= � � � = M

q

since typically this would be

the adversary's best strategy when trying to produce a collision (as M 6= M

0

implies that their

encodings, if valid, have to be di�erent).

Example 3.1 Encoding scheme Prepend-128-Random-Bits works as follows. The message space

is M = f0; 1g

�

. Function Encode takes an input M and outputs r k M , where r is a sequence

of 128 random bits. Function Decode takes an input M

�

and behaves as follows. If M

�

is at

least 128 bits, then Decode outputs all but the �rst 128 bits of M

�

. If M

�

is less than 128 bits

then Decode(M

�

) outputs ?. Then Prepend-128-Random-Bits is C(q; 2

128

)-colliding, where C(q;m)

denotes the probability of at least one collision in the experiment of throwing q balls, independently

and at random, into m bins.

Collision-free encodings. For algorithm Encode to be stateful means that it maintains state

across invocations. The initial value of that state is some �xed constant, r

0

. Typically there will

be a limit, N , on the number of times that Encode may be used. After that number of invocations

Encode will return ? even when the inquiry is inM. We require that for all messages M and all

internal states r, if Encode(M; r) returns a binary stringM

�

then Decode(M

�

) =M . We emphasize

that decoding is stateless.

Stateful encoding schemes are of interest because with them we can make an encoding scheme

collision free, meaning 0-colliding, in the language above. Note that getting two ? values does

not count as a collision. Here is an example.

Example 3.2 Encoding scheme Prepend-64-Bit-Counter works as follows. The message space is

M = f0; 1g

�

. A counter ctr is initialized to 0. The i-th message is encoded as follows. If i � 2

64

then the encoding is ?. Otherwise the encoding is M

�

= hii k M , where hii the number i written

as a 64-bit binary string. Function Decode takes an input M

�

and behaves as follows. If jM

�

j < 64

then Decode returns ?. Otherwise it returns M

�

after having expunged the �rst 64-bits. Clearly

Prepend-64-Bit-Counter is collision free: the counter guarantees that no two encodings can collide.

Sparse encodings. Let S = (Encode;Decode) be an encoding scheme and let � be a real number.

We say that encoding scheme S is �-dense if for all n 2 N,

Pr[M

�

 f0; 1g

n

: Decode(M

�

) 2 f0; 1g

�

] � � :

That is, for every message length, at most a �-fraction of all strings of that length are valid (they

decode to strings inM). The rest are invalid encodings (they decode to ?).

Example 3.3 The encoding scheme Prepend-32-Zeros works as follows. Let M = f0; 1g

�

. De�ne

Encode(M) = 0

32

kM . De�ne Decode(M

�

) to beM

�

after stripping away its �rst 32 bits, assuming

that M

�

has at least 32 bits, and set Decode(M

�

) = ? otherwise. Then Prepend-32-Zeros is 2

�32

-

dense: a string is valid (it starts with 32 zeros) with probability at most 2

�32

. Indeed the probability

that a random string M

�

is valid is exactly 2

�32

if the length of M

�

is at least 32 bits, while the

probability is 0 if the length of M

�

is less than 32 bits.

Example 3.4 Let the message space M be odd-parity-adjusted ASCII strings of length at least

50 bytes. This means that a message M 2M is a sequence of bytes M = b

1

k � � � k b

n

, for n � 50,

where each b

i

is a byte having its low 7 bits arbitrary and its high bit whatever is necessary so that

9

M

Encode

M*

F
K

C

r

M

Decode

M*

F
K

C

-1

or

or

Figure 1: Scheme F � S: encrypting (left-hand side) and decrypting (right-hand side) using the

encode-then-encipher paradigm. The plaintext is M , the ciphertext is C, the cipher is F = fF

K

g,

and the encoding scheme is S = (Encode;Decode).

the number of 1-bits in b

i

will be odd. Encoding scheme Odd-Parity is de�ned as follows. Function

Encode is the identity function. Function Decode checks that the bit length of its input is divisible

by 8, that the input is at least 50 bytes, and that each byte has odd parity. If these conditions are

satis�ed then Decode returns its input. Otherwise it returns ?. Then Odd-Parity is 2

�50

-dense: a

random string is valid with probability at most 2

�50

. Indeed the probability that a random n-byte

string is valid is 2

�n

if n � 50, and 0 if n < 50 or if the input is not a byte string at all.

4 Enciphering Encoded Messages

Let S = (Encode;Decode) be an encoding scheme fromM to M

�

and let F = fF

K

:M

�

!M

�

g

be a cipher with key space K. Then we de�ne the following encryption-or-authentication scheme

F � S = (Keygen;Encrypt;Decrypt):

(1) Keygen chooses a random key K K and outputs it.

(2) Encrypt

K

(M) sets M

�

 Encode(M), returns ? if M

�

= ?, and otherwise computes C

F

K

(M

�

) and returns that. Algorithm Encrypt is stateful if and only if Encode is. If Encode is

stateful then the initial state for Encrypt is the initial state mandated by Encode, and Encrypt

maintains the state needed by the encoding scheme.

(3) Decrypt

K

(C) returns ? if C 62 M

�

, and otherwise computes M

�

 F

�1

K

(C), sets M

Decode(M

�

), and returns M .

For a pictorial representation, see Figure 4.

5 Privacy from Rare/Collision-Free Encodings

We show that encryption scheme F � S is private if encoding scheme S has rare or no collisions

and F is a secure cipher, in the sense of being a good PRP. The following theorem makes this

formal and quantitative.

10

Theorem 5.1 Let S = (Encode;Decode) be an encoding scheme from M to M

�

and let F =

fF

K

: M

�

! M

�

g be a cipher with key space K. Suppose that S is �-colliding. Then F � S =

(Keygen;Encrypt;Decrypt) has security

Adv

priv

F�S

(t; q; �) � Adv

prf

F

(t

0

; q; �) + �(q);

where t

0

= t+O(�).

Proof: Let B be an adversary attacking the privacy of F � S. Let t be its running time, q the

number of queries it makes, and � the length of all its queries put together. plus the length of

B's output. Our goal is to upper bound Adv

priv

F�S

(B). To this end we introduce a couple of more

algorithms and some associated probabilities.

Algorithm D is a distinguisher for F . It is given an oracle for a permutation f 2 Perm(M

�

). It

runs B. When B makes an oracle query M , distinguisher D computes M

�

 Encode(M) and

C f(M

�

). It returns C to B as the answer to the query. When B terminates, D outputs

whatever B outputs.

Algorithm A is a collision �nding adversary for S. It is given oracle Encode. It picks a permutation

f from Perm(M

�

) at random. (Or simulates such a permutation. The di�erence is technically

immaterial since the running time of A is not restricted.) It then runs B. When B makes an oracle

query M , algorithm A computes M

�

 Encode(M) and C f(M

�

). It returns C to B as the

answer to the query. When B terminates, so does A.

We now de�ne the following probabilities:

p

1

= Pr[K Keygen : B

Encrypt

K

(�)

= 1]

p

2

= Pr[K Keygen : B

Encrypt

K

($

j�j

)

= 1]

p

3

= Pr[K K : D

F

K

(�)

= 1]

p

4

= Pr[� Perm(M

�

) : D

�(�)

= 1]

p

5

= Pr[(M

�

1

; : : : ;M

�

q

) Responses A

Encode(�)

: 9 i < j s.t. M

�

i

=M

�

j

6= ?] :

Note that Adv

priv

F�S

(B) = p

1

� p

2

. To upper bound it we use the following claims.

Claim 1: p

1

= p

3

.

Proof: This follows from the de�nitions of D and F � S. 2

Claim 2: p

2

� p

4

� p

5

.

Proof: Let C be the event that there is a collision, meaning 9 i < j s.t. M

�

i

= M

�

j

6= ?. Let

experiment i be that underlying p

i

for i 2 f2; 4; 5g. Event C is de�ned in all of experiment 2,4 and

5. In all cases, it has the same probability, and conditioned on it not happening, the probability

that D outputs 1 in experiment 1 equals the probability that B outputs 1 in experiment 4. Finally,

the probability of C is p

5

. 2

Given these claims we have

Adv

priv

F�S

(B) = p

1

� p

2

� p

3

� (p

4

� p

5

) = (p

3

� p

4

) + p

5

� Adv

prp

F

(D) + �(q) :

This concludes the proof of Theorem 5.1.

6 Authenticity from Sparse Encodings

We show that F � S is an authenticated encryption scheme if encoding S adds adequate redundancy

and F is a strong PRP. The following theorem makes this formal and quantitative. We remark that

11

this result requires that the PRP be strong, which the previous result did not, and we subsequently

show this extra requirement is necessary.

Theorem 6.1 Let S = (Encode;Decode) be an encoding scheme from M to M

�

and let F =

fF

K

:M

�

!M

�

g be a cipher with key space K. Suppose that S is �-dense and that q �

1

2�

. Then

F � S = (Keygen;Encrypt;Decrypt) has security

Adv

auth

F�S

(t; q; �) � Adv

sprp

F

(t

0

; q; 2�) + 2�;

where t

0

= t+O(�).

Proof: Let B be an adversary attacking the authenticity of F � S. Let t be its running time, q� 1

the number of queries it makes, and � the total length of all its queries put together, and its �nal

output. Our goal is to upper bound Adv

auth

F�S

(B). To this end we introduce an algorithm D and

some probabilities.

Algorithm D is a distinguisher for F . It is given two oracles: f and f

�1

, where f 2 Perm(M

�

)

is a permutation. It runs B. When B makes an oracle query M , distinguisher D computes

M

�

 Encode(M) and C f(M

�

). It returns C to B as the answer to the query. When B

terminates, it outputs a ciphertext C, which is supposed to its forgery. Algorithm D outputs 0

if C 62 M

�

. Otherwise D computes M

�

 f

�1

(C) (this is the one and only time it uses its f

�1

oracle). Algorithm D then computes M Decode(M

�

). If M = ? then D outputs 0, else D

outputs 1.

We now de�ne the following probabilities:

p

1

= Pr[K Keygen ; C B

Encrypt

K

(�)

: C is new and Decrypt

K

(C) 6= ?]

p

2

= Pr[K K : D

F

K

(�);F

�1

K

(�)

= 1]

p

3

= Pr[� Perm(M

�

) : D

�(�);�

�1

(�)

= 1]

Note that Adv

auth

F�S

(B) = p

1

. To upper bound it we use the following claims.

Claim 1: p

1

= p

2

.

Proof: This follows from the de�nitions of D and F � S. 2

Claim 2: p

3

� 2�.

Proof: If the ciphertext C is new and f = � is a random permutation, then M

�

= f

�1

(C) is

random subject to not being in the set f f

�1

(C

i

) : i = 1; : : : ; q g where C

i

= f(Encode(M

i

)) is the

response to the i-th query M

i

of B. For any integer n let

g(n) = jfM

�

2 f0; 1g

n

: Decode(M

�

) 2 f0; 1g

�

gj :

We know g(n)=2

n

� � for all n. In the worst case, all the ciphertexts are of some common length n.

The probability that Decode(M

�

) 6= ? is at most g(n)=(2

n

� q). If g(n) = 0 then this probability

is zero, and hence certainly at most 2�, so suppose g(n) 6= 0. In that case g(n) � 1, so it must

be that 2

n

� 1=�. But by assumption q � 1=(2�). So 2

n

� q � 1=� � 1=(2�) = 1=(2�). So

g(n)=(2

n

� q) � 2�. 2

Given these claims we have

Adv

auth

F�S

(B) = p

1

= p

2

= (p

2

� p

3

) + p

3

� Adv

prp

F

(D) + 2� :

This concludes the proof of Theorem 6.1.

12

We now discuss the necessity of the extra requirement on the PRP above, namely that it be strong.

The following indicates that without this requirement, the authenticity does not hold. Using the

bounds found in the proof, the slightly informal theorem statement is easily adapted to give a more

precise (but less understandable) quantitative assertion.

Theorem 6.2 If there exists a secure PRP then there exists a secure PRP F (that is not a strong-

PRP) and a �-dense encoding scheme S for which the scheme F � S does not achieve authenticity.

Proof: Let M = K = f0; 1g

n

and M

�

= f0; 1g

2n

. Let S = (Encode;Decode) be the encoding

scheme from M to M

�

in which Encode(M) = M0

n

, namely the encoding function appends n

zeros to the input. The Decode function on input a 2n bit string M

�

outputs ? if the last n bits of

M

�

are not all zero, and otherwise outputs the last n bits of M

�

. This encoding scheme is �-dense

where � = 2

�n

.

Assume we are given a secure PRP G = fG

K

: M

�

! M

�

g with key space K. We construct a

secure PRP F = fF

K

1

;K

2

:M

�

! M

�

g with key space K � K. This will have the property that

F � S = (Keygen;Encrypt;Decrypt) can be broken from the authenticity point of view.

We will design F so that for any key K we have F

K

1

;K

2

(K

2

0

n

) = 0

2n

. Let us �rst see why this

furnishes the necessary example, and then see how to construct F from G.

The attack on F � S is as follows. The adversary makes no queries. It simply outputs C = 0

2n

.

Now notice that Decode(F

�1

K

1

;K

2

(C)) = Decode(K

2

0

n

) = K

2

is not equal to ?, so the adversary

wins, with probability one. This shows the scheme is totally insecure.

Notice that F is de�nitely not a strong-PRP. If a distinguisher has oracles f; f

�1

, it can call f

�1

on 0

2n

, and obtain a reply xy. It returns 1 if y = 0

n

and 0 otherwise. The probability it returns 1

is 1 if f = F

K

1

;K

2

, and 2

�n

if f is a random permutation onM

�

, so its advantage is almost one.

To complete the proof we need to show how to construct F from G so that it preserves the PRPness

and invertibility of G{

Algorithm F

K

1

;K

2

(xy) (Here jxj = jyj = jK

1

j = jK

2

j = n)

If xy = K

2

0

n

then return 0

2n

Else If G

K

1

(xy) = 0

2n

then return G

K

1

(K

2

0

n

)

Else return G

K

1

(xy)

We need to show that F is a family of permutations (meaning each F

K

1

;K

2

is invertible) and also

that F is almost as secure as G in the PRP sense. To see the �rst, note that the following works

as the inverse function{

F

�1

K

1

;K

2

(wz) =

8

>

>

<

>

>

:

K

2

0

n

if wz = 0

2n

G

�1

K

1

(0

2n

) if wz = G

K

1

(K

2

0

n

)

G

�1

K

1

(wz) otherwise.

That F is still a secure PRP is because an adversary given an oracle f is unlikely to be able to

touch f in any of the \bad" places, since one of them would correspond to knowing a part of the

key, and another to inverting a random permutation on a �xed point. More precisely we claim that

for any q � 2

n

=4 and any t; � we have

Adv

prp

F

(t; q; �) � Adv

prp

G

(t+O(n); q; �) +

4q

2

n

: (1)

To see this, let D

F

be a distinguisher for F that makes q queries, runs in time t, and queries a total

of � bits. We de�ne a distinguisher D

G

for G. The code is below and explanations follow{

13

Algorithm D

g

G

(Here g: M

�

!M

�

)

K

2

 f0; 1g

n

For i = 1; : : : ; q do

D

F

! x

i

y

i

w

i

z

i

 g(x

i

y

i

)

If x

i

= K

2

and y

i

= 0

n

then return 1

Else If w

i

z

i

= 0

2n

then return 1

Else D

F

 w

i

z

i

D

F

 b

return b

Distinguisher D

G

�rst picks a string K

2

at random to play the role of the second part of the key

for F . It then starts running D

F

. The notation D

F

! x

i

y

i

means D

F

makes query x

i

y

i

. D

G

must

answer it. It answers by the value of g on this point, except for two special cases, in each of which

D

G

halts and returns 1. If D

G

did not halt in the query process it obtains the �nal decision bit b

of D

F

, and returns the same.

We claim that

Pr[K K : D

G

K

(�)

G

= 1] � Pr[(K

1

;K

2

) K�K : D

F

K

1

;K

2

(�)

F

= 1] (2)

Pr[� Perm(M

�

) : D

�(�)

G

= 1] � Pr[� Perm(M

�

) : D

�(�)

F

= 1] +

2q

2

n

: (3)

We will argue this below. Assuming it, subtraction gives us

Adv

prp

F

(D

F

) � Adv

prp

G

(D

G

) +

4q

2

n

;

which implies Equation (1).

Equation (2) is true because D

G

simulates D

F

except in some cases, but in those cases it returns 1,

so its probability of returning 1 can only increase with respect to that of D

F

. On the other hand,

the di�erence

Pr[� Perm(M

�

) : D

�(�)

G

= 1]� Pr[� Perm(M

�

) : D

�(�)

F

= 1]

is bounded above by the probability that one of the special cases occurs when running D

G

with

a random permutation �. Each time, two of the remaining inputs could cause one of the special

cases to happen, so the chance is bounded above by

q�1

X

i=0

2

2

n

� 2i

�

2q

2

n

=2

;

the last inequality exploiting the assumption that q � 2

n

=4. This gives us Equation (3) and

completes the proof.

Acknowledgments

Mihir Bellare was supported in part by NSF CAREER AWARD CCR-9624439 and a Packard

Foundation Fellowship in Science and Engineering. Phillip Rogaway was supported in part under

NSF CAREER Award CCR-962540, and under MICRO grants 97-150 and 98-129, funded by RSA

Data Security, Inc.. Much of Phil's work on this paper was carried out while on sabbatical at

Chiang Mai University, Thailand, hosted by the Computer Service Center, under Prof. Krisorn

Jittorntrum and Prof. Darunee Smawatakul.

14

References

[1] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, \A concrete security treatment of

symmetric encryption." Proceedings of the 38th Symposium on Foundations of Computer

Science, IEEE, 1997.

[2] M. Bellare, J. Kilian and P. Rogaway, \On the security of cipher block chaining."

Advances in Cryptology { Crypto 94 Proceedings, Lecture Notes in Computer Science Vol. 839,

Y. Desmedt ed., Springer-Verlag, 1994.

[3] M. Bellare and P. Rogaway, \On the construction of variable-input-length ciphers." Pro-

ceedings of the 6th Workshop on Fast Software Encryption, Ed. L. Knudsen, 1999.

[4] O. Goldreich, S. Goldwasser and S. Micali, \How to construct random functions."

Journal of the ACM, Vol. 33, No. 4, 210{217, (1986).

[5] S. Goldwasser and S. Micali, \Probabilistic encryption." Journal of Computer and System

Sciences 28, 270-299, April 1984.

[6] M. Luby and C. Rackoff, \How to construct pseudorandom permutations from pseudo-

random functions." SIAM J. Computing, Vol. 17, No. 2, April 1988.

[7] R. Rivest, \All-or-nothing encryption and the package transform." Fast Software Encryption

'97, Springer-Verlag (1997).

[8] C. Shannon, \Communication theory of secrecy systems." Bell Systems Technical Journal,

28(4), 656{715 (1949).

15

