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Abstract
Background: Sliding DNA clamps are processivity factors that are required for efficient DNA
replication. DNA polymerases maintain proximity to nucleic acid templates by interacting with
sliding clamps that encircle DNA and thereby link the polymerase enzyme to the DNA substrate.
Although the structures of sliding clamps from Gram-negative bacteria (E. coli), eukaryotes,
archaea, and T4-like bacteriophages are well-known, the structure of a sliding clamp from Gram-
positive bacteria has not been reported previously.

Results: We have determined the crystal structure of the dimeric β subunit of the DNA
polymerase III holoenzyme of Streptococcus pyogenes. The sliding clamp from this Gram-positive
organism forms a ring-shaped dimeric assembly that is similar in overall structure to that of the
sliding clamps from Gram-negative bacteria, bacteriophage T4, eukaryotes and archaea. The dimer
has overall dimensions of ~90 Å × ~70 Å × ~25 Å with a central chamber that is large enough to
accommodate duplex DNA. In comparison to the circular shape of other assemblies, the S.
pyogenes clamp adopts a more elliptical structure.

Conclusion: The sequences of sliding clamps from S. pyogenes and E. coli are only 23% identical,
making the generation of structural models for the S. pyogenes clamp difficult in the absence of
direct experimental information. Our structure of the S. pyogenes β subunit completes the catalog
of clamp structures from all the major sequence grouping of sliding clamps. The more elliptical
rather than circular structure of the S. pyogenes clamp implies that the topological nature of
encircling DNA, rather than a precise geometric shape, is the most conserved aspect for this family
of proteins.

Background
The bacterial DNA Polymerase III holoenzyme has the
remarkable ability to polymerize long stretches of DNA at
great speeds (~750 bases per second for the E. coli

enzyme) without dissociating from its template [1-3]. The
β subunit of the holoenzyme is required for efficient
processivity in bacteria. This protein factor wraps around
double-stranded DNA at primer-template junctions,
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where it serves as a sliding clamp to tether the polymerase
enzyme to its DNA substrate (reviewed in [4-6]). A sepa-
rate ATP-dependent protein complex called the clamp
loader is required to place the sliding clamp on primer-
template DNA (reviewed in [7-9]). Once loaded by this
complex, the sliding clamp can confer processivity to the
catalytic α subunit of the polymerase.

Structural analysis of the E. coli β subunit showed that the
bacterial clamp is a head-to-tail dimer, with two protom-
ers that form a closed ring [10]. The diameter of the ring
interior is large enough to accommodate duplex DNA.
Biochemical studies indicate that one interface of the
clamp is opened by the clamp loader to allow passage of
a primed DNA into this interior [11]. The bacterial clamp
does not share readily detectable sequence similarity with
the trimeric proliferating cellular nuclear antigen (PCNA)
clamps of eukaryotes and archaea. Nevertheless, the over-
all ring-shaped architecture of sliding clamps is highly
similar in bacterial, archaeal, and eukaryotic clamps [12-
14] as well as those from bacteriophage [15,16].

Here we present the crystal structure of the β subunit of
DNA polymerase III from Streptococcus pyogenes, a Gram-
positive bacterium. The subunits of the replicative
machinery of Gram-positive bacteria are generally diver-
gent in sequence from those of Gram-negative counter-
parts such as E. coli [17]. The β subunit of S. pyogenes
shares only 23% sequence identity to the E. coli protein
(Figure 1). We find that while the S. pyogenes clamp has a
fold that is strikingly similar to that of the sliding clamp
from E. coli, the S. pyogenes clamp adopts a more elliptical
shape (Figure 2). This indicates that although the S. pyo-
genes clamp presumably shares ability to encircle DNA,
the precise details of the molecular shape of sliding
clamps are poorly conserved between Gram-positive and
Gram-negative bacteria.

Results and discussion
The crystal structure of the β subunit from Streptococcus
pyogenes was determined by multiple anomalous diffrac-
tion (MAD) at 2.6 Å resolution using datasets for three
separate wavelengths close to the selenium absorption
edge. A model built into the phased electron density maps
was refined subsequently to 2.1 Å resolution against
native data (See Materials & Methods). These crystals
(space group P21) contain one β dimer in the asymmetric
unit. A non-crystallographic two-fold relates two protom-
ers to form the dimeric clamp. This internal symmetry
facilitated the initial stages of model building and refine-
ment. The two molecules are related by a 180° rotation
about an axis perpendicular to the plane of the ring with
a root mean square (r.m.s.) deviation of 0.46 Å for Cα
atoms between the two protomers.

Consistent with the structure of the E. coli β clamp [10],
the S. pyogenes clamp dimer is formed in a head-to-tail
fashion. The sequence identity between the E. coli and S.
pyogenes β clamp sequences is relatively low at 23% (Fig-
ure 1). Low sequence identity is a characteristic of
sequence comparisons between bacterial clamps and
trimeric clamps, such as those of T4-bacteriophage gp45
and PCNA [12-16]. Interestingly, the S. pyogenes β clamp
dimer has a distorted oval shape, unlike the more circular
shape of the E. coli β clamp. The distortion from a more
circular shape is a feature of both crystallographically-
independent subunits although we cannot absolutely rule
out the influence of crystal packing on the shape of these
clamps. The longer of the outer oval diameters is ~90 Å
while the shortest diameter across the clamp is ~65 Å (Fig-
ure 2).

The overall organization of the S. pyogenes β subunit is
very similar to that of the E. coli β subunit, with three dis-
tinct domains in each protomer. The secondary structure
and topology of each of these domains is also very similar
to each other; a pair of four-stranded antiparallel β sheets
that bracket two antiparallel α helices make up the funda-
mental domain that is repeated three times per protomer
(and six times per clamp). Domains II and III consist of
approximately 110 residues. Domain I contains six more
residues that are inserted in a loop region between strands
β4 and β5. This region includes a small additional β-
strand (β4b) not present in the E. coli structure (residues
66–70) and several residues that are disordered (residues
61–65) in both protomers of the S. pyogenes clamp. The
additional β-strand is part of an antiparallel five-stranded
β-sheet made up together of strands β1, β4b, β6, β7 and
β8. We note that a region comparable to residues 66–70
of the S. pyogenes clamp forms a fifth β-strand in the struc-
ture of yeast PCNA [12].

When comparing the E. coli and S. pyogenes β clamp struc-
tures, there are differences in the relative positioning of
domains and their respective interconnecting linkers that
contribute to the elliptical shape of the S. pyogenes clamp.
This results in an overall r.m.s. deviation for Cα atoms
that is relatively large (2.0 Å) between the β clamp dimers
from E. coli and S. pyogenes. The r.m.s.d. in Cα positions of
the individual domains that make up the basic clamp fold
is smaller (~1.4 Å; an overlay of domains II of the E. coli
and S. pyogenes clamps is shown in Figure 2c).

Despite the differences in structure, the S. pyogenes clamp,
like that of E. coli, can readily accommodate duplex DNA
within it (Figure 3a). The width of the central chamber is
~41 Å at its longest dimension and ~30 Å at its shortest
dimension. As for other clamps, the electrostatic proper-
ties of the S. pyogenes clamp are a striking aspect of the
structure (Figure 3b). The interior of the central hole in
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the S. pyogenes clamp is lined with basic residues, many of
which (e.g., Arg 8, Lys 25, Lys 143, Lys 206, Arg 272, and
Lys 342) are conserved between the S. pyogenes and the E.
coli proteins. While these residues provide a positively-
charged region of the clamp for interaction with DNA, the
remainder of the protein is largely acidic; the protein has
a calculated isoelectric point (pI) of 5.4. Most of the neg-
atively-charged patches on the surface of the S. pyogenes β
subunit are found on the face of the clamp that is opposite
to the predicted site of interaction with the clamp loader
and polymerase (Figure 3b).

There is an interesting feature that is common to the
dimeric interfaces of the structures of the S. pyogenes and
E. coli clamps. In the E. coli clamp structure, helix α1" (see
Figure 1 for notation) exhibits distorted helical geometry
in order to maintain the integrity of the dimeric interface
[18] (Figure 4). The distorted helix is kinked over a region
spanning three residues at its C-terminus (Ala 271, Ile
272, Leu 273). This pronounced distortion appears to be
correlated with the formation of an intermolecular ion
pair (between Lys 74 and Glu 300) at this interface. In
contrast, the α1" helix is straightened out in a monomeric
form of the E. coli β clamp complexed with a clamp loader

subunit (δ) responsible for opening the clamp [18]. This
observation led to the idea that the changes at the clamp
interface in helix α1" may be part of a "spring-loaded"
mechanism for clamp opening [18]. In this hypothesis,
the energetic strain of distorting the helical geometry at
the dimeric interface is released upon interaction with the
δ subunit of the clamp loader complex. In the closed form
of the S. pyogenes β clamp, helix α1" displays an even
larger displacement from ideal geometry in comparison to
the E. coli β clamp (Figure 4). This distortion of the inter-
face in the S. pyogenes clamp is correlated with the pres-
ence of the sidechain of Phe 81, which pushes against
helix α1" (Figure 4). Thus, although the molecular deter-
minants of this helical distortion are different in the two
proteins, it appears that the structural effect is conserved.
Interestingly, the S. pyogenes DNA polymerase III can uti-
lize the E. coli β clamp to achieve processivity, despite the
low sequence identity between the clamps and the differ-
ence in overall shape. However, the E. coli polymerase III
is unable make reciprocal use of the S. pyogenes clamp
[17].

Conclusion
The oval shape of the S. pyogenes clamp suggests that it is
the topological property of surrounding the DNA tem-
plate in order to maintain DNA-interactions with its cog-

Alignment of the sequences of the Streptococcus pyogenes and E. coli β subunits as done by BLAST http://www.ncbi.nlm.nih.gov/BLAST/Figure 1
Alignment of the sequences of the Streptococcus pyogenes and 
E. coli β subunits as done by BLAST http://
www.ncbi.nlm.nih.gov/BLAST/. Secondary structure elements 
are labeled using the nomenclature first used for E. coli β in 
ref. [10]. An additional β-strand found only in domain I of the 
S. pyogenes clamp from residues 67–71 is labeled as β4b.

(A) Structure of the Streptococcus pyogenes β subunitFigure 2
(A) Structure of the Streptococcus pyogenes β subunit. Ribbon 
representation of the S. pyogenes β subunit. (B) Comparison 
of S. pyogenes β subunit with E. coli β [10]. (C) Overlay of 
domain II of S. pyogenes (green) and E. coli (blue) β. Superpo-
sition was done with top3d [25], and figures were rendered 
with PyMol (DeLano Scientific).
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nate polymerase that is a fundamental and conserved
aspect of bacterial β clamps. The subunit organization and
secondary structural topology of the S. pyogenes clamp is
very similar to that of the E. coli sliding clamp. Like in the
E. coli clamp, the S. pyogenes subunits form a head-to tail
dimmer, with a markedly positive electrostatic potential
within the interior of the ring. The S. pyogenes clamp is
therefore expected to readily accommodate duplex DNA
within it.

Methods
Sample preparation and characterization
The Streptococcus pyogenes β subunit was overexpressed in
BLR DE3 cells using a previously described expression
plasmid (pETSpdnaN, [17]). Wild-type β subunit was
grown in 12 liters LB broth at 37°C and selenomethio-
nine-derivatized β was grown in 8 liters of minimal media
supplemented with selenomethionine at 37°C. Both
wild-type and selenomethionine cells were selected with
the inclusion of ampicillin and induced with 1 mM IPTG
at 15°C for 12–14 hours. The cells were resuspended, and
lysed via French press in Buffer A (20 mM Tris pH 7.5, 0.1

mM EDTA, 10% glycerol, 5 mM DTT) and 1 M NaCl. In
all subsequent purification steps, fresh 5 mM DTT was
added to prevent oxidative degradation. The lysate was
initially purified by an ammonium sulfate cut (0.3 grams
of ammonium sulfate per mL of lysate). The pellet was
then resuspended in Buffer A + 20 mM NaCl and dialyzed
overnight against 2 L of the same buffer mixture. Protein
was eluted through a Fast Flow Q column over a 10-col-
umn volume gradient from Buffer A + 50 mM NaCl to
Buffer A + 500 mM NaCl. The pooled protein was diluted
two-fold and eluted through an EAH-Sepharose 4B col-
umn over a 10-column volume gradient from Buffer A +
50 mM NaCl to Buffer A + 500 mM NaCl. S. pyogenes β
fractions were pooled and precipitated again with ammo-
nium sulfate to minimize the volume of eluted sample.
The pellet was resuspended and dialyzed to adjust con-
ductivity. An additional ion exchange step (Mono Q)
removed minor impurities using a 10-column volume
gradient from Buffer A + 50 mM NaCl to Buffer A + 500
mM NaCl. Size exclusion (Superdex 200) was a final puri-
fication step used only for the selenomethionine-deriva-
tized protein. Wild-type and selenomethionine purified β
subunit was concentrated to 20 mg/mL as determined by
Bradford assay.

Differences in helix α1" geometry between in E. coli and S. pyogenes βFigure 4
Differences in helix α1" geometry between in E. coli and S. 
pyogenes β. The dimeric interface of both β clamps distort of 
this helix (E. coli in blue, S. pyogenes in green). In the mono-
meric form of β (shown in yellow) crystallized bound to the 
δ subunit of the clamp loader [18], this helix is straight. The 
other protomer of S. pyogenes β is shown in grey for refer-
ence, with the sidechain of Phe81 shown in red. Figure ren-
dered with with PyMol (DeLano Scientific).

(A) Model of Streptococcus pyogenes β clamp surrounding DNAFigure 3
(A) Model of Streptococcus pyogenes β clamp surrounding 
DNA. (B) Electrostatic surface of S. pyogenes β subunit. Two 
views of the clamp are shown that differ by a ~180° rotation 
about the vertical axis. Red indicates regions of negative elec-
trostatic potential, white indicates neutral regions, and blue 
indicates positive regions. Figure rendered with GRASP [26, 
27] and PyMol (DeLano Scientific). The position on the face 
of the S. pyogenes clamp where the δ subunit of the clamp 
loader would be expected to bind is indicated based upon 
the co-crystal structure of the E. coli proteins [18].
Page 4 of 6
(page number not for citation purposes)



BMC Structural Biology 2006, 6:2 http://www.biomedcentral.com/1472-6807/6/2
Crystallization and x-ray crystallography
Recombinant wild-type and selenomethionine Streptococ-
cus β subunit were crystallized by equilibrating 1.0 µL of
protein solution (20 mg/mL Streptococcus β subunit,
Buffer A + 100 mM NaCl) with 1.0 µL of precipitant buffer
(30% PEG 2000 MME, 100 mM sodium acetate pH 4.5,
200 mM ammonium sulfate) in a hanging drop sus-
pended over a 1 mL reservoir of precipitant buffer at
20°C. Trapezoidal crystals with approximate dimensions
0.5 mm × 0.2 mm × 0.1 mm appeared within 5 days and
diffracted X-rays to 2.1 Å resolution with synchrotron
radiation. S. pyogenes β subunit crystallized in the space-
group P21 having unit cell dimensions a = 79.1 Å, b = 74.7
Å, c = 82.8 Å, α = 90°, β = 118.6°, γ = 90° with one dimer
in the asymmetric unit and 53.8% estimated solvent con-
tent.

Diffraction data were collected from 20% ethylene glycol
flashed-cooled crystals by using synchrotron radiation at
the Lawrence Berkeley National Laboratories, beamline
5.0.1. Data reduction was achieved using HKL2000 [19].
Attempts to determine the structure by using the crystal
structure of E. coli β subunit [10] by molecular replace-
ment were unsuccessful due to low sequence identity.
Experimental phases were determined using multiple
anomalous diffraction (MAD) data collected at 2.5 Å res-
olution at three wavelengths close to the selenium absorp-
tion edge. Selenium atom positions were identified using
the program Shake-and-Bake [20] and further refined
with the program MLPHARE in the CCP4 suite [21] (8
selenium sites in total, 4 from each monomer). By using
the structure of the E. coli β subunit [10] and the selenium-
derived experimental phases, a phased translation func-
tion was calculated using CNS [22] to initially place a
model into experimental density, calculated with solvent-
flattened non-crystallographic symmetry averaged MAD
phases at 3.0 Å resolution using the program DM [23].
Domains I, II, and III of Streptococcus β were refined ini-
tially as rigid bodies at 3.0 Å. Subsequently, the model was
rebuilt and refined against native 2.1 Å data using CNS
[22] and O [24]. Individual B-factors were refined and
bulk solvent correction was applied, and 145 water mole-
cules were built into the model. Because of disorder in the
side-chains for residues Arg 254 and Thr 377 in one pro-
tomer, only main-chain atoms were included in the
model. The final free and working R-values are 28.4% and
24.5% respectively. Coordinates have been deposited
with the Protein Data Bank under the accession code
2AVT.
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