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Abstract

A Theory of Nanoparticle Growth and a Theory of Thin Film Nucleation

by

James P. Mastandrea

Doctor of Philosophy in Engineering - Materials Science and Engineering

University of California, Berkeley

Professor Daryl C. Chrzan, Chair

This dissertation is divided into two parts. The first will discuss a theory that was iden-
tified to narrow the size distribution of nanoparticles grown via ion beam synthesis (IBS).
Specifically, a simple mathematical argument explains a processing route for the ion beam
synthesis of nanoclusters with a narrowed size distribution. The key idea is that growth con-
ditions for which the average nanocluster size is increasing rapidly can lead to narrowed size
distributions. Modeling candidate processes using a self-consistent, mean-field theory shows
that normalized nanocluster size distributions with full-width at half-maximum of 17% of
the average can be attained.

The second part presents a theory for nucleation in confined high-aspect ratio thin films.
Specifically, classical nucleation theory is used to consider the solidification of a melt con-
fined between two planar surfaces. The critical nuclei shapes and the associated nucleation
energy barriers are computed as a function of the thickness of the film, and the film’s relevant
bulk and interface energies. The analysis is then repeated for the melting transition, and
expressions for the depression and elevation of the melting temperature are found. A nucleus
morphology diagram is constructed. This diagram presents the lowest energy morphology
of the nuclei, as well as melting points, as a function of the system parameters. Using the
nucleus morphology diagram, experimental and system parameters that allow for the de-
sired nucleation behavior can be identified. Furthermore, the nucleus morphology diagram
illustrates a region of parameter space where the film is predicted to solidify above its ther-
modynamic bulk melting temperature, a behavior termed presolidification. The theory is
used to predict the temperature at which nucleation of the solid phase and liquid phase are
expected for Ge between two glass substrates. Furthermore, a possible route for controlling
the orientation of the film is identified as confinement of the film can lead to a large range
of solid phase nucleation temperatures, which are a function of the system’s interfacial free
energies. By controlling the growth temperature, certain orientations may not be able to
nucleate thereby reducing the possible number of orientations within a film.
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Chapter 1

Introduction

Understanding the growth of materials is central to materials science and engineering. This is
due to the fact that a material’s functional properties are directly linked to its structure, and
the structure of a material is often dictated by its growth process. Consequently, insufficient
knowledge of the growth behavior of a system can impede the creation of a material with
promising behavior and the ability to produce it in a repeatable fashion. This dissertation
is focused on modeling growth.

The work contained in this dissertation seeks to understand aspects of the growth be-
havior of two material systems: nanoparticles in a matrix and confined high-aspect ratio
thin films. The emphasis is placed on developing theories able to optimize growth outcomes.
The first part of this dissertation focuses on narrowing the size distribution of nanoparticles
grown using a solid state technique: ion beam synthesis (IBS). The growth process entails
implanting an insoluble atomic species into a matrix. These implanted ions then form clus-
ters. As the properties of nanoparticles are typically size dependent, in order to create a
functional device out of these material systems, a narrow nanoparticle size distribution is
desired. In Chapter 2, a more thorough introduction into IBS is given along, and a theory
to narrow the size distribution of nanoparticles is presented.

The second part of this dissertation presents a theory that focuses on nucleation of the
melting and solidification transitions of a one component system in confined volumes. The
specific geometry under consideration is confined high-aspect ratio thin films. Here, the film
is confined in the sense that homogeneous nucleation behavior cannot occur. In Chapter 3,
details of the theory used to model the nucleation process are presented along with how the
melting temperature and nucleation behavior might be affected for this system under these
constraints.
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Chapter 2

Size Distribution Narrowing of
Nanoparticles

2.1 Introduction

Nanocrystals are expected to have size dependent thermodynamic, electronic [1], and optical
[2], properties. Accordingly, there is interest in generating nanocrystals of particular sizes in
well defined positions in order to study and exploit the expected novel properties.

Chemists, by the means of colloidal chemistry, have had success in controlling the size
and size distributions of nanocrystals [3, 4]. By varying growth conditions, nanoclusters
with size distributions as narrow as 9 % of the average size have been synthesized [4]. These
nanocrystals, however, remain in solution and are, most often, coated by an organic surfac-
tant. Many applications require that these nanocrystals be embedded within another matrix,
or arranged in an ordered pattern in order to exploit their unique properties. Though much
progress has been made towards incorporating these nanocrystals into optoelectronic devices
[5], there is still much work to be done.

Another approach is to synthesize the nanocrystals in place, using more traditional semi-
conductor processing routes. Towards this end, ion beam synthesis (IBS) is an attractive
candidate for nanocrystal synthesis. During ion beam synthesis, ions are implanted into a
matrix. The ions are chosen to be insoluble within the matrix material, and this results in
precipitation of the ions into clusters, both during implantation and during the anneal that
typically follows. The result is a collection of nanoscale sized precipitates embedded within
a matrix.

IBS has several advantages. It is a very clean process that is compatible with modern
semiconductor processing routes. Further, the mass of the implanted species can be con-
trolled so that one can implant isotopically pure elemental species. One can also control
the position of the ions, and hence the positions of the nanocrystals. Indeed, low-energy ion
beam synthesis has been used to create nanocrystals for the exploration of novel modern
memory devices [6].
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However, the nanocrystal size distributions produced by typical, steady-state IBS are
very broad. The widths of the size distributions often approach the average size of the
nanocrystals [7]. Though there is some evidence that widths can be narrowed by implanting
at a reduced temperature during a steady state implant (i.e. constant temperature, constant
flux), this narrowing appears only capable of generating a distribution with widths of the
order 1/2 the average size [8].

A number of groups have studied routes using ion implantation to control size distribu-
tions. Zhou et al. irradiated a thin film of Au on sapphire with Ar. This process produced Au
nanocrystals embedded in sapphire with an average diameter of 3.9 nm and a standard de-
viation of 0.5 nm [9]. We estimate that the full width at half maximum from their narrowest
published distribution is 14% - representing a very narrow distribution. However, this peak
rests on a much broader background, and an analysis of the statistical significance of their
results was not presented. Ramjauny et al. use ions to postprocess embedded nanocrystals
that had been fabricated chemically [10]. The postprocessing is shown to convert the uni-
modal distribution into a bimodal one, and the distribution widths increase relative to the
average size. Ramaswamy et al. perform a two stage implant of Au into SiO2 wherein the
first implant (dose 5×1014 cm−2) is followed by a brief anneal meant to nucleate clusters that
are then grown through a second implant (dose 1× 1015 cm−2). They obtain a distribution
width of ∼ 40%, though again, a statistical analysis of their data is not presented [11].

Recently, however, an alternate processing route for narrowing size distributions during
ion beam synthesis was identified using kinetic Monte Carlo simulations [12]. In the proposed
process, one no longer conducts IBS using steady-state conditions. Instead, the temperature
during implant is ramped from low to high. The distributions obtained within kinetic Monte
Carlo simulations conducted using this process were quite narrow, but the fundamental
physics governing the process were not presented in detail.

Here, the physics of the narrowing process is explained via a simple mathematical anal-
ysis. The physics of narrowing is then explored within a deterministic self-consistent mean-
field theory [13, 14]. These explorations suggest that nanocrystal size distributions with
widths as narrow as 17% of the average size should be achievable under experimentally
accessible IBS conditions.

The following, then, presents the theory underlying an IBS processing route with the po-
tential to substantially narrow nancrystal size distributions. Section II presents the theory of
cluster size distribution narrowing. Section III studies the narrowing within a self-consistent
mean-field theory for IBS, section IV presents a discussion and concluding thoughts.

2.2 Theory of Cluster Size Distribution Narrowing

The self-consistent mean-field theory for IBS used here was presented in detail within refer-
ences [8], [13], [14], and [15]. Here, a summary of the model and relevant results are presented
in order to frame the discussion.
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The dynamics of IBS are complicated, and there are a number of kinetic processes that
appear to be relevant to the evolving cluster size distributions. First and foremost, atoms
are deposited within the matrix at a rate F (with dimensions of volume−1 time−1). The
deposited atoms diffuse within the matrix with a (radiation damage enhanced) diffusivity
D. When an atom encounters another atom, or a cluster of atoms, the two particles will
bind together. In this manner, clusters nucleate and grow. Atoms are also thermally emitted
from clusters with a characteristic time τs governing the emission from a cluster containing
s atoms. These times are computed using the appropriate thermodynamic laws, and, in the
absence of the radiation damage associated with IBS, enable the model to display coarsening
behavior akin to that modeled by Marqusee and Ross [14, 16]. However, ion implantation has
the potential to damage existing clusters. If the deposited atom is placed within an existing
cluster, the cluster is fragmented into smaller clusters (including single atoms) characterized
by an empirically deduced power-law size distribution.

The self-consistent mean-field rate theory describes the time evolution of the average
volume density of clusters of size s, 〈ns〉. More specifically, the following differential equations
govern the evolution:

d 〈n1〉
dt

= F − 2D σ1 〈n1〉2 −D
∑
j>1

σj 〈nj〉 〈n1〉+ 2
〈n2〉
τ2

+
∑
j>2

〈nj〉
τj

+ F Ω
∑
j>1

〈nj〉 (j + 1)K1 (α, j) (2.1)

d 〈ns〉
dt

= D σs−1 〈ns−1〉 〈n1〉 −D σs 〈ns〉 〈n1〉 −
〈ns〉
τs

+
〈ns+1〉
τs+1

− F 〈ns〉Ω (s+ 1)

+ F Ω
∑
j>s

〈nj〉 (j + 1)Ks (α, j) . (2.2)

Here, Ks (α, j) is the kernel indicating the number of clusters of size s produced from
an ion directly impacting a cluster of j atoms, and α is the exponent characterizing the
power-law fragment distribution. Ω is the atomic volume of the implanted species. The σs’s
are the capture lengths describing the attachment of a diffusing atom to a cluster containing
s atoms. These capture lengths are determined self-consistently, as described in detail by
Yi et al [14]. Effectively, the capture length for a cluster of s atoms is found by solving a
diffusion problem for the cluster in question. More specifically, a diffusing atom is less likely
to attach to the cluster in question because it can be absorbed by another cluster. This
absorption process is modeled as a uniform (in space) sink for diffusing atoms with a sink
strength determined by the existing cluster size distribution.

This theory provides much insight into the steady-state IBS process. Under conditions
of a steady-state implantation temperature and F , the cluster size distribution approaches a
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steady-state shape, similar to the behavior displayed during coarsening. This shape, however,
is most often more broad than the distribution expected from typical coarsening processes,
with the width of the distribution approaching the average size [7].

During steady-state IBS, the average cluster size also approaches a constant in the long
time limit. This is in contrast to coarsening, wherein the average cluster size continues to
grow. During IBS, the probability that a cluster will be damaged, and thereby reduced in
size, by an incoming ion increases with cluster size. Thus ion beam damage counteracts the
effects of coarsening to produce a characteristic size.

Despite the apparent steady-state cluster size distribution, the individual clusters are
evolving in time. It is convenient to focus on the radius of the cluster, R, rather than on
the number of atoms within the cluster, s, when considering this evolution, as this enables
one to make direct connections with the extensive literature on size focusing during chemical
synthesis of nanoparticles. Let P (R, t) dR be the probability that a nanocrystal selected
at random from all the nanocrystals has a radius between R and R + dR at time t. The
(time-dependent) average radius, 〈R〉 is defined according to

〈R〉 =

∫ ∞
0

RP (R, t) dR. (2.3)

In the case of traditional coarsening, it is often true that the while 〈R〉 continues to change
in time, the shape of the distribution P (R, t) attains a steady state form [17]. This steady
state form can be revealed by plotting the scaled size distributions P (ρ) ≡ 〈R〉P (R, t) as a
function of ρ ≡ R/〈R〉. Plotting distributions in this fashion allows one to assess the width
of the distribution independently of its average size, and thereby enables one to meaningfully
compare the widths of distributions with different average sizes.

Insight into the evolution of the cluster size distribution can be gleaned from examination
of the time derivative of ρ, dρ/dt, as a function of ρ (Fig. 2.1). Ratke and Voorhees present
a description of the size distribution evolution expected from these different types of curves,
and their discussion is summarized here [17]. Consider, then, the width of the scaled size
distribution. The evolution of this scaled distribution is determined by the dynamics of the
evolving clusters. These dynamics are captured, in part, by the quantity dρ/dt. Under typical
coarsening conditions, the dependence of dρ/dt on ρ is that shown in Fig. 2.1(a). As Ratke
and Voorhees note, all clusters characterized by ρ < ρmax shrink relative to the average size.
The result is a distribution in which the absolute width increases in time, though the width
relative to the average size approaches a constant. Figure 2.1(b) displays a hypothetical
situation in which dρ/dt is positive for ρ1 < ρ < ρ2, and negative elsewhere. Should the
dynamics of cluster evolution be governed by such a law, the ultimate distribution would be
monodisperse with size ρ = ρ2. Clusters with ρ < ρ1 would shrink until they disappeared.
Clusters with ρ1 < ρ < ρ2 would grow until they reached a size such that ρ = ρ2. Similarly,
clusters initially described by ρ > ρ2 would shrink until ρ = ρ2. In the end, all clusters would
be characterized by ρ = ρ2 = 1.

While the case of Fig. 2.1(b) does not apply to coarsening, it does suggest a route to
narrowing cluster size distributions using IBS. Consider the following derivative:
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0

0

0

Figure 2.1: (a) A sketch of dρ/dt for the typical coarsening case. All those clusters with
a scaled radius below ρmax shrink relative to the maximum cluster. There are no clusters
larger than ρmax within the distribution. (b) A schematic describing the dynamics of a
hypothetical growth process. Clusters with ρ < ρ1 will shrink relative to the average size,
and will eventually vanish. Clusters with ρ1 < ρ < ρ2 will grow more rapidly than the
average until they reach the value ρ2. Clusters with ρ > ρ2 will shrink also until they reach
the value ρ2. (c) Sketch of typical behavior for dρ/dt observed during steady-state IBS,
absent the influence of ion beam damage. All clusters larger than ρ1 grow faster than the
averaged size cluster, and all clusters smaller that ρ1 shrink relative to the average size.

dρ

dt
=

d

dt

R

〈R〉
(2.4)

=
1

〈R〉
dR

dt
− R

〈R〉2
d〈R〉
dt

.
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Eq. (2.4) makes clear the approach to size distribution narrowing. In the steady-state
IBS process, 〈R〉 approaches a time independent value, the second term on the right is
identically zero, and dρ/dt is proportional to dR/dt. Figure 2.1(c) shows the typical behavior
of dρ/dt in the steady-state regime obtained from the self-consistent mean-field theory, absent
the influence of ion beam damage to existing clusters(see below). Note that dρ/dt crosses
dρ/dt = 0 only once, and is positive for larger values of ρ. The dynamics suggested by such
a curve would have the clusters growing indefinitely. As noted above, the effects of ion beam
damage counteract this tendency and leads to the statistically steady state.

Suppose, now, that the growth conditions could be changed so that the average radius
of the clusters is increasing (i.e. d〈R〉/dt > 0). During this period, the second term on
the right hand side of Eq. (2.4) becomes negative. Moreover, this term is weighted by the
radius of the clusters, suggesting that it will be more negative for larger clusters. Given these
properties, the non-steady state conditions have the potential to convert the dρ/dt curve into
one with the form shown in Fig. 2.1(b). As noted above, if the clusters are governed by this
growth law, the size distribution will begin to narrow.

This observation is the key to designing IBS processing routes leading to narrower size
distributions: one simply needs to design growth conditions to transition between two statis-
tically steady state situations characterized by different values of the the mean radius such
that 〈R〉initial < 〈R〉final. During the transition between the two statistically steady states,
there will be a tendency for the size distributions to narrow. This very general result can be
applied to the narrowing of cluster size distributions using IBS.

2.3 Narrowing Within a Self-Consistent Mean-Field

Theory for IBS

Consider a typical IBS experiment. From Sharp et al. [7], the thickness of the implanted
layer is approximately 100 nm. Thus, a 4.11 x 1016 cm−2 dose corresponds to a volumetric
dose of 4.11 x 10−3 Å−3; however, the area based dose will be used as the standard throughout
this dissertation when explaining a simulation’s design. Furthermore the implantation will
be completed over 8 hours, and therefore the flux used is 1.43 x 10−7 Å−3 s−1. The main
parameters for the simulation are the following and were chosen to represent Ge atoms in a
amorphous SiO2 matrix. Arrhenius equations are used to model the diffusion and solubility.
For diffusion, 4.2 x 1013 Å2 s−1 is the prefactor [15], and 0.4 eV is the activation energy [12];
and for the solubility, 0.0047 Å−3 is the prefactor [12, 14], and the activation energy is 0.816
eV [12]. The atomic volume of Ge is 22.7 Å3. For this work, the energy of the cluster/matrix
interface was set to 0.6 J m−2, which is smaller than the expected cluster/matrix interface
energy for Ge [13], but using larger, more accurate values makes the computation more
expensive, while not altering the final trends of the implant. As used by Yuan et al. [8], the
power law coefficient used to model the fragmentation is 2.3 [18].
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Figure 2.2: (a) Average radius and temperature profile versus implant time, during a non-
steady state IBS experiment, where the system transitioned from a steady state system
defined by 150 K, to a steady state system defined by 300 K. (b) Scaled nanocluster size
distribution at time T1, 8.61 x 103 s. (c) Scaled nanocluster size distribution at time T2, 1.76
x 104 s. (d) Scaled nanocluster size distribution at time T3, 2.51 x 104 s.
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Now consider the following non-steady state IBS experiment. Set the initial temperature
to 150 K, and implant 1.03 x 1016 atoms cm−2 over the course of 2 hours. Then for the
following 2 hours, implant another 1.03 x 1016 atoms cm−2 while linearly ramping the tem-
perature from 150 K to 300 K. Once that has been completed, implant 2.06 x 1016 atoms
cm−2 at a fixed 300 K for 4 hours. The evolution of the average radius versus implantation
time, along with the temperature profile as a function of time, is shown in Fig. 2.2(a).

While the system is kept at a constant temperature of 150 K, the average radius of the
clusters approaches a constant value termed the steady state average radius (SSAR). The
cluster size distribution is relatively broad. At a time shortly before T1, the temperature
begins ramping at a fixed rate, but the size distribution remains relatively broad, Fig. 2.2(b).
Between times T1 and T2, the size distribution narrows, ultimately reaching a full-width at
half maximum of 17 % of the average radius, Fig. 2.2(c). By the time T3, the size distribution
and SSAR associated with the new conditions are established, Fig. 2.2(d).

This behavior can be rationalized empirically using eq. (2.4). However, we can gain
further insight by examining the self-consistent mean-field theory. Begin by considering
the dynamics in the absence of fragmentation. In this limit, we can compute the dρ/dt.
Following Yi et al. [14], one can write:

ds

dt
= D〈n1〉σ(s)− 1

τ(s)
(2.5)

R(s) =

(
3Ω

4π
s

)1/3

. (2.6)

In eq. (2.5), D is the diffusion coefficient for a monomer, 〈n1〉 is the average concentration
of monomers, σ is the capture length of a given cluster, and 1/τ(s) is the rate at which
atoms desorb from a given cluster of size s. Ω in eq. (2.6) represents the atomic volume of
a monomer, which in this example is taken to be the atomic volume of a single Ge atom.
Differentiating eq. (2.6) with respect to time yields the expression for dR/dt.

dR

dt
=

(
3Ω

4π

)1/3 ds
dt

3s2/3
(2.7)

Substituting eq. (2.5) into eq. (2.7) allows dρ/dt to be computed, once d〈R〉/dt is known.
d〈R〉/dt is calculated from the simulations using a finite difference approach, where n is the
index representing the step in the numerical iteration.(

d〈R〉
dt

)
n

=
〈R〉n+1 − 〈R〉n−1

tn+1 − tn−1

(2.8)

However eq. (2.8) does take into account fragmentation, since it uses the average radius
of the system as a function of time. Furthermore, although eq. 2.5 does not include terms
for fragmentation, it is affected by fragmentation since fragmentation influences the average
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concentration of monomers, 〈n1〉. Consequently, the values of dρ/dt in Fig. 2.3 will partially
take fragmentation into account.
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Figure 2.3: (a) dρ/dt as a function of ρ at time T1, 8.61 x 103 s. (b) dρ/dt as a function of
ρ at time T2, 1.76 x 104 s. (c) dρ/dt as a function of ρ at time T3, 2.51 x 104 s, please note
the order of magnitude difference on the y - axis for this figure.

Using the same simulation as shown in Fig. 2.2, dρ/dt as a function of ρ is displayed in
Fig. 2.3 at times T1, T2 and T3. At time T1, the temperature is being ramped. Consequently
d〈R〉/dt is a non-zero positive number. When d〈R〉/dt is positive and significantly large,
the right-term on the right side of eq. (2.4) subtracts from the left-term on the right side
of eq. (2.4). At large values of ρ, this mathematical relation produces a second zero, as
evident in Fig. 2.3(a). As discussed above, this dependence on ρ can lead to size focusing,
particularly if it persists for an extended period of time. This dependence continues while
the average radius of the system is increasing during the SSAR transition as seen in Fig.
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2.3(b). However, as the system approaches the final SSAR, dρ/dt evolves to a state that
only has one zero. This occurs because at T3, d〈R〉/dt is approximately zero, thus the right
term on the right side of eq. (2.4) is essentially zero. Figure 2.3(c) has the behavior of Fig.
1(c), and therefore no size focusing is present. These observations are the key details in
determining why SSAR transitioning produces size narrowing of nanoparticles.

Note that the dρ/dt curves do not assume the form shown in Fig. 1(a). This is because
under the influence of the ion flux, the steady state coarsening regime is never obtained.
Although fragmentation was not fully taken into account for the Fig. 2.3 plots, it is presumed
that the fragmentation wouldn’t alter the general shape of the dρ/dt curves. The probability
of a cluster being struck by a incoming ion is proportional to the cluster size (most of the
impingement takes place at the end of range, so that the directionality of the implant is lost),
and thus the larger clusters are preferentially fragmented. Thus it is expected that the only
way fragmentation would change these curves would be by shifting the tail end of the dρ/dt
curves down, and would have an increased effect as ρ increased. However, this effect would
only increase the effectiveness of the growth conditions described by Fig. 2.3(a) and 2.3(b),
and it is presumed that this would not shift the tail end of the curve down far enough to
alter a growth situation described by Fig. 2.3(c).

2.4 Discussion and Conclusions

Equation (2.4) can serve as a guide for the optimization and development of growth cycles
leading to narrower size distributions. Defining growth conditions so that the growth rate
curves appear as in Fig. 1(b) is key to the process. Equation (2.4) suggests that this can
be accomplished by ensuring that d〈R〉/dt is large and positive. One can then use intuition
and an understanding of the growth process to develop processing routes.

An obvious first step is to increase d〈R〉/dt by increasing the final SSAR. This can be
accomplished within the model by increasing the final temperature of the ramp. Figure 2.4
demonstrates the effects of temperature on the growth dynamics. The growth parameters
are those governing the results in Fig. 2.2, henceforth referred to as case (C). Except for
cases (A) and (B), the final temperatures have been reduced to 250 K and 275 K respectively.
Since the cases have different final temperatures, the final SSARs are different. The time
duration of the temperature ramps are the same for all three cases, but due to the different
SSARs, d〈R〉/dt is different for each case.
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Figure 2.4: (a) A: Transition from a steady state system defined by 150 K and to a steady
state system defined by 250 K. B: Transition from a steady state system defined by 150 K
and to a steady state system defined by 275 K. C: Transition from a steady state system
defined by 150 K and to a steady state system defined by 300 K. (b) Scaled nanocluster size
distribution at time T1, 8.61 x 103 s. (c) Scaled nanocluster size distribution at time T2, 1.76
x 104 s. (d) Scaled nanocluster size distribution at time T3, 2.51 x 104 s.
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As seen in Fig. 2.4(a), case C had the greatest value of d〈R〉/dt during the SSAR
transition, as expected. Figures 2.4(b), 2.4(c), 2.4(d), again show the behavior of the size
distribution during the SSAR transition, and as evident from Fig. 2.4(c), the narrowest size
distribution is produced by the SSAR transition that had the greatest value of d〈R〉/dt.

The theory allows identification of additional processing routes leading to narrower size
distributions. For instance, as the interface energy between the matrix and the nanocluster
increases, the average size of the particles will become larger. Perhaps additions that alter
the interface energy over time can be implanted, thereby leading to a positive d〈R〉/dt. One
might also increase the ramp rate, by reducing the time of the ramp. However, the system
still needs time to adjust, so ramping using a step function versus the ramp times presented
in this paper essentially does not alter the best size distribution the system can attain. The
theory should enable one to identify growth conditions leading to narrower size distributions
with a given average size.

There are limits on this process. For instance, the average cluster size one can produce
must be larger than the smallest possible average cluster size obtainable by steady state IBS.
Furthermore, IBS typically results in a nonuniform concentration of the implanted species.
This, in turn, potentially translates into variation of the size distribution with position in
the sample. The mean-field theory presented here, assumes a uniform implantation rate and
composition. The key assumption in the theory is that the only sinks for atoms diffusing
within the matrix are the clusters themselves. The edges of the implantation region serve
as additional “sinks” in that atoms can effectively leave the system being modeled. If the
distance between neighboring clusters is much less than the distance to the edges of the
implanted region, the influence of the composition variation will not be significant. Images
of implanted clusters confirm that the average separation between clusters is much less
than the thickness of the implanted region, suggesting that the mean-field theory will be a
reasonable approximation to the experimental system [11, 7].

It is interesting to compare the growth process suggested here with that presented by
Ramaswamy et al. [11]. The strategy underlying their work is to separate the nucleation
and growth phases of the synthesis. In this respect, the work mimics the approach used
during chemical synthesis of nanocrystals [3]. An initial implant is performed, the sample is
annealed at high temperature to complete the nucleation process, and then a second implant
is performed at an elevated temperature to reduce nucleation and enable growth. Ideally,
this results in a narrow size distribution for the clusters. In fact, Ramaswamy et al. present
a size distribution with a width of approximately 40% the average size.

This approach, however, must be executed with care and may not be applicable in all
situations. In their analysis, Ramaswamy et al. ignore the damage to existing clusters
induced by the implantation during the growth stage. While this may be appropriate for
their studied system, it is not be appropriate for all others, particularly those systems for
which the implantation dose is necessarily high (such as the conditions used in reference 10).
Under high dose conditions, the implantation during the growth phase ultimately fragments
the growing clusters, and destroys the initial distribution of nuclei. The distribution resulting
for the two stage implant, then, would be what one expects from steady state IBS at the
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growth temperature. In contrast, the processing route described here fully accounts for ion
beam damage to the growing clusters, and suggests that narrowing is possible even if ion
beam damage is present.
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Chapter 3

Nucleation of Melting and
Solidification in Confined High Aspect
Ratio Thin Films

3.1 Introduction

Thin film growth using standard methods typically leads to grain sizes on the order of or
smaller than the film thickness. However, for many applications, such as opto-electronics
and photovoltaic thin films, larger grain sizes are desired. Accordingly, recent developments
in thin film growth techniques have been aimed at the growth of polycrystalline thin films,
with large grains in comparison to the film’s thickness. For example, S. Hu et al. [19], have
demonstrated the growth of 30 µm by 30 µm single crystal Ge islands using Ge nanowires
as seeds, with film thicknesses ranging from 30 nm to 1 µm. In their process, Ge nanowires
are grown vertically from a Si substrate and are then encapsulated by SiO2. After polishing
the top surface, amorphous Ge and SiO2 are deposited such that the amorphous Ge is
encapsulated by SiO2 and in contact with a Ge nanowire. Using the liquid phase epitaxy
growth technique, the sample then underwent a rapid thermal anneal to a temperature above
the melting temperature of Ge, and the authors state that they believe the Ge became a
liquid. Solid Ge, seeded by the Ge nanowire, then grew and created a single crystal Ge
island. This process demonstrated the ability to grow single crystal high aspect ratio thin
films on a non-epitaxial surface using an epitaxial seed.

R. Kapadia et al. [20] developed the thin-fim vapor-liquid-solid (TF-VLS) growth tech-
nique and produced polycrystalline InP thin films with grain sizes ranging from 10 µm to
100 µm with an approximate film thickness of 3 µm, on a non-epitaxial surface without
directly seeding the nucleation process. The films were created by depositing In on a pol-
ished Mo foil, and then capping the In with a SiOx layer. The system was then annealed
in a P environment, above the melting temperature of In, such that the In became a liquid.
Phosphorous diffused through the SiOx layer, mixed with the In liquid, and InP nucleated
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and grew from the liquid solution. Further work on this process yielded the ability to con-
trol the nucleation sites by patterning MoOx on the Mo foil, where nucleation preferentially
occurred on the MoOx [21]. Using this concept, K. Chen et al. [22], developed the tem-
plated liquid-phase crystal growth (TLPCG) technique. In this work MoOx-In-SiOx stacks
are lithographically patterned on the surface of glass or Si/SiO2 substrates, and then are
encapsulated by SiOx. Subsequent annealing above the melting temperature of In in a P
environment yielded InP thin films in the templated geometry. Furthermore, growth and
geometric conditions were found that produced twinned single crystal InP thin films in a
cylindrical shape with diameters up to 7 µm.

A key factor in growing large grained thin films is the ability to control nucleation. Typi-
cally thin films with large grains are desired. Given that the final as-grown microstructure is
closely related with the nucleation process, fewer nuclei will typically increase the as-grown
grain sizes of the film. Thus a detailed understanding of the nucleation process may help
to improve upon these growth techniques. Furthermore, as new technology tends to favor
smaller components, the ability to predict nucleation in confined high aspect ratio thin films
is of greater importance.

One expects TF-VLS and TLPCG to be dominated by heterogeneous nucleation: nuclei
within the confined film form on an interface. In order to form a stable nucleus, a critical
size of a cluster of atoms/molecules needs to be achieved. As the thickness of the film is
decreased a fundamental question arises: what happens to the nucleation process as the
thickness of the thin film becomes comparable to, or even less than, the dimension of the
critical nuclei?

In order to address this question, the nucleation of the solid phase from a single compo-
nent melt confined between two planar solid substrates is modeled using classical nucleation
theory. While this model is not directly applicable to TF-VLS and TLPCG methods, it
provides insight into the effects of confinement on nucleation. This simple model can form
the basis for models of increased complexity. Using an isotropic interface energy model, and
assuming that the volumetric change between the solid and liquid phase is negligible, critical
nucleation energy barriers are determined as a function of the film’s thickness and the film’s
interface and bulk free energy parameters. Two nucleus geometries are considered. Hetero-
geneous nuclei within an isotropic interface energy model have the geometry of a spherical
cap, a geometry hereafter referred to as cap nucleation. The other geometry considered is
when the critical nucleus grows in contact with both the top and bottom substrate and is
called a catenoid-like (CL) nucleation (catenoid-like because it is not a true catenary).

Using the critical nucleation energy barriers calculated for cap and CL mediated nu-
cleation, a nucleus morphology diagram (NMD) is created. This diagram illustrates which
nucleation type has the lowest critical nucleation energy barrier, as well as displaying shifts
in melting points relative to the thermodynamic bulk melting temperature, as a function of
the system’s interfacial and bulk energy values, and the thickness of the film. When con-
structing the NMD, cap nucleation is only considered, due to a physical constraint, when
the height of the critical cap nucleus, hCapc is less or equal to the height of the film, H. When
hCapc > H, only CL nucleation is considered. The geometry of the two different nuclei types



17

is illustrated in fig. 3.1, which also defines the contact angles made between the top and
bottom substrate and the nuclei where applicable.

Cap

Nucleus

CL

Nucleus Hh

θ
B

θ
B

θ
T

Top Substrate

Bottom Substrate

Figure 3.1: Cross sectional illustration of the system’s geometry for the cap and CL nucle-
ation types. θi is the contact angle between the nucleus and the top (T) or bottom (B)
substrate.

The nucleation and growth, along with the melting and solidification behavior of thin
films has been studied for unconfined [23, 24] and confined [25, 26] thin film systems. In
1986, Takagi [25] derived a theoretical relation for the change in the transition temperature
from one phase to another in a confined thin film as a function of the film’s thickness and
the film’s bulk and interface energy values, and used that theory to calculate a depression
of the melting temperature for Pb and Au. Expressions presented in this dissertation are in
agreement with the theoretical relation found by Takagi [25]. These expressions are expanded
to explore the implications of situations not discussed by Takagi, such as how the transition
temperature changes when the top and bottom substrate are not the same. Additionally, to
the best knowledge of the author there has been no systematic study of barriers to nucleation.

In the next section, a dimensionless version of a rudimentary classical nucleation theory
is presented. In the results section, first a slice of the NMD is presented illustrating the
nucleation behavior for the symmetric case, where the top and bottom substrate are the
same. Then the full NMD is shown, illustrating the nucleation behavior when the top
and bottom substrate are not necessarily the same. Next, relations for the depression and
elevation of the film’s melting temperature are shown. In the discussion section the theory
will be extended to the melting phase transition, and applications of the theory, limits of
the theory, and future work will be presented.

3.2 Dimensionless Classical Nucleation Theory

From classical nucleation theory [27, 28] it is known that for homogeneous nucleation, the
critical radius, rc, and critical nucleation energy barrier, ∆GHom

c , are

rc =
2γS,L
∆Gv

, (3.1)

∆GHom
c =

16π(γS,L)3

3(∆Gv)2
, (3.2)
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where γS,L is the interface energy of the solid-liquid interface and for solidification ∆Gv is
the difference between the Gibbs free energy of the liquid phase from the solid phase per
unit volume: ∆Gv = GL

v −GS
v , with GL

v (GS
v ) the free energy per volume of the liquid (solid)

phase. In order to express ∆Gv in terms of material parameters and the temperature, it will
be approximated as

∆Gv '
∆HF

v ∆T

TM
, (3.3)

where ∆HF
v is the latent heat of fusion per unit volume, ∆T = TM − T , and TM is the

thermodynamic bulk melting temperature.
For cap nucleation the critical radius is the same as that for homogeneous nucleation and

∆GCap
c = ∆GHom

c S(θ), (3.4)

where S(θ) is a shape factor, and θ is the contact angle between the nucleus and the substrate
(fig. 3.1):

S(θ) =
(2 + cos(θ))(1− cos(θ))2

4
. (3.5)

The free energy change associated with the creation of a CL nucleus is

∆GCL = −VS∆Gv + AS,LγS,L + AB∆γS−L,B + AT∆γS−L,T , (3.6)

with AB and AT the contact areas between the bottom (B) and top (T) substrate respectively,
and ∆γS−L,i = γS,i− γL,i, where i = {B, T}, and γS,i and γL,i are the interface energy terms
between the solid and liquid with substrate i respectfully. Determining the critical value of
∆GCL for a specific system is not as trivial as solving for ∆GHom and ∆GCap. For a given
set of the system’s interface and bulk energy values and the thickness of the film, the shape
of the nucleus at its critical size needs to be determined in order to find ∆GCL

c . To calculate
this, the calculus of variations is used [29]. However, in order to make the problem more
tractable, a characteristic length and energy are chosen to nondimensionalize the problem.
The characteristic length is chosen to be the critical radius, eqn. (3.1), and the characteristic
energy is γS,Lr

2
c . This reduces the number of material parameters in ∆GCap

c , ∆GHom
c , and

∆GCL by two.
A consequence of using the critical radius as the models length scale is noted. As evident

by eqn. (3.1) and eqn. (3.3), when T > TM or T < TM the length scale is a finite value and
the model is valid, within the limits of the approximations made by the model. However,
when T = TM , the model’s length scale diverges. When T > TM , the length scale is negative;
however, the length scale can formally be treated as positive by changing the sign of ∆Gv

in eqn. (3.6), such that the VS∆Gv term increases the free energy of ∆GCL when T > TM .
Nondimensional quantities, indicated by a tilde, are defined as follows:



19

∆̃Gj
i =

∆Gj
i

γS,Lr2
c

, (3.7)

ṼS =
VS
r3
c

, (3.8)

∆̃Gv =
∆Gvrc
γS,L

, (3.9)

Ãi =
Ai
r2
c

, (3.10)

γ̃i,j =
γi,j
γS,L

, (3.11)

∆̃γi−j,k =
∆γi−j,k
γS,L

. (3.12)

Applying these expressions to ∆GHom
c and ∆GCap

c yield their dimensionless analogs:

∆̃GHom
c =

4π

3
, (3.13)

∆̃GCap
c = ∆̃GHom

c S(θ). (3.14)

In order to determine where in parameter space cap nucleation is possible, the nondi-

mensionalized height for cap nucleation is, h̃Capc = 1 − cos(θ). (For reference, h̃Homc = 2 for
homogeneous nucleation.)

Using equations (3.7) through (3.12), ∆GCL in dimensionless form becomes,

∆̃GCL = −ṼS∆̃Gv + ÃS,Lγ̃S,L + ÃB∆̃γS−L,B + ÃT ∆̃γS−L,B. (3.15)

Noting that ∆̃Gv = 2, γ̃S,L = 1, and ∆̃γS−L,i = −cos(θi),

∆̃GCL = −2ṼS + ÃS,L − ÃBcos(θB)− ÃT cos(θT ). (3.16)

In order to compute ∆GCL
c using eqn. (3.16), the critical nucleus shape needs to be

determined. The dimensionless shape of the nucleus is characterized by the function ỹ(x̃),
fig. 3.2. The nucleus shape is assumed to be the solid of revolution obtained by rotating
ỹ(x̃) about the x̃ - axis. The dimensionless volume and areas terms are:

ṼS = π

∫ H̃

0

(ỹ (x̃))2 dx̃, (3.17)
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ÃS,L = 2π

∫ H̃

0

ỹ (x̃)

√
1 + (ỹ′ (x̃))2dx̃, (3.18)

ÃB = π (ỹ0)2 , (3.19)

and

ÃT = π
(
ỹH̃
)2
. (3.20)

θ
B

θ
T

Figure 3.2: Illustration of CL nucleus represented by ỹ(x̃). The CL nucleus is formed by
revolving ỹ(x̃) around the x̃-axis.

The subscripts in ỹ0 and ỹH̃ refer to where x̃ is being evaluated (fig. 3.2), and that notation
will be used hereafter. These expressions are then substituted into eqn. (3.16), along with a
volume constraint, by the use of a Lagrange multiplier, in order to determine the free energy
function of the nucleus as a function of its volume.

∆̃GCL[x̃, ỹ, ỹ′] =

∫ H̃

0

(λ− 2)π (ỹ (x̃))2 + 2πỹ (x̃)

√
1 + (ỹ′ (x̃))2dx̃

− π (ỹ0)2 cos(θB)− π
(
ỹH̃
)2
cos(θT ) (3.21)

Minimizing ∆̃GCL yields the following second order differential equation for ỹ(x̃)

√
1 + ỹ′(x̃)2 + ỹ(x̃)

(
(−2 + λ)

(
1 + ỹ′(x̃)2

)
− ỹ′′(x̃)√

1 + ỹ′(x̃)2

)
= 0, (3.22)



21

subject to the constraints ỹ′0 = −cot(θB) and ỹ′
H̃

= cot(θT ). Note that these conditions
ensure that the correct contact angles between the nucleus and the substrates are maintained.
Solving eqn. (3.22) numerically using the shooting method with these boundary constraints
allows the shape and dimensionless critical nucleation energy barrier to be determined. Due
to the nature of the free energy versus volume function for this system, only one extrema
exists. Thus, by setting λ = 0, the critical nucleation energy barrier for the CL nucleus can
be directly determined. The nature of these free energy functions will be elaborated upon
in the discussion section and for that analysis the Lagrange multiplier is used to vary the
volume of the nucleus. Within the theory, there are three free parameters: θB, θT , and H̃.
At each point in the three dimensional space the nucleation energy barrier is calculated for
both CL and cap nucleation, when applicable, and is compared. The morphology with the
smallest nucleation energy barrier is considered to be the dominant form of nucleation for
those parameters. The NMD displays this information by plotting the contiguous volumes
representing the nucleus morphology with the smallest nucleation energy barrier.

3.3 Results

In this section the details of the NMD are discussed in the context of solidification, beginning
with the case of θB = θT , and then generalizing to the case where θB does not necessarily
equal θT . In order to understand the NMD, a brief discussion of H̃ is required. As H̃ = H/rc,
the dimensionless height can be expressed in the following manner using eqn. (3.1) and eqn.
(3.3).

H̃ ' H∆T∆HF
v

2TMγS,L
(3.23)

H̃ contains, among other system parameters, the undercooling of the system, such that when
H̃ is positive (negative), the system’s temperature is lower (higher) than the thermodynamic
bulk melting temperature of the film, where the thermodynamic bulk melting temperature
of the film is represented by H̃ = 0 for positive finite values of H. (At TM = T , rc diverges;

however, since H̃ = H/rc, as rc diverges, H̃ approaches 0.)

Nucleus Morphology Diagram: Symmetric Case

In fig. 3.3, three regions are present: cap nucleation, CL nucleation, and no nucleation.
The cap and CL nucleation regions show the area of parameter space where each type of
nucleation has the lowest critical nucleation energy barrier. In the no nucleation region,
no nucleation of either type occurs. The boundary between the CL nucleation region and
the no nucleation region is the film’s constrained thermodynamic melting temperature. The
critical nucleation energy barriers associated with fig. 3.3 are shown in fig. 3.4. The contour
lines shows the direction of decreasing and increasing critical nucleation energy barriers as a
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function of θ and H̃. It should be noted that the critical nucleation energy barriers diverge
as the parameters approach the no nucleation region.

Cap Nucleation

No Nucleation

CL Nucleation

Figure 3.3: Slice of the NMD for the symmetric system, when the top and bottom substrate
are the same, θB = θT = θ. The cap and CL nucleation regions show the region of parameter
space where each type of nucleation had the lowest critical nucleation energy barrier. In the
third region, the no nucleation region, no nucleation of either type occurs. The grey curve is
the boundary between the CL nucleation region and the no nucleation region, and is the film’s
constrained thermodynamic melting temperature. As H̃ = 0 represents the thermodynamic
bulk melting temperature, the grey curve displays the conditions for the depression and
elevation of the film’s constrained melting temperature relative to the thermodynamic bulk
melting temperature. The black curve is the cap and CL nucleation boundary, where the cap
and CL structures have the same nucleation energy barrier. For a given contact angle, the
purple curve signifies the minimum film thickness where a cap nucleus can attain its critical
size.

The region in which no nucleation occurs can be determined using the following analysis.
For the case where θB = θT , the volume of the CL nucleus scales as π(ỹ0)2H̃, the solid-liquid

surface area scales as 2πỹ0H̃, and the contact areas between the substrate and the nucleus
for the top and bottom surfaces scale as π(ỹ0)2, as ỹ0 = ỹH̃ . As the volume of the CL nucleus
increases, the leading terms are the volume and the contact areas, as they scale as (ỹ0)2.
It is a necessary thermodynamic condition that as the volume approaches infinity, and thus

as ỹ0 approaches infinity, ∆̃GCL must approach negative infinity, otherwise the system will
not solidify. Thus for θB = θT when −cos(θ) > H̃, the free energy of the system is not

lowered by the creation and growth of the solid phase. Therefore cos(θ) = −H̃ represents
the constrained thermodynamic melting temperature of the system. For the case where the
top and bottom substrates are not the same, the contact area between the bottom surface
and the nucleus still scale with π(ỹ0)2 whereas the contact area between the top surface
and the nucleus scales as π(ỹH̃)2. However, ỹ0 and ỹH̃ are of similar order, and thus if

cos(θB) + cos(θT ) < −2H̃, nucleation does not occur, and the constrained thermodynamic

melting temperature is defined by cos(θB) + cos(θT ) = −2H̃. Figure 3.3, shows under
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Figure 3.4: Critical nucleation energy barriers associated with the nucleation shown in 3.3.
The black curve is the boundary between cap and CL nucleation and the purple curve signifies
the minimum film thickness where a cap nucleus can attain its critical size. The grey curve is
the film’s constrained thermodynamic melting temperature. The plotted critical nucleation
energy barriers range from θ = 2◦ to θ = 175◦.

what conditions the depression and elevation of the melting point are possible for cos(θB) =
cos(θT ).

Nucleus Morphology Diagram

Figure 3.5 is the full NMD, showing a portion of the CL nucleation region and the full no
nucleation region. The cap nucleation region is the part above the CL nucleation region,
as the orange curve is the boundary between the CL and cap nucleation regions. Slices of
constant H̃ are shown in fig. 3.6, which show the different regions of the NMD for given
values of H̃.

Melting Temperature Shift

The border between the no nucleation and CL region in the NMD, indicates where the
melting temperature is either depressed or elevated relative to the thermodynamic bulk
melting temperature of the film’s material. The maximum shift in the melting temperature
can be approximated in terms of the materials parameters. Using eqn. (3.23) and eqn.
(3.3), along with the conditions of no nucleation previously shown, the maximum elevation
and depression of the melting temperature, ∆T , was determined for the symmetric and
nonsymmetrical case:
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No N
ucleatio

n

CL Nucleation

Figure 3.5: Full NMD showing the full no nucleation region and a portion of the CL nucle-
ation region. The cap nucleation region is above the CL nucleation region, and the orange
curve is the boundary between the CL and cap nucleation regions.

Cap Nucleation Cap Nucleation Cap Nucleation

CL Nucleation

CL

Nucleation

CL

Nucleation

No

Nucleation

a) b) c)

Figure 3.6: Slices of the full NMD with constant values of H̃. (a) H̃ = 0.5, (b) H̃ = 1.0,

(c) H̃ = 1.5. The cap and CL nucleation regions show the region of parameter space
where each type of nucleation had the lowest critical nucleation energy barrier. In the third
region, the no nucleation region, no nucleation of either type occurs. The grey curve is
the boundary between the CL nucleation region and the no nucleation region, and is the
film’s constrained thermodynamic melting temperature. The black curve is the cap and
CL nucleation boundary, where the cap and CL structures have the same nucleation energy
barrier. For a given contact angle, the purple curve signifies the minimum film thickness
such that the cap nucleus can attain its critical size. The dashed green line shows where the
slice for the symmetric case, shown in fig. 3.3, is located on these figures, and illustrates the
symmetry in the NMD, as there is nothing unique about θB and θT as expected.

∆T = −2TMγS,Lcos(θ)

H∆HFus
v

, (3.24)

∆T = −TMγS,L(cos(θB) + cos(θT ))

H∆HFus
v

. (3.25)
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Equation (3.24) was reported by Takagi [25] in 1986 and eqn. (3.25) reflects the situation
where the top and bottom surfaces are not the same. For the symmetric system, when
90◦ < θ ≤ 180◦, ∆T in eqn. (3.24) is positive, whereas when 0◦ ≤ θ < 90◦, ∆T is negative.
The former situation refers to a depression in the melting temperature, whereas the latter
represents an elevation in the melting temperature. A similar effect is also evident for eqn.
(3.25) depending on whether or not (cos(θB) + cos(θT )) is positive or negative.

3.4 Discussion

Melting Phase Transition and Nucleation Behavior

The same analysis can be performed for the melting phase transition. By redefining the
contact angles to be between the liquid nucleus and the substrate, and changing the definition
of ∆Gv to the difference between the solid phase from the liquid phase, which changes the
definition of the critical radius, the same NMD found for solidification can be used for
melting. This also changes the definition of ∆T to ∆T = T − TM for eqns (3.3), (3.23),

(3.24), and (3.25) and thus when reading figs. 3.3, 3.4, 3.5, and 3.6, note that when H̃ is
positive (negative), that refers to a temperature that is above (below) the thermodynamic
bulk melting temperature. It is assumed that the same interface energy terms are applicable
during solidification and melting, such that θSolidification + θMelting = 180◦, and consequently
the melting point shift is the same during solidification and melting, for a given set of system
parameters, as expected. To summarize, when the top and bottom substrates are the same,
denoted as substrate i, when γ̃L,i > γ̃S,i, there is an elevation of the melting temperature
of the film, whereas when γ̃S,i > γ̃L,i, there is a depression of the melting temperature of
the film. (Similar trends are found for the nonsymmetric case and can be found using eqn.
3.25.)

As evident by eqn. (3.24) and eqn. (3.25), materials with large values of
TMγS,L
∆HFus

v
have a

greater potential to have their melting temperatures depressed or elevated, compared to a
material with small values of

TMγS,L
∆HFus

v
. Using interface energies determined by Turnbull [30],

values of
TMγS,L
∆HFus

v
for the elements studied in Turnbull’s work [30], are presented in table 3.1.

Based upon the materials presented, transition metals such as Pt, Pd, and Fe, have a greater
potential to have large elevations and depressions in their melting temperature.

In order to understand how geometric conditions and how substrate selection influence
the nucleation behavior of confined thin films, the solidification and melting of Ge between
two glass substrates is evaluated. The substrates are not specific to any one type of glass.
Rather glass was chosen to reflect the conditions that epitaxy is not a part of the nucleation
process being modeled, and that a wide range of glasses could be used to achieve the desired
contact angle with the nuclei. Using γS,L = 0.285J/m2 [31, 32], H̃ in terms of Ge parameters
is the following.
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Element
TMγS,L
∆HFus

v
[nm K]

Ga 35.8
Hg 37.0
Bi 58.1
Sn 63.9
Pb 76.6
Al 81.1
Sb 84.2
Ge 94.1
Cu 130.1
Ag 141.6
Au 144.1
Ni 168.8
Co 169.1
Mn 174.4
Fe 189.9
Pd 202.5
Pt 222.8

Table 3.1: As a function of the elemental species,
TMγS,L
∆HFus

v
, given in units of nm K, where the

larger the value is, the greater potential to have large elevations and depressions in given
material’s melting temperature.

H̃Ge ' H∆T
0.007

nmK
(3.26)

For example during the solidification of Ge, if the thickness of the thin film is 10 nm and
the undercooling is 10 K, H̃Ge ' 0.7. Note that assuming the same interface energy terms
are applicable during solidification and melting, such that θSolidification = 180◦ − θMelting,
the critical nucleation energy barriers for melting and solidification of the same system are
not necessarily the same, as seen in fig. 3.4. Therefore, an asymmetric hysteresis of the
melting and solidification is expected when considering the thermodynamics and kinetics of
nucleation. For instance, consider a 5 nm thick film of Ge between two identical glass sub-
strates and assume that nucleation for both the solid and liquid phase can be approximated
as occurring when ∆̃Gc = 78k̃BT [28]. From fig. 3.4 the temperatures at which nucleation
of the solid phase occur during solidification and the liquid phase during melting can be
estimated and are shown in fig. 3.7.

Figure 3.7 illustrates that there is an asymmetric hysteresis of nucleation for the solid and
liquid phase around the film’s thermodynamic melting temperature. Furthermore, relatively
large supercooling and superheating effects are predicted [33]. For H = 5 nm the nucleation
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Figure 3.7: Nucleation temperature of the solid and liquid phase of Ge between two identical
glass substrates, along with the Ge’s thermodynamic bulk melting temperature, and the
film’s constrained thermodynamic melting temperature for H = 5 nm.

is mediated by cap nucleation. In order to study the hysteresis when CL nucleation is the
predominate form of nucleation, the thickness of the film was reduced to 1.5 nm, and the
hysteresis for that thickness is shown in fig. 3.8, again approximating that nucleation occurs
for both phases when ∆̃Gc = 78k̃BT .

Figure 3.8: Nucleation temperature of the solid and liquid phase of Ge between two identical
glass substrates along with Ge’s thermodynamic bulk melting temperature, and the film’s
constrained thermodynamic melting temperature for H = 1.5 nm.

In fig. 3.8, it should be noted that relative to the bulk thermodynamic melting tem-
perature, for θSolidification < 45◦ presolidification is predicted, and for θSolidification > 135◦

premelting is predicted. The difference between the nucleation temperature of the liquid
phase and the nucleation temperature of the solid phase is plotted in fig. 3.9 for both H =
1.5 nm and H = 5 nm, and shows the widths of the hysteresis as a function of the solid-
ification contact angle. The hysteresis of the constrained film is narrowed, relative to the
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hysteresis for the thicker film. In both cases the maximum hysteresis is centered on the
film’s constrained thermodynamic melting point. The films display both superheating and
supercooling.

Figure 3.9: Difference between the nucleation temperature of the liquid phase from the solid
phase as a function of θSolidification for H = 1.5 nm and H = 5 nm.

Orientation Control

The theory also suggests a possible approach to achieving orientation control during the
solidification of a confined film. Although an isotropic interface energy model was used in
the development of the theory herein, one can approximate the different film orientations
relative to the substrate as having a different γ̃S,i. From the Young equation, differing γ̃S,i lead
to differing contact angles. From figs. 3.7 and 3.8 the temperature at which nucleation of the
solid phase is predicted varies as a function of the contact angles. Thus, if the temperature is
lowered to a value where some orientations are predicted to solidify and others are not, one
might be able to prevent certain orientations from being grown. Experimentally, this may
be achievable by lowering the annealing temperature within the range of the solidification
temperatures and allowing nucleation to occur at that temperature before further cooling
the system.

For the example system studied when H = 5 nm in fig. 3.7 the nucleation type is cap nu-
cleation. As the thickness of the film increases, the nucleation type is still cap nucleation and
consequently the nucleation temperatures will not change, as the critical nucleation energy
barriers for cap nucleation are not thickness dependent. However, the nucleation temper-
atures when the nucleation type is CL do change depending on the thickness of the film.
Additionally, the solid nucleation temperature has a greater range when the film’s nucleation
is occurring via CL nucleation. For the given examples, the solidification temperature range
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is larger by a factor of approximately 1.37 for the H = 1.5 nm system compared to the H
= 5 nm system. Therefore by confining the film to nucleate via CL nucleation, there is a
greater chance of enhancing the ability to select certain orientations. Similar trends are also
observed even if a different factor is used to equate ∆̃Gc to k̃BT .

Trends found using the symmetric case can also be generalized to the nonsymmetric case.
If one substrate is application specific but the other is not, selection of the other substrate
can lead to various effects. During solidification for instance, if one is trying to depress the
constrained thermodynamic melting temperature and the solidification nucleation tempera-
ture, it is typically advantageous to use a second substrate that has an equivalent or greater
contact angle with a given nucleus. The smallest contact angle will typically dictate the
nucleation behavior, and the critical nucleation energy barrier increases monotonically with
increasing contact angles. Alternatively, if solidification at higher temperatures is desired,
if the application specific material has a high contact angle with the nuclei, it would be ad-
vantageous to choose a second substrate the makes a smaller contact angle with the nuclei,
due to the presolidification behavior found herein.

CL Nucleation Kinetic Pathway

Unlike the free energy versus volume function of the cap, the CL nuclei in general cannot
start at zero volume. Rather, the CL nucleus must have a minimum volume, in most cases.
(An exception to this is when θB = θT = 90◦, as this system’s geometry is a cylinder, and
the free energy of this system can start at zero volume.) Therefore a kinetic pathway from
zero volume to the CL solutions must be found. We explore transition paths for various
contact angles and H̃ values from the cap solution to the CL solution at a fixed volume. For
the cases examined the energy never exceeds the CL energy at that volume.

The transition paths were found by solving the CL system with different heights, by
incrementally increasing the height from the starting value defined by the cap to the H̃ value
under consideration. The system was solved using eqn. 3.22, and two boundary conditions.
The first boundary condition is the slope of the curve in contact with the substrate, which
is the contact angle of the nucleus, and this boundary condition remains fixed during the
process. The second boundary condition is the slope of the curve at the point that is
incrementally increased to H̃. This slope was allowed to vary during the process. At each
distance during the transition path, the boundary condition and the Lagrange multiplier
were varied such that the lowest energy configuration for the given volume was found. It
is possible to find transition paths where the boundary condition for the slope, at the end
of the curve not in contact with the substrate, remains constant during the path. However,
in general this is not true and the slope needs to be allowed to vary. Furthermore, if the
slope is kept constant, and the energy during the path does not exceed the CL energy, this
could be a viable path but there could exist a path that if the slope was allowed to vary, at
each configuration a lower energy structure may exist. At the point that is incrementally
increased for the transition path solutions, a disk-like interface is formed. That solid-liquid
interface energy is included when calculating the free energy of the nuclei.
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Figure 3.10: Dimensionless free energy versus volume for the CL and cap nucleus when
θB = θT = 120◦ and H̃ = 1.0. A transition path is shown from the cap solution to the CL
solution.

Figure 3.11: The ỹ(x̃) curves representing the transition path from the cap solution to the

CL solution for θB = θT = 120◦ and H̃ = 1.0. For this transition path, which did not exceed
the CL energy, the slope at the end point of the function was fixed to equal zero. The shape
of cap nucleus, CL nucleus, and transition nuclei are created by rotating the solution around
the x̃-axis. The transition paths shown have a disk-like top at their end points, and that
solid-liquid interface energy is included when calculating the free energy of the nuclei.

This process is by no means a proof that a transition path can always be found without
an additional energy barrier at any volume. That study will be left to future research.
Nonetheless, it does provide evidence that such a path is possible. An example of a transition
path between the cap and CL free energy curves is shown in fig. 3.10 for the situation where
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H̃ = 1.0 and θB = θT = 120◦. The ỹ(x̃) curves that represent the transition path shown in
fig. 3.10, are displayed in fig. 3.11. For this situation a path is found where the slope of the
free end of the ỹ(x̃) function is fixed to zero.

Figure 3.12: Dimensionless free energy versus volume for the CL and cap nucleus when
θB = θT = 90◦ and H̃ = 1.22. The CL solution is the predicted nucleation type, however,
the system’s smallest energy barrier may be given by the intersection of the two solutions.

Figure 3.13: Dimensionless free energy versus volume for the CL and cap nucleus when
θB = θT = 90◦ and H̃ = 1.44. The cap solution is the predicted nucleation type, however,
the system’s smallest energy barrier may be given by the intersection of the two solutions.

If it is possible that there can be a transition path between the two nucleus solutions
then the effective nucleation energy barrier could change at various locations in the NMD.
If the transition can occur with no or relatively small transition barrier, the experimentally
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observed nucleation energy barrier might be governed by the intersection of the two different
free energy functions. Examples of this are shown in fig. 3.12 and in fig. 3.13.

Cap Nucleation

No Nucleation

CL Nucleation

Figure 3.14: Symmetric slice of the NMD, where the regions and curves are the same as that
in fig. 3.3, except for the discontinuous CL nucleation energy barrier curve (the dashed red
curve) and regions A (green region) and B (yellow region). The discontinuous CL nucleation

energy barrier curve is interpreted in the following way. For a given H̃ value, the CL
nucleation energy barrier at θ values between the curve and the H̃-axis are discontinuous.
Region A represents the case where the CL system has the smallest nucleation energy barrier,
but the system’s smallest energy barrier may be given by the intersection of the two free
energy curves. Region B represents the locations where the cap system has the smallest
nucleation energy barrier but the system’s smallest energy barrier may be given by the
intersection of the two free energy curves.

There are two main situations that can occur when considering the intersection point.
First is the situation where the CL solution is the predicted nucleation type as it either
has the lowest nucleation energy barrier or is the only nucleation type with a nucleation
energy barrier. For this situation the actual nucleation energy barrier may be given by the
intersection of the CL and cap free energy curves. In other words, by going from a volume of
zero to a volume of infinity the path with the smallest barrier could be defined by starting on
one free energy curve and then at the intersection point, switching to the other free energy
curve. An example of this is shown in fig. 3.12, and is referred to as region A in fig. 3.14.
The other situation that can occur is when cap solution is the predicted nucleation type, but
the actual nucleation energy barrier may be given by the intersection of the two free energy
curves. An example of this situation is shown in fig. 3.13, and is referred to as region B in
fig. 3.14. Figure 3.14 shows the symmetric NMD with the addition of regions A and B. In
these regions the actual nucleation energy barrier may be dictated by the intersection of the
free energy curves.
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Additionally, fig. 3.14 displays a curve that illustrates when a CL nucleation energy bar-
rier is discontinuous. For H̃ and θ values between the curve and the H̃-axis, the CL system’s
nucleation energy barrier is discontinuous. Specifically, the maximum in the system’s free
energy curve as a function of volume is discontinuous. An example of this is shown in fig.
3.15. The physical reason why the CL system does not have a continuous nucleation energy
barrier in this region, along with the viability of transitioning between free energy curves
will also be a topic of future research.

Figure 3.15: Dimensionless free energy versus volume for the CL and cap nucleus when
θB = θT = 35◦ and H̃ = 1.0. The free energy as a function of volume for the CL solution is
discontinuous at its maximum.

Model Assumptions

Several assumptions were used to construct the model, and the justification and consequences
of the primary assumptions are discussed. First, the volume change of the solid and liquid
phase during the phase transition was neglected. Indeed the P∆V contribution to the free
energy due to the volume change upon a phase transition could be significant depending
on the material being used in a confined thin film geometry. Nonetheless, the primary goal
of this paper was to find overall trends of nucleation in confined thin films for nonepitaxial
systems. This dissertation offers a framework to which additional effects, such as free energy
changes associated with volumetric changes could be included.

The model used a continuum theory to describe phenomena on the nanometer length
scale. Previous work by Q. Xu et al. [33] has shown that classical nucleation theory was
successful in modeling systems of similar sizes. Specifically, classical nucleation theory was
successfully used to model the melting temperature hysteresis of Ge nanoparticles during
melting and solidification, where the nanoparticles had an average diameter of 5 nm [33],
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thereby demonstrating that these theories can offer insight at small length scales. Next,
the Gibbs free energy difference between the solid and liquid phases per unit volume was
approximated by eqn. (3.3). This approximation is typically valid for small values of ∆T
relative to the thermodynamic bulk melting temperature. Additionally, an isotropic inter-
face energy model was used, and that assumption is typically only valid near the melting
temperature. Some of the results shown reflect temperatures that are relatively far from the
thermodynamic melting temperature. Nonetheless, the results presented are still valuable
by showing trends of which materials and geometric conditions yield the greatest chance of
influencing nucleation in a confined geometry. Therefore, this model offers a first approxi-
mation to the question of how nucleation is affected by confining a film in one dimension,
and offers a possible route for orientation control in the studied geometry.
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Chapter 4

Conclusion

The goal of this work was to present theories that can be used to achieve optimum growth
characteristics for two material systems: nanoparticles embedded in a matrix and confined
high-aspect ratio thin films. Based upon a mathematical argument, a previously proposed
processing route for the synthesis of nanoparticles with a narrow size distribution during IBS
has been explained using a self-consistent mean-field theory. By transitioning from a small
SSAR to a larger SSAR the size distribution of nanoparticles can be narrowed substantially.
One means of realizing these conditions is to ramp the temperature during implantation.
Initial investigations suggest that widths of the size distributions can be reduced to less
than 17 % of the average size. The theory thus serves as a useful guide for controlling size
distributions during IBS.

Using classical nucleation theory, a nucleus morphology diagram was created for nucle-
ation during the solidification and melting phase transitions for confined high aspect ratio
thin films as a function of the thickness of the film and the system’s bulk and interface
energies. These diagrams show under what circumstances cap, CL, and no nucleation occur.
Furthermore, expressions for the depression and elevation of the film’s melting temperatures
were found. Using these diagrams and expressions, experiments can be tuned to have greater
control over the final microstructure of thin films. A new phenomena, termed presolidifca-
tion, was identified. Additionally, although this model is based upon a single component
system, the general trends found herein can be used as a first step in understanding the
nucleation behavior of multicomponent systems, and offers a framework to which additional
effects can be added to the model.
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