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Highlights 

• An integrated framework is developed to quantify values of VGI.

• The proposed predictive algorithm greatly enhances the real-time allocation

performance. 

• Optimization models reduce system costs in both wholesale and retail markets.

Abstract 

Vehicle-Grid-Integration (VGI) supplies one of the potential benefit extensions for 

electric vehicles (EVs) to make use of their parking time, which enables the EVs to 

provide grid services while still meeting consumer driving needs. However, the costs, 

benefits and risks of VGI still remain unclear, which limits the development of the VGI 

to promote the interaction between the EV and grid.  In this study, we propose an 

integrated framework to quantify and utilize the aggregate flexibility of the EVs to 

supply the grid services in electricity markets. The integrated solution includes five sub-

modules that cover end-to-end functionalities from individual EV energy consumption 
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estimation to final monetary values calculation of providing grid services. Both 

wholesale market and local level charging management are formulated in the 

optimization module. A predictive control algorithm is proposed to allocate power to 

individual vehicles in real time, considering uncertainties from dispatch signal and travel 

behavior. Simulation results from 10,000 EVs indicate that the proposed optimization 

methods can significantly reduce the system cost in both wholesale market and retail 

market. Local tariff optimization reduces the electricity cost by 24.4% compared to 

uncontrolled charging. Wholesale market optimization results show that $691 and $255 

revenues can be captured by each EV in ERCOT and CAISO markets per year, although 

with a conservative assumption on battery throughput cost at 0.16$/kWh. 

Keywords: vehicle-grid-integration; electric vehicle; simulation platform; real-time 

allocation 

Nomenclature

 

Indices 

i  EVs index, i = 1, 2, …, I 

t  Time index, t = 1, 2, …, T 

 

Parameters 

� Battery degradation cost, in $/kWh 

t∆  Time step, in hour 
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�(�) Electricity price (Time-of-use rate) in retail market at time t, in $/kWh 

�(�) Energy conversion ratio of reserve at time t, in % 

�(�) Energy conversion ratio of frequency regulation at time t, in % 

( )downPrice t    Frequency regulation down price in day ahead market at time t, in $/kW 

( )upPrice t      Frequency regulation up price in day ahead market at time t, in $/kW 

( )energyPrice t   Energy price in day ahead market at time t, in $/kWh 

( )reservePrice t   Reserve price in day ahead market at time t, in $/kW 

 

Variables 

 

�	 Upper bound of cumulative energy of EV i, in kWh 

�	 Lower bound of cumulative energy of EV i, in kWh 


 Upper bound of aggregate cumulative energy of EV fleet, in kWh 


 Lower bound of aggregate cumulative energy of EV fleet, in kWh 

�	 Upper bound of power of EV i, in kW 

�	 Lower bound of power of EV i, in kW 

� Upper bound of aggregate power of EV fleet, in kW 

� Lower bound of aggregate power of EV fleet, in kW 

( )tα  Binary variable, 1 if the battery is discharging in day ahead market, 0 otherwise 

( )tβ  Binary variable, 1 if the battery is charging in day ahead market, 0 otherwise 

SOE(t) State of energy of aggregated battery at time t, in kWh  
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( )bE t  Energy bought in day ahead market at time t, in kWh 

s ( )E t  Energy sold in day ahead market at time t, in kWh 

( )downF t Frequency regulation down capacity bought in day ahead market at time t, in kW 

( )upF t  Frequency regulation up capacity sold in day ahead market at time t, in kW 

( )R t  Reserve capacity sold in day ahead market at time t, in kW 

 

1. Introduction 

Transportation electrification is one of critical paths to achieve deep greenhouse 

emission reduction targets [1][2]. Moving towards this goal, California government has 

recently updated the zero-emissions vehicle (ZEV) mandate, which targets to launch as 

many as 5 million ZEVs by 2030 [3][4]. Previous studies have proven that the electric 

vehicles (EVs) can satisfy majority of daily travel requirements of the US drivers 

[4][5][6][7][8]. In the meantime, cars are parked nearly 95% of time, which allows the 

vehicle batteries to support grid objectives such as renewable energy integration [9][10]. 

As of 2020, there were over 5.5 million EVs globally [11], with numbers expected to 

dramatically increase in coming years. U.S. states are setting ambitious EV targets, such 

as the ten-state Zero Emission Vehicle Alliance [12] and according to forecasts from 

EVAdoption, the EV sales share in 2028 will reach 18% [13]. More broadly, a similar 

increase in EV is occurring in Europe, with transportation electrification projections 

potentially requiring an added 4% of electricity generation capacity by 2030 [14] [15]. 
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This growth in EV sales will inevitably have a large impact on electricity load and grid 

integration [16]. Therefore, utilities and regional transmission organizations (RTOs) are 

beginning to investigate the impact of EVs on their systems [17]. 

From the grid perspective, there is a low capital cost of grid storage using vehicles 

(capital cost is absorbed for mobility objectives), yet the grid services from vehicles can 

be used to lower the operating costs for EV owners[18]. In this manner, a synergy exists 

where flexibility in EV charging can provide valuable grid support on various scales of 

aggregation, from behind-the-meter tariff optimization [19][20][21], to distribution 

systems support [22], to wholesale market support with ancillary services [23][24]. 

Despite these opportunities, it is still unclear whether “vehicle-grid-integration” (VGI) is 

feasible in terms of its costs, values risks, complexity, and whether it is competitive with 

other technologies that can offer similar grid services. 

In order to quantify the monetary benefits of VGI, many researchers proposed different 

strategies to integrate the flexibility of EVs into electricity market (both retail and 

wholesale markets)[25][26]. Among these studies, there are mainly two methods to 

model the flexible resource from EV. The first method is to integrate the individual EV 

into the whole aggregator’s optimization model. Then solving the whole problem will not 

only provide aggregate power commitment (e.g. day-ahead bids), but also return the 

detailed charging/discharging schedule for each individual EV. Sortomme et al. proposed 

a novel V2G algorithm to optimize the service and energy scheduling[27]. This 

methodology maximizes the profits to the aggregator while supplying the peak load 
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shaving ability and extra system flexibility to the grid system and minimize the EV 

charging cost to the customer. Vagropoulos et al. came up with a novel bidding algorithm 

for regulation services to maximize the flexible energy in the system[28]. Mehta et al. 

presented two smart charging algorithms that considered the existing infrastructure of the 

distribution system, in order to minimize the peak-to-valley ratio and the whole system 

cost[29]. The work listed above provides a comprehensive understanding on EVs’ 

contribution to ancillary services, however, there are still two outstanding questions: (1) 

how to cope with the uncertainty of individual EV in both real-time and day-ahead 

markets. (2) how to make computational time affordable if the EV number is large and 

time resolution is high (e.g. 1 or 5 min). Even though some researchers developed 

distributed algorithms to handle the computational time bottleneck [30][31], it would 

bring new problems like communication delay and convergence. 

The second way is to model the aggregator’s optimization based on flexibility 

aggregation. The aggregator firstly quantifies the total flexibility of a population of EVs. 

All EVs together are regarded as one “virtual battery”. Only constraints of the “virtual 

battery” are built into the optimization problem, rather than information of individual 

vehicles. Thus, it can significantly reduce the computational burden. After getting the 

aggregate power commitments, the aggregator will disaggregate the total power into 

individual vehicles at service liquidation time. In this way, the uncertainties from vehicle 

side and dispatch signal from power system will be handled at real time stage. However, 

a key challenge is to estimate the aggregate flexibility of the EV fleet. The aggregate 
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flexibility depends on exogenous stochastic processes such as arrival/departure, 

maximum power rates and charging demands. Researchers in proposed a method to 

evaluate the capacity of Vehicle-to-Grid (V2G) for an individual vehicle [32]. However, 

the scalability of proposed model is limited, so we cannot directly use it to evaluate the 

flexibility of a population of EVs. In [33][34], the authors studied the potential of EVs on 

enhancing the renewable penetration. The flexibility was modeled according to the 

consumption increasing of renewable energy. This study only considered the single 

direction charging and required deterministic information from EVs. Authors in [35] 

estimated the influence on the grid system flexibility when the V2G fleet attended the 

regulation market. The Markov process was used to predict the V2G capacity of the EVs, 

with the precondition of meeting the daily energy need by scheduling the charge and 

discharge operations. However, the charge/discharge behaviors change the battery state 

of energy and furthermore influence the V2G capacity. In [36], the authors proposed a 

method to estimate the aggregate V2G fleet flexibility. Aggregated parameters are used 

to describe the power and energy constraints and reduce forecast errors. However, there 

is no clue how to calculate the minimum energy demand, which is a key parameter in the 

aggregate model[37]. In literature [38][39][40], integrated systems between the PV and 

existing household grid system are investigated to decrease the system cost, which is 

focusing on the microgrid level. Our previous work also investigates the integration 

between the EVs and the system grid, which shows a strong impacts on the system load 

reshape at a macro level [41][42]. 
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To address above questions and concerns, we developed an integrated simulation 

framework. Firstly, individual EV model is established to estimate the state of charge, 

energy consumption, battery degradation, and etc. Then an aggregate model is used to 

evaluate the aggregate flexibility from a collection of EVs based on individual vehicle 

information. With the aggregate flexibility, we model both retail and wholesale market 

level optimization problems to calculate the benefits that can be obtained by providing 

grid services. A model predictive control (MPC) method is developed to allocate total 

power into individual vehicles in a distributed manner, considering the randomness from 

travel behavior and dispatch signals from power systems. The contributions of this paper 

are mainly four-folds: 

1) An integrated framework is proposed to quantify the feasibility of VGI. The 

simulation platform is highly modularized. It allows researchers and scholars to 

plug their own modules (e.g. bidding strategy, real-time dispatch algorithm) and 

get holistic solutions;  

2) A bottom-up method is implemented to quantify the aggregate flexibility of a 

population of EVs. Detailed vehicle model is built to precisely estimate individual 

vehicle parameters such as energy consumption, state-of-charge for battery; 

3) Local tariff optimization and wholesale market optimization models are formulated 

to capture values from different markets. Values are stacked to maximize the 

benefits from VGI. It should be noted that the optimization results heavily depend 
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on market factors such as market bidding timeline, price volatility, market products, 

etc. The goal of this paper is to provide a framework to evaluate VGI values, 

instead of beating certain existing benchmarks. 

4) An MPC-based method is deployed to disaggregate total charging/discharging into 

individual vehicles considering the uncertainties from vehicle behavior and 

dispatch signals. 

2. Simulation framework 

 The proposed framework includes five sub-modules as shown in Figure 1. They are 

EV Estimation Module, Capacity Availability Module, Delivery Optimization Module, 

Resource Allocation Module and Value Estimation Module. 

In EV Estimation Module, vehicle travel itineraries and driving cycles are taken as 

inputs to model individual vehicle status including state-of-charge, current input/output, 

battery health, etc. The energy constraint and power constraint of each vehicle are also 

modeled at this stage. For the sake of estimating the capability of vehicles to supply the 

local and grid services, we aggregate the collection of EVs and model them as a single 

“virtual battery” in the Capacity Availability Module. This module generates aggregate 

level constraints and sends them to Delivery Optimization Module. The objective of the 

Delivery Optimization Module is to determine both grid and local service portfolios that 

can be offered to maximize the total economic benefits. The aggregator can commit to 

provide either local service or wholesale market service by comparing the benefits from 



 Haifeng Zhang et al./ Energy 00 (2020) 000–000 10 

these two markets. Also, by solving the optimization problems, the aggregator is able to 

submit the day-ahead bids to the system operator if it decides to provide wholesale 

market services. Then the system operator will clear the market and reward the 

aggregator at market clearing prices. Since the Delivery Optimization Module only 

generates aggregate level commitments, the total charging/discharging power should be 

allocated to individual EVs afterwards. In the meantime, the system operator will 

forward the dispatch signals to aggregators (e.g. AGC signal, deployment signal for 

spinning reserve, etc.). However, there are uncertainties from dispatch signals and EV 

behaviors. In particular, the resource allocation module will decide in the real-time 

operations: (1) which EVs population is chosen to be scheduled charging/discharging; (2) 

what is the scheduled charging/discharging power of each vehicle. After performing 

delivery optimization and resource allocation, all the awards and penalties will be 

liquidated. The Value Estimation Module will calculate the benefits and costs of different 

stakeholders including EV owners, aggregator, utility company and etc. We will 

elaborate on each module in Section 4. 
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Figure 1. Simulation framework. 

3. Description of sub-modules (Modeling) 

3.1. EV Estimation Module 

The structure of EV Estimation Module is shown in Figure 2. In this section, vehicle 

travel profile is regarded as a collection of events (parking and driving). The travel 

itineraries can be either generated from statistics or the real-world dataset. Table 1 shows 

a typical daily travel itinerary. 
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Figure 2. Framework of EV Estimation Module. 

Table 1. A travel itinerary example 

Begin time End time Length stop 

0:00 7:25 0 Home 

7:25 8:00 22 Driving 

8:00 17:00 0 work 

17:00 18:30 25.0 Driving 

18:30 19:10 0 Shopping 

19:10 19:50 10 Driving 

19:50 24:00 0 Home 

 

In this work, we develop a powertrain model, which is similar to the models of 

Autonomie [43]. This model is adopted to predict the energy consumption of EVs on any 
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trip-specific driving cycle, and with any level of ancillary power loading (e.g. HVAC 

system). When the vehicle is driving, it tracks temperature, energy consumption, SOC, 

current, open circuit voltage and other parameters. Three Environmental Protection 

Agency (EPA) driving cycles [44], including highway (HWFET), urban dynamometer 

driving schedule (UDDS), and aggressive driving(US06), are used to represent the 

different driving types in this paper. Powertrain simulation results like current, open 

circuit voltage and temperature, are also used to calculate battery degradation.  

Detailed battery degradation model can be found in our previous publication [45]. The 

battery degradation is divided into two parts: calendar life loss and cycle life loss. 

Calendar life loss is a function which is related to the temperature and time, while the 

cycle life loss is related to current rate, cumulative throughput and temperature.  

2
CycleLoss rate Through( )exp[( ) ]D Temp Temp Temp S Ahξ ψ ζ υ θ= ⋅ + ⋅ + ⋅ + ⋅ ⋅    (1) 

1/2
CalendarLoss ac day dayexp[ / ( )]D f J G L L= ⋅ − ⋅ ⋅     (2) 

Loss CycleLoss CalendarLossD D D= +      (3) 

where 2( )Temp Tempξ ψ ζ⋅ + ⋅ + and  �  are pre-exponential factors, Temp is the absolute 

temperature, ξ / ψ / ζ / υ/ θ are fitted from curve, rateS  is the current C rate, ThroughAh  

represents the amount of charge delivered by the battery during cycling, dayL  is the days, 

acJ  is the activation energy in J mol−1, G  is the gas constant. These parameters values 

are listed in the Table 2. 
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Table 2. Parameter value of the battery degradation 

Parameter Value Parameter Value 

ξ 8.61 × 10−6, 1/Ah-K2 rateS  C-Rate 

ψ  −5.13 × 10−3, 1/Ah-K dayL  Days 

ζ  7.63 × 10−1, 1/Ah acJ  24.5, kJ∙mol−1 

υ −6.7 × 10−3, 1/K-(C-rate) G  8.314, J∙mol−1∙K−1 

θ 2.35, 1/(C-rate) Temp K 

f 14,876, 1/day1/2 - - 

 

We can see from equation (1) that battery degradation is a complex non-linear function 

of temperature, current and total throughput. In the following optimization models, we 

assume that battery works at constant temperature and current, so the battery degradation 

is simplified to be a linear function of battery total throughput. However, the detailed 

models (1) –(2) presented above can still be used in different use cases which need more 

in-depth modeling of battery degradation.  

With different charging models/configurations, we can get the temporally resolved 

information on individual EV status. The charging power and energy of individual EVs 

will be used in the capacity availability module to estimate the aggregate flexibility of a 

population of EVs. 
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3.2. Capacity Availability Module 

Considering a collection of EVs, we have access to their arrival and departure statistics 

from historical data archives, as well as drivers’ inputs on desired departure time and 

charging demands [46]. We can define a default or nominal charging profile for each EV. 

Each of these EVs is flexible such that they can accept perturbations around this nominal 

charging profile. They can get charged immediately at maximum charge rate right after 

plug-in or defer the charge for a time period. These EVs are indifferent to charging 

profiles as long as their net demand is met before departure. 

 

Figure 3. Power and energy boundaries of aggregate battery model 
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A key challenge here is to estimate the aggregated flexibility of the vehicle fleet. Our 

essential idea is that the aggregate flexibility can be approximately modeled as a “virtual 

battery”, and it is characterized by the energy and power boundaries of the “virtual 

battery” [36]. As shown in Figure 3(a)-(b), the flexibility boundaries of the power and 

energy for EV i are defined as {�	,  �	, �	,  �	}.  �	 is the maximum charge power and �	 

is the maximum discharge power. The upper energy boundary �	 represents the fastest 

way to get required energy, while the lower boundary �	 is the slowest path. �	
� represents 

the arrival time. �	
���

 is the required energy before departure time �	
� , and �	

�	�  is the 

maximum energy discharged during the whole session. Any trajectories within the 

“envelope” are feasible charging behaviors, because it can guarantee that EV gets 

required energy before departure without violating battery SOC constraint. 

For a collection of EVs, the total power and energy boundaries can be modeled as the 

summation of individual EVs at any time t: 

( ) ( ),i i
t

E t e t t= ∀∑       (4) 

( ) ( ),i it
E t e t t= ∀∑       (5) 

( ) ( ),i it
P t p t t= ∀∑       (6) 

( ) ( ),i t i
P t p t t= ∀∑       (7) 
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The Figure 3(c)-(d) shows the boundaries of energy and power for the EV fleet. With 

the above modeling, a discrete, large-scale formulation is transformed into a smooth, 

generic and storage-like aggregate model. 

3.3. Delivery Optimization Module 

After having an accurate estimation on the flexible capacity of EV fleet, it is important 

to understand the economic benefits of leveraging the flexibility. In this module, we 

formulate the optimization models for both local services (e.g. tariff optimization, 

demand charge mitigation, etc.) and grid services (e.g. energy arbitrage, frequency 

regulation, etc.). The aggregator can decide which service it would like to provide 

according to the benefits in different markets. If wholesale market is more lucrative, the 

commitments will be made to the wholesale market. Otherwise, the aggregator will 

choose to minimize the electricity bills on retail market. 

Figure 4 shows the general workflow of optimization process. “Virtual battery” 

parameters come from capacity availability module. If aggregator decides to provide 

wholesale market services, then optimization will ingest wholesale electricity market 

prices of different products. The optimization model maximizes the total revenues by 

stacking all products together, namely energy, frequency regulation and reserve. 

Optimization results contain the bidding decisions of each individual product, 

considering both market level and aggregate battery level constraints. If aggregator 

decides to focus on local tariff optimization, optimization will take local electricity prices 
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as inputs and run the two-level optimization model. Upper level aims to minimize the 

total energy cost with consideration of battery degradation cost. Since the linear model in 

upper level may have multiple optimal solutions, the lower level aims to find the solution 

with minimum peak power. The output will be the dispatch profile of aggregate battery. 

 

Figure 4. General workflow of optimization process 

The detailed optimization formulations are presented as follows: 
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3.3.1 Wholesale market optimization 

(a) Objective function: 

maxTotal_Revenue=Energy_revenue+FR_revenue

                               +Reserve_revenue-Throughput_cost
   (8) 

 

where:

s n

1

Energy_revenue {[ ( ) ( )] [ ( ) ( )] ( ) ( ) ( )} ( )
T

b up dow energy

t

E t E t F t F t t t R t t t Price tσ ω
=

= − + − ⋅∆ ⋅ + ⋅∆ ⋅ ⋅∑  (9) 

1

FR_revenue [ ( )* ( ) ( )* ( )]
T

up up down down

t

F t Price t F t Price t
=

= +∑    (10) 

1

Reserve_revenue ( )* ( )
T

reserve

t

R t Price t
=

=∑    (11) 

1

Throughput_cost [ ( ) ( ) ( ) ( ) ( )]*
T

s up

t

E t F t t t R t t tσ ω ε
=

= + ⋅∆ ⋅ + ⋅∆ ⋅∑    (12) 

The objective (8) is to maximize the total revenues from electricity market by 

stacking all products together. Revenues from energy, frequency regulation, spinning 

and non-spinning reserve are defined in Equations (9) – (11). Battery throughput cost 

caused by V2G is modeled in Equation (12) to avoid abusing battery on energy 

arbitrage. Battery throughput is measured by the total discharge energy from energy 

sell, frequency regulation up and reserve services. 
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(b) Constraints: 

0 ( ) (t) ( ), [1, ]s
E t P t t t Tα≤ ≤ ⋅∆ ⋅ ∀ ∈     (13) 

0 ( ) (t) ( ), [1, ]b
E t P t t t Tβ≤ ≤ ⋅∆ ⋅ ∀ ∈     (14) 

( )+ ( ) 1, [1, ]t t t Tα β ≤ ∀ ∈       (15) 

( ) ( ) ( ), [1, ]down
F t P t P t t T≤ + ∀ ∈      (16) 

( ) ( ) ( ), [1, ]up
F t P t P t t T≤ + ∀ ∈      (17) 

( ) ( ), [1, ]R t P t t T≤ ∀ ∈       (18) 

s( ) ( ) ( ) ( ) ( ) ( ) , [1, ]b down up
E t F t t F t t E t R t t P t t t T+ ⋅∆ − ⋅∆ − − ⋅∆ ≤ ⋅∆ ∀ ∈   (19) 

s ( ) ( ) ( ) ( ) ( ) , [1, ]up bE t F t t E t R t t P t t t T+ ⋅ ∆ − + ⋅ ∆ ≤ ⋅ ∆ ∀ ∈    (20) 

( ) [ ( ) ( ) / ] [ ( ) ( ) / ] ( ) ( ) / ( ) ( 1)b s down up
SOE t E t E t F t F t t t R t t h E tη η η η σ η ω+ ⋅ − + ⋅ − ⋅∆ ⋅ + ⋅∆ ⋅ ≤ +

(21) 

( ) [ ( ) ( ) / ] [ ( ) ( ) / ] ( ) ( ) / ( ) ( 1)b s down upSOE t E t E t F t F t t t R t t h E tη η η η σ η ω+ ⋅ − + ⋅ − ⋅ ∆ ⋅ + ⋅ ∆ ⋅ ≥ +
(22) 

Battery power constraints are represented in Equations (13) – (15). Energy buy and 

sell cannot exceed the aggregate battery max charge and discharge power. Constraints 

(15) guarantees that battery cannot buy and sell energy at the same time. Constraint (16) 

and (17) model the power constraint on frequency regulation. Frequency regulation bid 

amount cannot exceed the max power deviation of aggregate battery ��(�) + �(�) . 

Constraint (18) requires that reserve capacity bid does not exceed maximum discharge 

power. When all products are stacked and co-optimized, market compliance in Equation 

(19) and (20) require that battery charge or discharge from all products should stay 
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within battery power limits. Battery energy dynamics are modeled in Equations (21)-(22). 

It makes sure that remaining energy of aggregate battery always stays within the required 

energy boundaries calculated in battery availability module. 

In this formulation, we have two binary variables which avoid to bid buy and sell at 

the same time. Continuous variables represent the bidding amount for each products, 

including {
�(�), 
�(�), �����(�), ���(�),  (�)}. Since they are all time dependent, the 

total number of variables in the simulation depends on the optimization horizon. 

3.3.2 Local tariff optimization 

In the retail market, the risk of price volatility has been covered by the load serving 

entity [47]. EV owner is charged at contracted tariff (e.g. TOU price). On top of that, 

demand charge is also widely adopted by utility companies to limit the load peak of 

commercial and industrial customers, such as shopping malls, office buildings, parking 

lots and etc. Shifting charge load from peak hours to off-peak hours can effectively 

reduce the electricity cost. At the same time, it is also important to make sure the 

concentrate charging will not cause new load peaks which may result in high demand 

charges. Thus, the optimization can be divided to two-levels. For the upper level, the 

aggregator aims to reduce the total charging cost TOU
Cost : 

min ( ) ( ) ( )TOU

t T
Cost P t t t P t tλ ε

∈
= ⋅∆ ⋅ + ⋅∆ ⋅∑     (23) 

subject to: 
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( ) ( ) ( )P t P t P t≤ ≤      (24) 

1

1
( ) ( ) ( ) ( )

t
E t P t t P t E t

τ
τ−

=
≤ ⋅ ∆ + ⋅ ∆ ≤∑      (25) 

The first part of Equation (23) represents the total electricity cost. The second part is 

the cost of battery degradation caused by extra discharge for energy arbitrage. The 

aggregate power and energy constraints are shown in Equation (24) and (25). By solving 

this problem, the aggregator can find the minimum cost charging schedule.  

The lower level is described as: 

minmax ( ),  [1,2,..., ]P t t T∈      (26) 

subject to constraints (24)-(25), and: 

,( ) [ ( ) ] min TOU

t T
P t t t Costλ ε

∈
⋅∆ ⋅ + =∑     (27) 

The target of the lower level in Equation (26) is to reduce the charging/discharging 

peak power during the scheduled period. The lower level optimization still needs to meet 

the energy and power constraints (24)-(26). On top of that, constraint (27) requires that 

the solution from second stage also achieves the minimum cost ,min TOU
Cost  from the upper 

level. In this formulation, the only decision variable is battery power P(t). Since it is time 

dependent, the number of variables is proportional to the optimization horizon.  
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3.4. Resource Allocation Module 

In Delivery Optimization Module, the aggregator makes the aggregate power 

commitments based on the forecasting information on EV travel patterns and market 

prices. The total power commitments need to be disaggregated and dispatched to 

individual vehicles at the real-time stage, i.e. the aggregator must decide how much 

charge/discharge power to allocate to each vehicle. This real-time control or scheduling 

problem is a central algorithmic challenge faced by the aggregator. The aggregator has to 

perform the allocation under the uncertainties from both EV and system status. There are 

a few heuristic control strategies that can be explored including Earliest Deadline First 

(EDF) or Least Laxity First (LLF) [48]. EDF allocates power to EVs prioritized by their 

anticipated departure time, while LLF allocates power prioritized by the charging 

demands [49]. The real-time control algorithm for allocating and dispatching vehicles 

fundamentally affects the feasibility and value proposition of VGI. 

Allocating energy to each individual EV requires the controller to know the exact 

session parameters, including the start time �	
� and the stay duration "	 , as well as the 

energy consumption value �	. In addition, enough energy is supposed to be delivered to 

each individual EV before its deadline �	
� , i.e. the departure time of the EV i. In the real-

world scenario, however, we cannot assume perfect insights on itineraries. For each EV, 

the battery energy constraints and charging power are formulated with itinerary 

uncertainties as follows: 
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ˆ0 ( ) , [ , ]s s
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p t p t t t d≤ ≤ ∀ ∈ +     (28) 
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i i i i i i
e t e t t p t t t t t d= −∆ + ⋅∆ ∀ ∈ +     (29) 

ˆˆ ( )s

i i i i B
e e t d e≤ + ≤      (30) 

where �	(�) represents the instant charging power for EV i at time t; �̅ is the maximum 

charging rate of the charging infrastructure. Note that, the departure time of EV i is 

replaced with �	
� + "$	 , where "$	  is the estimated parking duration from a real-time 

predictor. Equation (29) describes the increment of stored energy in the battery of each 

individual EV. The stop criteria for each EV, i.e. Equation (30), is to get more energy 

than the estimated value �̂	, while less than the total battery capacity �&. 

Given the optimal aggregate charging load profile from the Delivery Optimization 

Module, the real-time allocation aims to reduce the cumulative gap between the desired 

and real load profiles. Thus, the objective of the charging power allocation problem is 

formulated as: 

2

1
ˆmin [ ( ) ( )]

T I

it i
p P

τ
τ τ

= =
−∑ ∑     (31) 

subject to constraints (28) – (30). 

As the EVs number increases, the centralized controller has to: i) collect the timely 

measurements for all EVs; ii) compute the optimal charging schedules; and then iii) send 

control signals to each individual charging facility. Compared with decentralized 

controller, it has some practical drawbacks, including: 1) user privacy issue, i.e. related 
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information for all users has to be collected altogether by the centralized server; 2) high 

computation burden and communication network condition may delay the delivering of 

the optimal charging schedules. Instead, in decentralized approaches, each individual EV 

computes its own optimal charging schedules, without knowing schedule information of 

other EVs. EVs send their updated charging schedules to a server asynchronously and get 

updated control/price signals back until all EVs reach an equilibrium state. We deploy 

the decentralized algorithms developed in our previous paper in this module [50]. We 

extend the scheduling algorithm to follow aggregate EV charging load profile and add 

another layer of iterations to simulate the real-time operations, i.e. predictively optimize 

the energy consumption schedules in each time step given estimated session parameters 

for each EV, and then implement only the first element in the charging schedule (the next 

time step). The detailed decentralized strategy is as follows:  

a) For aggregator 

In each iteration ', the aggregator or system operator needs to calculate the consensus-

based control signal, i.e. ()
*, as follows: 

1

1
ˆ[ ( ) ( )]

I k

k ii
c p P

τ
γ τ τ

=
= ⋅ −∑      (32) 

where �+(,) is the optimal charging load at time , from the first-stage planning and γis a 

Lipschitz constant. 

b) For each EV 
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Each EV solves the following local optimization problem given its estimated 

itinerary and the energy demand values, as well as the updated control signal ()
* from the 

system operator. 

1 2min ( ) [ ( ) ( )]
T T k k

k i i it t
c p t p p

τ
τ τ

τ τ−
= =

⋅ + −∑ ∑     (33) 

subject to constraints (28) - (30). 

The optimality and convergence proof for this algorithm has been provided in [50]. 

The detailed simulation flow can be found in Appendix I. 

3.5. Value Estimation Module 

This is an ex-post evaluation function. After the real-time allocation, the earnings for 

providing different services are calculated, also the battery degradation and operating 

cost. Penalties will be liquidated by evaluating the deviation between dispatch signal and 

the real-time performance. 

4. Simulation and Case Study 

4.1.  Simulation setup 

The proposed framework and methods are developed into a simulation toolkit in 

Python 3.8 [51]. The optimization problems are formulated in cvxpy [52], and solved by 

Gurobi 9.1 optimization solver [53]. Simulations were performed on a PC with Intel 

Core™ i7 CPU@3.20 GHz and 128GB RAM. The optimization environment is set up as 

same as the literature [54]. 
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All reported results are obtained by studying a collection of 10,000 EVs. EV travel 

itineraries are randomly extracted from National Household Travel Survey (NHTS) 

dataset [55]. We also use a common TOU rate (PGE E-9 [56]) for EV charging in 

California, USA to verify the performance of local tariff optimization in 3.3.2. Since VGI 

values in wholesale electricity market heavily rely on market structure and prices, we 

perform studies on both CAISO [57] and ERCOT [58] with prices of year 2018. 

The proposed solution supports flexible setting of input parameters, e.g. time step, 

simulation period (from one day to multiple years), market prices, etc. In the following 

sections, we use single-day results to give an in-depth analysis on the simulation flow 

and detailed battery dispatch behavior. Whole year simulation results follow to provide 

comprehensive understanding on the economic savings from VGI and computational 

performance of the proposed tool. 

4.2. Simulation Results 

4.2.1. Single day analysis 

As we discussed in Section 3.1, the EV estimation module firstly takes NHTS travel 

itineraries as inputs. Driving cycles are automatically generated according to the average 

speed. Detailed trip chain will track energy consumption and battery status in a second-

by-second basis. This module will also generate individual level constraints, which is 

used in following optimization problems.  

The aggregate flexibility is represented by power and energy boundaries. As shown in 

the top plot of Figure 5, the energy upper bound is the charging as soon as possible path. 
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The cumulative energy consumption should not exceed the upper bound at any time. The 

energy lower bound is the charging as late as possible path. It defines the minimum 

accumulative energy required by the EVs at any time. In this case, vehicles will start 

from discharging and wait until the last minute to start charging in order to reach the 

required SOC before leaving. Any cumulative trajectories between the upper bound and 

low bound are valid charging path, which can guarantee all vehicles have enough energy 

for traveling and avoid exceeding their maximum capacities. The power boundaries are 

decided by charging facilities. In this study, we assume two levels of charging power: L1 

(1.44kW) at home and L2 (6.6kW) at workplaces. As shown in the bottom plot of Figure 

5, the power range between 8:00-17:00 are wide, because most of EVs park at 

workplaces which have L2 chargers. The energy and power boundaries will work 

together as important constraints in the following optimization. Since we aggregate all 

the power and energy constraints as two constraints, it will significantly reduce the 

computational time. 
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Figure 5. Aggregate flexibility of 10,000 EVs. 

The delivery optimization module decides which market the aggregator would 

participate in. If the aggregator provides wholesale market services, the module will 

solve the wholesale market optimization problem in 3.3.1. Energy and ancillary service 

related costs are estimated based on historical data. Figure 6(a) shows the bidding results 

of no battery degradation scenario. Energy arbitrage happens in most hours. The 

aggregator purchases energy during lower price time and selling energy out to get 

revenues. Regulation up and down services only happen on 18:00 and 22:00-24:00. 

There are two reasons: (1) The price of frequency regulation and spinning reserve is 

relatively low; (2) Since the dispatch signal may be less than 1, even if the aggregator bid 
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for ancillary services, it can only earn the capacity payment, but not the benefits from 

selling net energy. Compared with the certain benefits from energy arbitrage, ancillary 

services are uncertain. If we consider the battery degradation cost 0.16$/kWh, since the 

battery degradation cost is larger than the price difference between peak and valley, no 

energy sale happens as shown in Figure 6 (b). The aggregator bids on regulation up and 

down according to the forecasting information. 

 

Figure 6. Bidding results at wholesale market: (a) no battery degradation cost scenario; (b) 

0.16$/kWh battery degradation cost scenario. 
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Since the wholesale market prices are relatively low, the aggregator may normally 

choose to provide retail level services. The formulations (20) – (24) provide a solution 

for aggregator to minimize the total energy cost under TOU price, at the same time 

mitigate the demand charge. As shown in Figure 7, we compared three charging 

scenarios. As to the uncontrolled charging scenario, all vehicles begin to be charged once 

they arrive at workplace or home. The charging operation lasts until the battery is 

charged to full or the vehicle leaving. As depicted in Figure 7, there are two peaks on 

uncontrolled charging load curve. The first one happens around 8:00 am, when most of 

vehicles arrive at workplaces and start charging. The second one happens around 18:00, 

when EVs get home. In this case, EV owners does not consider the charging prices. In 

the minimum cost charging case, the vehicle will avoid charging the battery during peak 

time. During wintertime, there are two levels of prices: peak and partial-peak. Peak time 

is from 5:00pm -8:00pm. The rest is partial peak time. As shown in in Figure 7, from 

17:00 – 20:00, load would be shifted to other periods to avoid peak price. Some vehicles 

have to charge to get enough energy, even though the price is high. After the price 

recovers to off-peak time, there is a high load spike. It may cause high demand charge 

and harm the grid. Using the two-stage algorithm would avoid this problem. It can be 

seen that without increasing charge cost under TOU price, the charging load is leveled 

during the whole scheduling horizon. The load peak is reduced by 20% compared to 

uncontrolled case and 90% compared to minimum cost case.  
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Figure 7. Results on retail market service. 

After getting the optimal lead time commitment, the total committed aggregate power 

should be allocated to each individual vehicle at the real time. Resource Allocation 

Module allows aggregation entities to determine how individual vehicle resources should 

be dispatched to meet aggregate commitments after ensuring to meet the driving needs of 

each vehicle first. The inputs are the forward commitments made by an aggregator, the 

reference signals that must be followed at run-time (e.g. AGC signals), and the 

constraints of individual vehicles. The outputs are the dispatch commands to EVs 

according to the unique control strategy chosen by aggregator. 
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In the real time, there are uncertainties from both dispatch signal and EV behavior. At 

each time step in the simulation, a random noise is added to the parked duration and the 

energy demand value for each EV. As shown in Figure 8, we compare the allocation 

performance between LLF and proposed predictive method. The dispatch signal is a 

combined hourly signal of bulk energy, frequency regulation and spinning reserve. It is 

obvious that predictive control algorithm follows the dispatch signal better than the LLF. 

If we define the accumulative mismatch as equation (34): 

- = / |1(�) − 3(�)|4�5
678     (34) 

where M is the cumulative mismatch in MWh, U(t) is the real delivery at time t, D(t) is 

the dispatch signal at time t. The total mismatch from LLF is 99.39MWh, while the 

mismatch between dispatch signal and predictive control is 46.34MWh.  

 

Figure 8. Resource Allocation Module 
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After the real-time allocation, all information including benefits, costs and penalties 

have been determined. The value estimation module will perform an ex-post evaluation. 

When the vehicles perform retail level services, the total charging cost under 

uncontrolled charging scenario is $18919.4. Using the proposed algorithm can reduce the 

energy cost by 18.3%. Since the peak is reduced by 20%. The demand charge cost over 

the month is reduced by 29.3%. In this tariff, the demand charge rate is 17.56$/kW.  In 

wholesale market, we use the energy and ancillary service prices of CAISO market on a 

7/1/2015 as shown in figure in the Appendix II. In the uncontrolled charging case, the 

total cost is $1778. Following the bidding strategy describe in Figure 6, the total cost can 

be brought down to $1,205. The detailed costs and benefits are shown in Table 3. 

Table 3. Output from value estimation module 

Market Cost Uncontrolled ($) Proposed ($) 

Retail level 
Energy cost 18,919.4 15,445 

Demand charge 151,121 106,870 

Wholesale level Total cost 1,778 1,205 

 

4.2.2. Annual results 

 

In order to provide a comprehensive understanding on the economic value of VGI and 

computational performance of the proposed solution, we extended the simulation to 

whole year period. Driving patterns are randomly sampled from NHTS dataset and then 
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fed into EV estimation module. Power and energy boundaries of the aggregate battery 

{
(�), 
(�), �(�), �(�)} are calculated from capacity availability module over the course 

of a year. In the delivery optimization module, we use wholesale market prices of year 

2018 from CAISO and ERCOT to quantify the VGI values in different electricity 

markets. The retail tariff is PG&E E-9 TOU rate, which is the same as what is shown in 

single-day simulation.  

Economic benefits from local tariff optimization are shown in Table 4.  We compare 

the energy costs and demand charges between uncontrolled charging and proposed bi-

level optimized charging strategies. Whole-year simulation shows that energy cost is 

reduced by 20.6% and demand charge is reduced by 33.8%, if we use the bi-level 

optimization. The total electricity bill decreases by 24.4%. Figure 9 shows the monthly 

breakdown results. Both demand charge and energy charge are reduced consistently over 

months. It should be noted that we are not seeing strong seasonal patterns here, mainly 

because we only simulate EV charging load. Demand charge is normally measured by 

the highest 15-min peak load of each month for the entity. Co-optimizing EV charging 

load along with base load of the entity to reduce demand charge is beyond the scope of 

this paper. 

Table 4. Economic values from local tariff optimization 

Strategy 
Energy charge 

($) 

Demand charge 

($) 

Total electricity 

bill ($) 
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Uncontrolled charging 5,594,411 2,210,939 7,805,350 

Bi-level optimization 4,439,712 1,463,234 5,902,946 

 

 

Figure 9. Monthly breakdown electricity bills from “uncontrolled charging” vs. “bi-level 

optimization” 
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In order to quantify VGI values in different wholesale electricity markets, we ran the 

portfolio optimization model in 3.2.1 with price data of year 2018 from both CAISO and 

ERCOT markets. The revenues from all products are shown in Table 5. We also list 

some statistics of year 2018 prices from these two markets in Table 6 to help understand 

the results. We can see that values varies between these two markets and among different 

products. Since ERCOT generally has lower energy price and higher volatility, the 

energy cost in ERCOT is 35% lower than that in CAISO. In this simulation, we assume 

battery throughput cost is 0.16$/kWh, so energy arbitrage is discouraged except extreme 

high price events. Most of revenues come from frequency regulation and reserve 

products. Frequency regulation is more lucrative than reserve in CAISO, while reserve 

accounts for most of revenues ERCOT. Table 5 shows the max reserve price even hits 

7,000 $/MW in ERCOT. It is worth to mention that energy conversation ratio of reserve 

product is generally low, which means aggregator can get payment for the capacity 

reserve most of time without discharging much energy to the grid. The total annual 

revenues in ERCOT is 2.7 times of what is achieved in CAISO. 

Table 5. Economic values from wholesale market optimization 

Electricity market 

Revenue($) 

Energy 
Frequency 

Regulation 
Reserve Total 

CAISO -877,259 1,938,698 1,487,459 2,548,898 

ERCOT -569,197 582,151 6,897,321 6,910,276 
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Table 6. Statistics of CAISO and ERCOT market prices in year 2018 

Market Product mean std min median max 

CAISO 

Energy ($/MWh) 38.0 31.2 -24.7 33.7 921.4 

Reg_up ($/MW) 10.9 21.3 0.1 7.3 723.6 

Reg_down ($/MW) 10.3 10 0 7.8 119.4 

Reserve ($/MW) 6.8 20.8 0.1 3.0 716.6 

ERCOT 

Energy ($/MWh) 30.2 55.0 4.4 23.6 2058.0 

Reg_up ($/MW) 9.1 12.8 0 5.8 150 

Reg_down ($/MW) 5.7 8.1 0 3.5 150 

Reserve ($/MW) 14.0 85.2 0.8 8.5 7,000 

 

The above results are based on 160$/MWh battery throughput cost (degradation cost). 

However, there is a clear trend that battery cost will keep decreasing over years. Battery 

throughput cost is a key parameter that has big impact on VGI values in wholesale 

electricity market. With the proposed framework, we can easily perform sensitivity 

analysis on throughput cost. Figure 10 shows the annual revenues from CAISO and 

ERCOT markets with different throughput costs. We can see the ERCOT revenue slopes 

is flat when the throughput cost is higher than 60$/MWh. It is because most revenues 

come from reserve product, which is mainly from capacity payment without requiring 

delivery much energy in real time. Revenues reach the upper bound when throughput 



 Haifeng Zhang et al./ Energy 00 (2020) 000–000 39 

cost is 0. The upper bound in ERCOT is $8,476,559 and in CAISO is $4,998,076. If we 

distribute revenues to individual EVs evenly, it will be $848/year in ERCOT and 

$500/year in CAISO. 

 

Figure 10. Annual revenues from CAISO and ERCOT with different throughput cost 

Optimization model sizes and execution times in different use cases are presented in 

Table 7. One year simulations in both use cases take less than 16 minutes. The retail level 

optimization does bi-level iteration, therefore it creates some overhead on computational 

time. It is worth to call out here that model size is irrelevant to number of EVs, since we 

use the “aggregate battery model”. To be specific, the computational time is reduced by 

~10,000 times, compared to the scenario of optimizing each EV independently.  
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Table 7. Optimization number of variables 

Use case 
Number of 

variables 
Equations 

Computational 

time (s) 

Local tariff optimization 17,520 78,840 723 

Wholesale market optimization 61,320 87,600 932 

 

5. Conclusions 

In this paper, we develop an integrated simulation framework to quantify economic 

values of vehicle grid integration. Five sub-modules cover the whole process from 

estimating individual EV energy consumption to evaluating the final monetary values of 

providing grid services. Optimization models are formulated for both wholesale market 

participation and local level charging cost management. A predictive control strategy is 

used to solve the energy allocation problem in a decentralized manner. We use a 10,000-

EV case study to demonstrate the functionalities of the proposed framework. 

Interpretation of the outputs leads to the main conclusions as follows: 

(1) This paper firstly presents a “virtual battery” model to quantify the aggregate 

flexibility of EV fleet, which is described by power and energy boundaries. The 

aggregated model changes the discrete distributed individual charging need into a stable 

and smooth aggregated model, therefore, increases the reliability of scheduling strategy. 

Moreover, the aggregate model significantly reduce the number of variables in 
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optimization problems, compared to the scenario in which each individual EV’s 

constraints are modeled. 

(2) A bi-level optimization is proposed to reduce EV energy cost by shifting charge 

demand based on TOU rate, while avoid increasing demand charge peaks. Simulation 

results show that energy cost is reduced by 20.6% and demand charge is reduced by 

33.8%, compared to the uncontrolled charging. 

(3) A wholesale market optimization model is built to maximize VGI values by 

stacking all products together, including energy, frequency regulation and reserve. The 

proposed framework is flexible to take prices from the wholesale electricity market 

which is of interest, and provide detailed dispatch results for each individual product. 

Simulation results show that the fleet achieves 2.7 times of revenues from ERCOT 

market than CAISO market based on price data of year 2018. Because of very spiky 

reserve price in ERCOT market,  the fleet can still achieve decent revenues (~$691 per 

EV per year) although with a conservative assumption on battery throughput cost at 

0.16$/kWh. 

(4) Sensitivity analysis on battery throughput cost indicates that more values from 

frequency regulation and energy arbitrage can be unlocked as throughput cost continues 

to decrease.  
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(5) Compared with classic centralized control methods, the proposed predictive 

method can greatly enhance the real-time allocation performance, reduce the 

computational burden and alleviate the communication delay. 
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Appendix 

Appendix I. Predictive & Decentralized EV Management Strategy 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Aggregate level optimization: 

      Solve the problems in Delivery Optimization Module. 

Real-time resource allocation: 

      For , = 1 �: ; 

             Retrieve the aggregate charging profile �+(,), �+(, + 1), ⋯ , �+(;); 

             Do 

                   Initialize a random charging schedule for each EV, i.e. �	
=(�	

�), �	
=(�	

� + 1), ⋯ , �	
=>�	

� + "$	?; 

                  Iteration count ' = 0; 
                  Operator: calculate  ()

*, using Equation (32); 

                  For A = 1: C 

                        Estimate the updated stay duration "$	 and energy demand �̂	;  

                        Each EV: solve Equation (30) for updated schedule, i.e. �	
)(�	

�), �	
)(�	

� + 1), ⋯ , �	
)>�	

� + "$	?, 

subject to constraints (28) - (30); 

                End For 

                 ' = ' + 1; 

                 �DD:D = ‖()
* − ()F8

* ‖; 

               While �DD:D > �DD:_JAK 
                      For A = 1: C 

                             Implement �	(,), if �	
� ≤ , <  �	

� + "$	 

                      End for 

   End for 
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Appendix II California Energy and Ancillary Service Price on 7/1/2015 
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