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INTRODECTION

discussed the propagation of waves in

a two-layersd T

wiate 1z of infinite extent and is made of two

plates, each with its

thickness and material properties, bonded at

the interfs In the er the frequency equation was developed which gives

L laticnenin between & reguency and the wave length. his ionship
the relaticn D bet the freg K d th gth This relat I

vwas explored in depth for a large range of wave lengths and, whereas some

study was o for waves with short wave length, the study for these waves

+

wag not complete

and the conclusions regarding the phase velocities of these
/
waves were left Lo speculation.

In this note we extend the findings of Jones by expleoring the asymptotic
velocities of waves as the wave length becomes extremely short. We find that
in general the waves travel at the speeds of three classical waves: the
Rayleigh waves of each of the two materials and the slower of the two rossible
shear waves, Waves will alsc Lravel along the interface of the two plates at

the speed of Stoneley waves when the properties of the two plates admit them.

vy

or the particular plate studied by Jones, Stoneley waves do not exist, so we
intreduce a composite plate in which Stoneley waves are possible., To confirm
the asymptotic character of the spectral lines we explore the corresponding

displacement distributions.

Freguency Eguation

In what follows we use the notation adopted by Jones and in the interests
of brevity we will exploit his study and refer where possible to his paper.
We assume, es did Jones, thal shear waves travel in Plate 1 slower than they

do in Plate 2. Each plate property is identified by its sppropriate subscript.



Ve use a method that we have employed previously to study the asymptoﬁic
elocities in composite rods.

The nature of the fregquency equation {(Fg. 9, Jones) depends on whether
the arguments of the trignometric functions are real or imaginary: that is
whether 15 Eo 61, and 52 (Bq. 57) are real or imeginary. The asymptotic
phase velocities are centained in only two of the five possible freguency
eguations represented by Eg. (9J) and will be the only two explored here. In

both eguaticns ¢ €55 and 59 are reail. In the first of the two 61 is real,

15
in the second it is imaginary.

The first equation has been analyzed correctly by Jones. When the wave
number is large, advantage can be taken of the relstive magnitude of terms in
the frequency equation, so that it becomes three unccupled sguations repre-
éented by Eouations 11, 12, and 14 in Jones' paper. The phase velécities3 one
governad by each of these equations,are constant, that 1ls they are independent
of the frequency. They are %the Rayleigh velocities in each of the two materials
and ' a possible Stoneley velocity respectively. A4As has been pointed out by
Sezewa and Kanai{3>, toneley waves are only possible when the shear velocitieé
in each of the two malterials are cleose to one another. For the material pro-
perties of the plate chosen by Jones, Stoneley waves do not exist so we have
chosen a plate capable of fransmitting Stoneley waves. Our plate is described
in Figure 2. We have determined the displacement distribution through our
piate using a large wave number and the appropriate Stoneley velcocity, and

examination of Figure L will show that it is indeed the classical Stoneley dis-

tribution.




il

In addition to these velocities, waves can travel with an additionsl
phase velocity which is contained in the second of the two freguency equaticns.

5\

s

When the wave number "k is large we may neglect terms containing exp (—Elkhl

exp (“Egkho) and exp (—52Kh2) and when we do the squation reduces to two

unccupled eguations. The first of these equationsg is Bguation (12) of Jones'

vaper which gives the velocity of Rayleigh waves in the "second” material.
The fact that this Hayleigh eguation is contained in both the frequenzy eguations

under study deserves an explanation. This Rayleigh eguation can be written

- b 5252 = 0. (1}

For both eéuations 62 aﬁdEﬁ2are real, a necessary condition for the Rayleigh
velocity to be a root. Whether this second Rayleigh velocity is actually a root of
the first or sccond equation depends on the material properties of the'piate.

The "boundary” between the two eguations occurs when

5. =0, (2)
wnich gives as a root the shear velocity in material one which by definition
is the slower of the two shear veloecities. TIf the plate is such that the
second and faster Rayleigh velocity is less than this shear wvelocity this
Fayleigh velocity will te a root of the first equation and 1t can be repre-

saented con & Irequency spectrum by means of a single spectral Xine. If, as

e
48

mecre likely, this Rayleigh velocity is greater than the siower shear

ity it is a root of the second equation and is accommodated on freguency

el

)

spectra by means of "terracing”. This terracing was discussed by Jones and

[N

8 shkown for our rod in Figure 2.




The second freguency equation gives, on degeneration resulting from using

the large wave number, not only the Rayleigh equation but an additisnal eguation
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Ag Bl is the shear velocity 1n the "first" material, a root 51 of Eg. (5)
gives a corresponding phase velocity "e'. We now analyze Eg. (5) in the same

way as we did a similar egquation in Reference Z.

The behavicr of the spectral lines for large wave number will become

apparent when we can find the roots for a particular, large k, say k. Un the

1

left side of the eguation the phase velocity "e¢" appears only in the &

We now exasmine the plot of tan (Ei khl} in Figl snd establish the bounds of

its srgument as fixed by the bounds of validity of the second freguency equation.
For the lower hound of validity, 61 igs zero for which the argument'is Zero.

The upper bound of wvalidity occurs when either El or 62 is zerc depending on

the plate materisls. For either, the phase velocity 1s a constant so we may

I —
say the argument corrssponding to the upper bound is (6} khl)' Tan (Oikh?) is
then sketched cver this interval as "¢" varies over the region of walidity of
) ) - ) "
this frequency equabtlon or as 61 varies from zerc to 61.
Examination of the right side of Eq. {5) shows that it is a function only
of the phase velocity and the material properties, and that it is zero when

3% is zerc. A possible plot of this function is shown in Fig 1. Whether the

function is positive or negative, the lowest intersection is close to 1.




LT we set

We -get

2
1
1

Bz(l+ —— : (10)

ﬂggl/E
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Ag the wave number k becomes large the phase velocity approaches the shear

velaocity Bl from above.

f=g H

. . . . 1 .
In Fig. 1 the second intersection iz close to, say (*2—) and if we set

2
the argument of the angle equal to (ig ) we find the second velocity
2 5=
¢, = 8 (1 ——%—5) (11)
hhlk

50 We can éonclude that a second spectral line approaches the same asymptote
as the first as k goes to Infinity, but approaches it more slowly.

he number of phase velocities for a particulasr E'represents the number
o spectral lines that intersect the line & = E? derivable from the second
fregquency equation. If we take a new line say k = 2k the interval of the angle

(éwkhl) doubles so the number of roots doubles. The additional spectral lines

in the interval (2k - k) come from the third fregquency equation.
With the arguments just set forth, we may say that all spectrsl lines
[=3 t} > i E
except those derived Ifrom the first frequency eguation, approach the line

B =0 (12}

25 tne wave number approaches infinity. The phase velocity represented by

s

biz line is the slower of the two possible shear velocitics. The asymptotic
behavicur is demonstrated in Figure 2. In this Figure we choose to plot a2

normalized freguency versus a dimensionless wave number so that the phase



velocity representing Bo. (12) is a sloping straight line passihg.through
the origin.

Ls we identify the asymptolic velcocitles as those of the two Rayleigh
wzves, the Stoneley wave and the sglower of the two shesr waves we vallidate
this identification using displacement distributions through the thicknsss

of the plate. The shear velocity does not have a distributlion with which

it can be characterized but the Bayleigh and Stoneley velocities do.

Accordingly three points are chosen for a large propagsition constant; these

zre shown as points 1, 2, and 3 in Figure 2 and are on spectral lines repre-

senting the Rayleigh velocity in Plate 1, the Boneley velocity and the

Rayleigh velocity in Plate 2 respectively. The displacement distributions

are shown respectively in Figures 3, 4 and 5 and, in each of the three cases,

the distribution has the c¢lassical form it should.
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