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ABSTRACT OF THE DISSERTATION 

 

Managing Astronomy Research Data: 

Data Practices in the Sloan Digital Sky Survey and 

Large Synoptic Survey Telescope Projects  

 

by 

 

Ashley Elizabeth Sands 

Doctor of Philosophy in Information Studies 

University of California, Los Angeles, 2017 

Professor Christine L. Borgman, Chair 

 
Ground-based astronomy sky surveys are massive, decades-long investments in scientific data 

collection. Stakeholders expect these datasets to retain scientific value well beyond the lifetime 

of the sky survey. However, the necessary investments in knowledge infrastructures for 

managing sky survey data are not yet in place to ensure the long-term management and 

exploitation of these scientific data. How are sky survey data perceived and managed, by whom, 

and what are the implications for the infrastructures necessary to sustain the long-term value of 

data? This dissertation used semi-structured interviews, document analysis, and ethnographic 

fieldwork to explain how perspectives on data management differ among the stakeholder 

populations of two major sky surveys: the Sloan Digital Sky Survey (SDSS) and the Large 

Synoptic Survey Telescope (LSST). Perspectives on sky survey data cluster into two categories: 
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“data as a process” is where data are perceived in terms of the practices and contexts surrounding 

data production; and “data as a product” is where data are perceived as objective representations 

of reality, divorced from their production context. Analysis reveals these different perspectives 

result from stakeholders’ differing data management responsibilities throughout the research life 

cycle, as reflected through their professional role, career stage, and level of astronomy education. 

These results were used to construct a data management life cycle model for ground-based 

astronomy sky surveys. Stakeholders involved in day-to-day construction, operations, and 

processing activities perceive data as a process because they are intimately familiar with how the 

data are produced. In contrast, sky survey leaders perceive data as a product due to their roles as 

liaisons to external stakeholders. During the proposal stage, leaders must present the data as 

objective and accurate to secure financial support; during data release, leaders must attract 

researchers to trust the data for scientific use. The tendency of sky survey leaders to regard data 

as a product leads them, and other stakeholders, to undervalue workforces, funding, and the other 

knowledge infrastructures necessary to sustain the value of scientific data. Planning for long-

term data management must include stakeholders who view data as a process as well as those 

who view data as a product. 
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1	Introduction	
Interviewer: “You're an astronomer by training, right?”  
Interviewee: “Yeah, but I don't really do any astronomy, I haven't done for years 
now, I'm basically just doing data-intensive science and providing access to 
astronomical data” (Staff Scientist, 2014). 
 
Innovative data collection methods, tools, and technologies are enabling qualitative 

changes to scientific research, including the ability to ask new kinds of research questions (W. L. 

Anderson, 2004; Borgman, 2015; Borne, 2013; Goble & De Roure, 2009; Goodman & Wong, 

2009; Kitchin, 2014; McCray, 2014; National Science Board (U.S.), 2005). The changes in 

modern science have been interpreted in various ways. Some argue the large quantities of data 

have enabled a “Fourth Paradigm” (Borne, 2013, p. 407; Hey, Tansley, & Tolle, 2009b). Others 

assert we have entered an era of “e-science” (Bell, Hey, & Szalay, 2009, p. 1298), or “big data” 

(Galison & Hevly, 1992a; Gitelman & Jackson, 2013; Price, 1963; R. W. Smith, 1992; 

Weinberg, 1961), in which scientists can ask new scientific questions that can only be 

investigated by, “analyzing hundreds of billions of data points” (Mayer-Schonberger & Cukier, 

2013, p. 11). 

1.1	Scientific	Data	Revolution	

Scientists in each generation have declared “the dawning of a new age” (Bowker, 2005, 

p. 12), and academics have often referenced information overload (Blair, 2010; Kitchin, 2014). 

The size of electronic datasets continue to increase since the “start of modern science” (Kitchin, 

2014, p. 67), the early nineteenth century (Bowker, 2005, p. 6), the 1960s (Mayer-Schonberger 

& Cukier, 2013, p. 9), the 1990s (Ray, 2014a), and the new millennium (Gitelman & Jackson, 

2013). Technological advances have contributed to concerns over data management; however, 



  
  

2 
 

the current period is uniquely transformational for scientific data management and sharing 

because of both technological and cultural changes in research data. 

Ann Blair (2010) explains that eras of information overload—such as the modern “data 

deluge”—come about only when technological and societal factors occur simultaneously. 

Describing the heightened respect for the printed word during the Renaissance, she cites not only 

the technological innovation of “printing and the availability of paper,” but also the change in 

social perspective to “a newly invigorated info-lust that sought to gather and manage as much 

information as possible” (Blair, 2010, p. 6). A combination of shifts in societal thinking and 

modern technology, has similarly culminated in the current attention to data management and 

sharing in the sciences (CODATA-ICSTI Task Group on Data Citation Standards Practices, 

2013; Joint Information Systems Committee (JISC) & Coalition for Networked Information 

(CNI), 2015; Michener et al., 2011; Miller, 2012; Treloar, 2014). One modern shift is the 

growing interest in research data (Ray, 2014a) and our society’s fascination with “big data.” 

boyd and Crawford confirm the newly emphasized importance of data-intensive research, 

asserting that “Big Data not only refers to very large data sets and the tools and procedures used 

to manipulate and analyze them, but also to a computational turn in thought and research” (2011, 

p. 3). 

Another modern shift in information priorities is parallels the information overload 

experienced during the Renaissance. One impetus for that shift was recognizing that current 

practices ultimately lost ancient information, producing a subsequent desire to prevent further 

loss (Blair, 2010, p. 12,64). Technology development within data-intensive sciences is only one 

factor for the surge of attention paid to data management, sharing, and preservation. Given the 

modern speed of digital technology development, both scholars and citizens alike are losing 
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information that was not migrated forward through successive generations of hardware and 

software. Most individuals in 2017 have experienced the inability to access data, photos, or other 

kinds of important information because they were saved to outdated disks or hard drives. Some 

even evangelize that our future will result in a “Digital Dark Age” (Bollacker, 2010; Neuman, 

2015). To combat the potential for loss, and to ensure data are available for data-intensive 

scientific reuse, a worldwide movement of funding bodies and governments are pushing for data 

management planning and publicly available scientific journal articles. 

Respect for and concerted retention of information during the Renaissance was not an 

inevitable result of the invention of the printing press; it only occurred due to the simultaneous 

social agreements about the importance of the information (Blair, 2010). Similarly, the recent 

turn towards the importance of sharing and preserving scientific research data was not an 

inevitable consequence of the emergence of large datasets and data-intensive sciences. Only 

through the current and continued cultural focus on data will scientific data continue to be 

actively shared and preserved.  

1.1.1	Data-intensive	sciences	

Data-intensive sciences are those in which the collected data are of a scale beyond the 

other resources available to researchers (Burns, Vogelstein, & Szalay, 2014; Schroeder & Meyer, 

2012). Technological advances have enabled data-intensive sciences. Throughout recent decades, 

leading to the modern era of data-driven science, “a number of transformative effects took place: 

computational power grew exponentially; devices were networked together; …data became ever 

more indexical and machine-readable; and data storage expanded and became distributed” 

(Kitchin, 2014, p. 81).  
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The scale of collected data in data-intensive sciences may be enormous in terms of 

volume, variety, velocity, value, and veracity (Critchlow & Van Dam, 2013; Ekbia et al., 2015; 

Hey, 2015; Kitchin, 2014; Laney, 2001). These large-scale datasets may be combined from 

multiple sources, enabling investigation of complex research questions The combination of 

discrete datasets may be a complex exercise, but it is essential to actualizing powerful big data 

networks (boyd & Crawford, 2012; Gitelman & Jackson, 2013; Kitchin, 2014; Kitching et al., 

2013; Van de Sompel, 2013). While all observational sciences rely on data, data-intensive 

sciences notably investigate questions that can only be answered through the use and 

combination of large quantities of data. 

In the data-intensive sciences, disciplinary boundaries are often crossed as research 

questions and necessary tools require a sizeable number of collaborators and kinds of expertise: 

“It is no longer the case that knowledge held in a particular discipline is enough to carry out 

scientific work” (Bowker, 2005, p. 123). This kind of cross-disciplinary scientific research is 

described as a “synthesis of information technology and science that enables challenges on 

previously unimaginable scales to be tackled” in which science is “collaborative, networked, and 

data-driven” (Bell et al., 2009, p. 1298). 

The drastic increase in data volume and scale has become standard in many scientific 

research communities, generating a qualitatively different kind of scientific investigation 

(Mayer-Schonberger & Cukier, 2013). In these research communities, data are more likely to be 

generated directly from instruments rather than gathered by hand. For example, in the 

environmental sciences, data collection has accelerated due to embedded sensor networks 

(Borgman, Wallis, & Enyedy, 2007; Estrin, Michener, & Bonito, 2003; McNally, Mackenzie, 

Hui, & Tomomitsu, 2012). High Energy Physics (HEP) is widely considered the academic field 
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generating the highest data volume, and HEP experiments are among the most financially 

expensive and labor-intensive scientific experiments. Construction of the Large Hadron Collider 

in Geneva for instance cost over 2.5 billion euros (“Large Hadron Collider (LHC),” 2015). In 

astronomy, international collaborations collect hundreds of terabytes of data and are now 

planning petabyte-scale data collection projects (“Large Synoptic Survey Telescope: Home,” 

2016; “Sloan Digital Sky Survey: Home,” 2016). 

One consequence of modern scientific data collection is that quick and easy data 

accumulation requires greater processing and analysis (Borne, 2013; Hey, Tansley, & Tolle, 

2009a; Szalay, 2011). The preparation, cleaning, and reduction components of research can be 

considered aspects of the broader concept of data management, and “only now is the range of 

problems in dealing with data becoming apparent” (Borgman, 2015, p. 32).  

The relationship between data and journal articles has also evolved (Borgman, 2007; 

Levine, 2014). Databases and other scientific datasets are now often considered valuable beyond 

their initial research use and viewed as an academic deliverable in their own right (Bowker, 

2005; Mayer-Schonberger & Cukier, 2013). The Human Genome Project and astronomy sky 

surveys are examples of scientific investigations in which the creation of a database can be an 

end product of a scientific endeavor. Accelerated data collection in data-intensive sciences now 

outpaces the evolution of data management practices and the workforce necessary to maintain 

these voluminous datasets. 

1.1.2	Data-intensive	astronomy	

Astronomy is one field transformed by big science and data-intensive research methods. 

Formerly a discipline of individual investigators using private telescopes, (Bowker, 2005; 

Mayer-Schonberger & Cukier, 2013) modern “big science” astronomy (Borne, 2013; N. Gray, 
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Carozzi, & Woan, 2012; R. W. Smith, 1992) requires collaborative efforts to design, build, and 

maintain innovative telescope facilities (Bicarregui et al., 2013; Flannery et al., 2009). One of the 

oldest disciplines in the world, data-intensive astronomy is an example of a discipline changing 

from data-poverty to data-wealth (Sawyer, 2008). This wave of data-intensive science in 

astronomy broadens data use beyond those initially involved in data collection: “Astronomical 

research now goes beyond the paradigm of the original scientific team consuming only the 

observational data for which they proposed” (Thomas et al., 2014, p. 352). The current 

“revolution in data availability” (Kitching et al., 2013, pp. 381–382) increases the number of 

people with access to data.  

While sky surveys are not new and observational star catalogs have been generated for 

millennia, modern sky surveys are a qualitatively different kind of data collection. The Hubble 

Space Telescope (Zimmerman, 2008), and the Sloan Digital Sky Survey (SDSS) became gold 

standards for data sharing and reuse in astronomy. These collaborations released their survey 

data in annual intervals, using a short proprietary period to clean the data prior to release. SDSS 

collaboration members confidently released the data, because the project collected more 

information than could possibly be analyzed by the team members alone (Borgman, 2015). 

SDSS thus serves as an example of the changing nature of data collection, which has 

revolutionized data sharing by making data catalogs and databases available to and useable by 

those not initially involved in data collection.  

Astronomy is an excellent venue in which to study data-intensive science. Astronomers 

have arguably made the furthest strides toward an integrated, online sharing of research 

publications and data (refer to Chapter 2 Literature Review). Collectively astronomy is a 

computationally advanced field in regards to data management, sharing, and reuse best practices; 
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however, long-term data access necessitates further development. The technical and workforce 

data management infrastructures available to large telescopes and missions are currently 

unavailable to smaller telescopes, satellites, and other instruments. While many astronomers are 

moving toward computational analysis of shared datasets, some professionals closely analyzing 

smaller scale phenomena push back on resource investments into data sharing. 

1.2	Motivation	for	this	Study	

How are astronomy data managed, for what purposes, and who does the work to sustain 

scientific astronomy data usability and meet data-intensive science objectives? The current 

approach to these questions will influence future scientific discovery (boyd & Crawford, 2012).  

Multiple factors, however, complicate managing the scientific usefulness of data. 

Different stakeholders hold diverging understandings of key terms and components of the 

scientific process (Gall, 1976; Mol, 2002), and the boundaries and definitions of data exist within 

locally construed contexts (Latour, 1987, 1993; Latour & Woolgar, 1986; Rijcke & Beaulieu, 

2014). Most policy makers and funding agencies now agree that research data should be made 

publicly available (Directorate of Mathematical and Physical Sciences Division of Astronomical 

Sciences (AST), 2010; Holdren, 2013; National Institute of Health, 2003; National Science 

Foundation, 2010b). Data management, access, and archiving are challenging and expensive 

undertakings however (Kitchin, 2014), especially given the dearth of highly skilled and well-

trained workforces vital for building and maintaining data management infrastructures 

(Hedstrom et al., 2015, p. 73). No one-size-fits-all policy exists, nor would one enable effective 

data management across disciplines, projects, or even between individuals in a single team 

(Darch et al., 2015).  
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Empirical studies that investigate data-intensive knowledge infrastructures are necessary 

to understand how, when, and by whom data can be managed (Bowker, 2005; Kitchin, 2014). 

The UCLA Center for Knowledge Infrastructures (CKI) investigates the human and physical 

infrastructures in scientific data management (“UCLA Center for Knowledge Infrastructures: 

Home,” 2016). The CKI team currently conducts research funded by the Alfred P. Sloan 

Foundation, and this dissertation research is one component of the grant-funded research. This 

dissertation presents an empirical examination of astronomer data practices to investigate how 

various stakeholders understand what data are, how they are managed, and who does the work.  

An astronomy dataset is “incomprehensible and hence useless unless there is a detailed 

and clear description of how and when it was gathered, and how the derived data was produced” 

(J. Gray, Szalay, Thakar, Stoughton, & vandenBerg, 2002, p. 5). This dissertation analysis 

reveals the data infrastructures necessary to support data management for reuse, because while 

“it is easy enough to develop a potentially revolutionary technology; it is extremely hard to 

implement it—and even harder to maintain it” (Bowker, 2005, p. 115). Similar to Blair’s analysis 

of the Renaissance however, data-intensive sciences will not flourish solely upon technological 

advances. In addition, sustainable infrastructures and workforces must be socially prioritized to 

enable a truly scientific data revolution. 
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2	Literature	Review	

For decades, scholars have observed and analyzed how scientists shape their scientific 

data practices (Galison, 1997; Latour & Woolgar, 1979; Merton, 1973; Shapin & Shaffer, 1985; 

Traweek, 1988). The information science field has tackled the meanings of data, information, 

documents, knowledge, and similar concepts (Borgman, 1999; Buckland, 1991, 1997; Carlson & 

Anderson, 2007). The library community has standardized the management of journals, articles, 

and books to improve search and retrieval for patrons. Despite these efforts, the meaning of the 

term “data” does not have a universally agreed upon or standardized definition (Borgman, 2015; 

Parsons & Fox, 2013), nor has the scientific research process been found to be neatly bound with 

a finite beginning or end (Latour & Woolgar, 1979). Considering the scientific research process 

outspans a single researcher in breadth and longevity, competing notions emerge concerning 

what data are, what is needed to manage data, and who is best equipped to take on the challenge. 

These considerations allow a potentially broad array of stakeholders to define needs and assign 

roles.  

Multiple types of stakeholders in research data and research data management activities 

engage at differing degrees. Data management stakeholders include scientists, researchers, 

research staff, institutions, funders, policy makers, future data re-users, and more (Hahn, Lowry, 

Lynch, & Shulenberger, 2009; Research Information Network, 2008; Swan & Brown, 2008). 

The faculty, staff, and students conducting investigations as individuals or teams are closest to 

the research data. The centers, departments, libraries, and universities supporting the work are 

also stakeholders of effective research. Funding bodies at any scale are stakeholders in the 

success of the research they support. Policy makers both influence and are influenced by large 

research agendas, as well as individual research projects. Finally, the government, education 
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systems, and private individuals are stakeholders in research that may be funded from their tax 

dollars and could influence their lives. These varied local and global stakeholders in academic 

research may prioritize data management goals differently (Borgman, 2013; Edwards, 2010; 

Leonelli, 2013; Sands, Borgman, Traweek, & Wynholds, 2014; Treloar, 2014). The myriad of 

stakeholder interests in data-intensive academic research necessitates further analysis to unpack 

diverse motivations and perspectives.  

2.1	Scientific	Research	Data	

Modern science is built upon a model of inquiry in which conclusions require supporting 

evidence; data collection and analysis are integral to this model. Despite widely accepted 

scientific methods, a universally recognized definition of data remains elusive (Borgman, 2012a; 

Consultative Committee for Space Data Systems, 2002, 2012; Renear, Sacchi, & Wickett, 2010; 

Rosenberg, 2013). Indeed, “data is a complex notion, and one that is not well understood even by 

the parties creating and using them” (Borgman, Wallis, & Mayernik, 2012, p. 517). 

One commonly cited definition of data comes from the Open Archival Information 

System (OAIS) Reference Model. The OAIS defines data as: 

“A reinterpretable representation of information in a formalized manner suitable 
for communication, interpretation, or processing. Examples of data include a 
sequence of bits, a table of numbers, the characters on a page, the recording of 
sounds made by a person speaking, or a moon rock specimen” (Consultative 
Committee for Space Data Systems, 2012, pp. 1–10). 
 

In the OAIS definition, data are representations of information, independent of the media in 

which the data are embedded. The OAIS definition is purposefully broad and includes digital 

files, electronic files, written records, and scientific specimens. However, each scientific 

community may have further boundaries for what counts as data within their field. Borgman 

defines data as “representations of observation, objects, or other entities used as evidence of 
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phenomena for the purposes of research or scholarship” (2015, p. 28). These overarching 

definitions of scientific data offer each community a broad context they can amend to provide a 

more specific definition. For the purposes of this dissertation, data are defined by the OAIS 

Reference Model as “…reinterpretable representation[s] of information in a formalized 

manner…” (Consultative Committee for Space Data Systems, 2012, pp. 1–10). 

Data require additional contextual information to enable future scientific use (Borgman, 

2015). Karasti and Baker (2008) distinguish between the management of data and scholarly 

publications, because a large amount of contextual information must be retained and 

management activities must take place for data to remain usable beyond the timeframe of the 

initial project. Often this contextual information is recorded in the form of documentation or 

metadata. While colloquially referred to as ‘data about data,’ metadata can be as difficult to 

define as data itself. Mayernik defines metadata by referring to, “documentation, descriptions, 

and annotations created and used to manage, discover, access, use, share, and preserve 

informational resources” (2011, p. 28). Some refer to the metadata as just as essential as the data 

(Levine, 2014). It can prove difficult to define metadata and data because these concepts are 

fluid; the same piece of information could be data to a user in one context and metadata to 

another user (Borgman et al., 2012). 

The National Information Standards Organization (NISO) definition of metadata is used 

for the purposes of this dissertation. NISO defines metadata as, “structured information that 

describes, explains, locates, or otherwise makes it easier to retrieve, use, or manage an 

information resource” (National Information Standards Organization, 2004, p. 1). The NISO 

definition of metadata applies to this dissertation research, because it stresses the importance of 

metadata for facilitating data reuse. In terms of scientific research data, the importance of 
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metadata is that it provides the context to enable data discoverability and usability into the 

future; the more metadata that is available, the larger the potential user community (Bowker, 

2005).  

2.1.1	Knowledge	infrastructures	
 

Research indicates that what counts as data varies by discipline and even by individual 

researcher (Borgman, 2012a; Borgman et al., 2007; Renear et al., 2010). As Latour and other 

scholars discuss, scientific research is a complex social and technical practice; “the construction 

of facts and machines is a collective process” (1987, p. 29). Even “factual” information is only 

useful within its context, and therefore even facts are constructs and not inherent truths. Borgman 

explains, “even the most concrete metrics, such as temperature, height, and geo-spatial location, 

are human inventions” (Borgman, 2015, p. 26). However, scientists may build external user trust 

in established resources by presenting those resources as a black box. Latour explains that a 

black box was termed by cyberneticians and is used, “whenever a piece of machinery or a set of 

commands is too complex… they draw a little box about which they need to know nothing but 

its input and output” (1987, pp. 2–3). 

Research contexts can be referred to as knowledge infrastructures. Knowledge 

infrastructures are defined as “robust networks of people, artifacts, and institutions that generate, 

share, and maintain specific knowledge about the human and natural worlds” (Edwards, 2010, p. 

17). According to Bowker, no data can emerge free of infrastructure: “Acts of committing to 

record (such as writing a scientific paper) do not occur in isolation; they are embedded within a 

range of practices (technical, formal, social)…” (Bowker, 2005, p. 7). Data are generated within 

knowledge infrastructures, including “people, places, documents, and technologies,” and 
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continue to require infrastructures to retain meaning throughout the lifetime of the data (Ribes & 

Jackson, 2013, p. 147).  

Infrastructures may exist at a variety of scales. For example, while the World Wide Web 

is an international phenomenon that many researchers rely upon for collaboration, others may 

instead use local intranets to collaborate. While some scientific investigations require decades of 

planning and execution, others are conceived of and completed within months. Ribes and Finholt 

(2009) address potential existing tensions between infrastructures at different scales and 

timelines through the premise of The Long Now Foundation (The Long Now Foundation, est. 

01996). They refer to “The Long Now” as a way “to understand that participants seek to 

simultaneously address” infrastructures with goals in the short-, medium-, and long-term (Ribes 

& Finholt, 2009, p. 375). 

The complexities, local variation, and temporal qualities of knowledge infrastructures 

complicate what and how infrastructures should be built, particularly in dynamic contexts of 

ever-changing scientific technologies (Bell et al., 2009; Borgman, 2007, 2015; Darch & Sands, 

2017; Edwards et al., 2013; Van de Sompel, 2013). Infrastructures, data, and their contexts are 

all dynamic and interdependent (Borgman, 2015; Gitelman & Jackson, 2013; Ribes & Jackson, 

2013; Star & Ruhleder, 1996); this interrelatedness further complicates policy-setting initiatives 

(Borgman, 2015).  

While policy reports provide summary information for the evolving field, they are 

professional recommendations as opposed to empirical findings. These landmark reports are 

useful in terms of general professional advice (Association of Research Libraries, 2009, 2009; 

Atkins et al., 2011; Hahn et al., 2009; Joint Leadership Group of the National Digital 

Stewardship Alliance, 2013; Lyon, 2007; National Science Board (U.S.), 2005; Swan & Brown, 
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2008). However, the reports are limited by their generalities and necessitate complementary 

empirical studies focused on the intricacies of scientific data practices. This dissertation 

contributes empirical analysis of scientific data practices, while augmenting “policy level reports 

on e-Science, cyberinfrastructure and data curation…” (Karasti, Baker, & Halkola, 2006, p. 323). 

Only through understanding specific knowledge infrastructures can data management policies be 

determined and deployed (National Science Board (U.S.), 2005). 

2.1.2	Astronomy	sky	survey	data	

Astronomy is a millennia-old discipline in which data were initially gathered by hand, 

then data collection advanced through photography, and now data are amassed digitally (Munns, 

2012). In the late twentieth century, astronomy made the evolution from photographic to 

electronic data collection and then transitioned to born-digital (McCray, 2014, p. 4). This 

dissertation research is focused on data management practices for data that are born digital, the 

scope of which does not include the digitization of photographic plates. 

Astronomy sky surveys are a “systematic, controlled, and repeatable” method to study the 

sky (Borne, 2013, p. 413). They are often referred to as a data-intensive inquiries because these 

surveys often gather enough uniform data that astronomers can ask statistical questions of the 

data, creating tremendous potential for new discoveries (Borne, 2013, p. 413). Sky surveys 

include, “uniform calibrations and well-engineered pipelines for the production of a 

comprehensive set of quality-controlled data products” (Borne, 2013, p. 413). The specific 

surveys studied in this dissertation research are detailed in section 2.4 Astronomy Sky Survey 

Knowledge Infrastructures.  

Until the 1930s, astronomers collected data limited to the visible wavelengths of the 

electromagnetic spectrum. The visible band is the narrow section of light humans can see. Since 
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the mid 20th century, astronomers began studying the sky using additional wavelengths (National 

Aeronautics and Space Administration, Science Mission Directorate, 2010). Astronomers now 

can collect data of the gamma ray, X-ray, ultraviolet, microwave, infrared, and radio 

wavelengths (R. C. Smith, 1995). While data are collected differently based on wavelength, 

properly managed data can be integrated and analyzed across the electromagnetic spectrum. 

Astronomy research is often roughly divided between observational and theoretical work. 

Telescopes and other devices gather observational data. Conversely, theoretical data are 

generally computer simulations. This study primarily focuses on self-identified observational 

astronomers, as opposed to theorists. Additionally, this dissertation focuses on astronomers, 

whose work is largely contained within the portion of the electromagnetic spectrum from 

ultraviolet through near infrared, including the visible wavelengths. 

Some astronomy data have been reused for hundreds of years (N. Gray et al., 2012, p. 9). 

Astronomy has a long tradition of “dependence on data collected by others as well as data 

collected in the past. They have a well-developed culture of sharing” (W. L. Anderson, 2004, p. 

194; McCray, 2000). Modern astronomy data are more standardized than data in many other 

disciplines, though require contextual information for reuse (Accomazzi, Derriere, Biemesderfer, 

& Gray, 2012). Particularly in astronomy, “data are inseparable from the software code used to 

clean, reduce, and analyze them” (Borgman, 2015, p. 106). 

This dissertation examines the data practices of a limited number of astronomy research 

projects within one subfield; it does not cover data practices of the entire discipline. Here the 

focus is on observational astronomy data collected in digital form through optical, ground-based 

sky surveys. Space historian Robert Zimmerman notes astronomy data has always captured the 

public’s imagination, 
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“Though the optical wavelengths form only a small part of the tapestry 
astronomers use to try to understand what is going on in the heavens, to all 
humans the optical wavelengths give us a direct window into those phenomena” 
(2008, p. 179). 
 

2.2	Scientific	Research	Data	Management	

Data management is also far from a unified concept (Wallis, 2012). Many attempts to 

define data management involve non-exhaustive lists of its possible components. For example, a 

National Academy of Sciences (NAS) study clustered together terms related to data management 

practices: “Information management, data management, data stewardship, data governance, and 

digital archiving are related terms used to describe processes and activities that overlap with 

curation” (Hedstrom et al., 2015, p. 13). The NAS study employs the Data Management 

International definition of data management: “the development and execution of architectures, 

policies, and practices and procedures that properly manage the full data lifecycle needs of an 

enterprise…” (“About Us | DAMA,” 2015; Hedstrom et al., 2015, p. 13).  

A similarly broad definition of data management is used for the purposes of this 

dissertation: data management is an umbrella term encompassing actions taken on data aimed at 

enabling scientific progress. The enumerations of data management actions may vary based on 

institutional and individual motivations. In the short- and medium-term, data are managed for 

scientific research; in the long-term, reasons for data management include permitting future 

scientific reuse or ensuring replicable studies. 

As an overarching term used in this study, data management includes activities involving 

the collection, organization, analysis, release, storage, archiving, preservation, and curation of 

research data. Each of these additional terms also have different meanings between communities 

(Abrams, Cruse, & Kunze, 2009; Choudhury, Palmer, Baker, & DiLauro, 2013; Digital Curation 
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Centre, 2005; Walters & Skinner, 2011). While converging on similar issues, many stakeholders 

hold different meanings for each of these terms, sometimes employing discrete definitions, and 

other times muddling the concepts.  

Data remain challenging to manage, curate, preserve, and reuse (Parsons & Berman, 

2013). The current physical size of data overextends existing infrastructures, which prevents 

scientists from properly creating, accessing, storing, curating, and preserving data for the long-

term. As the role of scientific research data has expanded in recent years to include the data-

intensive sciences, the motivation for focused data curation and preservation has also broadened. 

Indeed, “…the development of digital technologies has radically changed our ability to manage, 

structure, process, analyse, share and reuse data, especially those born digital” (Kitchin, 2014, p. 

46). Data management throughout the full research process may require dedicated funding to 

support the necessary technical and human infrastructures. 

2.2.1	Life	cycles	

One reason a universal definition of data and data management are difficult to achieve is 

because the conceptions cover many incremental steps within the research life cycle. Data and 

metadata are active, fluid parts of scientific research, often as much process as product (Edwards, 

Mayernik, Batcheller, Bowker, & Borgman, 2011). Data are mutable depending on context, 

“over time and space as they flow through interconnected but different socio-cultural contexts 

each with their own conceptual frameworks and value systems” (Bates, Goodale, & Lin, 2015, p. 

14). 

The path of data through the scientific process is often discussed in terms of a data life 

cycle. The process of scientific research can also be discussed as a research life cycle. Research 

data life cycles, as used in the literature of archives, libraries, digital libraries, and records 
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management, are models for illustrating form and character changes to data over time, usually 

from their origin to their ultimate disposition, which may be preservation or destruction 

(Borgman et al., 1996; Brunsmann, Wilkes, Schlageter, & Hemmje, 2012; Greenberg, 2009; 

Higgins, 2008, 2012; Humphrey, 2006; Pepe, Mayernik, Borgman, & Van de Sompel, 2010; 

Wallis, Borgman, Mayernik, & Pepe, 2008). Data management life cycle models demonstrate the 

presence of data management activities throughout the research life cycle. Activities may take 

place in the short, medium, and long-term timescales of the full research life cycle. 

Various life cycle models exist and depict different levels of specificity to the relevant 

domain. For the purposes of illustration, Wallis et al.’s (2008, p. 119) research data life cycle 

model is depicted in Figure 1. This model analyzed the Center for Embedded Network Sensing 

(CENS), a National Science Foundation (NSF) Science and Technology Center. This data life 

cycle shows how data are essential throughout the research process. The arrow following 

preservation illustrates that data can be reused for other research projects, thus continuing the life 

cycle indefinitely. The life cycle is intended to illustrate that data are continuing resources 

beyond the project for which they were initially captured. The CENS research data life cycle 

model can be extrapolated to astronomy sky survey research data, because both sciences rely 

heavily on the collection of data through calibrated sensors that collect data that must then be 

cleaned before use.  
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Figure 1 Research data life cycle model developed by (Wallis et al., 2008) to analyze a NSF Science and Technology 
Center 

However, life cycle models are not universally accepted and are certainly not the only 

way to understand the temporal nature of scientific research. Often, life cycle models reduce the 

complicated nature of scientific research into seemingly simple, linear paths of knowledge gain 

(Baker & Millerand, 2010). While a starting point to analyze scientific workflow, life cycle 

models are not without limitations. Life cycle models should be analyzed within the setting they 

were created and only carefully reused in new fields or situations. Because those who generate 

life cycle models are doing so for a specific intent, that situated perspective should be considered 

any time life cycle models are re-deployed.  

The time period during which research is conducted has also been framed in terms of 

“collaborative rhythms” (Jackson, Ribes, & Buyuktur, 2010; Jackson, Ribes, Buyuktur, & 

Bowker, 2011; Steinhardt & Jackson, 2014). Instead of a single life cycle, the rhythms 

perspective illustrates how research collaborations and multiple concurrent timelines shape one 

another (Jackson et al., 2011, p. 247). Technological and research rhythms often do not align. 

For example, the pace at which team research laptops become obsolete likely does not align with 

funding cycles, making it difficult to buy technology when it is needed. This leads to a 

“paradoxical” environment in which long-term planning must be conducted alongside a rapidly 
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changing information technology environment (Ribes & Finholt, 2009, p. 376). Another 

simultaneous rhythm are workforce career paths: “The ritual has been repeated thousands of 

times, but no single practical or material element endures the years: students graduate to faculty, 

instruments become outdated or imprecise, even buckets wear out” (Ribes & Jackson, 2013, p. 

156). Given the many changes that occur through the full life of a dataset, life cycle models and 

rhythms analysis can help understand the many temporal factors influencing the research life 

cycle.  

Effective data management aimed at enabling future data reuse is complex, locally 

contingent, and requires reliable workforces and funding. Data management stakeholders often 

use research life cycle models to plan long-term projects, starting as early as possible in the 

research process (Atkins et al., 2011; Carlson & Anderson, 2007; Corrall, 2012; Lee, 2009).  Ball 

explains the use of data management life cycle models in that they “provide a structure for 

considering the many operations that will need to be performed on a data record throughout its 

life. Many curatorial actions can be made considerably easier if they have been prepared for in 

advance…” (Ball, 2012, p. 3). Beyond immediate scientific use, if data are to remain 

scientifically valuable to unknown users in the future, they must be managed effectively through 

the full course of the research life cycle (Abrams et al., 2009; Sands et al., 2014). Earlier 

planning in the research life cycle for long-term data management increases the likelihood that 

the efforts will be successful (Research Information Network, 2008, p. 9). 

Astronomy data management nominally refers to all actions taken on data over the course 

of the broadly construed research process. Data management, given this inclusive definition of 

the research life cycle, begins in the research planning stages and may never have a definite 

conclusion (Rots, Winkelman, Paltani, & DeLuca, 2002, p. 172). The ultimate goal of astronomy 



  
  

21 
 

data management is to further the scientific goals of the discipline; however, each stage and each 

stakeholder may have other pressing goals in the near, medium, and long-term. 

2.2.2	Sustainability	

The life cycle model shows that data may require long-term management beyond data 

collection, processing, analysis, and publication. Long-term data management is often referred to 

as data stewardship. Baker and Yarmey (2009) refer to data stewardship as a collection of data 

curation activities taking place within an infrastructure with the goal of research data care. 

Conversely, the OAIS reference model fails to mention the word steward or stewardship 

anywhere in the 135-page document (Consultative Committee for Space Data Systems, 2012). In 

other sources, stewardship is used as another umbrella term for data management (Borgman, 

2015; Data and Visualization Task Force, 2011; Joint Leadership Group of the National Digital 

Stewardship Alliance, 2013; Parsons & Fox, 2013; Research Information Network, 2008). For 

the purposes of this dissertation, data stewardship is the facet of data management work 

undertaken to enable the potential future reuse of data, beyond that of immediate scientific 

returns. 

Data stewardship is one component of ensuring the sustainability of scientific research 

data. Scientific research data sustainability is also a complex notion lacking a unified definition. 

Eschenfelder and Shankar (2016) identify and compare multiple sustainability frameworks 

developed for institutions required to continue the access and preservation of research data. 

Indices are available for institutions to analyze their available knowledge infrastructures to 

determine their data sustainability “grade” throughout multiple categories (Australian National 

Data Service (ANDS), 2017; Crowston & Qin, 2011; Sallans & Lake, 2014). For the purposes of 

this dissertation, data sustainability refers to notions of reliability in the knowledge 



  
  

22 
 

infrastructures supporting access to, and preservation of, scientific research data. While not all 

data will require sustainable infrastructures, the data deemed worthy of long-term management 

do necessitate ongoing support.  

Scientific communities, funding bodies, and the general public expect research endeavors 

to have broad success given the large financial investments and human labor. The High Energy 

Physics (HEP) community participated in a global self-study examining, “long-term data 

analysis as a way to maximise the scientific return for investment in large-scale accelerator 

facilities” (Study Group for Data Preservation and Long Term Analysis in High Energy Physics, 

2012, p. 6). The report indicates data preservation in HEP requires “urgent action” (Study Group 

for Data Preservation and Long Term Analysis in High Energy Physics, 2012, p. 6). Similarly, 

the International Astronomical Union (IAU) adopted a resolution in 2003 stating:  

“data obtained at major astronomical facilities should…be placed in an archive 
where they may be accessed via the internet by all research astronomers. As far as 
possible, the data should be accompanied by appropriate metadata and other 
information to tools [sic] to make them scientifically valuable” (XXVth General 
Assembly of the International Astronomical Union, 2003). 

 
Policymakers and funders have begun to implement data management requirements, 

often intended to promote data sharing. Beginning in 2011, the NSF-mandated data management 

plans as a component of all new grant proposals. In February 2013, the United States Executive 

Office of the President, Office of Science and Technology Policy, released a memorandum 

requiring large federal agencies to ensure federally funded scientific research data are made 

available to the “public, industry, and the scientific community” (Holdren, 2013, p. 1). In 

addition to data, many universities and academic researchers are shifting toward open access 

publication of scientific results (Office of Scholarly Communication, University of California, 

2013a, 2013b; Provost & EVP - Academic Affairs, 2015). Some university libraries are 
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developing data management departments, and some universities are establishing data 

management and data science education tracks within existing departments or as new programs 

(Thompson, Mayernik, Palmer, Allard, & Tenopir, 2015; Varvel Jr., Bammerlin, & Palmer, 

2012; Weber, Palmer, & Chao, 2012). 

Arguments for data sharing as a collective good indicate that data release can reduce 

replication of effort while enabling scientific verification and reproducibility. Data sharing is 

especially heralded as important when data are collected using public funds; “Right now, 

taxpayer-funded research is probably generating data that is not being fully utilized… we may 

waste money on the same research or miss opportunities to reuse existing data for new inquiries” 

(Levine, 2014, p. 134). Data sharing also enables scientific advancement in the form of data 

“amplification,” in which the combination of discrete datasets results in information larger than 

the sum of the parts (Kitchin, 2014). Funding agencies, universities, and researchers alike largely 

agree that data management, sharing, and preservation benefit both individual scientific outputs 

and global scientific progress. However, questions remain: what kind of data management must 

take place, when, and by whom, to enable future scientists to make use of preserved data?  

Sustainable infrastructures can be expensive and require consistent funding over time. 

There remains an “Availability-Usability Gap” between the aspirations of funding agencies and 

the reality of how research data can and are managed under current infrastructures (Levine, 2014, 

p. 129). Funding agencies may expect long-term data management to take place by individuals 

and teams who lack sustainable infrastructures. Not only can the technological and workforce 

costs be high for long-term data management, but also the costs for data management are often 

placed on those who will not reap the benefits. The unclear nature of who pays and who benefits 

from long-term scientific data management raise questions of which stakeholders should be 
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responsible for the time spent and costs incurred. Data managers may find themselves wondering 

what level of effort should be given to data of uncertain long-term value (N. Gray et al., 2012). 

Economies of scale, like “Moore’s Law” help, but they do not negate the expense of 

long-term data management (Blair, 2010; Kitchin, 2014). Long-term data management activities 

can be time consuming, and do not always result in immediate scientific returns. Making data 

available requires technological and human infrastructure, which are both “precondition[s] to 

meaningful access and reuse…” (Berman & Cerf, 2013, p. 341; Edwards et al., 2013; Hine, 

2006). Other research communities could serve as examples. For instance, “…it may be 

informative to consider NSF processes for managing large facilities as a way of better 

understanding the issues involved in developing policy to manage long-lived digital data 

collections” (National Science Board (U.S.), 2005, p. 40). The Inter-university Consortium for 

Political and Social Research is a consortium that has worked together since the 1960s to sustain 

social science research data (Regents of the University of Michigan, 2016). The ICPSR seeks to 

ensure, “leadership and training in data access, curation, and methods of analysis for the social 

science research community” (Regents of the University of Michigan, 2016).  

In the era of data-driven science, increased importance is placed on data with long-term 

value since it can be combined with multiple sources (National Science Board (U.S.), 2005, p. 

13). Data management throughout the full research life cycle is necessary to ensure future data 

can be reused, however the specific tasks entailed in data management may differ by setting. In 

all contexts, however, data management requires human and technical resources (Levine, 2014, 

p. 136). Despite mounting pressure from funding agencies and policy makers, little consensus 

exists regarding what, when, how, and how long data should be managed (Borgman, 2015). 

Policies and procedures are necessary to determine whether or not data will retain long-term 
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value and therefore necessitate long-term management (Blair, 2010; Bowker, 2005; National 

Science Board (U.S.), 2005; Research Information Network, 2008).  

Data context is required for datasets to retain their scientific usability (Research 

Information Network, 2008, p. 10). Data sharing is not a simple endeavor, as data are inherently 

removed from their surrounding contexts when shared and reused (Borgman, 2015; Bowker, 

2005; Edwards, 2010; Edwards et al., 2013). For example, data sharing and subsequent reuse are 

challenging in that reusers must trust choices made by others during data collection. Software 

and other kinds of information may need to accompany datasets to enable reuse (Bowker, 2005; 

Edwards, 2010; Edwards et al., 2013), which may present additional management challenges (N. 

Gray et al., 2012, p. 7). Metadata and other documentation may be created to mitigate the 

contextual shift, but these activities also require investment in resources. Given these 

complexities, long-term data management to enable future discovery and reuse can be considered 

a “grand challenge” (Ray, 2014a, p. 2).  

A number of valid reasons exist why researchers may choose to not share data. While 

some scientific collaborations choose to release their data, resulting in scientific advances, data 

sharing is not inherently “good” (Kitchin, 2014, p. 62). Scholars may still be actively using a 

dataset and fear that other researchers could “scoop” their research findings by publishing first 

(Borgman, 2015). Researchers often lack the time and expertise necessary to make data useful to 

others, and the creator may not even envision the future uses of their data since the data may not 

have been created with the intent of reuse (Borgman, 2012a, 2015; Fecher, Friesike, & Hebing, 

2015; Kratz & Strasser, 2015; Mayernik, 2011; Wallis, 2012; Wallis, Rolando, & Borgman, 

2013). Today, like in fourth-century Athens, there remains the “fear that written words, in 
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circulating beyond the author’s control, were more readily misunderstood and misused than 

words spoken to an interlocutor” (Blair, 2010, p. 14). 

2.3	Scientific	Research	Data	Management	Workforces		
 

Sustainable data infrastructures require investments in technology and workforces. As 

data-driven sciences continue to emerge, it concurrently necessitates  “an accompanying surge in 

the advancement of digital curation, and therefore in the digital curation workforce” (Hedstrom 

et al., 2015, p. 9). Data management expertise is important; “Without such support, there is the 

danger that data will be created in unusable forms, managed inappropriately, or stored 

ineffectively” (Research Information Network, 2008, p. 13). Workforces are an essential 

component of the management of research data, since a solely technological solution does not 

exist to ensure research data management (Baker & Millerand, 2010; Borgman, 2015; Ray, 

2014a). 

However, identifying relevant workforces for data management and sustainability is also 

complex. Regardless of the precise definition, research data management workforces are critical 

to the support of data-intensive science and yet policy makers and many researchers decry a gap 

in the quality and quantity of data management professionals available for modern science 

(Kitchin, 2014; Ray, 2014a). For the purposes of this dissertation, the scientific research data 

workforce encompasses those that are tasked with managing, stewarding, sustaining, serving, 

storing, archiving, curating, or preserving scientific research data; and the expertise and 

experience are the existing knowledgebase the workforces bring to these tasks (Sands et al., 

2014). 

It is unclear whether new workforces will bring these data management skills to research 

collaborations, or whether existing stakeholders will be trained in data-intensive science data 
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management (National Science Board (U.S.), 2005). Whether data curation is conducted by data 

specialists, or by domain experts, expertise must be shared:  

“Digital curation specialists will need some knowledge of the disciplines and 
domains in which the digital information they curate will be used. Without some 
familiarity with the problems to be addressed, the goals to be pursued, as well as 
the customary methods, nomenclature, and practices of the fields in which the 
digital information assets are used, curators will not be able to make good 
decisions as they manage and enhance those assets for current and future use. 
Similarly, those who conduct curatorial activities as only a small part of their 
work, will need some study and command of the knowledge and skills of digital 
curation, regardless of how well they are educated in their own domains” 
(Hedstrom et al., 2015, p. 63). 
 

 For collaborations as large and complex as astronomy sky surveys, it is impossible for 

one person to be an expert on the details of the full data life cycle (Borgman, 2015). Data must 

be managed well across the life cycle, which requires overlapping expertise as data move 

through a distributed workforce and across time. Action or inaction at any point in the life cycle 

could reduce the ability for data to be reused in the future. For example, the work done by 

content creators, early in the life cycle may impact the future usability of a dataset as much as the 

actions of a data manager at the end of the life cycle (National Digital Stewardship Alliance of 

the Library of Congress, 2013).  

 A sustainable workforce is necessary at multiple scales, both within individual projects as 

well as across the larger field of data-intensive sciences (National Science Board (U.S.), 2005, p. 

38). The Research Information Network report explicitly states that to ensure “…arrangements 

for their stewardship are sustainable—not least [by] the training and supply of a cadre of 

specialist curation personal. Otherwise there is the danger of loss or damage to valuable data” 

(2008, p. 14). Depending on the context, a sustainable workforce may require the same staff 

working on a project over the long-term. Alternatively, continuity may mean clearly defined 
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handoff and coordination procedures are in place. Regardless, a sustainable workforce is 

necessary to ensure data remain supported over time. 

2.3.1	Professional	data	practices	

Management of scientific data involves a large number of data practices. Just as data 

management, sustainability, and other terms have multiple meanings between stakeholders, so do 

terms describing the data management workforce. The data management workforce in the 

information science (IS) community have been referred to as research technologists (Lyon, 

2007), data scientists (National Science Board (U.S.), 2005; van der Graaf & Waaijers, 2011), e-

science professionals (Stanton et al., 2011), and data curators (Higgins, 2008). Some of these 

examples reflect generic roles in scientific data curation and others are specific to university-

based academic settings. Data science programs appear with greater frequency in colleges and 

universities. In 2015, nearly 100 universities offered programs in “data science” including 

bachelors, masters, graduate certificates, and PhDs (Borgman, Darch, Sands, Pasquetto, & 

Golshan, 2015; Sands et al., 2014). However, not all of these roles refer to data management 

practice for science as described in this dissertation. Most of these programs are geared to 

business, many of the scientific programs were focused in the biological sciences, and only three 

IS departments included data science programs. While a number of IS departments offered 

individual courses in data management, these curricula generally focused on professional 

practices for work at the end of the life cycle, including data curation, preservation, and 

stewardship (Lyon, 2007; Mayernik et al., 2013; Ray, 2014b). Rarely is data management taught 

explicitly within graduate programs in the sciences (Mossink, Bijsterbosch, & Nortier, 2013; 

National Health and Medical Research Council, 2007). While most educators concur with an 

increased need for data managers in all fields, agreed upon definitions of these workforces and 



  
  

29 
 

established career paths are lacking (Manyika et al., 2013; Mayer-Schonberger & Cukier, 2013; 

M. A. Nielsen, 2012). 

Some argue that research library staff in particular should have a role in scientific data 

management, because libraries have already established infrastructures for the management of 

research publications (Choudhury, 2010; Levine, 2014; H. J. Nielsen & Hjørland, 2014; Tenopir, 

Birch, & Allard, 2012). However, exactly how libraries can manage data-intensive scientific data 

without a re-skilling of the workforce is undetermined (Borgman, 2015; Sands et al., 2014; 

Sands, Darch, Borgman, Golshan, & Traweek, In Progress). Due to the long-lived nature of 

university libraries, it is reasonable to consider them as sustainable institutions for research data 

management (Corrall, 2012; Data and Visualization Task Force, 2011; Heidorn, 2011; Hey & 

Hey, 2006). Unfortunately, the expertise necessary to manage literary resources does not 

necessarily translate to the management of research data (Borgman, 2015; Heidorn, 2011; Sands 

et al., 2014). 

Several professional practice frameworks elucidate the knowledge and expertise 

necessary for the data management workforce (Choudhury, 2013; Engelhardt, Strathmann, & 

McCadden, 2012; Hedstrom, 2012; Hedstrom et al., 2015; Y. Kim, Addom, & Stanton, 2011; 

Swan & Brown, 2008). These frameworks, while varied by goals and structure, each attempt to 

illustrate the array of traits required for scientific data managers. The frameworks categorize into 

lists of knowledge and expertise, without ordering their individual value. For example, Swan and 

Brown differentiate data management personnel expertise between three categories: subject 

knowledge, technical skills, and people skills (2008); Engelhardt, et al. differentiate these lists of 

skills between technical expertise, information science, and subject knowledge (2012, p. 4). 

While these examples are helpful to recognize the broad range of knowledge and expertise 
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exhibited in data management, they often blur the specific skills and individuals involved in the 

data workforce. These data management personnel frameworks cluster together an array of 

careers, education, experience, expertise, and life cycle stages. The amount of domain 

knowledge required for data management at different life cycle stages appears to vary by 

context. 

Initial studies of astronomy data practices indicated that those managing data require 

domain knowledge to ensure data are useable (W. L. Anderson, 2004; Sands et al., 2014). 

Astronomy communities tend to embrace information technology knowledge; however, 

astronomers are rarely formally trained in computer science and software engineering (N. Gray 

et al., 2012). Data management experience without formal training can lead to technologically 

successful short-term collaborations that require further education for managing data in the long-

term (N. Gray et al., 2012). Information Studies (IS) analyses of the knowledge and expertise 

required for data management are often based on evidence gathered from interviews with 

professionals in the field, evaluation of job descriptions, and internship experiences (J. Kim, 

Warga, & Moen, 2013; Y. Kim et al., 2011; Pryor & Donnelly, 2009). However, these 

frameworks tend to ignore the data management practices of the scientists themselves, focusing 

on an IS-based workforce. Further domain-based case studies are necessary to delineate 

specifically the specializations and roles professionals play in data management (Renear et al., 

2010, p. 4).The Data Conservancy employs the data-driven Stack Model for Data management 

(Figure 2) to distinguish data management practices (Sayeed Choudhury on Data Stack Model, 

2012). The Data Conservancy is an university-based collaboration addressing research data 

management (“Data Conservancy,” 2014). The model is an example of a professional practice 

framework that provides definitions for components of data management (Choudhury, 2013; 
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Choudhury et al., 2013). The figure uses data as the focal point; it refers to four kinds of data 

management actions that take place on data. Library staff generated the model to facilitate 

clearer communication among themselves and with scientists about the data. 

 

Figure 2 Data Conservancy Stack Model for Data Management. 
Adapted from (Choudhury, 2013); published in (Sands et al., 2014). 

Figure 2 is one useful example of how to conceptualize the tasks associated with long-term data 

management. The four-part model does not intend to be exhaustive of data management practices 

throughout the full research life cycle. Developed by library staff, the model details only the 

long-term data management component of the broader research life cycle, namely the points after 

a scientist has delivered the data to library staff. The model explicates four levels of data 

management needed once the initial scientific use of the data concludes in order to ensure 

subsequent reuse of the data is possible.  

Each of the four components illustrated in the figure represent different types of actions 

necessary for long-term data management. The Data Conservancy model’s relationships 

between, and definitions of, data storage, archiving, preservation, and curation are used for the 

purposes of this dissertation. Data storage represents the underpinning of long-term data 

management, with successive layers building upon this foundation. Data storage refers to 
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ensuring the security, back up, and potential restoration of digital data bits (Choudhury et al., 

2013). Data storage can be a critical component to data management both during and after the 

initial scientific use of the data.  

The term archive is often used in its noun form, referring to archives as institutions or 

archivists as information managers. The oft-cited OAIS reference model consistently uses the 

term archive in the noun form. An archive is: “an organization that intends to preserve 

information for access and use by a Designated Community” (Consultative Committee for Space 

Data Systems, 2012). In this dissertation, however, the verb form “to archive” is used to describe 

the act of archiving information. Data managers are archiving data when they act in ways 

enabling data to be searched for and retrieved in the future. Given the Data Conservancy model, 

once data are stored properly, archiving can include adding unique and persistent identifiers to 

data, enabling reliable data findability for indeterminate future retrieval (Choudhury et al., 

2013).Data preservation practices are those that ensure data are maintained in the long-term. In 

the Data Conservancy model, preservation activities ensure archived data are physically 

conserved into the future. Preservation activities may include, “maintaining information, 

independently understandable by a designated community, and with evidence supporting its 

authenticity, over the long term” (Consultative Committee for Space Data Systems, 2012, pp. 1–

13). Data preservation includes the actions needed to secure information over the course of time, 

which often includes preemptive hardware and software migration and other technical updates. 

Data curation is the highest-level long-term data management activity in the Data 

Conservancy model. Once data are stored, archived, and preserved, data curation activities are 

performed in accordance with given institutional capacities and priorities. Data curation is an 

aspect of data management which includes adding value to extant data “through documentation, 
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standardization, migration to new formats” and is critical to effective data reuse (Borgman et al., 

2012, p. 486). While some employ data curation as an umbrella term for data management 

(Abrams et al., 2009; Henry, 2012, p. 1), data curation can be distinguished from other data 

management activities by noting that, “what distinguishes curation from these other fields is its 

emphasis on enhancing the value of information assets for current and future use and its attention 

to the repurposing and reuse of information, both within and beyond the context in which it was 

first created or collected” (Hedstrom et al., 2015, p. 13).  

2.3.2	Data	management	expertise	

The kinds of experience and expertise necessary to support research data management, 

much like the definition of research data management, are not agreed upon. As the scale of data 

swells, the qualitative nature of data education must also adapt; “today’s graduate students need 

formal training in areas beyond their central discipline: they need to know some data 

management, computational concepts and statistical techniques” (Szalay & Gray, 2006, p. 413). 

Rita Colwell (former Director of the NSF) describes the needed domain experts as “T-shaped” 

individuals whose knowledge is both “broad and deep” (Benderly, 2008; Colwell, 2009; 

Committee on Enhancing the Master’s Degree in the Natural Sciences, Board on Higher 

Education and Workforce, Policy and Global Affairs, & National Research Council, 2008).  

Others in business and academia describe more specifically the need for expertise 

strength in two fields, namely domain knowledge and technical skills. Scientific domain 

knowledge, which for this dissertation is astronomy, is the knowledge obtained through higher 

education in a specific field of study. Technical expertise, or computational skills, alternatively 

can be acquired in multiple ways and various levels. Computer science knowledge is that 

obtained through a higher education degree in computer science. Other times, computational 
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skills are acquired through one or more components of higher education coursework, experience, 

or self-education. Often, scientists acquired computational expertise out of necessity while 

pursuing their scientific work. The combination of domain knowledge and computational skills 

has been used to refer to “pi-shaped workforces” (Braniff, 2009; Feldman, 2006; Hartman, 

2005). Pi-shaped workforces are those where:  

“You can imagine that each person has some combination of horizontal breadth of 
knowledge as in ‘I know a little bit about a lot of things.’ and vertical slices of 
expertise as in ‘I know how every layer of this technology works from concept to 
low-level coding and performance tuning’” (Hartman, 2005).  
 

Figure 3 provides a summary of the concepts of a T- and Pi-shaped person, including the breadth 

and depth illustrated by the vertical and horizontal lines in the shapes of the letters. 

 

Figure 3 Workforce knowledge breadth and depth illustrated with the letters T and Pi. Figure by Jake VanderPlas, 
reprinted with author’s permission (2014a, 2014b). 

The kinds of expertise necessary for scientific data management, as expressed by the term 

“pi-shaped,” cross at least two disciplines, highlighting the onset of a multidisciplinary age in 

which sole-discipline studies are no longer adequate (Szalay, 2012). Existing professional 

education paths and job titles do not yet exist to support careers in digital curation (Hedstrom et 

al., 2015; National Science Board (U.S.), 2005; Ribes & Finholt, 2009). Clear career paths are 
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needed to increase professional opportunities for individuals with “pi-shaped” expertise 

(Bowker, 2005; Hedstrom et al., 2015). 

While deep knowledge in two domains is said to be increasingly necessary for data-

driven science, these experts may or may not be compensated accordingly for their dual 

expertise. For example, modern scientific collaborations require experts from different 

disciplines, yet universities remain organized to reward individuals publishing within single, 

established disciplines (Bowker, 2005, p. 125; Hedstrom et al., 2015). While the expertise is 

necessary for sky surveys, there remains a paradox between the disparate reward structures for 

instrument builders, software developers, and data managers, compared to those who perform 

scientific research with the resulting data (Ribes & Finholt, 2009).  

Sky surveys in astronomy are an example of big science (Galison & Hevly, 1992b), in 

which more than half of the project funding and person-time may be devoted to data collection, 

cleaning, and management. Those who perform this data management work often require 

expertise in astronomy as well as computational skills. Sky survey data managers may have the 

expertise and desire to publish scientific journal articles, without the time to pursue those tasks. 

While writing and publishing scientific journal articles is generally the most important measure 

by which academic tenure and promotion decisions are determined, data management work often 

detracts from writing time (Levine, 2014; Ribes & Finholt, 2009; Star & Ruhleder, 1996). Given 

that infrastructure work detracts from the writing and publication of journal articles, data 

managers may find it difficult to be competitive for tenure-track academic careers. 

Formal education and career paths for data management are still emerging; currently 

scientific collaborations manage data through a variety of methods. Data management work is 

often a part of infrastructure building and maintenance (Borgman, 2000, 2015) and may become 
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“invisible” (Paisley, 1980; Shapin, 1989). Invisible work most closely related to knowledge 

infrastructures and data management is that in which, “Work may become expected, part of the 

background, and invisible by virtue of routine (and social status). If one looked, one could 

literally see the work being done – but the taken for granted status means that it is functionally 

invisible” (Star & Strauss, 1999, p. 20). System administrators, long-term data managers, 

software engineers, and others involved in the daily maintenance of existing infrastructures, 

whose continued availability is taken for granted, may be performing invisible work (Borgman, 

2015; Bowker & Star, 1999; Ribes & Finholt, 2009; Ribes & Jackson, 2013; Star & Strauss, 

1999). Despite perceptions, “infrastructural development and maintenance requires work, a 

relatively stable technology, and communication” (Bowker, 2005, p. 114). 

2.4	Astronomy	Sky	Survey	Knowledge	Infrastructures	

As defined in 2.1.1 Knowledge infrastructures, knowledge infrastructures are “robust 

networks of people, artifacts, and institutions that generate, share, and maintain specific 

knowledge about the human and natural worlds” (Edwards, 2010, p. 17). Astronomy has some of 

the most established human and technical infrastructures of any scientific field. International 

tools are generally built within the discipline by domain experts (Kurtz et al., 2005). In addition 

to tools, human infrastructures are important to the functioning of astronomy. Accomazzi and 

Dave (2011) explain the interactions of large, existing infrastructure projects (See Figure 4). In 

their assessment, future astronomy goals include the interoperability of astronomical objects 

(celestial objects), observations (the data), and publications (scholarly communication). Figure 4 

begins to elucidate an emerging web of astronomy resources. The Virtual Astronomical 

Observatory (VAO) is central to multiple resources and tools (Accomazzi & Dave, 2011; 

Budavari, 2010; Djorgovski & Williams, 2005; Hanisch, 2013). NED and SIMBAD, as well as 
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the astronomy journals, libraries, missions, and archives are all examples of services that enable 

astronomy objects, observations, and publications to interact with one another. Curation, 

inference cross-matching, extraction, and annotation search describe the kinds of data 

management services provided by the available tools. 

 

Figure 4 Adaptation of “Relationships between Publications, Objects, Observations and the corresponding major actors 
in the curating process and their activities” (Accomazzi & Dave, 2011, p. 3). 

Some tools and services have been accepted as standards across the larger astronomy 

domain. Several larger projects have combined datasets to enable data search and discovery. 

Examples include the World Wide Telescope (WWT) (Goodman et al., 2012; Szalay & Gray, 

2001; “WorldWide Telescope,” 2013), multiple endeavors by the International Virtual 

Observatory Alliance (IVOA) (“International Virtual Observatory Alliance,” 2015), and various 

instantiations of virtual observatory efforts within the United States (Ackerman, Hofer, & 

Hanisch, 2008; Hanisch, 2012; Moore, 2004; NVO Interim Steering Committee, 2001; US 

Virtual Astronomical Observatory, 2012; Virtual Astronomical Observatory (VAO) Project 

Execution Plan, 2010). The NASA/IPAC Extragalactic Database (NED) (“NASA/IPAC 

Extragalactic Database (NED),” 2016) and the Set of Identifications, Measurements, and 

Bibliography for Astronomical Data (SIMBAD) (CDS, 2016; Wenger et al., 2000) are examples 
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of federated databases enabling simplified search and retrieval of information about astronomical 

objects.  

In terms of scholarly communication, astronomers extensively and consistently rely on 

the Astrophysics Data System (ADS) for bibliographic records and document access (Accomazzi 

et al., 2015; Accomazzi, Grant, Eichhorn, Kurtz, & Murray, 1996; Henneken et al., 2010; 

Henneken, Kurtz, & Accomazzi, 2011; Kurtz et al., 1999; McKiernan, 2001). The ADS 

“provides easy on-line access to journal abstracts and articles, maintains a digital library and data 

catalogs, and provides access to archival data” (Accomazzi, 2011; Hasan, Hanisch, & 

Bredekamp, 2000, p. 136). ADS has served the astronomy community with a bibliographic 

database for over 20 years, and in 2010 began including the service of linking data to 

publications (Henneken & Thompson, 2013). Similarly, the community broadly uses the pre-

print document archive service “arXiv” (Cornell University, 2016; Ginsparg, 2011). arXiv is 

used by thousands of astronomers internationally (Henneken et al., 2007; Kurtz et al., 2007). 

Additional projects are still considering tools for data in addition to existing tools for 

publications (Norris et al., 2006, p. 5). 

From the outside, astronomy infrastructure appears solidly in place in the form of the 

many projects, tools, and services described above. However, astronomers continue pursuing 

better scholarly infrastructure dimensions and attempting to resolve problems that remain 

unaddressed by existing tools and services, including the automating some existing processes. 

Some infrastructures are more fragile than others (Borgman, Darch, Sands, & Golshan, 2016). 

Accordingly, much infrastructure work remains necessary to create a truly seamless astronomy 

environment (Accomazzi, Henneken, Erdmann, & Rots, 2012; Crosas, 2013; Goodman, 2009; 

Goodman & Wong, 2009; Norris et al., 2006).  
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The scientific community works together to, “coordinate conventions, types of data 

(images, time series, spectra etc.), and a basic lexicon…” (Hasan et al., 2000, p. 133). Most 

notably, astronomy data standardization includes international use of the Flexible Image 

Transport System (FITS) file format (Hanisch et al., 2001). FITS has been the agreed upon file 

format for over forty years and proved itself as a powerful standard within the discipline, 

enabling data interoperability and reuse. However, some argue the format is now showing its 

age, and the community should seek to adapt or replace the standard to face the “new challenges 

for the 21st century” (Thomas et al., 2014, p. 354). The SDSS and LSST projects emerged from 

within this environment where standardization enabled huge interoperability gains, but in which 

the community continues to push boundaries. 

Long a grievance of instrument builders and laboratory technicians (Blair, 2010; Shapin, 

1989), a reward-structure hierarchy persists in scientific research, even when one component is 

agreed to be critical to the success of the other. Ribes and Finholt state, “The implicit hierarchy 

places scientific research first, followed by deployment of new analytic tools and resources, and 

trailed by maintenance work” (2009, p. 388). In many scientific fields, team members are 

rewarded for time spent building shared infrastructures by being allowed access to resulting data 

during the proprietary period. Proprietary periods, also referred to in some communities as 

embargos, are time periods with which investigators are able “to control their data before 

releasing [the data]” (Borgman, 2015, p. 12). Proprietary periods enable team members the 

chance to publish findings first, before the data are released to outside investigators who have not 

invested time into the project.  

While some data management and infrastructure building may be rewarded through 

journal article citations, the data citation model is also not agreed upon (Altman, Borgman, 
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Crosas, & Martone, 2015; Altman & Crosas, 2013; Borgman, 2012b; CODATA-ICSTI Task 

Group on Data Citation Standards Practices, 2013; Crosas, Carpenter, Shotton, & Borgman, 

2013; National Academies of Science. US CODATA and the Board on Research Data and 

Information, in collaboration with CODATA-ICSTI Task Group on Data Citation Standards and 

Practices, 2012; Uhlir, 2012). Multiple genres of journal articles can also complicate data 

citation. 

The astronomy community uses these three different kinds of journal articles to alert 

colleagues to new information, contribute details for data and instrument reuse, and provide a 

way to reference instruments or data within the confines of traditional bibliographic references.  

Common among scientific communities are “science papers.” Science papers are journal articles 

that describe the methods and analysis that enabled scientific discoveries. Astronomers in 

particular may also publish “instrument papers.” Instrument papers provide detailed information 

about instruments such as telescopes, detectors, cameras, and other data collection materials. 

End-user scientists may need the information provided in these papers to guide their use of the 

resultant data. The third kind of astronomy journal article is a “data paper” or “data release” 

article. Data papers describe in detail a set of data, often as it is released for public use. The 

SDSS provides data release articles for each official public release. The data paper provides 

context and processing information to assist users in understanding the benefits and limitations 

of the data. Authorship and citation in each kind of paper are important ways stakeholders derive 

credit for their work on scientific and infrastructure-building collaborations.  

Scientists, engineers, instrument builders, and other infrastructure engineers earn credit 

for their work through authorship and citations to each of these three kinds of journal articles. 

Most scientific communities are familiar with the citation of science papers. However, the 
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astronomy community will also cite the instrument papers and data papers to reference useful 

resources. These citations benefit the careers of the authors and provide feedback to funding 

agencies regarding how much use are coming from the projects, instruments, and datasets they 

fund. Individual collaborations define their own criteria for authorship for each type of journal 

article.  

2.4.1 US	space-	and	ground-based	astronomy	

The United States’ National Aeronautics and Space Administration (NASA) funds 

astronomy missions in which the telescope and instruments are physically located in space, while 

other agencies fund missions where the telescope is located on earth. Therefore, data practices of 

astronomers are differentiated between space-based (generally NASA-operated) missions, and 

ground-based (generally NSF, multi-university, and donor-funded) operations. NASA missions 

have well-formed data management practices and human resource infrastructures. NASA data 

are collected, processed, and archived at specific locations among a dedicated workforce 

(Committee on NASA Astronomy Science Centers, & National Research Council, 2007). For 

example, Hubble Space Telescope data are processed and archived at the Mikulski Archive for 

Space Telescopes (MAST) in Baltimore, Maryland (R. L. White et al., 2009). A dedicated, full-

time staff of dozens of astronomers and computer scientists manage the Hubble data from 

collection, analysis, archiving, and preservation. The dedicated staff manages the Hubble data to 

ensure their scientific usability. Astronomy data are complex and differ between telescopes and 

even among instruments on a single telescope. The long-term MAST archive is important for 

Hubble data because of the dedicated, long-term archive staff who can perform consistent 

management over time, leading to a stable dataset (Zimmerman, 2008, pp. 166–167).  
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MAST is one example of the multiple NASA supported field and science centers. The 

science centers “serve as the interfaces between astronomy missions and the community of 

scientists who utilize the data;” a large part of the science center work is that of data 

management (Committee on NASA Astronomy Science Centers, & National Research Council, 

2007, p. 1). Science center staff enable the usability of the collected data during and “for years” 

after the end of a mission (Committee on NASA Astronomy Science Centers, & National 

Research Council, 2007, p. 1). These science centers embody well the technical and domain 

knowledge necessary to sustain astronomy data into the future. To continue enabling the 

scientific usability of astronomy data, these data centers must be able to consistently, “attract, 

retain, and effectively deploy individuals with the mix of research and engineering skills 

necessary to maintain continuity of service” (Committee on NASA Astronomy Science Centers, 

& National Research Council, 2007, p. 3).  

NASA created a model to distinguish distinct levels of data processing. The model moves 

from Level 0 to Level 4. Level 0 are raw data directly off the telescope or other instrument, while 

Level 4 are final data products. Table 1 gives a brief definition for each of the five NASA levels 

of astronomy data. The scope of this dissertation research includes data management at any and 

all of these possible levels. 

Level 0 (raw measurements) 
Level 1A & 1B (calibrated scientific data) 
Level 2 (data with coordinates, other information) 
Level 3 (data products) 
Level 4 (final data products typically include object catalogs, spectra, and images) 
Figure 5 Adaptation of the NASA data processing levels. Table modified from NASA (Committee on NASA Astronomy 
Science Centers, & National Research Council, 2007, p. 12; “Data Processing Levels for EOSDIS Data Products - NASA 
Science,” 2010). 

The data collected by ground-based telescopes and other instruments do not generally 

have dedicated staff to perform consistent data management through the full data life cycle like 
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is available at the NASA science centers. Many ground-based telescopes follow a sole-researcher 

model for data management. Many telescopes designed for individual and small groups of 

scientists may have a different, single astronomer collecting data each night and require these 

individuals to manage the data they collect. These astronomers are managing their data for their 

own use and are expected to manage the data through the entirety of the data life cycle. 

Other ground-based data are collected through sky survey teams, not individuals. Unlike 

individual investigator-driven research, sky surveys result in uniformly captured data. The same 

team collects the data over the course of the survey instead of data being collected by a different 

scientist each night. The data management activities are generally split between team members 

with different kinds of expertise. In projects involving a sole astronomer, that researcher 

manages data through the whole life cycle; in contrast, sky survey data are managed by different 

sets of team members at different stages in the life cycle. A more specialized workforce develops 

in sky surveys, as team members manage data at different junctures in the life cycle, aiming to 

support data use by a whole community beyond their own scientific needs.  

This dissertation research investigates astronomy data practices among the population of 

team members and data end-users of modern astronomy sky survey data. More specifically, the 

three study populations are those involved in The Sloan Digital Sky Survey (SDSS) project 

collaboration, the Large Synoptic Survey Telescope (LSST) project collaboration, and individual 

astronomers who make use of SDSS data. The SDSS and the LSST projects are both ground-

based, optical sky surveys, and are each at different stages in their research life cycles. Individual 

astronomers in this study may work alone or in small groups using SDSS data. The next three 

subsections provide background on each of the three study populations. Chapter  
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3 Research Methods describes how the study populations were operationalized and the study 

sampling methods. 

2.4.2 The Sloan Digital Sky Survey 

The Sloan Digital Sky Survey (SDSS) (“Sloan Digital Sky Survey: Home,” 2016) 

produces a significant astronomy dataset in terms of its scope, quality, public access, and extent 

of uses and users. The survey covered over a quarter of the night sky with high quality 

photometric and spectroscopic imaging. The first phase of the SDSS project (SDSS I) ran from 

2000 to 2005, the second (SDSS II) from 2005 to 2008, and subsequent SDSS projects continue 

today; SDSS IV began taking data during Summer 2014. The final data release of the SDSS I 

and II project collaboration occurred in June 2009 (Abazajian et al., 2009). A timeline of the 

SDSS project is included in Appendix I. This dissertation examines the SDSS I and II phases of 

data management. SDSS was the first astronomy ground-based survey to ensure prompt public 

release of data, and many current collaborative telescope projects now emulate SDSS data 

practices. Indeed, "By altering the traditional interactions between a telescope, its data and 

communities of astronomers, Sloan … is indeed a legacy to be celebrated" (Kennicutt Jr, 2007, 

p. 489). 

SDSS data are consulted millions of times each month; in April 2014, the SDSS 

SkyServer (the online public SDSS database) was visited more than four million times (SDSS 

Collaboration, 2014). SDSS data are some of the most used astronomy data, arguably second 

only to the Hubble Space Telescope (Borne et al., 2009; Hand, 2009; Kennicutt Jr, 2007; 

Reichhardt, 2006; Singh et al., 2006). Because the SDSS data are publicly available, project 

collaborators, external individuals, international scientists, and the general public alike can use 

SDSS data for educational purposes and scientific research.  
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While often referred to as ‘the data,’ the SDSS I and II dataset is a complex aggregation 

of materials representing multiple elements of the international project. Generally speaking, the 

SDSS includes four kinds of data 1) a photometric catalog, 2) spectroscopic catalog, 3) images, 

and 4) spectra (Szalay, Kunszt, Thakar, & Gray, 1999, p. 3). Specifically, the SDSS I and II 

Long-Term Scientific Data Archive (the SDSS Archive) is comprised of four related datasets: (1) 

the Data Archive Server (DAS) contains the processed flat image files; (2) the Catalog Archive 

Server (CAS) contains multiple releases of the image and spectroscopy SQL [Structured Query 

Language] database; (3) the Software includes the code generated for the data collection, data 

processing, database creation, user interfaces, and the SDSS website; and (4) the Raw Data are 

the unprocessed data as received from the scientific instruments. In total, the SDSS I and II 

archive forms a collection between 100 and 200 terabytes (Astrophysical Research Consortium, 

2008). 

The SDSS collaboration manages SDSS data for use by the team and countless others. 

This process can prove difficult, because one cannot predict all potential future users and uses of 

a dataset (Huang et al., 1995). SDSS astronomers and computer scientists spent more than a 

decade planning for data collection to ensure standardized, consistent data products over time 

(Huang et al., 1995; Szalay et al., 1999; Szalay, Kunszt, Thakar, Gray, & Slutz, 2000). Data 

management for the sky survey involves a number of steps beginning with the collection of raw 

data by the instruments. The SDSS data were then processed through the software pipeline. 

Astronomy processing pipelines are specific collections of algorithms and software designed to 

calibrate, process, and derive information from raw digital data produced by scientific 

instruments, which result in intelligible images, spectra, and catalogs. 

Construction of the processing pipeline was a critical aspect of the entire SDSS project. 
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The pipeline software accounted for approximately 25% of the entire survey’s total “cost and 

effort” (J. Gray, Slutz, et al., 2002, p. 2). Following pipeline processing, the SDSS data were 

then made publicly available as flat files (DAS) and a Structured Query Language (SQL) 

database (CAS). The construction and maintenance of the SQL database was a large software 

project of its own due to the vast size, amount, and complexity of the SDSS dataset (J. Gray, 

Slutz, et al., 2002; Szalay et al., 1999, p. 5). Now that the SDSS I and II collaboration no longer 

collects new data, the data management considerations focus on the continued ability to serve 

and preserve the data as a valuable resource to astronomers around the world. 

2.4.3 The Large Synoptic Survey Telescope 

The Large Synoptic Survey Telescope (LSST) is an international astronomy project 

currently under construction. Planning for the LSST began in the late 1990s (Tyson, 1998), 

enabling project recognition in time for the 2000 Astronomy Decadal Survey (Astronomy and 

Astrophysics Survey Committee, 2001). The LSST collaboration now plans for data collection to 

begin approximately 2020 (“LSST project schedule,” 2015). By the time of the 2010 Decadal 

Survey, the LSST was chosen as the single most important astronomy project in terms of funding 

and time investment for the current decade (Committee for a Decadal Survey of Astronomy and 

Astrophysics; National Research Council, 2010). A timeline of the LSST project is included as 

Appendix 2. Astronomers estimate that the LSST will have an even larger impact on the 

astronomy community than the SDSS, in part because of the larger scale of research data 

expected to be collected (Ivezić et al., 2007). 

The LSST survey plans to cover more of the night sky and provide better imaging than 

the SDSS project achieved due to continued advances in technology (See Table 1). Additionally, 

the LSST project will acquire more data, which will address a larger number of scientific 
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questions than the SDSS (Lupton, 2010). The LSST plans to make a map of the sky every three 

to four days, resulting in an estimated 15 terabytes of data collected each evening over the course 

of ten years of observation (Becla et al., 2006; Borne et al., 2009; Borne, 2013, p. 414; Kantor et 

al., 2007; Plante et al., 2010; “Technology Innovation | LSST public website,” 2015). The SDSS 

I and II dataset was on the order of hundreds of terabytes at the conclusion of the project; LSST 

is expected to amass research data on the order of many petabytes. As evidenced in the scale 

difference between the SDSS and the LSST, astronomy sky survey data, “have grown from 

gigabytes into terabytes during the past decade, and will grow from terabytes into Petabytes 

(even hundreds of Petabytes) in the next decade” (Borne et al., 2009, p. 1).  

 SDSS I and II Project 
Collaboration 

LSST Project 
Collaboration 

Project Timeline Survey data collection  
2000-2008 

Survey data collection 
(predicted) 2022-2032 

Type of Project Photometric and 
spectroscopic Sky Survey 

Photometric Sky Survey 

Primary 
Scientific 

Objectives 

Galaxies, quasars, and 
stars 

Dark energy and dark 
matter, solar system, 
transient optical sky, 
milky way. 

Scale 930,000 unique galaxies 10 billion unique galaxies 
(prediction) 

Table 1 Comparison of the scale and goals of the SDSS and LSST Projects 

While the immense growth in the scale of data promises new scientific discoveries, it also 

influences data management practices. As the size of data continue to grow, it raises the 

expectations of users and the need for an “increasingly skilled workforce in the areas of 

computational and data sciences” (Borne et al., 2009, p. 2). The LSST collaboration members are 

aware of the demands of managing large amounts of scientific data and have devoted time and 

resources to preparing for the data (Connolly, 2014). An active data management team 
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collaborates across six institutions to build the software necessary to manage the impending 

LSST data deluge (“Data management | LSST public website,” 2015; “LSST Data Management 

Wiki,” 2015).  

2.4.4 Individual and small-group astronomy projects 

Large sky surveys have significantly shaped research practices in astronomy. However, 

meaningful astronomy research is still conducted individually or by small groups. In addition to 

those directly involved in the SDSS and LSST collaborations, many independent astronomers 

make use of publicly available survey data.  

Despite the large size of the SDSS and LSST collaborations, individuals or small teams 

of faculty accomplish most astronomy research. The individuals and small teams considered in 

this dissertation obtained astronomy research datasets in part or whole from sky surveys, 

particularly the SDSS. Depending on the research question, these teams may use only SDSS 

data, SDSS data alongside data from other sky surveys, or may collect their own data from new 

photometric or spectroscopic observations. Subsequently, data from across the electromagnetic 

spectrum are combined and analyzed to generate derived data. In this dissertation, derived data 

in astronomy are defined as copies of an original dataset that have been re-processed by one or 

more end-users. 

The growing number of astronomy tools and infrastructures, as well as the presence of 

large sky surveys, suggests that astronomy data and therefore data management practices are 

largely homogenous. However, the management practices of individual and small groups differ 

from large project data management, and are mainly heterogeneous among one another (Darch & 

Sands, 2015; Sands, Borgman, Wynholds, & Traweek, 2012). These highly processed derived 

data are rarely provided long-term archiving, whereas the SDSS and LSST projects planned for 
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data sharing from the beginning of project development (Norris et al., 2006, p. 7).  
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3 Research Methods 

This dissertation emerged from the author’s five-year collaboration in the UCLA Center 

for Knowledge Infrastructures (CKI), funded by the National Science Foundation and the Alfred 

P. Sloan Foundation. This dissertation addresses integral questions to the CKI’s grant-funded 

research, as well as key outcomes. Within the scope of the CKI work, this dissertation research 

pursues four specific research questions (RQs) among three study populations. The study 

benefits from the coordination of three complementary research methods. The primary source of 

data for this dissertation is semi-structured interviews. Over five years (2011-2015), the author 

conducted more than 100 interviews with astronomy community members. All of those 

interviews were transcribed and are part of the UCLA CKI dataset. Given the specific 

operationalization of the three study populations, 80 interviews were used to represent the three 

study populations for this dissertation. Ethnographic methods and document analysis were used 

to prepare for, support, and explain the interview findings. Further details on the analytical 

relationships between the methods are now presented. 

3.1 Research Questions 

This dissertation examines stakeholder perspectives of the data practices employed by 

sky survey team members and data end-users. The study focuses on scientific research data; data 

management tasks; the knowledge, expertise, and experience required; the workforce 

responsible; and how data management activities differ between astronomy populations. 

The fourth research question in this study is: How does data management differ between 

populations? To address this question, the first three successive research questions had to be 

examined. The expertise involved in astronomy data management was examined prior to 
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investigating how astronomy data management differs between populations. To analyze the 

required expertise for data management, data management had to be understood first. Finally, to 

analyze what data management is, data itself had to be scoped. The four research questions for 

this dissertation successively build on one another and cumulate to the fourth question.  

1. What are astronomy research data? 

2. What is data management in astronomy? 

3. What expertise is applied to the management of data? 

4. How does data management differ between populations? 

These research questions focus on revealing how data management differs between populations. 

While stakeholder understandings of data, data management, and expertise openly differ, the 

reasons for these differences are unclear. 

3.1.1	What	are	astronomy	research	data?	

Data can mean different things to different people (Borgman et al., 2012) and therefore a 

single definition is impossible (Parsons & Fox, 2013). This study sought to understand how these 

differences surface among the SDSS and LSST study populations, and what the implications are 

for scientific research and data management infrastructures. Astronomy research data were 

nominally defined in section 2.1 Scientific Research Data as “…reinterpretable representation[s] 

of information in a formalized manner…” (Consultative Committee for Space Data Systems, 

2012, pp. 1–10). Astronomy research data were operationalized for this dissertation to include 

digital information developed for, or exploited by, the SDSS, the LSST, and SDSS data end-

users. The term data was intentionally operationalized broadly, to ensure information considered 

data to some but not all stakeholders remained within the scope of the investigation.  
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3.1.2	What	is	data	management	in	astronomy?	

To reveal how stakeholders discussed data management, data interpretations were 

analyzed. Data management was defined nominally as an umbrella term referring to actions 

taken on data aimed at enabling scientific progress (refer back to 2.2 Scientific Research Data 

Management). Data management was operationalized to include all activities related to planning, 

collecting, processing, documenting, analyzing, sharing, and maintaining SDSS and LSST data 

as defined in the previous subsection. Data management included tasks throughout the full data 

life cycle, including storage, archiving, preservation, curation, and other undertakings for data 

analysis in the short- and medium-term and data stewardship in the long-term. The broad 

definition was critical to ensure potential outlying perspectives were included during analysis.  

3.1.3	What	expertise	is	applied	to	the	management	of	data?	

Necessary data management expertise was interpreted by analyzing how interviewees 

expressed data management tasks. The scientific research data workforce was defined nominally 

as to encompass all individuals tasked with managing, stewarding, sustaining, serving, storing, 

archiving, curating, or preserving scientific research data, whereas expertise and experience are 

the existing knowledge the workforce bring to these tasks (Sands et al., 2014). These terms were 

operationalized broadly to avoid unduly restricting study participant interpretations. The data 

management workforce was operationalized to include all individuals who either self-identify, or 

are identified by others, as affiliated with the management of the SDSS and LSST data (see 

operationalized definitions of data and data management in previous sub-sections). Experience 

and expertise were operationalized as any formal or informal education, skill, and knowledge 

that informed or managed the SDSS and LSST data.  



  
  

53 
 

3.1.4	How	does	data	management	differ	between	populations?	

Finally, the ways interviewees described data, and therefore data management, and the 

expertise needed to manage data was analyzed based on seven demographic variables gathered 

for each interviewee. The perspectives revealed in the first three cumulative research questions 

informed analysis of the fourth question. Findings operationally were grouped according to the 

seven demographic characteristics of interviewees recorded for this study, discussed in detail in 

section 3.2.2 Semi-structured interviews. 

3.2 Data Collection 

This study was conducted using three qualitative research methods: semi-structured interviews, 

ethnographic fieldwork, and document analysis. Table 2 shows the relationship between the 

research questions (described and operationalized 3.1 Research Questions), the three study 

populations and interviewee demographics, and the three research methods, which are detailed in 

the following section. The table also provides a visual of the Results chapter. 
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Research 
Question (RQ): 
 
 
 
 
Method: 

RQ1: What are 
astronomy 
research data? 
 

RQ2: What is 
data 
management in 
astronomy? 

RQ3: What 
expertise is 
applied to the 
management of 
data? 

RQ4: How 
does data 
management 
differ 
between 
populations? 
 

Document 
Analysis 

SDSS Team 
LSST Team 

SDSS Team 
LSST Team 

SDSS Team 
LSST Team 

Primary 
Institutional 
Affiliation; 
Year of 
Interview; 
Career Stage; 
Level of 
Astronomy 
Education; 
Current 
Workforce; 
Role in SDSS 
and LSST; 
Theorist 

Semi-Structured 
Interviews 

SDSS Team 
LSST Team 
SDSS End-
Users 

SDSS Team 
LSST Team 
SDSS End-
Users 

SDSS Team 
LSST Team 
SDSS End-
Users 

Ethnographic 
Participant 
Observation 

SDSS Team 
LSST Team 

SDSS Team 
LSST Team 

SDSS Team 
LSST Team 

Table 2 Relationship between research questions, study populations, and research methods 

Interviews and fieldwork were conducted from Fall 2011 through Summer 2015. 

Interviews were conducted with individuals affiliated at 26 different institutions, and were 

conducted in-person at 23 of those institutions. Half of the interviews were conducted in 2015, 

following approval of the dissertation proposal. Periods of ethnographic fieldwork occurred at 10 

institutions central to the SDSS and LSST data management teams. SDSS and LSST documents 

were read throughout the study, though most of the critical analysis took place in 2015. 

In the next section, the three study populations are operationalized. Then the three 

research methods are each detailed and their relationship to one another is described. Finally, 

analytical approaches and ethical implications are addressed.  
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3.2.1 Study populations 

This dissertation includes document analysis, interviews, and fieldwork with astronomy 

faculty, students, and staff from three study populations: SDSS collaboration team members, 

LSST collaboration team members, and SDSS data end-users. Fieldwork sites were chosen based 

on their centrality to data management activities for the SDSS, LSST, or both. Interviewees were 

chosen due to their affiliation with one of the three study populations. 

Study participants directly involved with the planning and construction of the SDSS and 

LSST are referred to in this study as team members. Those not involved directly in a team, but 

who took advantage of the released SDSS data, are referred to in this study as SDSS end-users. 

LSST remains in the construction stage, so LSST data end-users do not exist yet. More explicit 

information about how these populations were operationalized is presented in the next three 

subsections. 

 The three study populations overlap; individuals may be members of one, two, or all 

three populations. For example, some SDSS team members are also part of the LSST team. 

Others may be an LSST team member and also use SDSS data. For the purposes of ethnographic 

fieldwork and document analysis, the entirety of an individual’s affiliations was considered. 

However, each interviewee was only questioned using a single interview protocol, which was 

chosen based on their primary affiliation. Interviewees were questioned based on their 

experience as an SDSS team member, an LSST team member, or as an SDSS data user. A nearly 

even array of interviews were conducted among the three study populations: 28 interviews were 

conducted using the SDSS team protocols, 26 were conducted with the LSST team protocol, and 

26 were conducted with the SDSS data end-user interview protocol (see Table 3). 
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Interviews Total In Sample  
SDSS team member 28 

LSST team member 26 

SDSS data end-user 26 
Table 3 Number of interviewees in each of the three study populations 

A comprehensive cross-section of each interviewee’s affiliations is illustrated in Table 4 

and replicated in Table 11. As shown in the tables, 22 interviewees were members of the SDSS 

team, 25 interviewees were members of the LSST team, 17 interviewees were members of both 

teams, and 16 interviewees were not members of either team and instead were interviewed based 

on their use of SDSS data. The primary affiliation of each interviewee was determined through 

analysis of their existing journal article publications, web presence, and based on feedback from 

other interviewees and information gathered through ethnographic fieldwork. Preliminary 

determinations were made as to potential interviewee’s affiliations in each of the three 

populations to determine whether they should be contacted. Individuals were then asked for an 

interview focusing on only one of the three affiliations. To determine interview type, the focus of 

the interviewee’s recent work was weighed as well as the need to distribute the demographic 

categories across study populations (see 3.2.2 Semi-structured interviews). Through email 

exchanges and during each interview, an interviewee was able to self-report their affiliation in 

each population, allowing the author to update the interviewee records and ensure the interview 

fit the specific study populations for this dissertation. 
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SDSS or LSST team affiliation Total In Sample 
SDSS team member only 22 

LSST team member only 25 

Member of both SDSS and LSST teams 17 

SDSS end-users, member of neither team 16 

Total 80 
Table 4 Interviewees organized by role in SDSS and LSST (See also Table 11)  

Seven interviewee attributes were recorded for each interviewee. These demographic 

variables meant interviewees could be recognized by multiple demographic attributes, beyond 

their study population affiliations. The seven demographic variables are detailed in 3.2.2 Semi-

structured interviews.  

3.2.1.1	Sloan	Digital	Sky	Survey	team	

Participating members of the SDSS collaboration during the first or second phase of the 

SDSS project were operationalized as part of the SDSS team member study population. Team 

participation was determined through journal article authorship. If an individual was one of the 

authors of a SDSS I and II data release journal article (Early Data Release through Data Release 

7), they were considered a member of the SDSS team population for this study. The data release 

articles abide by the SDSS authorship policies and therefore encompass the individuals working 

on the project. The authorship for each data release was dictated by the SDSS Scientific and 

Technical Publication policy which stated, “Those who have contributed to the writing of the 

data release paper, or who have contributed in a substantive way to the creation or validation of 

the data described in the paper, are eligible to be authors” (“SDSS scientific and technical 

publication policy,” 2014, sec. 7.3 Data-release publications). Therefore, data release authorship 

effectively operationalized SDSS team membership for this study. 
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 Prior to visiting an institution for this dissertation work, the author emailed every person 

at the institution who qualified as a study participant to request an interview. This recruitment 

method was effective and not overwhelming due to the level of interviewee willingness to 

participate in the study. Many potential interviewees did not respond to two e-mail attempts to 

schedule an interview, while others were unable to find a mutually agreeable time to meet. 

Participation in interviews was solely at the discretion of the interviewee.  

Two protocols were used for the SDSS team interviews. Most interviews were conducted 

using the UCLA CKI “Phase1” interview protocol. In December 2013, eight SDSS team 

interviews were conducted using a modified version of the “Phase1” protocol, which included 

greater focus on the later stages of the SDSS I and II data life cycle. As the interviews were 

semi-structured, the protocols were modified to pertain specifically to each individual’s role in 

the collaboration(s). Questions were related to data management, curation, and preservation of 

the SDSS data as a resource for the astronomy community. 

3.2.1.2	Large	Synoptic	Survey	Telescope	team	

LSST team interviews for this dissertation parallel research conducted by other UCLA 

CKI team members. Peter T. Darch, also of the UCLA CKI, similarly interviewed other LSST 

team members regarding their data practices. There are six primary LSST data management 

(DM) construction sites, Darch and the author each focused on fieldwork and interviews at three 

of the six sites. Therefore, the LSST team interviews for this dissertation were conducted with 

interviewees from half of the primary LSST DM institutions in the United States. 

Potential research subjects were considered members of the LSST team if they were an 

author on LSST: from Science Drivers to Reference Design and Anticipated Data Products 

(Version 4.0) (Ivezić et al., 2014) or LSST Science Book (Version 2.0) (LSST Science 



  
  

59 
 

Collaboration et al., 2009). LSST team members consistently described these two documents as 

essential blueprints to the project. 

Authorship for the “Science Drivers” paper included individuals who had contributed to 

LSST design and development and are largely paid members of the team. However, there were 

many other individuals who were not paid members of the LSST team, but instead contributed 

their time and expertise to LSST as a member of an LSST Science Collaboration (“Science 

collaborations | LSST Corporation,” 2015). These individuals collaborated in the writing of the 

LSST “Science Book” and continue to plan for future scientific cases made possible by the 

LSST. Science Collaboration members are not directly paid through LSST funding; they are paid 

through their primary institutions and volunteer their time to LSST to help shape the anticipated 

scientific work. Therefore, both paid team members and scientific collaboration members were 

included broadly in the LSST team study population, operationalized by authorship on either or 

both of the aforementioned documents. As with the SDSS, while every potential interviewee at 

all visited sites were contacted, each individual had the choice to participate in the study. 

Interviewees who joined the LSST team too recently to be included as authors on either 

the Science Drivers or Science Book documents were not considered eligible as interviewees for 

this dissertation. However, the author may have interviewed these new team members for the 

broader UCLA CKI investigations. While these interviews were not included in the 

operationalized dataset for this dissertation, the interviews have been transcribed and made 

available to the UCLA CKI team for further examination.  

  LSST interviews were conducted using the UCLA CKI “LSST1” interview protocol. 

While having emerged from existing UCLA CKI team protocols, modifications were required to 

reflect LSST’s early life cycle stage. Questions were related to the design and construction of 
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data management infrastructures for LSST, the workforces involved in these activities, the nature 

of the expected data, and the influence of the collaboration and the larger astronomy field. 

3.2.1.3	Sloan	Digital	Sky	Survey	data	end-users	

SDSS data end-users are the third study population, which includes astronomers at all 

career stages who (co-)authored a journal article using SDSS data. Specifically, the interviewee 

must have authored a journal article available on arXiv.org that referenced SDSS in the article 

title or abstract. arXiv is a widely used pre-print archiving service for the physics and astronomy 

community (Cornell University, 2016). Prior to visiting each institution, the author investigated 

potential interviewees by searching arXiv for articles with “SDSS” or “Sloan Digital Sky 

Survey” in either the title or the abstract, published in the preceding couple of years, and having 

at least one author affiliated with the institution. Only articles published recently were chosen, 

because authors tend to change institutions and forget details of the research process over time. 

Prior to each trip, relevant authors were emailed requesting an interview, which included 

mention of the pre-identified journal article. 

This sampling method had two limitations. First, the sample was limited to institutions in 

Southern California, or the institutions (or nearby institutions) already scheduled for SDSS or 

LSST team research. However, strong project funding (see Acknowledgements) enabled 

considerable travel, which permitted interviews at 23 institutions. Second, as stated with the 

other study populations, the method was limited due to interviewee willingness to participate. 

Many interviewees did not respond to two e-mail attempts to schedule an interview, while others 

were unable to find a mutually available time to meet.  

The SDSS end-user interviews were conducted using the UCLA CKI  “Follow the Data” 

interview protocol. Follow the Data interview questions inquired about data management 
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practices used by the interviewee as an individual or among their small research group. The 

interview protocol is effective in identifying specific data sources, types, and uses (Sands et al., 

2012). The protocol allows the interviewer to use the publication (co-) authored by the 

interviewee as a lens to identify data uses leading into and out of the journal article. The article 

was chosen prior to the interview session, and the interviewer performed a close reading of the 

text to identify authors, data sources, links to data, and other relevant characteristics. This 

background research enabled rich interviews that addressed questions pre-identified during the 

close reading of the text. These interviews facilitated exploration of how small-scale research 

projects employing SDSS data compare and contrast to the data management activities involved 

in the large-scale SDSS and LSST collaborations.  

3.2.2	Semi-structured	interviews	

Interviews included questions adapted from existing UCLA CKI protocols to engage 

researchers on their data practices, perspectives on data management, curation, and preservation 

activities, and perceptions of data management knowledge and expertise needs. Semi-structured 

interviews balance the rigidity of structured interviews, while enabling more focus than 

unstructured interviews like oral histories. Interviews were conducted with a protocol, including 

mostly open-ended, but also strategically pointed, questions. The specific protocol used for each 

interview was addressed in 3.2.1 Study populations. 

Often, interviewees addressed themes before the protocol question about that theme were 

asked. In these cases, the interviewer adjusted the protocol question sequence accordingly. When 

themes were addressed already, the interview question was often omitted. Alternatively, some 

interviewees addressed themes that were not in the protocol. In these cases, the interviewer could 

choose to encourage the line of thinking by asking more specific questions if relevant, or return 
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to the predetermined questions. Semi-structured interviews therefore allowed the interviewer to 

focus on data management topics, while enabling interviewees to focus on the aspects of the 

topic they found most important. The semi-structured interviews enabled analytical comparisons 

between all interviewees, and across multiple sites and kinds of expertise. 

Interviewees were chosen through a nonprobability sampling method referred to as Quota 

Sampling (Babbie, 2007, pp. 185–187), with a reliance on subject availability and voluntary 

participation. Quota sampling was used in this study to ensure a broad mix of demographic 

participation. As a field research project, quota sampling is an excellent method to compare and 

contrast informant perspectives across multiple parameters (Babbie, 2007, pp. 185–186). A 

matrix was created to ensure study participants held a breadth of the following parameters: 

institutional affiliation, career stage, level of astronomy education, current workforce, association 

with theoretical astronomy, and most importantly affiliation with the SDSS team, LSST team, 

and SDSS data use. The interviews also occurred over five years. These seven parameters were 

chosen because they were hypothesized to be factors relevant to the primary research question: 

How does data management differ between populations? From preliminary interviews, these 

demographics were chosen as sources of distinction between individuals and their data 

management practices. Demographics largely were determined through institutional website 

searches before each interview and confirmed during each interview. 

The operationalization of the SDSS team, LSST team, and SDSS end-users was largely 

detailed in the previous section on study populations. Potential interviewees were determined by 

geographic location, authorship in designated journal articles, and willingness to participate in 

the study. Toward the end of data collection in 2015, interviewees were targeted more strictly to 

ensure the demographic variables were covered evenly. For example, to ensure they were well 
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represented in the sample, graduate students were sought out specifically to participate in the 

study in 2015. All but one of the study interviews were conducted in-person; one was conducted 

via Skype.  

Data collection took place from 2011 to 2015 and later interviews and coding responded 

to the themes that emerged from earlier work. For example, the research questions used in this 

dissertation were developed by the author in 2013 and formalized in 2014. The third research 

question seeks to understand the expertise necessary for data management. However, questions 

addressing experience and expertise were not explicit in earlier interview protocols because the 

author developed the line of questioning from ongoing complementary UCLA CKI research. The 

author added questions aimed toward eliciting the interviewee’s educational and experiential 

backgrounds, as well as how they are training the next generation to work with sky surveys. 

While experience and expertise were one of many lines of inquiry for the UCLA CKI, their 

prominence in this dissertation led to an increased focus on related interview questions as the 

years passed.  

This dissertation research amassed 80 semi-structured interviews. The corpus is 

composed of 28 interviews with SDSS team members, 26 with LSST team members, and 26 

with SDSS data end-users. Interviews ranged from 20 minutes to three hours, with most lasting 

about one hour and thirty minutes. Thirty-one of the 80 interviews were conducted prior to the 

dissertation proposal (24 by the author), under the auspices of the UCLA CKI grant-funded 

research (see Table 5). Two UCLA CKI team members conducted seven of the interviews 

included in the study: David S. Fearon, Jr. (four) and Christine L. Borgman (three). The 

company Scribie confidentially transcribed the interviews. The transcripts were audio-verified by 

the UCLA CKI team, usually the author. Milena S. Golshan of the UCLA CKI also assisted with 
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some audio-verification, ingesting the transcripts into the NVivo qualitative data analysis 

software, and some preliminary coding. More detailed information on the analytical process is 

presented in the following section.  

Table 5 indicates the three subject populations and compares the number of interviews 

for each population. Each column addresses: The total number of interviews, the number 

collected prior to the June 2014 dissertation proposal oral defense, the number collected 

following the proposal, the total number of interviews collected by the author, and the number of 

interviews not collected by her. 

Study Population: SDSS 
TEAM 

LSST 
TEAM 

SDSS 
USER 

              
TOTAL 

Interviews Total 28 26 26 80 
Interviews conducted 

prior to proposal 
18 0 13 31 

Interviews conducted 
after proposal 

10 26 13 49 

Interviews conducted 
by Sands 

26 26 21 73 

Interviews conducted 
by others 

2 0 5 7 

Table 5 Number of interviewees in each of the three study populations 

Interview sampling was designed to guarantee a broad array of demographics among the 

interviewees beyond membership in one of the three study populations. Interviewee parameters 

included type of institutional affiliation, career stage, career type, level of education, whether or 

not they were a member of the SDSS or LSST team, whether they are theorists, and the year of 

the interview. These categories were chosen to enable analysis for RQ4: How does data 

management differ between populations? The breakdown of these statistics is visualized in 

Appendix III; the demographic categories are described below. 
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3.2.2.1	Primary	institutional	affiliation	

All eighty interviewees were associated with an institution, and eight of those 

interviewees had two institutional affiliations. The majority of interviewees were affiliated with a 

university. However, approximately one-third of interviewees were affiliated with (either 

primarily or secondarily) another institution including data centers, national laboratories, 

research institutes, and planetariums. Eight interviewees were affiliated primarily with a 

university, but had secondary affiliation with another institution (one data center, one national 

laboratory, one planetarium, and five research institutes). For example, some faculty whose 

primary appointment is at a university also have an appointment at a nearby research institute. 

For the purposes of this analysis, interviewees are indicated by their primary affiliation, which 

was initially predicted through their web presence, and then confirmed through self-identification 

during the interview. Distinctions were expected to arise between how data are managed at 

different institutions. 

Primary Affiliation Total In Sample 
University 62 
Research Institute 4 
Data Center 6 
National Laboratory 8 

Total 80 
Table 6 Interviewees organized by primary affiliation 

3.2.2.2	Year	of	interview	

Interviewees are grouped by the year the interview was conducted. Exactly half of the 

interviews were conducted in 2015. The other half were conducted nearly evenly between 2011 

and 2014. It was hypothesized that there would be a gradual, but evident, aggregate change in 
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how data management practices were discussed over the years, as individuals grew more 

accustomed to data-intensive techniques and ways of thinking. 

Year of Interview Total In Sample 
2011 11 
2012 9 
2013 10 
2014 10 
2015 40 

Total 80 
Table 7 Interviewees organized by year of interview 

3.2.2.3	Career	stage	

Interviewees were clustered by their career stage at the time of the interview. 

Interviewees span career stages from graduate school students through emeriti faculty. Based on 

primary affiliation, approximately 40% of interviewees were faculty, approximately 40% were 

staff, and the remaining nearly 20% were graduate students or post-doctoral researchers. It was 

hypothesized that data management practices would vary between early and late career 

researchers, as well as between staff and tenure-track individuals. 

Similar career stages were grouped together in the following ways: non-tenure-track 

faculty researchers were grouped with staff scientists. Non-scientific staff include two 

administrators and one mechanical engineer. Staff programmers were distinguished from staff 

scientists in that they described their roles as only requiring computer science expertise and not 

astronomy domain knowledge. Staff scientists are non-faculty astronomers whose work was 

largely based on computationally driven astronomy. The career stages were split between junior 

and senior career levels, as well as between careers along faculty-lines (the first four rows in 

Table 8) and staff career paths (the final three rows in Table 8). 
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Career Stage Career Stage Career Path Total In Sample 
Graduate Student “Junior” Faculty-line 6 
Post-Doc “Junior” Faculty-line 8 
Faculty Professor “Senior” Faculty-line 30 
Faculty Emeritus/Retired “Senior” Faculty-line 3 
Staff Programmer “Senior” Staff-line 6 
Staff Scientist “Senior” Staff-line 24 
Non-scientific staff “Senior” Staff-line 3 
  Total 80 
Table 8 Interviewees organized by career stage 

3.2.2.4	Level	of	astronomy	education	

Interviewees are grouped by level of astronomy education. The astronomy education 

category consists of those who hold a PhD in an astronomy-related domain: astronomy, 

astrophysics, or physics. While nearly 40% of the interviewees hold staff positions, more than 

80% of the interviewees have PhD degrees. 10% of interviewees were either current graduate 

students or had completed some graduate education in astronomy. The “some astronomy 

graduate work” category includes current students, one interviewee with a master’s degree in 

physics, and another interviewee who began but did not complete a PhD in astronomy. The 

“other graduate degree” category includes one interviewee with an MBA, one with a master’s 

degree in computer science, and one interviewee with both an MBA and a master’s degree in 

computer science. One interviewee does not have any higher education degrees. It was 

hypothesized that individuals with PhDs in astronomy or a related discipline would approach 

data management differently than those with non-domain specific educations. 
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Level of Astronomy Education Total In Sample 
No Higher Education 1 
Some Astronomy Graduate Work 8 
Astronomy PhD 65 
Other Graduate Degree 6 

Total 80 
Table 9 Interviewees organized by level of astronomy education 

3.2.2.5	Current	workforce	

Interviewees were also clustered by the kind of career they held at the time of the 

interview. The astronomer label encompasses all interviewees who self-identified as astronomers 

and whose work includes performing scientific analysis in astronomy, employing the skillsets 

gained through higher education in the field. The computer scientist designation is used to 

describe those who have obtained a higher education degree in computer science; it includes 

interviewees who identified as system programmer and database administrator. The 

computational astronomer label is used for those whose work is focused on the computer-science 

aspects of astronomy projects. The computational astronomers hold PhDs in astronomy, but their 

jobs are computationally driven. The “other” identification row includes those who are not on a 

faculty or computer-science career path and includes two administrators, a mechanical engineer, 

and a non-research lecturer. More than 70% of the interviewees were practicing, or student, 

astronomers. More than 10% of interviewees were astronomers now working on the 

computational aspects of science, and another 10% were computer scientists. It was hypothesized 

that individuals in research roles would manage data differently than those whose careers did not 

rely on journal article publication. 
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Current Workforce Total In Sample 
Astronomer 58 
Computational Astronomer 9 
Computer Scientist 9 
Other (non-research) 4 

Total 80 
Table 10 Interviewees organized by workforce 

3.2.2.6	Role	in	SDSS	and	LSST	

Interviewees are grouped by whether they were a member of the SDSS team, the LSST 

team, both teams, or neither team. The way in which team membership was determined was 

described earlier in this chapter. It was hypothesized that team membership would shape the way 

an individual managed their data. 

SDSS or LSST team affiliation Total In Sample 
SDSS team 22 
LSST team 25 
Both 17 
Neither 16 

Total 80 
Table 11 Interviewees organized by role in SDSS and LSST (See also Table 4) 

3.2.2.7	Theorists	

Here, interviewees are clustered according to whether or not they had been involved in 

theoretical astronomy research. Theoretical astronomy is a large component of astronomical 

research, often described in contrast to observational astronomy. An interviewee was considered 

to have been involved in theoretical astronomy if they 1) identified as a theorist in the interview, 

or 2) their research webpage described their work as involving simulations, Monte Carlo 

methods, or theoretical astronomy. Since the interview sample for this dissertation was targeted 

at those who built or used sky survey data, it was less likely these interviewees would also 

identify as theorists. Only about 10% of the interviewees are considered theorists for the 
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purposes of this study. It was hypothesized that those who identify as theorists may manage data 

differently than those who work solely in observational astronomy. 

Theorist? Total In Sample 
Yes 9 
No 71 

Total 80 
Table 12 Interviewees organized by participation in theoretical work 

3.2.3	Ethnography	

Ethnographic work was an important part of the study’s methods. The SDSS and LSST 

teams are distributed across the United States (and internationally). The focus of this study was 

to seek ongoing engagement with SDSS and LSST team members focused on data management. 

Since 2011, the author has spent time in the company of various members of the study 

populations and the larger astronomy community, building relationships with the study 

participants and in particular with key informants. The primary ethnographic fieldwork method 

employed for this study is defined as sustained interactions with key informants. 

 Beginning in 2011, the author visited and began observing SDSS and LSST members at 

their institutions. As with the interviewee locations, these institutions included universities, data 

centers, research institutes, and national laboratories. She recorded in-depth field notes 

describing and analyzing observations of the study populations. Most importantly, she cultivated 

and sustained personal relationships with individuals, and some developed into friendships.  

 The author spent time in the company of the study population in three capacities. Two of 

the ways were in-person, in environments structured by the study populations. Most commonly, 

she spent time with the study populations at their institutions (places of work). She also attended 

their special events, their meetings and conferences, held in other locations. The third way was 

through digitally-mediated interactions using various software for virtual meetings, for example 
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the software GoToMeeting. Most commonly, this enabled the author to join virtual meetings, or 

perform virtual interviews. While not in-person, her presence at virtual meetings was an 

important way to sustain interactions with the study populations. The continued presence at 

meetings served to build community and trust because “extended presence signals commitment 

and sincere interest, opening dialogue with a variety of informants…” (Boellstorff, 2012, p. 66). 

Over the course of the project, the author had sustained interactions with key informants 

at their institutions for more than 17 workweeks, joined in conferences and meetings with the 

community for more than three workweeks, and participated in virtual meetings more than 30 

times. These interactions resulted in spending 21 workweeks in the physical company of study 

populations as well as additional virtual interactions of 30 minutes to 2 hours each on 30 

different days. The summary of sustained interactions with the study populations is presented in 

Table 13. 

Type of Interaction Amount of Interaction 
In-person at study population 
institutions 

17.5 workweeks 

In-person at study population 
conferences and meetings 

3.5 workweeks 

Virtually attending study population 
meetings and conducting interviews 

30 occasions 

Table 13 Author’s sustained interactions with study populations 

Over the course of the time spent with study populations, the author identified a number 

of key informants. Individual study participants are considered “key informants” when they 

become “important guides to insider understandings” of the study population (Lofland & 

Lofland, 1995, p. 61). Key informant relationships can develop into friendships, enabling the 

researcher to understand study populations. These relationships are a strength of this type of 

study. Murchison explains in Ethnography Essentials (2010),  
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“While they aim to interact with and rely on a number of different informants, 
certain individuals turn out to be more skilled as guides and teachers. In many 
instances, ethnographers and their key informants become close friends. Working 
with one or a few key informants can by very productive because the close 
relationship allows you to glean deeper levels of information” (Murchison, 2010, 
p. 91). 
 

 The author developed relationships with key informants both through UCLA CKI team 

membership and also as an individual researcher. In total, she identified 15 key informants for 

the study of astronomy data practices. Five of the relationships were developed through 

participation in the UCLA CKI. These five informants have guided continued investigations into 

astronomy data practices since 2009, prior to the author joining the team. As an individual, she 

began developing relationships with key informants in 2011. She established ten relationships 

with key informants outside the UCLA CKI team; six are members of the astronomy community 

and four are members of the library community working closely with astronomers and 

astronomy data. Seven of the key informants were also interviewees in the 80-interview sample 

for this dissertation; the other 8 key informants were important to the overall research but did not 

fit the operationalized requirements for the dissertation populations. While the identities of the 

key informants are confidential, Table 14 presents some collocated information on the 

informants. Informant names were replaced with unique identification numbers, and institutions 

were replaced with unique identification letters. Most of the key informants primarily were 

affiliated with a university, one was affiliated with a data center, and one was affiliated with a 

research institute. The workforce, career stage, and year the author began a relationship with the 

key informant are indicated in Table 14. 
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Informant 
ID 

Institution 
ID 

Workforce Career Stage 
(in 2015) 

Year 
Relationship 

Began 
01 A Astronomer Faculty Professor 2012 
02 A Astronomer Staff Scientist 2012 
03 B Library Staff Library Staff 2012 
04 B Library Staff Library Staff 2012 
05 B Library Staff Library Staff 2012 
06 C Astronomer Faculty Professor 2012 
07 D Computer Scientist Staff Programmer 2014 
08 E Astronomer Staff Scientist 2012 
09 F Astronomer Staff Scientist 2013 
10 F Library Staff Library Staff 2013 
11 F Astronomer Faculty Professor 2012 
12 G Astronomer Faculty Professor 2011 
13 G Astronomer Graduate Student 2014 
14 G Astronomer Graduate Student 2011 
15 H Astronomer Staff Scientist 2012 
Table 14 Detailed parameter information on the 15 key informants 

3.2.4	Document	analysis	

The author began participating in the UCLA CKI’s larger study of astronomy data 

practices in 2011. Over the years, many SDSS and LSST documents were read or cursorily 

examined. Through the course of her investigations into both sky surveys, a smaller set of 

documents gained significance as the most prominent information necessary to understand data 

practices in the two teams. These documents were chosen for deep analysis based on the number 

of citations, mentions by interviewees, and use during observed activities. Each of the documents 

used in the sample had been referred to more than once during an interview or ethnographic 

observations. Document selection is one example of how the three research methods informed 

one another. This smaller set of documents was scrutinized more systematically and thoroughly 

than the full corpus of information. The deeply analyzed texts from the SDSS project range in 
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time from 1993 to 2011; documents from the LSST collaboration range from 2005 to 2015. 

These timelines each cover the majority time period of the project’s existence.  

Analysis of team documentation was one important avenue of investigation. As Latour 

explains in Science in Action, scientific literature is a form of rhetoric, or argument building, as 

opposed to a mere presentation of facts (1987, Chapter 1). While documents released on behalf 

of a project may imply agreement by all project members, individuals with dissimilar purposes 

wrote these documents to specific audiences. The documents were analyzed with the author and 

audience in mind. Team documents may be attempts to standardize meaning among disparate 

geographic locations and kinds of expertise, however all documents are interpreted at the local 

level. The meanings of the documents are inseparable from the authors and readers (Ribes & 

Finholt, 2009). This extensive document analysis for this dissertation was critical because, 

“Texts are understood to be mediators of both explicit and implicit messages, and through a 

forensic examination of a text its deeper meanings can be revealed and understood…” (Kitchin, 

2014, p. 190).  

Four types of writing styles emerged from careful document analysis. By comparing the 

kinds of documents and intended audiences, three distinct writing style patterns emerged from 

the documents: Promotional and Aspirational, Operational, and Reporting. Promotional and 

Aspirational documents are those that are used to plan or solicit support for the project. 

Operational documents are used as guidelines to set policies or explain procedures. Reporting 

documents describe the status of the project. Each of these writing styles employs a distinct 

combination of document genres and intended audience (see Table 15).  
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Writing Styles Document Genres Intended Audiences 

Promotional, 
Aspirational 

Grant proposals, Planning 
reports and other 
documents, presentations 
and articles, Memoranda of 
Understanding 

Potential funders, existing funding 
agencies, the larger astronomy 
discipline including potential future 
collaboration members, current 
collaboration members 

Operational Technical journal articles, 
internal documents, 
presentations and articles, 
Memoranda of 
Understanding 

Current collaboration members, 
potential data end-users 

Reporting Funding final reports, Data 
release journal articles, 
Project websites, 
presentations and articles 

Funding agencies, all potential data 
end-users, general scientific 
community, general public 

Table 15 The kinds of SDSS and LSST documents and writing styles 

The document corpus enabled analysis of SDSS and LSST across time and type of 

document. For example, grant proposals provided a glimpse into some of the earlier iterations of 

the project, while final reports (also prepared for funders) provided hindsight interpretations. 

Alternatively, grant proposals and final reports are often promotional while other genres utilize 

different writing tones. Publicly released journal articles and planning documents set forth data 

policies and report information for future data end-users. For the SDSS, data release articles 

demonstrated how the collaboration defined data to the end-user. The LSST has yet to release 

data, and therefore no data release articles were available. The closely analyzed document corpus 

also included both project websites, which revealed how the project presents itself to the public. 

Interviewees and observed ethnographic participants recommended additional presentations and 

papers for analysis. The examined document collection included various writing genres spanning 

each project’s inception through 2015. The corpus covers the breadth of the project over time 

and across different levels of formality, as well as covering the depth provided by journal articles 

and reports. 



  
  

76 
 

3.3	Validity	and	Reliability	

Interviews encompassed the largest amount of time devoted to data collection and 

analysis. However, document analysis and ethnographic methods were complementary, often 

used to support and frame the interview findings over the course of this multi-year study. For 

example, sustained interactions with key informants were critical to identifying important team 

documents for deeper analysis, as described above. Often, interviews were used to understand 

the context surrounding the documents and unearth their underlying meaning. The three methods 

were used to validate each other, often providing more nuance or context to the information 

obtained by the other methods. 

As described earlier, the interview protocols used in this study were modified from those 

used by the UCLA CKI longitudinal work. The consistency of interview protocols over time is a 

strength of the UCLA CKI team research. This dissertation is included in the CKI’s longitudinal, 

cross-disciplinary study of knowledge infrastructures and scientific data practices. The strength 

of the longitudinal team research means that many interview questions and protocol themes were 

generated before the team began specifically researching the astronomy community in 2009. 

Ethnography and document analysis were important methods to support the interviews and to 

ensure the details specific to astronomy research were revealed. These additional methods also 

helped create context and dimension to assist in performing and analyzing the interviews. In turn, 

the interviews provided entrée to relationships with study populations, some who evolved into 

key informants. The three methods informed one another, over time, in the study planning, 

execution, and analysis. 

The qualitative nature of this three-method study provides a high level of validity to its 

findings. The research methods were chosen to “follow the best of all guides, scientists 
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themselves” (Latour, 1987, p. 21). The ability for the author to visit 23 different institutions, 

while participating in sustained conversations with key informants over years strengthens the 

validity of the work. Indeed, “’Being there’ is a powerful technique for gaining insights into the 

nature of human affairs in all their rich complexity,” showing the high level of validity obtained 

through fieldwork in this study (Babbie, 2007, pp. 313–314).  

The use of three methods to qualify the findings of each other method increased the level 

of validity in the study. The time spent “on the ground” performing in-person interviews and 

ethnography also increased the quality of the study. However, the research was weaker in 

reliability due to the personal nature of these methods (Babbie, 2007, p. 314). For example, 

interviewee and informant opinions may change over the course of time and due to experience, 

as cultures are in flux and not stagnant (Babbie, 2007, p. 230; Murchison, 2010, p. 11). This 

study combatted threats to reliability by conducting complementary document analysis, 

interviews, and sustained interactions with key informants. These three methods were 

specifically used over the course of years to prevent drawing conclusions from only a “snapshot” 

in the timeline of the projects or from interactions with one individual. The interviewee 

demographic matrix was developed to ensure a single perspective was not prioritized over other 

voices. The use of ethnography further broadened the number of perspectives examined for the 

study. The document analysis was also conducted with a critical perspective, ensuring the 

motivations of the authors were considered. Each of the three research methods were used to 

certify a broad array of perspectives were included in this study, over a period of years, and with 

careful consideration of the potential biases and motivations of the participants. 

3.4	Analysis	

The collected transcripts, interview notes, ethnographic field notes, and the document 
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corpus were analyzed based on this dissertation’s research questions. These materials were coded 

using the “UCLA Data Conservancy Data Practices Interview Code Book.” The UCLA CKI 

created the codebook through an iterative process beginning in 2006. The codebook was adapted 

as needed based on emerging themes, under the principles of grounded theory (Clarke, 2005; 

Glaser & Strauss, 1967; Star, 1999). The continued use of the codebook, beyond that of this 

dissertation, will benefit the UCLA CKI’s longitudinal analysis of scientific data practices across 

disciplines.  

NVivo 10 qualitative analysis software was used for all collected materials, which were 

coded using the full codebook. Passages ranged from requiring no relevant codes, one code, and 

sometimes a handful of codes were relevant for the same passage. The resulting NVivo coding 

file remains available and in use by the UCLA CKI team to support future research. 

For the analysis of each research question, findings were drawn based on identified 

themes in the NVivo software, according to the codebook. The author’s coding process informed 

the shape of the results of this dissertation, whether or not a specific passage was captured 

specifically for each research question. The analysis of each of the research questions was 

focused on a single code from the codebook. The three codes used in this study (one for each of 

the cumulative research questions, see Table 16), were from the UCLA CKI codebook and best 

reflected each research question. Each code provided more than 200 pages of relevant interview 

passages, observational and interview field notes, as well as passages from documentation. The 

author printed the pages of relevant materials for each code. Through iterative reading and 

analysis of the passages, subcodes were identified within each research question. The iterative 

coding of interviews, field notes, and documents resulted in the “interpretive template” 

(Parmiggiani, Monteiro, & Hepsø, 2015) detailed in Table 16. The table presents each research 
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question, the existing UCLA CKI code used to pull relevant passages for each research question, 

and the emergent subcodes used to further analyze the passages. The use of three existing codes 

enables future comparisons between the UCLA CKI’s multiple disciplinary case studies. While 

the existing codes will enable that continuity at the CKI, the emergent subcodes enabled the 

details of the SDSS and LSST case studies to surface for this dissertation. These subcodes arose 

as the themes most commonly discussed in the interviews. Each population or code was analyzed 

in a disorganized manner to ensure the subcodes were identified iteratively and by moving 

between populations, interviews, codes, and research questions. This technique enabled emergent 

themes within each code to guide the way themes emerged in the other codes. The Results 

chapter of this dissertation provides the full evidence for each emergent code and how those 

codes were analyzed. 

Research Question  Existing Codes Emergent Subcodes 
What are astronomy research 
data? 

Data Definition See Table 21 Emergent “Data 
Characteristics”  

What is data management in 
astronomy? 
 

Data Organization 
and Archival 
Storage 

Data Collection 
Data Storage, Processing, Transfer 
Long-term Serving & Archiving 

What expertise is applied to 
the management of data? 

Important Skills, 
Abilities 

Domain Knowledge 
Computational Knowledge 

Table 16 Research questions and associated codes 

3.5	Ethical	Standards	

This dissertation was conducted with the highest ethical regard. The author completed the 

CITI training and is a member of the UCLA CKI Institutional Review Board (IRB) approved 

protocol #10-000909. Dissertation interviews were conducted with the full consent of 

participating interviewees who were provided with consent information documents and asked to 

sign IRB-approved consent forms [See APPENDIX IV]. Consent materials informed each 

interviewee of the research scope and enabled the interviewee to make an educated decision as to 
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whether or not to opt-in to the study. In addition to the consent materials, an IRB-approved Deed 

of Gift form [See APPENDIX IV] was used for all recorded interviews. The Deed of Gift 

document was signed by the interviewee and ensures the audio recording and transcription can 

be used and retained by the interviewer and the UCLA CKI research team into the future. 

Interviewees had the right to complete each form as they felt comfortable, and the right to 

end participation in the study at any time. The privileges of the individual continue to be 

respected. Interviewees were asked always and never coerced to participate. Many potential 

interviewees never responded to two email requests for an interview. For example, for a long 

research trip in late winter 2015, the author contacted 59 potential interviewees before arriving at 

the destination institutions. These 59 contacts resulted in 29 interviews, revealing a 49% success 

rate. For this period in 2015, less than half of contacted individuals agreed and were able to find 

the time to be interviewed for this study. Choices to ignore a second e-mail interview request and 

requests not to be interviewed were always honored.  

Interviewees were not quoted by name in this document nor in subsequent publications. 

While full anonymity is impossible due to the nature of in-person interviews (Babbie, 2007, pp. 

64–65; Lofland & Lofland, 1995, pp. 43–44), all efforts continue to be made to maintain the 

confidentiality of interviewees under approval of the UCLA CKI IRB-approved study (National 

Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, 

1978; UCLA Office of Research Administration, 2015). 

Study participants are ensured confidentiality. When gender-based pronouns are used to 

reference interviewees in this document, the genders have been randomly assigned to each 

interviewee. For the purposes of confidentiality, all interviewees have been assigned surname 

pseudonyms within this dissertation. The surname pseudonyms were randomly assigned to each 
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interviewee from the United States’ most common surnames according to the US Census (US 

Census Bureau, 2014). When an interview is quoted, a citation is included. The citation 

references the interviewee’s pseudonym, the career stage of the interviewee at the time of the 

interview (see 3.2.2.3 Career stage), and the year of the interview (see 3.2.2.2 Year of interview). 

For example, the following citation: (Reyes, Graduate Student, 2014) would reference an 

interview with participant Reyes who was a graduate student at the time of the interview in 2014.  
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4 Results 

The Sloan Digital Sky Survey (SDSS) and Large Synoptic Survey Telescope (LSST) 

collaborations are large, modern sky surveys. The SDSS was conceived in the late 1980s, and 

SDSS I and II operations ran from 2005-2008. At the time of this writing, the SDSS I and II data 

have been collected, the SDSS III has completed operations, and the SDSS IV is collecting data. 

The first presentation about what is now called the Large Synoptic Survey Telescope (LSST) 

was given in 1998, ten years after the organization known today as SDSS was established. LSST 

commenced construction in 2014, and the team anticipates beginning data collection in 2022. 

Often referred to as the next generation of SDSS, considerable personnel and institutional 

overlap exist between the two projects. Some scientists whose careers grew with the SDSS now 

occupy LSST leadership roles. However, LSST will be conducted at a scale beyond the original 

SDSS in terms of survey years, project cost, data volume, and scientific aims. 

The objective of this dissertation research is to garner further knowledge about how data 

management differs between these sky survey populations through accumulating research 

questions. Research Question 1 (RQ1) examines how data are understood by SDSS and LSST 

team members and end-users. The successive research questions then build on this foundation. 

Given how study participants understand data, RQ2 examines how these participants 

comprehend what it means to manage those data. Given how data management is interpreted, 

RQ3 next examines what kinds of expertise are viewed as necessary for data management. The 

findings for RQ1 to RQ3 are presented here in the Results chapter based on three factors: 

research question, research method, and study population. In terms of research method, 

document analysis results are presented first, semi-structured interview results second, 

ethnography findings third. Study populations are described first by SDSS team members, then 
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LSST team members, and finally by SDSS data end-users. RQ4 clearly examines the different 

understandings of data between study participants given the seven individual demographic 

variables in the study (refer back to 3.2.2 Semi-structured interviews for an explanation of each 

demographic variable). RQ4 builds on the combination of the first three questions and is 

presented by the seven demographic variables in the study population matrix. The results are 

now presented sequentially by research question.  

4.1	RQ1	Results:	What	are	Scientific	Astronomy	Data?	

The first research question asks: “What are scientific astronomy data?” These results 

explore the three study populations (SDSS team members, LSST team members, and SDSS data 

end-users) and how individuals within each population define astronomy data. After fully coding 

the documents, interview transcripts, and field notes, the passages coded with “Data Definition” 

were extracted from the NVivo qualitative coding software for further scrutiny. The “Data 

Definition” code is intended to capture notions of how astronomy data, broadly construed, are 

interpreted and defined.  

After close examination of the extracted passages from all three methods, patterns of how 

data were discussed emerged. These patterns were indicated with descriptive “subcodes.” Table 

17 presents the subcodes and indicates the method from which each subcode emerged. An “x” in 

the table indicates the perspective emerged from evidence using that research method. 

Statements made specifically about the SDSS or LSST are indicated as such. 
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Method: 
Emergent subcode, 
Data are ___: 

Document 
Analysis 

Interview 
Transcripts 

Ethnographic 
Field notes 

Information cleaned and processed to a 
certain degree 

SDSS 
LSST 

x  

Images, Spectra, and Catalogs SDSS 
LSST 

x  

Information that has value through its 
relationship to other information 

SDSS   

Information that is made available to 
scientific end-users, the general public, 
or both 

SDSS 
LSST 

  

Digital Information; Bits  x  
Information from or used by a specific 
set of people 

 x LSST 

Evidence of natural phenomena  x  
Information that has been used to 
conduct scientific research 

 x  

Information from a specific source  x LSST 
Photons that are processed  x  
Information from a specific source that 
are processed 

 x  

Images, Spectra, and Catalogs at various 
levels of processing 

 x  

Pixels that are processed into Images, 
Spectra, and Catalogs 

 x  

Information from a specific source that 
are processed into Images, Spectra, and 
Catalogs 

 x  

The Data Archive Server (DAS) SDSS  SDSS 
The Catalog Archive Server (CAS) SDSS  SDSS 
Software SDSS  SDSS 
Raw Data SDSS  SDSS 
The Help Desk   SDSS 
The Administrative Archive   SDSS 
The Operational Database SDSS   
The Scientific Database SDSS   
LSST Level 1 LSST   
LSST Level 2 LSST   
LSST Level 3 LSST   
The work necessary to prepare for data 
collection 

LSST   

Table 17 Emergent “Data Characteristics” subcodes 
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Table 17 provides a glimpse of the 26 ways data were described between each of the 

three research methods used in this study. Next, the specific results that revealed these 26 

subcodes are presented: first from the documents, then the interviews, and finally from the 

ethnographic observations. Analysis and refinement of these emergent subcodes is presented at 

the conclusion of the RQ1 findings (see 4.1.4 RQ1 results summary).  

4.1.1 RQ1 documentation results 

The following results reveal how data were described within SDSS and LSST project 

documentation. Documents closely examined for the SDSS project range in time from 1993-

2011; documents from the LSST collaboration range from 2005-2015. These intervals cover the 

majority of each project’s duration (see APPENDIX I and APPENDIX II for succinct timelines 

of each project). The Methods chapter provides a more detailed description of the document 

corpus.  

4.1.1.1 SDSS data in documents 

SDSS documentation analysis reveals how the boundaries and definitions of the SDSS 

data changed over time. While presentations and conference proceedings are the most common 

documents to explicitly define SDSS data, a number of genres also discuss the boundaries of the 

data. “The SDSS data” are referred to in a number of ways: “database” (Abazajian et al., 2003; 

Gunn & Knapp, 1993), “data bank” (Margon, 1998), “data products” (Astrophysical Research 

Consortium, 2008; Boroski, 2007; Kent, 1994; York et al., 2000), “data sets” (Szalay et al., 

1999), “data archive” (Astrophysical Research Consortium, 2008; Stoughton et al., 2002; Yanny, 

2011), “the data” (Kron, Gunn, Weinberg, Boroski, & Evans, 2008; Xiang, 2008), “the SDSS 

Archive” (Szalay et al., 2000), and “science archive” (Astrophysical Research Consortium, 2000, 
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2005; Brunner et al., 1996; Kunszt, Szalay, Csabai, & Thakar, 2000). The terms data base (sic) 

and data bank (sic) are only used through the first couple of data releases; the term data archive 

continues to be used often over the course of the project. While SDSS data are repeatedly 

referenced in different documents, the described boundaries of the data archive differ. Individual 

documents referred to the SDSS data as though there were an agreed-upon definition, but close 

analysis reveals the boundaries differed through time and by author. Overall, the most common 

way SDSS data were described in project documents was based on their content, which includes: 

images (photometric data), spectra (spectroscopic data), and catalogs (object attributes derived 

from the images and spectra).  

By the time SDSS I and II data collection neared completion, plans were already 

underway to ensure the data could be archived and served into the near future. Multiple 

institutions were chosen to manage the SDSS data following data collection. Planning meetings 

between the SDSS leadership, represented by the Astrophysical Research Consortium, and the 

chosen astronomy departments and university libraries resulted in Memoranda of Understanding 

(MOUs). Each MOU included the Appendix “SDSS Long-Term Scientific Data Archive.” The 

Appendix “summarizes the SDSS data products that will be maintained in the long-term 

scientific data archive” (Astrophysical Research Consortium, 2008). After multiple years of 

planning, the documents were signed near the end of 2008, and the participating institutions 

archived and served the SDSS data from January 2009-December 2013. By the end of SDSS data 

collection in 2008, “the SDSS data” were defined in the MOUs as consisting of the: Data 

Archive Server (DAS), Catalog Archive Server (CAS), Survey Software, and Raw Data. While 

the MOUs and Appendix appear to indicate a shared understanding of the boundaries of the 

SDSS dataset, analysis of the implementation of these agreements revealed divergent 



  
  

87 
 

understandings. See 4.1.3.1 SDSS data in ethnography for observational findings explaining how 

these MOU documents were interpreted and implemented in practice. 

In addition to describing data as images, spectra, and catalogs, or based on the contents of 

the “SDSS Long-Term Scientific Data Archive,” three additional ways of describing the data 

emerged from the document corpus: the level of data processing, the relationships between data 

products, and the internal and external divisions of data. 

v Levels	of	data	processing	

The phrase “levels of data processing” is used here to refer to the ways and extent by 

which astronomy data are processed. A number of software pipelines processed SDSS data to 

ensure the raw data from the detectors were calibrated and smoothed, and the artifacts from the 

detector, also referred to as systematics, were cleaned. Documents often refer to data in terms of 

the level of data processing, most commonly in policy papers and presentations. The processed, 

cleaned data were circulated through formal data releases, and some data were processed further 

by end-users into other derived data products (Kron, Gunn, Strauss, Boroski, & Evans, 2005). 

For many, the data release was the point at which data were considered “processed” as opposed 

to “raw.” These documents refer to data in terms of multiple levels of data processing. SDSS 

documents describe the importance of retaining copies of the data at each point along the 

continuum of data processing: “The data should be retained as a full data set of all pixels on the 

sky as well as in reduced data sets for later analysis and distribution” (Astrophysical Research 

Consortium, 2000).  
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v Relationships	between	data	products	

SDSS database builders authored documents regarding the importance of retaining 

relationships between datasets. SDSS data releases include both flat files and a relational 

database. Builders explained the importance of capturing both types of files: “The success of the 

archive depends on capturing the spatial nature of this large-scale scientific data” (Szalay et al., 

1999, p. 4). The SDSS science archive is described not as a stand-alone data product, but in 

relation to other aspects of the project. Data here are described by their relationships to other 

information, including other data and the tools and services that enable community access and 

retrieval. The relationships between images, spectra, and catalogs are related inextricably to 

other data, information sources, and tools that enable the scientific usefulness of the data. 

v Public	availability	of	SDSS	data	

Prior to data collection, collaboration documents used the terms SDSS Archive or data to 

encompass all information throughout the lifetime of the project, from the internal data necessary 

to build and run the survey, through the final data products as delivered to external end-users. 

For example, Huang et al. (1995) described the importance of the data archive for internal 

collaborators in terms of the “development and testing of software algorithms; quality analysis 

on both the raw and processed data; selection of spectroscopic targets from the photometric 

catalogs; and scientific analysis…” (1995, sec. Abstract). Documents written early in the 

collaboration clarified the difference between, but noted the importance of both the data used to 

run the survey, and the data released for scientific end-use. After data collection was completed, 

the term “science archive” referred only to the data available to end-users, and stopped including 

the data used in survey operations. After the first few data releases, the operational database, the 
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information necessary for survey operations, was no longer referred to as a part of the science 

archive.  

The Principles of Operation policy documents (released in 2000 for SDSS I and 2005 for 

SDSS II) purport to present a formalized and mutual definition of the science archive. According 

to these documents, the science archive encompasses all SDSS data and information necessary 

for scientific results, which was acknowledged as the main product of the survey (Astrophysical 

Research Consortium, 2005, sec. 1.3). Data base (sic) or data bank (sic) may refer to information 

for survey operations or end-user data; however, data products, data archive, and science archive 

are consistently used only to describe information intended for scientific end-use. In these later 

documents, data are described as information used in scientific research, and not the data used to 

operate the survey itself. 

Some SDSS information was designated for internal project use, while other information 

was intended for external end-users. Documents authored by upper SDSS administrators 

characterize SDSS data by distinguishing information used within the team from data released to 

the end-user community. The public release of SDSS data was an important milestone in project 

development, as it ensured continued funding support and support from the end-user community. 

Richard Kron, et al. (2008) describes the SDSS data as consisting of “object catalogs, imaging 

data, and spectra,” but goes on to note these data are, “all available through the SDSS web site 

http://www.sdss.org, along with detailed documentation and powerful search tools” (Kron et al., 

2008, p. 2). Thus, these authors describe the SDSS dataset as information available to a broad 

range of scientists. Data use was contingent on the SDSS team’s ability to make the data public, 

accessible, and retrievable: “The data are publicly available in searchable databases and flat 
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files…” (Kron et al., 2005, p. 1). Here, only the information destined for end-users are 

considered data, while internal, operational information are not considered data.  

4.1.1.2 LSST data in documents 

LSST documents and presentations note that the project will have produced the most 

data-voluminous optical survey in history when the ten-year operations are completed (now 

expected to commence in 2022). According to a presentation by the LSST Project Scientist for 

Data Management, the data will be the most important outcome of the project: “the ultimate 

deliverable of LSST is not the telescope, nor the instruments; it is the fully reduced data. All 

science will be [sic] come from survey catalogs and images” (Juric, 2014, sec. 2). LSST staff 

refer to “fully reduced” data as data that has completed its processing by the LSST team and is 

ready for end-users. Juric’s statement references the most common way data were described in 

documents, as scientific products: images, spectra, and catalogs. Through different authors and 

document genres, the project employs grandiose language to describe the size and quality of the 

expected data, software tools, and infrastructures to support data collection, processing, and 

analysis. 

LSST document analysis reveals documents representing different genres define the 

boundaries of “the LSST data” differently. LSST data have been referred to as a “data set” 

(National Science Foundation, 2005; Pike, Stein, Szalay, & Tyson, 2001), “data” (Becla et al., 

2005; Ivezić et al., 2011), and a “database” (Kantor et al., 2007; National Science Foundation, 

2012); however, LSST data are most commonly referred to as “data products” (Becla et al., 

2006; Freemon & Kantor, 2013; Juric et al., 2013; LSST Science Collaboration et al., 2009; 

National Science Foundation, 2010a). In addition to referring to data as images, spectra, and 

catalogs, three themes emerged summarizing the ways LSST documents reference LSST data. 
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First, similar to the SDSS documents, the data are referred to by the level of data processing. 

Next, documents, and in particular the LSST website, refer to data, according to the work 

required to prepare the data for scientific end-use. Finally, documents written to interact with 

funding agencies often refer to data in terms of the level of public availability.  

v Levels	of	data	processing		

The LSST Data Processing Plan references three distinct levels of LSST data; Figure 6 

presents the 2015 website description of these three levels (“Data products | LSST public 

website,” 2015; Juric, 2014, sec. 4). Level 1 data products are often called alerts, and provide 

recent event notifications. The current intention is to distribute these alerts world-wide within 60 

seconds of each event (Juric, 2014, sec. 4). Level 2 data will be disseminated online in data 

releases, similar to the way SDSS data were collected and made available. These data will be 

released to LSST membership countries and institutions on an approximate annual basis. While 

not referencing data per se, LSST’s Level 3 tier designates an infrastructure available for end-

users to engage in scientific investigations using LSST data. For example, software, APIs, and 

computing time will be made available to assist LSST data end-users in processing and analyzing 

LSST data. These three levels are distinct from the NASA data levels (as detailed earlier in 2.4.1 

US space- and ground-based astronomy), and detail instead the manner in which LSST 

specifically will make its data and resources available.  



  
  

92 
 

 

Figure 6 The three LSST data levels (“Data products | LSST public website,” 2015; Juric, 2014, sec. 4) 

v Relationship	between	data	products	and	data	management	tasks	

Often, LSST data are described in relationship to the amount and kind of work remaining 

to prepare for the collection, processing, and usability of the LSST data. For example, Juric 

reported on data management “roles” however these data management roles were established 

without a project-wide definition of data (2014, sec. 10). Instead, the boundaries of LSST data 

were assumed, and the data or database was compared to the work necessary to construct the 

science pipelines, middleware, and user interfaces (Juric, 2014, sec. 17).  

The summer 2015 LSST website revision also described LSST data relative to the 

remaining data management tasks necessary to prepare for the survey. The website audience 

includes team members, data end-users, and the general public. However, the website depicted 

the LSST data differently on each page. The data management page expressly described the 

LSST data in terms of the work necessary for project completion. The page stated the following 

as the challenges: “processing such a large volume of data, converting the raw images into a 

faithful representation of the universe, implementing automated data quality assessment and 
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automated discovery of moving or transient sources, and archiving the results in useful form for 

a broad community of users…” (“Data management | LSST public website,” 2015). The website 

goes into extensive detail on the data itself in five separate pages, describing the same data 

products using slightly different language on each page (“Data management system requirements 

| LSST public website,” 2015; “Data products | LSST public website,” 2015; “Petascale R&D 

challenges | LSST public website,” 2015; “Pipelines | LSST public website,” 2015; “Technology 

Innovation | LSST public website,” 2015). Consistently, the LSST presentations and website 

refer to the data in terms of the work still required to collect, manage, and use the data.  

v Public	availability	of	LSST	data	

LSST NSF grant proposals describe the importance of LSST data in terms of the 

international benefit to science (National Science Foundation, 2005, 2010a, 2012, 2014a). In 

these documents, data are construed by their accessibility to astronomers and the public. In 2005, 

LSST acquired an 11-million-dollar planning grant from the NSF. In the application, the 

collaboration promised to “produce the largest non-proprietary data set in the world” (National 

Science Foundation, 2005). The grant proposal refers to data in terms of its accessibility and 

potential for broad scientific impact. 

The tools created by the LSST collaboration aim to benefit astronomical work well 

beyond that of project members. The 2010 proposal explains, “In addition, the [larger 

astronomy] community will see significant technical overlap between the LSST and the needs of 

other imaging systems and software under development in the national security arena” (National 

Science Foundation, 2010a). In addition to pedagogical training of the next generation of 

scientists and public education resources, the proposals indicate the development of tools to 

ensure the scientific and public accessibility of LSST data (National Science Foundation, 2005). 
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These NSF proposals stress the importance of data access by stating “the broader impacts of the 

LSST will be profound, as scientists, the public, and schoolchildren around the world will have 

ready access to the data” (National Science Foundation, 2005, 2010a). The 2012 NSF proposal 

pinpoints LSST’s mission to broadly benefit astronomy by explaining that the data management 

system is being developed open source (National Science Foundation, 2012). The writing 

focused strategically on LSST’s public, broader impacts to enable the LSST to attract and retain 

funders from the United States and around the world. 

4.1.2 RQ1 interview results 

Analysis of eighty semi-structured interviews generated the following results for the first 

research question. As a component of each interview, interviewees specified their definition of 

astronomy data. Interview results for RQ1 - What are astronomy research data? - are presented 

from each study population.   

4.1.2.2	How	responses	were	elicited	

All interviewees discussed how they understood astronomy data. However, their 

descriptions were evoked in one of three ways. Twenty-five interviewees defined data indirectly 

over the course of the interview, doing so without a specific prompt or question from the 

interviewer. These freely expressed definitions are important because they emerged organically, 

thus reducing the potential bias of the interviewer through the wording of the question. When 

interviewees did not define data to the satisfaction of the interviewer, interviewees were 

explicitly asked for a definition. Thirty-three interviewees were directly asked to define 

astronomy data. Twenty-three end-user interviewees were interviewed using the “Follow the 

Data” protocol, and their understanding of data emerged from direct questioning about the 
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information they used to write a particular journal article. While an interview protocol was used 

for each semi-structured interview, interviewees naturally answered questions to varying degrees 

of depth. 

v SDSS	and	LSST	team	members	

Of the SDSS and LSST team interviews, 24 interviewees expressed their definition of 

data spontaneously. When interviewees did not volunteer a sufficient explanation of how they 

understood data, they were asked. Thirty-three interviewees were asked in this explicit manner. 

Table 18 provides a list of the ways interviewees were asked about their understanding of data. 

Manner in which data definition 
responses were elicited 

Interviewee 
Population 

Number of Respondents who 
were asked this question 

Within your work, what is 
typically considered to be “data?” 

SDSS Team 11 

What do you consider to be the 
LSST data? 

LSST Team 22 

Response provided spontaneously SDSS and LSST Team 24 
 Table 18 Manner in which SDSS and LSST team interviewee data definition responses were elicited 

v SDSS	data	end-users	

SDSS data end-users were interviewed using the “Follow the Data” interview protocol, 

which included asking about data through a practical exercise. The exercise asked SDSS data 

end-users to discuss how they understood their data use in light of one article. Interviewees were 

selected for this task when they co-authored a recent article that used SDSS data (according to 

the title or abstract). Further details about the operationalization of the “end-user” participants 

and the interview protocol are available in the Methods chapter. 

The interviewer read the relevant journal article prior to each interview and generated a 

list of data sources that she understood were used in the article. The interviewees then were 

asked to verify the list during the interview. An example list, which is an amalgam of many 
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interviews to ensure article and author confidentiality, is provided in Table 19. Specifically 

relevant for RQ1, the 23 end-user interviewees were asked, “From your article, we identified [#] 

sources of data. Could you verify this list is correct? Are these all the sources you used?” The 

interviewees’ responses to this question constitute the RQ1 SDSS end-user findings. 

SOURCE TYPE EXAMPLE 
Public Archival Survey Data SDSS Data Release 7, Catalina Real-Time Transient 

Survey 
Proprietary Survey Data Pan-STARRS  
PI-Collected data Hubble Space Telescope images; Keck spectra 
Value-Added Catalog NYU Value-Added Galaxy Catalog (Blanton et al., 2005)  
Code/Software Supersmoother (Reimann, 1994) 
Mathematical Technique/Algorithm Linear Regression 
Resources/ Processing Center/ 
Archive 

MAST; SIMBAD 

Table 19 Example source-list for SDSS end-user article-based interviews 

Journal article topics represented a range of observational astronomical inquiry. Some 

articles reported results from combining data from multiple sources. For example, one of the 

articles describes the creation of a new SDSS value-added catalog. The authors took an existing 

value-added catalog and added radio and spectroscopic data to create a new, more precise 

catalog. Another astronomer utilizing this technique expounded, “So the short answer… is we 

combined two existing models, each with their own strengths and weaknesses to get a third 

model” (Garcia, Staff Scientist, 2011). Other studies created new rare object catalogs from a 

certain region of the sky by combining multiple datasets. Still others provided detailed reports on 

individual astronomical objects, created new dust maps of the sky, located and studied 

gravitational lenses, or reported on the effectiveness of automated data collection and statistical 

techniques. These various journal article findings relied, in part or in full, on SDSS data.  

The interviewer took a very broad potential definition of “data” and “use” to construct the 

data list (refer back to Table 19 as an example). Some of the lists consisted of a dozen or more 
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potential sources. While the interviewer brought a very broadly construed source-list to the 

interview, only three interviewees chose to make changes. Wilson clarified that the Monte Carlo 

(simulation) listed on the source list should be identified as a “technique” instead of data. He 

explained, “It’s not a data source, but instead it’s actually just a mathematical technique that was 

used…” (Wilson, Graduate Student, 2015). Rodriguez wanted to clarify that the Supersmoother 

was software and not data, and another listed source was an analysis method instead of data 

(Rodriguez, Professor, 2011). Lee referred to SDSS data as different from the other kinds of data 

used in his journal article. He stated, “Yeah, so we used Sloan to select objects, but we couldn't 

do the science we wanted to with the Sloan data. So, for us, Sloan is a finder” (Lee, Post-Doc, 

2013). The other 20 interviewees confirmed the data source lists as identified by the interviewer. 

4.1.2.3	SDSS	team	

The following findings present the different ways SDSS team interviewees defined data 

during the interviews. As described in the introduction to the RQ1 Results, the following results 

summarize the findings culled from the code “Data Definition,” and are organized by emergent 

subcode. Within each subsection, the number of interviewees who described data in that way are 

noted, and a representative set of quotes illustrate the meaning of the emergent subcode.  

v Content	

Six interviewees, questioned using SDSS interview protocols, discussed astronomy data 

in terms of the content of the data. These individuals discussed astronomy data as encompassing 

images, spectra, and catalogs. For example, James described the data she uses in her research: 

“So, definitely, for me it is essential to have the spectra. Surveys… they are great, because they 

will have the images and everything. But for me without spectra it's tough” (James, Professor, 
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2015). Flores explained data similarly as involving, “…all photographic and spectra. Spectra is 

photographic, but it's photographs of spectrum” (Flores, Staff Engineer, 2015). Lopez described 

collecting data from various sources and then generating catalogs from those images and spectra 

(Lopez, Professor 2013). Each of these six interviewees described astronomy data as images, 

spectra, and catalogs.  

v State	

Six interviewees from the SDSS team interviews described data in relation to the current 

state of the data, specifically in terms of the levels of data processing. Martin explained that in 

order to prepare data for scientific analysis, data must first undergo numerous processing stages 

(Martin, Staff Scientist, 2012). Clark mentioned multiple levels of data, including an early stage 

when the instruments are run without “expecting to get science out,” raw data, and transformed 

data (Clark, Research Programmer, 2013). Brooks described how NASA science centers ideally 

archive data at each of the multiple levels of processing. He explained, “So, yes, [NASA science 

centers] they're doing a great job. … So they preserve the raw data from the space craft and then 

these high level data products” (Brooks, Professor, 2015). These interviewees all spoke about 

data by focusing on the extent of processing. 

v Use	

Four SDSS team members described data in terms of its scientific usability. These 

interviewees described data in terms of its potential usefulness for specific inquiries. For 

example, one interviewee described data in the context of its use in publications. When asked 

about the data from a recent publication, he explained, “The actual data are online. … The paper 

doesn't have any data actually. It has a bunch of words and a few pictures and a table of numbers 
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or two, but the data is far too large” (Thomas, Professor, 2012). Gray described data in terms of 

precision, which he based on his current project. He explained, “I want to write the papers for 

those two things before we have any data. I want to take the simulations, treat them as if the real 

data, and I want to publish a paper based on that” (Gray, Professor, 2015). Gray defines data as 

information that is useful to his scientific work, whether the data are simulated or observations. 

These interviewees distinguish their data based on the scientific objective for which the data are 

being used.  

v Format	

Two SDSS interviewees referred to data in terms of its digital nature. For example, Harris 

used the term data “loosely,” when he explained, “Data to me is anything with numbers…” 

(Harris, Staff Scientist, 2013). Gonzalez also described data as any information obtained from 

scientific instruments. He elaborated, “The analog of the digital converter that brings us a file, so 

that we call data. And so, it could be pixels, it could be quantities that derive from the pixels, that 

would be data too” (Gonzalez, Professor, 2013). These interviewees referenced data by 

describing aspects of data as digital information. 

v Source	

 One SDSS team interviewee described data as anything from a specific project’s 

instruments. Walker described the SDSS data as information involved in the SDSS “project 

history,” or as the information generated by the SDSS project (Walker, Project Manager, 2013). 

This interviewee referred to data as information from a specific source or group of people. 
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v Evidence	

Two SDSS team members described data as evidence of phenomena. Cooper 

characterized data as, “any inferred quantity from the sky or from a simulation” (Cooper, 

Professor, 2015). Anderson differentiated between data and understanding, in which data are 

information collected about the universe (Anderson, Emeritus Professor, 2012). These 

interviewees labeled data as evidence of the natural world. 

v Content	and	state	

Two interviewees described data based on both its content and its state. In other words, 

these interviewees discussed images, spectra, and catalogs based on their level of data 

processing. Wilson described raw data as images or spectra processed into usable data, which are 

then reduced into data products (for example, catalogs) (Wilson, Graduate Student, 2011). Carter 

agreed, stating that within her work data are, “photometric measurements or catalogs and 

spectral files” (Carter, Professor, 2015). She then immediately proceeded to discuss the 

differences between what he defines as data compared to raw and unreduced data and “machine 

readable tables of published, inferred values in papers” (Carter, Professor, 2015). Both of these 

interviewees discussed data in terms of images, spectra, and catalogs processed to a certain 

extent.  

v Format,	content,	and	state	

Robinson began discussing data as digital information processed into images, spectra, 

and catalogs. Robinson distinguished between images and spectra: “So for the images, it's like a 

digital picture of the sky… for the spectroscopy, it's sort of like a one dimensional digital picture. 

You have to actually do some processing to get it there… But it all ends up in digital form…” 
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(Robinson, Staff Scientist, 2013). Robinson thus provides a complex explanation of data by 

referencing it as digital information processed into images, spectra, and catalogs.  

v Content,	state,	and	source	

Moore described SDSS data as information that comes from the SDSS instruments, 

requires a lot of processing, and then turns into images, spectra, and catalogs that could be 

processed even further. She described SDSS data as anything from the SDSS camera: “[We] 

very much designed the Sloan codes to do no harm to the data, to extract almost everything that 

came off the cameras” (Moore, Staff Scientist, 2012). Moore goes into great detail about the data 

processing pipelines and concludes the information from the SDSS cameras and spectrographs 

ultimately results in images, spectra, and catalogs.  

v State	and	format	

No SDSS interviewees described data based on State or Format. 
 

v State	and	source	

One SDSS interviewee described data based on the source of the information and its level 

of processing. She described SDSS data as information “obtained by observers in the New 

Mexico Observatory” that was then “sent to [the SDSS data center] in a FITS file” (Lewis, 

Research Programmer, 2013). She then discussed in detail the processing that takes place once 

the SDSS information arrived at the data center. Lewis described SDSS data as information 

collected by the SDSS instruments and processed by the SDSS team.  
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4.1.2.4	LSST	team	

The following are the different ways LSST team members defined data. As described in 

the RQ1 Results introduction, the following results summarize the findings from the code “Data 

Definition,” and are organized by emergent subcode. Within each subsection, the number of 

LSST team interviewees who described data in each way are noted, and a representative set of 

quotes illustrate the meaning of the emergent subcode.  

v Content	

Six LSST team member interviewees described data in terms of its content, specifically 

as images, spectra, and catalogs. When asked about data within his work, Thomas explained the 

nature of astronomy data succinctly: “…We have the images of the sky, we have the catalogs 

derived from those images, we have spectra, and then we have all the metadata that come with 

that…” (Thomas, Professor, 2015). When asked what he considers to be the LSST data, another 

interviewee answered, “…I don't know, were you looking for catalogs, images I can just say that. 

[chuckle] I was going to just describe everything in the catalogs” (Baker, Graduate Student, 

2014). Each of these interviewees discussed data in terms of its content, by describing data as 

images, spectra, and catalogs.  

v State	

Four interviewees from the LSST team described data in terms of data processing levels. 

Three of these interviewees were directly involved in the technical development of the LSST 

data management system over multiple years. Kelly, a computer scientist and long-time member 

of LSST described the future project data by mentioning the alerts and data releases, two of the 

three LSST data levels. He described the first two LSST levels by saying, “I mean because 
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there's two different types of processing. …one's the alert production stuff, which is nightly. And 

then the data release processing stuff… and since we do that every year, there's gonna be some 

time to improve everything” (Kelly, Research Programmer, 2015). Rivera explained data are 

processed information by revealing, “So for me, data, usually it's sort of a processed version” 

(Rivera, Professor, 2015). These interviewees each described astronomy data by referencing the 

different levels of data processing.  

v Use	

One interviewee described data in terms of its uses for scientific research. Sanchez 

described data in terms of its use as a pedagogical tool. She explained, “So we came up and did a 

lot of work with her students and all the research there and using all of the Sloan data for that” 

(Sanchez, Lecturer, 2014). Sanchez described data in relationship to its use teaching future 

scientists. 

v Format	

Three LSST team member interviewees described data in terms of its digital materiality. 

For example, Nelson described data in terms of its digital “binary” nature (Nelson, Staff 

Scientist, 2014). When asked if what is considered LSST data has changed over time, an LSST 

team leader answered, “We never defined it. That's a very interesting question. We talked many, 

many times about LSST data, but we never defined the term. I think most people would think of 

pixel values in LSST images, plus everything you derive from those pixel values…” (Martinez, 

Professor, 2011). Phillips agreed, noting, “At a more fundamental level of course is the LSST 

pixels” (Phillips, Staff Scientist, 2015). These interviewees each discussed the digital nature of 

data, whether stored in binary or as pixels.  
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v Source	

Four LSST team members described data in terms of the data’s origin. Two interviewees 

described the data source in terms of the distinction between simulated data and observational 

data. Diaz described how the LSST uses simulated data as input for the data management team 

processing. He believes that the simulated data are “real data” even though they are not “from 

the sky” because the LSST team is using them (Diaz, Research Programmer, 2015). He also 

explained the LSST is using data from previous surveys in addition to simulated data, including 

the SDSS Data Release Seven “Stripe 82” data. King described LSST data as simulations, while 

in the future the LSST data will be information from the LSST camera (King, Research 

Programmer, 2014). These interviewees describe LSST data by referring to the project that 

created or uses the data, whether simulated or observational. 

v Evidence	

One LSST team member described data as evidence of a phenomenon. Bailey illustrated 

this in her broad response by saying the LSST data are, “Basically, any information they derive 

about the external world. … All of that is the data” (Bailey, Staff Scientist, 2015). 

v Content	and	state	

Three interviewees described data as extensively processed images, spectra, and catalogs. 

For example, Adams explained astronomy data are catalogs and images, but the kind of research 

question determines the necessary processing level for the scientist to work with the data 

(Adams, Staff Scientist, 2014). Scott was asked, “From your perspective, what are the LSST 

data?” He explained that while he generally uses processed data, he is eager to begin using the 

LSST Level 1 data: “So for most applications other than that I would be looking at [a] more 
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processed version. I think this is the only one where I foresee myself actually want[ing] to look 

at the raw images or doing something with that” (Scott, Post-Doc, 2014). Lee explained that the 

LSST data for him is “the calibrated images and DM-produced object and source catalogs,” but 

acknowledged other researchers may want to analyze the data at different levels of processing 

(Lee, Post Doc, 2013). These interviewees each described data as images, spectra, and catalogs 

available at different levels of processing. 

v Format,	content,	and	state	

Two interviewees described data based on its digital nature, content, and state of 

processing. When asked how he understood astronomy data, Murphy was surprised by the 

question and responded, “That's a very metaphysical question - a bunch of ones and zeros” 

(Murphy, Professor, 2015). Murphy goes on to explain that LSST data are information from the 

telescope, processed into images, spectra, and catalogs. Stewart similarly described data as pixels 

processed through a few stages and result in catalogs. These interviewees discussed data in terms 

of its digital nature, its extent of processing, and its content as images, spectra, and catalogs.  

v Content,	state,	and	source	

No LSST team member interviewees described data based on content, state, and source. 

v State	and	format	

One LSST team member described data based on the state of processing and format as 

digital information. When asked what she considered to be data, she explained, “…the primary 

data would be the photons that come in. ...Because there'll be so much of it, like with all of these 

things, I would hope that the pipeline data would do the trick. But the raw data, or the 1.5 data, 

or how you do, all that stuff...” (Reed, Staff Scientist, 2015).  
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v State	and	source	

No LSST team member described data based on the state of processing and its source. 

4.1.2.5	SDSS	data	end-users	

The SDSS end-user interviews corroborated how data were described in the SDSS and 

LSST team interviews by discussing the data they used in a particular journal article. The 

number of SDSS end-user interviewees who described data in each way is presented below. 

v Content	

Nine interviewees described data by referencing its content: astronomical images, 

spectra, and catalogs. Morris explained, “What kind of data I use? Imaging data. So, anything 

that is measured from astronomy images. And then spectroscopic data. So, things that are 

measured from spectroscopic measurements. Those are the two main data sets” (Morris, 

Professor, 2015). Johnson agreed by noting, “So in [the] case of say, digital sky surveys, data 

would be tables in the database and images…” (Johnson, Professor, 2011). More specifically, 

Smith described how she begins using SDSS catalog data and then adds spectral information to 

create the dataset for a journal article. She explained, “Now I have that catalog then I go to Sloan 

database… and I compiled the radio properties as a subset of the columns in this catalog. And 

also the database, the individual spectrum…” (Smith, Post-Doc, 2011). These interviewees 

described the data they used in their journal article by referencing the information as images, 

spectra, and catalogs. 

v State	

While SDSS and LSST team members frequently discussed data in terms of the level of 

data processing, only three SDSS data end-user interviewees discussed data by state or level of 
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processing. These three interviewees disagreed as to whether the level of processing creates a 

distinction between “data” and “data products.” Collins considered data products, which have 

been highly processed, as distinct from other kinds of data (Collins, Professor, 2015). Edwards 

did not distinguish between data and data products, and instead described data as information 

along a path of processing. He explained, “Anything from the raw image on a detector, up 

through something derived, like a sensitivity limit, is usually considered data. Brightnesses, 

spectra, all these things are considered data” (Edwards, Post-Doc, 2015).  

v Use	

Five SDSS data end-user interviewees described data in terms of scientific use. End-user 

interviewees often discussed data in terms of primary or parent datasets in comparison to 

secondary or follow-up datasets. These data end-user interviewees described data in relationship 

to other research information. The interviewees referred to the dataset that they used to begin an 

investigation as the parent or primary dataset; secondary datasets were those they added to the 

primary dataset for analysis. For example, White explained a quasar catalog was the parent 

sample in his study: “Okay. The first of three, so the SDSS quasar catalog DR8, all of those were 

things that existed. That’s the parent sample” (White, Staff Scientist, 2012). He went on to 

explain that he calls other data added to the catalog ancillary data. Similarly, Ward began his 

study with an interesting discovery from one particular dataset. He then referred to all other data 

he used as follow-up data, including SDSS data he was able to download (Ward, Professor, 

2015). Jackson referred to his data as primary and secondary (Jackson, Staff Scientist, 2012). 

These interviewees all described data by referencing the priority of the data in a specific analysis. 
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v Format	

Three SDSS data end-users described data in terms of its digital medium. One computer 

science researcher explained that she did not cite the data source in his publication because the 

particulars of the astronomy data he used in his study were not important. She explained the 

decision: “This is a lame excuse, but from the computer science point of view... Yeah, it's bits; 

it's zeros and ones that you have there…. In hindsight, that's true, that's where they got the 

images was Sloan” (Hill, Professor, 2015). Williams described astronomy data as photons, “But 

the data will be the number of photons that are associated with physical source. That would be 

the primary thing” (Williams, Staff Scientist, 2011). These three interviewees described data by 

referring to characteristics of its digital form.   

v Source	

Three SDSS data end-users described data in terms of where, or by whom, the data had 

originated. For example, one interviewee working in a technical capacity for the SDSS project 

referred to data as “whatever [the SDSS leaders] tell me that needs to be saved” (Bennett, Staff 

Scientist, 2015). Mitchell referred to datasets by the name of the survey that initially collected 

the data (Mitchell, Graduate Student, 2015). These interviewees referenced data in terms of the 

project or instrument that collected the data. 

v Evidence	

Only one SDSS data end-user described data in terms of its evidentiary value for 

scientific research. When asked, “So, in your work, what do you consider to be data?” Nguyen 

responded, “Effectively, everything that has relation to reality” (Nguyen, Professor, 2015). This 

category may have only been referred to once in the end-user interviews because these 
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interviews were focused on data from a specific journal article. Since concrete options for data 

were discussed, end-user interviewees may have been less inclined to describe data generically, 

as evidence of phenomena. 

v Content	and	state	

No SDSS data end-user interviewees described data based on its content as images, 

spectra, and catalogs alongside its nature as processed information. 

v Format,	content,	and	state	

No SDSS data end-users described data based on its format as digital information, its 

content as images, spectra, and catalogs, and its state as processed information.  

v Content,	state,	and	source	

Two SDSS data end-user interviewees discussed data based on its content, state, and 

source. For example, Lee went into detail about the different levels of data processing he uses for 

his research, “…what I actually mean by data is the higher, reduced, processed, end science 

product,” also noting the content are images, spectra, and catalogs coming from specific project 

sources (Lee, Staff Scientist, 2015). Similarly, Wood, described data in terms of images, spectra, 

and catalogs from specific sources, “anything I get from the telescope…[which]…go through 

several steps to what we call data reduction, where you go from this raw off-the-telescope kind 

of information down to something that you want to analyze” (Wood, Professor, 2015).  

v State	and	format	

One SDSS data end-user described data based on its state of processing and its format as 

digital information. Rogers explained, “Datasets, we preserve the core bits of information, all the 
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telemetry data that comes off of the telescopes… Those are just like save the bits… For that 

initial data off the telescope” (Rogers, Professor, 2015). Rogers described data as digital bits 

directly from an instrument or digital bits processed to different degrees.  

v State	and	source	

No SDSS data end-users described data based on its level of processing and its origin 

from a specific set of instruments or collaboration.  

4.1.3 RQ1 ethnography results 

Ethnographic observations revealed nuance to stakeholder understandings of data in both 

the SDSS and the LSST. Fieldwork following the SDSS I and II data collection and release 

revealed the different ways stakeholders interpret the boundaries of the dataset. Fieldwork with 

LSST team members revealed different interpretations as to whether or not LSST data existed 

during the construction phase of the project.  

4.1.3.1 SDSS data in ethnography 

In 2008, the SDSS I and II completed data collection and distributed the final data release 

for those phases. As those initial phases of the project ended, the SDSS collaborators knew the 

SDSS data retained great value to the astronomy community. SDSS leaders determined plans 

were necessary to ensure the data were archived and served following the fiscal close of the 

SDSS I and II. On behalf of the SDSS collaboration, the Astrophysical Research Consortium 

(ARC), signed Memoranda of Understanding (MOUs) with four different institutions to continue 

managing the SDSS I and II data for five years from January 1, 2009-December 31, 2013. Two 

of the MOUs were signed with institutions already involved in the collaboration; the other two 
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MOUs were signed with two university libraries. For the purposes of confidentiality, the two 

libraries are here referred to as “Red” University Library and “Blue” University Library. 

The following section details the observed differences in how each institution interpreted 

the boundaries of the SDSS I and II dataset. The MOUs are employed here to organize the 

presentation of the ethnographic findings. While the MOU documents listed the information 

retained by each library, multiple weeks of ethnographic observations at the two libraries and 

two astronomy departments revealed why and how the information was transferred, archived, 

and served.  

Both libraries have completed the “serving” component of the MOU agreements, but 

continue SDSS data archiving activities, funded by their own institutions. The two libraries each 

signed a MOU subtitled “Archiving and Serving Data from the SDSS.” At the time of the MOU 

signings, astronomers and library staff had already been through two years of discussions and 

believed they were in agreement as to the meaning of the MOU key terms and intentions. During 

MOU negotiations, ARC leaders, SDSS astronomers, and staff from both libraries together 

settled on the phrase SDSS Long-Term Data Archive (SDSS Archive) to reference the SDSS 

information that required serving and archiving. Despite extensive planning, ethnography 

revealed that each stakeholder group interpreted the boundaries of the dataset involved in these 

tasks differently, as well as what it meant to archive and serve the data. Despite the common 

language used in the formal agreements, each library ultimately prioritized the management of 

different components of the overall dataset. The information components that each library chose 

to include in the SDSS Archive are summarized in Table 20. 
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SDSS Long-Term Scientific 
Data Archive Components 

“Blue” 
University Library  

“Red” 
University Library 

 
Data Archive Server (DAS) X X 

Catalog Archive Server (CAS) X X 
Administrative archive X -- 

Help desk X -- 
Raw data -- X 
Software -- X 

Table 20 SDSS long-term scientific data archive: Library task distribution 

Both libraries managed the two publicly accessible datasets, which are defined in the 

MOUs: “The Data Archive Server (DAS) is a complete set of all the processed data, in a flat file 

format. The Catalog Archive Server (CAS) refers to a collection of each version of the 

searchable database released to the public during SDSS I and II” (Astrophysical Research 

Consortium, 2008). Both libraries also served one CAS data release mirror. Thus, both libraries 

considered the DAS and CAS as part of the SDSS Archive. 

Each library also chose to manage additional components of the SDSS Archive beyond 

the DAS and CAS. The Blue University Library took responsibility for the help desk and 

administrative archive. This library had managed the help desk question-and-answer referral 

program since 2007 and agreed to continue the service through the MOU period. The Blue 

University Library also elected to preserve the administrative records indefinitely (both physical 

and digital). In contrast, the Red University Library chose to archive the raw data and software 

alongside the DAS and CAS. The raw data are the bits delivered by the scientific instruments, 

prior to processing. The software includes a variety of code developed and used at multiple 

institutions throughout the life of the project. The two libraries agreed the DAS and CAS were 

included in the boundary of the SDSS Archive, but the institutions diverged in what other 

information was included.  
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Two years of discussions by stakeholders resulted in the MOU agreements. However, as 

time passed, differing expectations about the scope of the SDSS Archive grew apparent. The 

boundaries of the SDSS data therefore are not inherent to the dataset. The boundaries of the 

SDSS Archive are instead emergent based on the perspectives of different stakeholders. These 

differing perspectives, and thus the divergent understandings of the boundaries of the SDSS 

Archive, resulted from the differences in the existing infrastructures of each institution, including 

institutional interests, affordances, and constraints.  

4.1.3.2 LSST data in ethnography 

LSST community members disagree as to whether LSST data exists during the 

construction phase of the project. Five study participants believed LSST does not have data as of 

the time of discussion because the LSST instruments have not begun collecting data. For 

example, when asked about LSST data, some participants noted that they do not consider 

simulated data to be “real” data and thus LSST data do not exist yet. However, eight participants 

noted the simulations the LSST team generates and uses for data management planning should 

be considered LSST data. For example, Diaz described how the LSST uses simulated data as 

input for the data management team processing. He explained that he believes simulated data are 

“real data” even though they are not “from the sky” (Diaz, Research Programmer, 2015). He also 

explained the LSST uses data from other previous surveys in addition to simulated data.  

Thirteen LSST team members discussed whether or not simulated data are included as 

LSST data. Eight team members interpreted data generated or used by LSST team members 

(whether simulated or from a previous survey), to be part of LSST’s data. Alternatively, five 

individuals noted LSST data do not yet exist, and only the information collected by the LSST 

instruments should be considered LSST data.  
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 During observations at one of the primary LSST data management institutions, the author 

observed a presentation by LSST server managers. The presentation included a list of the folders 

on the LSST servers, each folder containing materials for use in LSST construction. The folders 

were: 

 -Data Challenge data 
 -Image Simulation (Imsim) Data 
 -Data from other surveys: 
  -Pan-STARRS 6.2 TB 
  -Calypso 
  -SDSS 3.5 TB 
  -Stripe82, 11 TB 
 -All Sky Camera Data  
 -Other  
 

The folders’ location on the LSST server in 2015 implies that the LSST team employs 

these sets of information. The information within these server folders is information created by 

the LSST collaboration (Data Challenge Data, and ImSim Data), as well as data collected by 

other surveys but applied to LSST development. Notably, there are two sets of SDSS data stored 

and used for LSST: 3.5 TB of “SDSS” data and 11 TB of a specific subset of SDSS data from 

the “Stripe82” segment of the sky. While there are arguably no LSST data, because the 

instruments especially engineered for the project have not begun collecting data, there are 

multiple datasets (both created especially for the project, or borrowed from other projects) 

already being used for LSST. 

4.1.4	RQ1	results	summary	

Each of the three research methods demonstrated SDSS and LSST data could be 

interpreted in multiple ways, by different people, and over time. Table 17 indicates the 26 ways 

data are described by the document authors, interviewees, and observed participants. The 

evidence for each of the 26 ways data were described was just presented by research method. 
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Document authors described data in 14 ways, interviewees in 12 ways, and observations revealed 

eight ways data were described.  

While there is some consistency between research methods, there are also a number of 

ways data were described that are reflected in only one or two of the three research methods. 

This fact highlights the strength of this dissertation study and its ability to capture many 

perspectives by employing all three methods. If only one method, for example interviews, was 

used in this study, the official perspectives represented in SDSS and LSST team documents 

would have been missed. If only document analysis had occurred, then the less-formal 

perspectives of interviewees would not have emerged. Each method validates the findings of the 

other methods, while also increasing the reliability of the findings in that the quantity of methods 

ensured a broad array of perspectives were included in the study. 

As already noted, Table 17 demonstrates the full array of subcodes that emerged from the 

ways data were defined in the documents, interview transcripts, and ethnographic field-notes. 

Once this full list was generated, the contents were analyzed, and thematic patterns between 

subcodes became apparent. Perspectives from any of the three research methods were then 

combined into broader emergent themes. 

Table 21 visualizes the result of analyzing and grouping like-items from the list of 26 

ways data were described (refer back to Table 17). Some interviews and observations revealed 

data described as information collected by a certain instrument or employed by a certain group of 

people. These notions of data are related to the process, the where and when, of data collection. 

Alternatively, others described data as the product of that data collection, as the bits or raw data. 

Similarly, a number of interviewees described data as a specific kind of information that must be 

processed through some or many stages of handling. Others went into greater detail and 
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described the processing stages and the information more precisely: They described data as 

photons, from a specific source, as images, spectra, and catalogs, or as pixels. These study 

participants each highlighted the nature of the information being processed. Since each of these 

interpretations highlighted the processed nature of the information, over the type of information, 

they were grouped together under a refined subcode of processing. In opposition to the way data 

were described as an active state of processing, others described data as the result of an action, or 

as a product. For example, data were frequently described in the documents and interviews as 

images, spectra, and catalogs. In this way, data were described as the resulting products of 

processing actions. Some interviewees and documents described data as information used in the 

process of scientific research. Others identified data as the results of that scientific research, as 

scientific evidence from a specific journal article, or as the derived data resulting from said 

research.  
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Method: 
Emergent subcode, 
Data are ___: 

Type of 
Description: 

Process; Product 

Temporal Stage: 
Collection; Processing; 

Analysis 
Information cleaned and processed to a 
certain degree 

Process Processing 

Images, Spectra, and Catalogs Product Processing 
Information that has value through its 
relationship to other information 

Process Processing 

Information that is made available to 
scientific end-users, the general public, or 
both 

Process Analysis 

Digital Information; Bits Product Collection 
Information from or used by a specific 
set of people 

Process Collection 

Evidence of natural phenomena Process Analysis 
Information that has been used to conduct 
scientific research 

Product Analysis 

Information from a specific source Process Collection 
Photons that are processed Process Processing 
Information from a specific source that 
are processed 

Process Processing 

Images, Spectra, and Catalogs at various 
levels of processing 

Process Processing 

Pixels that are processed into Images, 
Spectra, and Catalogs 

Process Processing 

Information from a specific source that 
are processed into Images, Spectra, and 
Catalogs 

Process Processing 

The Data Archive Server (DAS) Product Processing 
The Catalog Archive Server (CAS) Product Processing 
Software Process Processing 
Raw Data Product Collection 
The Help Desk Process Analysis 
The Administrative Archive Process Analysis 
The Operational Database Product Collection 
The Scientific Database Product Processing 
LSST Level 1 Product Collection 
LSST Level 2 Product Processing 
LSST Level 3 Process Analysis 
The work necessary to prepare for data 
collection 

Process Processing 

Table 21 Emergent “Data Characteristics” subcodes 
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Through extensive, iterative analysis of the documents, interview transcripts, and 

ethnographic field-notes, two variables emerged and provide an exhaustive and mutually 

exclusive demonstration of the different ways data were described. For example, during the 

iterative data analysis, a potential scale emerged relative to whether information was identified as 

data based on the extent of information processing. However, while increased processing aligns 

with increased potential for scientific use for many study participants, others find non-processed 

information the most scientifically usable, as they prefer to process data themselves. Therefore, 

the scale logic did not hold. In addition, while the scale was exhaustive, the categories within did 

not prove mutually exclusive. 

Thus, the long list of ways data were described in Table 17 can be collapsed into 

definitions of data that describe a process and those that describe a product (presented in Table 

21). Three temporal data stages were used for the purposes of presenting the results, data 

collection, data processing, and data analysis. However the stages are not intended to be discrete, 

and in reality, are overlapping and indistinct. Table 22 provides an alternate illustration of the 

information presented in Table 21, by aligning the initial emergent subcodes with the emergent 

dimensions of process versus product, across time. Note that each of the definitions encompasses 

either process or product. When each of the 26 ways data were described in all three research 

methods are clustered with like kinds, it results in the exhaustive and mutually exclusive 

categorization presented in Table 22.  
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Temporal Stage: 
 
Way Described: 

Collection Processing Analysis 

Process Information from 
or used by a 
specific set of 
people 
 
Information from 
a specific source 
 
 
 

Information cleaned and 
processed to a certain 
degree 
 
Information that has value 
through its relationship to 
other information 
 
Photons that are processed 
 
Information from a specific 
source that are processed 
 
Images, Spectra, and 
Catalogs at various levels 
of processing 
 
Pixels that are processed 
into Images, Spectra, and 
Catalogs 
 
Information from a specific 
source that are processed 
into Images, Spectra, and 
Catalogs 
 
The work necessary to 
prepare for data collection 

Evidence of 
natural 
phenomena 
 
Information that 
is made 
available to 
scientific end-
users, the 
general public, 
or both 
 
The Help Desk 
 
The 
Administrative 
Archive 
 
LSST Level 3 
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Product Digital 
Information; Bits 
 
Raw Data 
 
The Operational 
Database 
 
LSST Level 1 
 

Images, Spectra, and 
Catalogs 
 
The Data Archive Server 
(DAS) 
 
The Catalog Archive 
Server (CAS) 
 
Software 
 
The Scientific Database 
 
LSST Level 2 

Information that 
has been used to 
conduct 
scientific 
research 
 

Table 22 Emergent categorization from analysis of the “Data Characteristics” code from all three research methods 

The emergent categories in Table 22 can be reduced to a nominal classification of the two 

major ways data were described: data as process and data as product. For example, developers 

charged with writing data collection software may describe data as a process (information being 

collected), while sky survey leadership may publicly tout the importance of the survey in terms 

of data as the end product, as collected information. Software developers working on LSST’s 

processing pipeline most often describe LSST data as information being processed through the 

pipeline (process), while SDSS data end-users describe SDSS data as the resultant dataset 

released online by the collaboration (product). SDSS data end-users often describe any 

information they are analyzing (process) for a specific journal article to be data, whereas library 

staff may consider the discrete set of analyzed information deposited with a journal article to be 

data (product). These examples of the distinction between data as process, and data as product, 

exist throughout the sky survey research data life cycle. 
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4.2	RQ2	Results:	What	is	Data	Management	in	Astronomy?	

The following are the results for the second research question (RQ2): What is data 

management in astronomy? As presented in the RQ1 results, data were interpreted different 

ways, at different times, by different stakeholders. The boundaries of the SDSS and the LSST 

data were described in multiple ways over the course of the projects. Data were described as 

either a process or a product, and were described differently across the life cycle (refer back to 

Table 22). 

 As described in the Methods chapter, the documents, interview transcripts, and field 

notes were all coded as part of the analysis for this study. For RQ2, data were extracted for 

analysis from the code “Data Organization and Archival Storage.” The code encompasses 

passages related to questions of what it means to manage data in astronomy. Passages were 

coded and analyzed from the three research methods and three study populations.  

4.2.1 RQ2 documentation results 

The SDSS and the LSST projects each generated multiple document genres. Particularly 

relevant to RQ2 are the policy documents, which often refer to data management tasks. The 

following subsections describe data management interpretations based on SDSS documents and 

then LSST documents. 

4.2.1.1 SDSS data management in documents 

SDSS data management is a complex endeavor that permeates the decades-long project. 

Many formal and informal documents list the tasks involved in SDSS data management. While 

the specific data management priorities differed across project stages, the temporal way data 
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management was described in the SDSS team documents was divided into three rough periods: 

data collection; data storage, processing, and transfer; and long-term serving and archiving. 

v Data	collection	

The SDSS data acquisition software collects and provides initial data testing. First, data 

are analyzed for continuing operations and then for end-user science. Early documents describe 

both an “operational archive” and a “science archive,” reflecting these two different data uses. 

The operational archive “is the central collection of scientific and bookkeeping data used to run 

the survey” (York et al., 2000, p. 1585). As described in the RQ1 findings, the operational 

archive is referred to as part of the SDSS data through the first few data releases, and then is no 

longer referenced in relationship to SDSS data. 

  As both a photometric and spectroscopic survey, the SDSS first identifies objects through 

photometry and then collects spectra of objects. The photometric data are collected, processed, 

and analyzed to determine which spectroscopic data should be collected (Margon, 1998, p. 6; 

Szalay et al., 2000, p. 5). Photometric data must be processed quickly to ensure that the best 

spectra data collection choices are made. Data are processed through a complicated set of 

software pipelines to prepare for scientific use. The pipelines perform operations such as 

“astrometric calibration…  and detect and measure the brightnesses, positions, and shapes of 

objects” (Abazajian et al., 2009, p. 545). Margon described the time-sensitive nature of the work 

as placing, “severe demands on the complex software pipeline that acquires the data, performs 

image recognition, classification, astrometry, and precision, calibrated photometry, followed by 

target selection for a myriad of different scientific project” (Margon, 1998, p. 3). Spectra are then 

collected and processed through the pipeline for further calibration and to extract measurements 



  
  

123 
 

(York et al., 2000, p. 1585). Once ready, the operational database is migrated into the science 

database for end-user retrieval and use (Lupton, 2002; York et al., 2000). 

v Data	storage,	processing	and	transfer	

SDSS data maintenance required faculty and staff efforts at multiple institutions across 

the country. For example, the SDSS data management tasks at just one of the institutions 

included, “Operating system upgrades, Security patches, Corrupt file detection/recovery, Disk or 

controller replacements, System performance monitoring, Machine replacements” (Boroski, 

2007, p. 12). This task list reveals that in addition to working with the processing pipeline 

specific to SDSS data, team members also needed to perform general digital maintenance 

activities necessary for the continued processing, management, and serving of any kind of digital 

information.  

The SDSS II Project Execution Plan (PEP) provides the most detailed information for 

SDSS data management tasks (Kron, 2008). The purpose of the PEP document is “the cost, 

schedule, product goals, management structure, education and public outreach, metrics, and other 

aspects of the project” (Kron, 2008, sec. Preface). While prepared for the NSF, the document 

reflects on the project as a whole. The Principles of Operation documents also contain relevant 

information describing data management, but they only provide simple lists of SDSS team 

positions alongside short descriptions (1989, 2000, 2005). Instead, the NSF PEP goes into 

significant detail on the team positions and tasks; the information relevant to data management is 

organized into two sections: “Data Processing” and “Data Distribution.” The Work Breakdown 

Structure is also further organized into six subsections: “Survey Management, Survey 

Operations, New Development, ARC Corporate Support, Education and Public Outreach, and 

Management Reserve” (Kron, 2008, p. 15). The PEP document reflects the extensive amount and 
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kinds of work considered aspects of processing, managing, and serving the SDSS data. 

Once collected and ready for processing, data were sent from Apache Point Observatory 

to the data center, which conducted the SDSS I and II data processing. In the early days of SDSS 

data collection, the data were too large to be transferred online. Instead, magnetic tapes were 

mailed to the data center for processing by an express courier service (Margon, 1998, p. 6). 

Technology improved over the first few years of the survey, enabling data delivery directly from 

the observatory to the data center, first through a microwave Internet link and then through a 

high-speed Internet connection.  

v Long-term	serving	and	archiving	

As they planned the survey, the SDSS collaboration knew that the resulting data would 

be important to the astronomy community in the long-term. In 2000, SDSS team members 

described their data management work as needing to be useful “for the next several decades” 

(Szalay et al., 2000, p. 3). The data necessitated being recorded, organized, and distributed in a 

sufficient and sustainable manner for long-term use. They went on to explain, “This long-

lifetime presents design and legacy problems. The design of the SDSS archival system must 

allow the archive to grow beyond the actual completion of the survey” (Szalay et al., 2000, p. 3). 

Therefore, once collected and processed, the data required “a carefully defined schema and 

metadata” to ensure scientific usability into the future (Szalay et al., 2000, p. 3). 

 SDSS team members realized that timely serving was not enough to enable the SDSS 

data to remain relevant and scientifically usable into the future. The team did begin to consider 

long-term data management prior to the end of data collection; however, no long-term plans 

were mentioned in the earlier texts that alluded to the expectation that the data would be valuable 

for decades. For example, in 2007 the project manager presented only “preliminary thoughts” on 
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the long-term data management needs of the SDSS: recognizing the importance of both 

“required (format conversion; platform migration) and ‘value-added’ (errata, bug fixes, 

annotations)” data management activities (Boroski, 2007, p. 17). By 2011, SDSS data serving 

and archiving had already begun and the descriptions were more concrete. A presentation by 

Brian Yanny regarding care of the SDSS Archive explained the SDSS data must be “preserved in 

a readable, understandable format for long periods of time…” which includes, “long term store 

copies” and “active working copies” of the data (Yanny, 2011). He went on to explain the 

uniquely long-lived value of SDSS data is precisely one of the difficulties of managing the data 

because of the changes that can occur to the timeline of the project. He said, “The life 

expectancy of data can be decades or centuries, making the technical aspects of data preservation 

and dissemination an interesting challenge. Methods and practices are evolving continuously…” 

(Yanny, 2011). 

4.2.1.2 LSST data management in documents  

The LSST collaboration provides a corpus of documentation outlining data management 

requirements. In particular, internal policy documents describe data management activities and 

responsibilities. The hierarchy of these internal policy documents is important because despite 

careful change control, there can be inconsistencies between documents and distributed authors. 

An LSST team leader described the LSST System Science Requirements Document (2011) as 

“like our constitution. That's the highest-level document from which we derive all other 

documents. That describes what we want to accomplish with LSST” (Martinez, Professor, 2011).  

 In 2014, the LSST project completed the design and development phase of funding and 

began construction. While the SDSS data management practices were presented in previous 
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subsections in terms of each of the data management stages, LSST results presented here are 

arranged by type of document because LSST is early in the research life cycle. 

v Data	management	in	funding	proposals	

The LSST NSF funding proposal abstracts briefly describe the work necessary to 

complete LSST project goals. The 2012 proposal abstract lists task priorities. Two of the main 

priorities are directly related to data management, and include creating the complicated 

simulations and software pipelines. Specifically, the proposal abstract notes the priorities as: 

“Developing improved algorithms for data… hardware and software prototyping and system 

simulations… innovative, large-scale database techniques… [and a] general-purpose data and 

algorithm-parallel framework…” (National Science Foundation, 2012). LSST expects to collect 

a huge volume of data, which requires the construction of new facilities, dedicated hardware, 

highly expert staff, and newly created software. Two years later, the 2014 NSF grant proposal 

abstract emphasized how the project plans to push the boundaries of computational capabilities. 

A massive effort is required due to the expected data volume, most important, the creation of a 

new, “sophisticated” data management software system (National Science Foundation, 2014a). 

v Data	management	in	presentations	

Two internal 2014 presentations detailed data management requirements, summarizing 

the extensive software systems and algorithms into bullet points. For example, the LSST Data 

Management “Principal Responsibilities” (Kantor, 2014, p. 2)  or “Roles” (Juric, 2014, p. 10) 

were listed as:  

“1) Archive Raw Data: Receive the incoming stream of images that the Camera 
system generates to archive the raw images 
 
2) Process to Data Products: Detect and alert on transient events within one 
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minute of visit acquisition. Approximately once per year create and archive a 
Data Release, a static self-consistent collection of data products generated from 
all survey data taken from the date of survey initiation to the cutoff date for the 
Data Release. 
 
3) Publish: Make all LSST data available through an interface that uses 
community-accepted standards, and facilitate user data analysis and production of 
user-defined data products at Data Access Centers (DACs) and external sites.”  
 
LSST data management work was also described in terms of necessary LSST software 

features. The data management team is working on creating the LSST Software Stack. The stack 

is described as including “(science pipelines, middleware, database, user interfaces)” (Juric, 

2014, p. 17). Data management team leaders viewed the team’s ultimate tasks as creating tools to 

archive, process, and publish the data. 

 The LSST project is sometimes considered so similar to the SDSS project, that the only 

difference will be data volume (Ivezić et al., 2011, p. 20; LSST Science Collaboration et al., 

2009, p. 15). The expected data volume creates hurdles for the data management team to 

overcome. While serving the LSST data, the collaboration expects the high volume to influence 

their ability to serve the data. While the SDSS collaboration kept all data releases actively 

available to the public, the LSST only plans to retain the two most recent releases on “fast 

storage and with catalogs loaded into the database…Older releases will be archived to mass 

storage (tape)” (Juric et al., 2013, p. 52). Each consecutive data release will include the entirety 

of the preceding LSST data, however the datasets are reprocessed with each new release, 

resulting in non-identical data between releases.  

In addition to the volume of data, LSST data management tasks are also difficult because 

of the speed by which the data will need to be released (Becla et al., 2005). For example, the 

Level 1 alerts need to be made available within 60 seconds of data capture. The Level 2 data also 

needs to be made available to international partners as quickly as it can be collected and 
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processed. Despite challenges presented by data volume and speed, as of 2014, the most pressing 

problem was considered to be that of “insufficient documentation” for the work already 

accomplished (Juric, 2014, p. 22). 

The System Capabilities section of the Systems Requirements Document itself includes 

five main subcategories. Three of the five categories are related to data management. These 

include Data Collection, Data Products & Processing, and Data Archiving and Services (Claver 

& LSST Systems Engineering Integrated Product Team, 2015, p. 14). The document indicates 

the need for data curation planning, though it does not provide details and instead merely 

indicates “The LSST Observatory shall develop a data curation plan” (Claver & LSST Systems 

Engineering Integrated Product Team, 2015, p. 29). 

v Data	management	in	the	public	website	

According to the LSST Data Management Website, the data management team is tasked 

with the challenge of, “Processing such a large volume of data, converting the raw images into a 

faithful representation of the universe, implementing automated data quality assessment and 

automated discovery… and archiving the results in useful form for a broad community of users” 

(“Data management | LSST public website,” 2015). The webpage details how the system is 

broken into three architectural layers: the infrastructure layer, middleware layer, and an 

applications layer (“Data management | LSST public website,” 2015). Importantly, a number of 

pipelines (nightly, data release, calibration, and more) require development to process collected 

information into usable data for scientific investigation. 

The Data Products website (“Data products | LSST public website,” 2015) detailed the 

tasks required of the LSST data management team in terms of managing the immediate, Level 1 

data as well as the fully processed Level 2 data:  
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“1) Process the incoming stream of images generated by the camera system during 
observing to generate and archive the nightly data products: 
• Raw science images 
• Catalog of variable sources 
• Transient alerts. 
 
2) Periodically process accumulated nightly data products to: 
• Generate co-added images of several types 
• Optimally measure the properties of fainter objects 
• Perform astrometric and photometric calibration of the full survey object catalog 
• Classify objects based on both their static properties and time-dependent  

behavior” (“Data products | LSST public website,” 2015). 

v Data	management	in	policy	documents	

Internal LSST policy documents describe the goals and requirements of the LSST data 

management system in great detail. These documents provide the most extensive data 

management explanations and appear to have no limitation on document length like most other 

document genres. The Science Book (2009) explains the LSST data management component of 

the project by detailing the Level 1 and Level 2 data production, where “production” means, “a 

group of pipelines that together carry out a large-scale DMS function” (LSST Science 

Collaboration et al., 2009, p. 39). 

The Science Book also describes the planned transit of the data after collection. Data will 

be captured at the Summit and quickly moved to the base facility in Chile. Next, dedicated fibers 

will transfer the data from Chile to the archive center in the United States. The archive center is 

described as, “a super-computing-class data center with high reliability and availability. This is 

where the data will undergo complete processing and re-processing and permanent storage. It is 

also the main repository feeding the distribution of LSST data to the community…” and will 

provide a help desk and other end-user support (LSST Science Collaboration et al., 2009, p. 37). 

The Science Book also describes the potential plans for long-term data because the data 

are expected to be scientifically important for decades. Similar to the SDSS documents at the 



  
  

130 
 

same point in the project, LSST documents also note that the collaboration recognizes the data 

will be long-lived, but do not yet specify plans for long-term data management. The Science 

Book explains, “The LSST will archive all observatory-generated data products during its entire 

10-year survey…. The longer-term curation plan for the LSST data beyond the survey period is 

not determined, but it is recognized as a serious concern” (LSST Science Collaboration et al., 

2009, p. 45). 

4.2.2 RQ2 interview results 

All 80 interviews in this study were coded using the full codebook as discussed in the 

Methods chapter. Following completion of coding for all interviews, passages coded with “Data 

organization and archival storage” were collocated and retrieved. The results from this code fell 

into three major categories. Interviewees spoke about data collection; data storage, processing, 

and transfer; and long-term serving and archiving. Within each study population, results are 

provided at the three data management stages. First, results from the SDSS team are presented, 

then the LSST team, and finally SDSS data end-users.  

Responses coded with “Data organization and archival storage” arose from questions on 

the official interview protocols and also from information voluntarily offered by interviewees. 

Often, the specifics regarding the data management work conducted by SDSS and LSST team 

members was revealed through narratives describing the path of data through the project life 

cycle. More specifically, some interview questions proved particularly helpful in enabling 

interviewees to discuss data management. For example, the protocols included questions for 

interviewees about their data management and analysis tools. SDSS team member interviewees 

were asked to tell a data narrative, “Could you walk us through some of the steps from collecting 

datasets from a database to analysis?” SDSS team members were also asked, “What happened to 
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your data at the end of your last project?” LSST arguably does not have data yet, so interviewees 

were instead asked to describe the planned data management policies for the project. LSST team 

members were also asked to explain their personal data and information storage and management 

strategies. One particularly useful question for the LSST team members was: “What is your 

process – from data collection and analysis design, to archiving?” SDSS data end-users were 

walked through a practical exercise regarding the data they recently used in one of their 

published journal articles. SDSS data end-user interviewees were asked, “Where does the data 

used for this paper reside? Where is it stored and accessed?” Interviewees were then asked to 

locate a specific dataset used in that journal article. End-users were asked to explain aloud their 

short- and long-term data management techniques as they located the data during the interview. 

Interviewees from all three populations were asked how they keep track of multiple versions or 

states of their research data. 

4.2.2.1	SDSS	team	

The SDSS collaboration began collecting scientific data in 1997. Data are collected from 

the telescope and instrumentation at Apache Point in New Mexico. Once collected, data are 

processed through complicated pipelines, which include data cleaning and calibration, prior to 

being released to the public. The SDSS I and II data were released through eight official data 

releases, each documented with a data release journal article. The three SDSS team member data 

management phases are presented below.  

v SDSS	team	data	collection	

Most SDSS team member interviewees described the SDSS data path as beginning after 

data had already been collected. Only two interviewees in this study population discussed data 
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collection directly. Moore recalled having written some of the data collection and immediate 

processing software. However, she is not sure where that information is today and regrets that 

the code is currently unavailable (Moore, Staff Scientist, 2012). Taylor discussed how team 

members wrote software at the mountain to help determine, in near real-time, whether the data 

were being successfully collected. She noted that once the software was activated, it improved 

data collection efficiency (Taylor, Emeritus Professor, 2012).  

Two SDSS team members explained the data path from the mountaintop to the data 

processing center. When the data arrived at the data processing center, a team of computer 

scientists and astronomers then managed the information. Robinson explained there was a small 

team at the data center who were, “… trained in computer science, who would do the nightly 

data processing... And if there was… something they didn't know how to deal with, something 

that required a scientist intervention, then they would come to me (Robinson, Staff Scientist, 

2013). Another interviewee described the path of the data more specifically after it arrived at the 

data center. She described how data arrived as standardized FITS files, and then the DAS experts 

would process the data into flat files using Linux. The data were then given to the SQL Server 

database experts for processing to prepare for data release (Lewis, Research Programmer, 2013). 

These interviewees described how the SDSS data were collected by one team on the 

mountaintop, and then transferred to the data center facility where two teams of computer 

scientists processed the data while relying on astronomer support.  

v SDSS	team	data	storage,	processing,	and	transfer	

After SDSS data were collected and initially processed for operations, they were 

processed further, stored, and made available to external data end-users. Clark explained that 

data management was a tough job that included the work of multiple departments at the data 
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center. She explained, “So, this issue of maintenance, support, operations…one of the reasons for 

having a software infrastructure group involved--that was not just the scientists--was to provide 

that kind of sustainability and long-term provision of software and support” (Clark, Research 

Programmer, 2013). The data management work at the data center included computer science 

experts as well as astronomy domain experts. 

During this dissertation study, five local, unofficial copies of the SDSS I and II data were 

discovered at various institutions in the United States. Ethnographic work also revealed 

unofficial copies in the United Kingdom and Brazil. The author predicts there are more 

unofficial copies of the SDSS dataset, including several other copies worldwide. These copies 

are used for both project-level and personal-level work. Some copies were used to test and refine 

tools that were later re-integrated into the project itself. For example, at one SDSS-affiliated 

university astronomy department, long-term work on the data processing and data management 

algorithms required testing with the data itself. Taylor agreed that the SDSS project team 

members required access to copies of the SDSS data to test the tools that they were constructing 

for the project. She explained, “…we made a deal with them that we would keep a copy of the 

reduced data here and use it to tweak up the pipeline and fix the problems” (Taylor, Emeritus 

Professor, 2012). In addition to using local data copies to test project-level processes, 

astronomers often also tested tools for their own personal scientific inquiries on these local 

datasets, “So, we had a copy of it here and we did, actually, a fair amount of our science on the 

copy here” (Taylor, Emeritus Professor, 2012).  

 Many interviewees applaud the SDSS data distribution system. While other systems were 

initially tested, the resultant tool, SkyServer, is considered one of the major SDSS 

accomplishments. An administrator on the SDSS team praised the SkyServer system as a fast 
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and impressive data collection process for end-users (Walker, Project Manager, 2013). Lewis 

noted that end-users could access data through multiple systems including CasJobs and 

SkyServer. Since there was a lot of demand, and multiple ways to access the data, the data center 

needed to maintain and serve multiple copies at any given time.  

In hindsight, SDSS collaboration members indicated that they did not budget enough 

money for data storage. However, they explained that as the project timeline stretched, storage 

costs continued to decrease, and the budget resolved itself. Despite some concerns with data 

storage, all data releases were retained and serviced as individual datasets even when newer 

versions were released.  

v SDSS	team	long-term	serving	and	archiving	

Following initial data release, SDSS data were maintained and continually served to the 

public over the course of the eight-year survey and beyond. Clark explained the data processing 

center retains the datasets at multiple data processing stages on tape even though phases I and II 

of the project were completed. She said, “We keep copies of the transformed data and then we 

keep copies of the raw data for significant data sets…. So we archive... Keep everything 

basically on tape... (Clark, Research Programmer, 2013).  

 The SDSS I and II data were archived and served by four institutions for the five years 

following the end of SDSS I and II data collection (see also 4.1.3.1 SDSS data in ethnography). 

Each institution signed a MOU, dictating the data serving and archiving work they would 

complete over the course of the five-year agreement period (2009-2013). After 2013, the four 

institutions that signed MOUs have retained a version of the dataset. 
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4.2.2.2	LSST	team	

The LSST team plans to begin collecting data in 2020. As of this writing, the team 

members are actively working on the construction phase of the project. Data management staff, 

primarily at universities, are currently focused on writing components of the processing pipeline 

software. Data center technical staff are preparing the hardware and software for massive data 

volumes. 

v LSST	team	data	collection	

LSST data will be collected on the mountain at Cerro Pachón, Chile and then travel 

through fiber networks to the data processing center in the United States. King described the 

beginning of the path, “They get fiber off the mountain to the bottom of the mountain, and then I 

think there's some fiber networks across the ocean. There'll be multiple data repositories…where 

they serve the data to the world” (King, Research Programmer, 2014). King is not concerned 

about the data volume and its impact on the ability for the data to transfer from Chile to the 

United States. She explained, “You basically throw more hardware at it …It's not gonna be easy, 

but we know how to do it. There's things we don't know how to do, that worry me” (King, 

Research Programmer, 2014). King explained that while the task of transferring large amounts of 

LSST data across continents may appear daunting, it is a task that basically requires funding 

instead of new, creative solutions.  

Howard explained that data will leave the mountain as a data stream, “We don't do 

catalogues. We just send out a stream of data. And it's up to them to organize it…” (Howard, 

Professor, 2015). Data will arrive at the processing center, and the data center staff will store, 

process, and reduce the data (Cox, Project Manager, 2015). Diaz explained that once the data 

arrive at the processing center the difficult data management tasks begin. A major investment is 
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necessary to keep an environment that’s stable and reliable for the LSST data over time. 

v LSST	team	data	storage,	processing,	and	transfer	

As of this writing, the LSST data management team is developing the software and 

infrastructures necessary to process, manage, and release LSST data. Given the long-term nature 

of the project, Martinez explained that the systems are now being designed to enable changes 

over time. He detailed that the LSST team is making sure they continue “designing a system to 

be flexible enough that you can just switch from one storage to the other….agnostic” (Martinez, 

Professor, 2011). Indeed, the project team members likely will not begin collecting data until 

2020, and therefore expect major changes in computing technology before data collection ends, 

or even before it begins. 

When asked to describe the LSST data management team’s responsibilities, Wright 

responded by listing many assigned tasks. In summary, all of these activities can be considered 

part of the data processing pipeline: “…what the data management team is all about, is working 

on making the pipeline for telescope to internet release” (Wright, Graduate Student, 2014). As 

Wright described, the LSST data management team as in charge of the tasks that will process 

and prepare LSST data for scientific usability.  

v LSST	team	long-term	serving	and	archiving	

Three interviewees tried to predict the LSST data long-term plans. Hernandez is unclear 

of the official long-term plans for the LSST data, however she does believe SDSS lessons 

learned are going to shape LSST. She explained the relationship, “A lot of the people who were 

involved in LSST were SDSS people, a lot of the institutions for example are similar and so I 

would imagine that lessons learned from SDSS are moving on in the course of LSST…” 
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(Hernandez, Post-Doc, 2012). In addition to noting the similarity in individuals and institutions 

between the two projects, Hernandez also noted an ideal way to manage the data. She noted that 

the best archive environment would be the Mikulski Archive for Space Telescopes (MAST), 

however she knows that MAST itself is only available for space-based (NASA) data and not 

LSST data, which is ground-based. 

Cox is an administrator at the data center and thus is concerned with providing the 

hardware and computing power necessary for LSST. However, she acknowledges that the 

specific needs will change over time. Cox discussed factors, including the long period of time 

and finite resources, which can impact how to make data available to LSST end-users. From the 

perspective of the LSST team, it is unclear how many of the intermediate processing levels will 

be stored, for how long, and in what medium. She explained that data processing levels might 

each need to be stored differently based on the amount and kind of user demand. She explained, 

“... How much you keep? Storing data is expensive. …‘It takes me this much to process it. So 

that’s fast. It’s inexpensive.’ …And then you have to do like, ‘How many times do I access the 

data?’ This cost comparison” (Cox, Project Manager, 2015). Some materials may be stored on 

fast disc, some on slow disc, and some on tape. In the long-term, LSST storage and serving 

conditions are unclear. While data center staff have chosen to assume that Moore’s Law will 

work in their favor over time, it is unclear to what extent exactly the “law” will continue to 

benefit the project.  

4.2.2.3	SDSS	data	end-users	

The following subsections present data management descriptions by the SDSS data end-

user interviewees. The following includes results from individual, small, and medium-sized 

collaborative projects undertaken by interviewees. 
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v SDSS	end-users	data	collection	

Interviewees described collecting data in multiple ways; even data from the same source 

could be collected in different manners. The kind and amount of data particularly influenced data 

collection methods. For example, data volume determined whether an interviewee would hand 

collect individual data, download some data, or query a database to download large amounts of 

information.  

Many interviewees described downloading large amounts of SDSS data from SkyServer 

or CasJobs, and then relying on that local copy of the data for further analysis or queries. For 

example, Jones explained that he created datasets linking SDSS and other datasets together 

(value-added catalogs). Since generating those catalogs, he has not gone back to the original 

SDSS dataset, “…having produced these value-added catalogs, we’re more extracting stuff from 

those catalogs rather than going back to the actual raw data themselves” (Jones, Professor, 2011).  

While some interviewees now rely on writing Structured Query Language (SQL) to query 

databases, Carter managed to collect data without using SQL. Instead, she uses the survey 

databases in a different way, picking specific objects one at a time, instead of querying a large 

dataset. She explained how he collects sky survey data: “So I’m still operating in this weird, 

bizarro land where I just focus on a subset of the Sloan dataset as if it were a classical telescope” 

(Carter, Professor, 2015). 

Sky survey data end-users collect data using multiple methods. End-users query the sky 

survey resource using multiple tools, and then may download the data for future reuse. Some 

data end-users rely on their knowledge of SQL to obtain data, while others rely on the sky survey 

to have created non-SQL based data retrieval tools.  
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v SDSS	end-users	data	storage,	processing,	and	transfer	

Five interviewees mentioned using Dropbox, or a similar kind of storage software, as a 

helpful data management tool for both individual and collaborative projects. Some enjoyed the 

feature that Dropbox essentially generates backups across computers, others appreciated that 

they can work on the same documents from different machines, and still others relied on it for 

version control among collaborators. 

 Three interviewees discussed data management based on data processing stages. Garcia 

explained that each stage in a processing pipeline creates new copies of data. A large amount of 

storage space is required if copies are retained at each processing stage. White explained that it is 

simply not possible to retain all his data at each level of data processing. He explained that he 

decides to retain an intermediate level of data only if the next processing step cannot be reversed. 

As data are processed through various stages, interviewees must determine whether and how to 

manage divergent copies.  

 Interviewees discussed managing data for their research projects in one of four ways. 

Seven SDSS data end-users described their data management as involving folder structure 

organization on their personal computer. For example, when asked to explain how he organized 

his data, Nguyen responded, “Organize? Well, just try to keep them in different directories, I 

guess” (Nguyen, Professor, 2015). Next, four interviewees described how they use the 

Interactive Data Language (IDL) database structure to organize data on their personal computers. 

For example, Rodriguez uses IDL to organize and analyze FITS files (Rodriguez, Professor, 

2011). Three interviewees explained they are unable to manage their research data on a personal 

computer, and instead require local workstations to provide the storage space and memory 

necessary for scientific data storage and analysis. One interviewee’s office was full of monitor-
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less computers and he used these computers as nodes for his data work (White, Staff Scientist, 

2012). Five interviewees described relying on a shared server to manage and analyze their 

scientific data. Garcia used the university computer cluster to process data for his work. Evans 

explained that it is only during the final stage of journal article data analysis and writing that she 

is able to work with data on her local computer. The rest of her data analysis requires 

infrastructure on the scale of server farms (Evans, Post-Doc, 2015). SDSS data end-user 

interviewees indeed described four different ways they store data used for scientific analysis: 

through folder structures, IDL, local workstations, or shared servers. 

v SDSS	end-users	long-term	serving	and	archiving	

This section presents how interviewees managed their project data at the end of a project. 

As described in the methods, each end-user interviewee was questioned using the “Follow the 

Data” interview protocol, which asked about their data management practices through the full 

research process of a single journal article. The interviewees in this study generally defined the 

end of a project as coinciding with journal article publication.  

Twenty-five interviewees were asked to locate the data behind a specific figure in their 

recent journal article. Specifically, the interview protocol asked, “Could you locate the data for 

this [table/graphic/image]?” Of the 25 interviewees, there were seven kinds of responses to the 

question, organized into four categories (Table 23). The four categories of responses were 1) I 

have the data (n=12), 2) someone else has the data, but I do not (n=16), 3) the data are available, 

but in an earlier level of processing, (n=3) and 4) the data are not available (n=1). Six 

interviewees responded by using more than one of the categories. Five of those interviewees 

responded with more than one category because the reason that they did not have a copy of the 

data was that the data were not important enough to retain. The sixth interviewee offered two 
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responses because he noted his data are available publicly on his website, while his code is 

maintained locally. The response categories are detailed below.  

Response categorization to the question 
“Could you locate the data for this 
[table/graphic/image]?” 

Number of 
responses 

Response 
categorization 

I have a local copy and can show you the 
data now 

9 I have the data 

The data are publicly available on my 
website 

3 

The first author has the data 8 Someone else has 
the data, but I do 
not  The student or post-doc has the data 5 

The data were included with the published 
journal article 

3 

It was not necessary to keep the data 
because the data I obtained are publicly 
available and it is easy to replicate the 
data processing 

3 The data are 
available in an 
earlier level of 
processing 

The data are not available because new, 
better data should be collected instead of 
relying on my data 

1 The data are not 
available 

Table 23 SDSS end-user responses to “Could you locate the data for this [table/graphic/image]?” 

Nearly half of the end-user interviewees (12/25) had the data they were asked to locate. 

These interviewees either had the data available on local disk (9), or had publicly posted the data 

on their website (3). Davis said he believes in lots of backups of his data, even after publication. 

White had many copies of his data and continues to migrate old and new data forward so that 

they are always on his current computer (White, Staff Scientist, 2012). However, Morgan was 

not confident in his ability to retrieve the relevant data. Instead, this interviewee relies on the 

original data archive to gain access to his dissertation data now and into the future. However, 

Morgan clarified that he does have local possession of the code he used for data analysis and 

thus the data could be reproduced if necessary, as long as the project continues to serve the data. 

Three interviewees noted their data are available on their website. Martinez posted data to his 
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website when his journal article was published. In fact, he posts data on his website not only for 

other users, but also for himself. He explained, “when I do additional analysis, I want to be dead 

certain that I’m using the same thing we’ve made available to other people” (Martinez, 

Professor, 2014). These interviewees each have possession of the data they used in the journal 

article discussed in their interview. 

Roughly half (12/25) of the interviewees noted that they do not have the data, but that a 

co-author of the study has the data used in the journal article. When interviewees noted someone 

else had the data, they referred to one of two people: the first author of the article (8), or the 

graduate student or post doc who collaborated on the project (5). One of the interviewees noted 

the person with the data was both their student and the first author of the paper. Some 

interviewees felt it was the first author’s responsibility to have the data and did not think about 

data disposition beyond that assumption. Johnson said, “Well, there is probably a folder 

[student/first author name] has somewhere… Well no, they actually have to go ask [student/first 

author name]” (Johnson, Professor, 2011). Williams indicated that during some collaborative 

research projects, co-authors with different interests might manage the datasets most relevant to 

their specialty. Wilson, a graduate student, was directly asked who generally managed research 

data. He responded that students usually were designated as data managers, “Well, these around 

here, that's fallen to the students...” (Wilson, Graduate Student, 2011). However, he explained 

that student data management was not an official policy and instead an ad hoc tendency. Morgan 

laughed during the interview when he realized he did not have access to the data that contributed 

to a journal article and that it could affect the reproducibility of his study (Morgan, Post-Doc, 

2015).  
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Three interviewees noted that they do not have the final data products that led to journal 

article publication. However, they noted the original data remains available publicly and it would 

not take very much time to transform the available data into the data product they used for 

journal article analysis. For example, Bennett mentioned that not all code needs to be kept, 

because some is easy to replicate (Bennett, Staff Scientist, 2015). These three interviewees did 

not have access to the data used for their journal article. However, they believed that they could 

re-create their processing steps by using the original data, which remains publicly available. 

Finally, one interviewee stated that he did not retain his data because he believed that the 

particular dataset was unimportant. Wood explained, “… if you talk to somebody who works on 

galaxies or something… they would never use data from two decades ago. They would be like, 

‘Why would I do that? I'll just go to the telescope and get another spectrum…’" (Wood, 

Professor, 2015). This interviewee admitted to no longer having the data, however he argued that 

a potential data reuser should instead collect their own data using newer, and thus more 

sophisticated, instruments. 

4.2.3 RQ2 ethnography results 

In both the SDSS and LSST observational findings, academics from different disciplines 

worked together, and in both projects culture clashes were found. The SDSS I and II project has 

completed data collection when the author of this dissertation began observing the collaboration. 

SDSS ethnography results reveal how the term “archive” was understood and used multiple ways 

by members of the SDSS collaboration. LSST observations for this dissertation were conducted 

at the close of the research and development and start of the construction stage of the project. 

LSST ethnography results reveal the joining of divergent cultures influenced how data 

management was interpreted.  
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4.2.3.1	SDSS	data	management	in	ethnography	

When the author began observing SDSS in Spring 2012, the project had already 

transferred operations from SDSS II to SDSS III. However, the SDSS I and II data continued to 

be managed and served to the public. From the author’s perspective, the time following data 

collection could be referred to as the archival period. However, the term “archive” held various 

meanings for members of the SDSS collaboration.  

In Summer 2012, four years after SDSS I and II data collection was completed, the 

author had a confusing conversation with Taylor, an SDSS team member and leader. When 

asked about the long-term plans and data archiving for the SDSS, Taylor referred to the SDSS I 

and II dataset as the “science archive” (see also 4.2.1.1 SDSS data management in documents). 

When pushed to describe the long-term management plans and practices for the data, Taylor 

noted that multiple universities “have copies.” While referring to the SDSS science archive, 

Taylor had no conception of the meaning of the term “archive” as defined in this dissertation and 

related to data management, preservation, and curation. The same ambiguity of the term occurred 

with another important SDSS team member at the same institution. Once the author and 

Anderson reached consensus on the subject, Anderson stated that there was no need for 

preservation or archiving. He explained, "We put it up on the web, so it's good, it's done" 

(Anderson, Emeritus Professor, 2012). Even though these SDSS team members and leaders 

committed more than a decade of their lives to the SDSS project, they were unclear of the 

meaning of “archive” beyond that of the SDSS “science archive,” and once pressed found little 

need for long-term data management.  

Alternatively, there remains much pressure on the SDSS collaboration to ensure the data 

are served and preserved in the long-term. As presented in RQ2 section SDSS end-users long-



  
  

145 
 

term serving and archiving, the most conscientious data end-users explained that while they save 

and backup their SDSS data retrieval queries, as well as the intermediate and final data products 

from their analysis, they do not feel a need to save the data initially retrieved from the SDSS 

server. End-users are not managing copies of the SDSS data used for their science because they 

assume the data will remain consistently available from the SDSS collaboration. SDSS team 

members need to serve and preserve the SDSS data because end-users rely on that data to remain 

available for the reproducibility of their science. 

Luckily, many other SDSS team members have considered and prioritized long-term 

management of SDSS data and understand the importance of data preservation. While SDSS 

leaders admit they considered long-term management later than they should have, steps were 

taken to archive and serve the SDSS data prior to the end of project funding (refer back to 4.1.3.1 

SDSS data in ethnography). 

4.2.3.2	LSST	data	management	in	ethnography	

LSST data management systems are currently under development: the project is under 

construction, having completed the research and development phase of the work. The LSST 

project as a whole, including telescope, camera, data management system, and operations, is a 

more than one billion dollar enterprise. Given the complexity and expense of the project, funding 

bodies require data management software construction to occur on time and within budget. The 

NSF in particular requires extensive planning and reporting to ensure progress.  

 Most university-based astronomers have never participated in a project the size of LSST, 

which has led to a clash of cultures. On one side are PhD astronomers who generally work in 

small or medium collaborations, and have never worked on a project at LSST’s scale. The 

majority of those employed by LSST for data management have PhDs in astronomy and are 
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located at a university, and as such are more accustomed to the university-based research 

environment, which is in sharp contrast to NSF requirements for strong reporting to ensure the 

continued success of the software development project.  

 Many informants described their struggle between moving from an university 

environment to a highly regulated NSF culture when they began working on LSST. One 

individual was a team member of SDSS and then an early member of LSST. He described 

working with LSST leadership to determine, “how do we design the code in a pseudo-

professional way?” (Campbell, Professor, 2015). He explained that much early data management 

work during research and development involved attending classes on professional programming. 

He explained how important, and yet frustrating, it was to be forced to learn a whole new way to 

write software. As astronomers, he and his colleagues generally wrote code well enough to 

accomplish a certain task, and then moved on. However, he understood that with a large 

collaboration and thousands of potential end-users, the software would have to be created in a 

more deliberate way. He described more specifically that this LSST project period was spent 

learning how to build data management software as programmers instead of as astronomers: 

“Yeah, that involved training us on a lot of new tools, stuff that we had certainly never thought 

about having to do in academia” (Campbell, Professor, 2015). 

 The astronomer described above was frustrated by having to learn all new tools and 

techniques for writing code. At another LSST institution, during construction, different software 

writing cultures frustrated other LSST team members. Many of the LSST team members have 

degrees in computer science and the team as a whole was happy to follow professional software 

writing guidelines. They agreed with the importance of professional software techniques, even 
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though the detailed manner in which the Agile software method was deployed by LSST was 

difficult to implement across institutions. 

Multiple institutions had difficulty reconciling what they saw as two competing cultures: 

that of professional software writing and that of the NSF reporting system. “Earned value” is a 

term often heard at the LSST data management (DM) leadership meetings. The NSF requires 

that software engineering work time is carefully recorded and short- and long-term goals are well 

managed. While seemingly simple at first, the devil is in the details of the extensive spreadsheet 

system LSST DM leadership uses to track team performance for the NSF. An informant 

explained the earned value language from the NSF could sometimes even be in direct contrast to 

the Agile professional software engineering system. He explained that Agile enables a software 

engineering team to learn how productive their unit is over time, and then to measure and predict 

production accordingly. They went on to explain the Agile method is the “antithesis” of the 

earned value model that the NSF requires.  

The LSST DM leadership specifically tries to shield software writers from the NSF and 

earned value language, instead leaving those worries to the leadership team. Despite these 

attempts, the discrete cultures of the NSF earned value and the Agile software engineering 

system do influence the way software writers go about their work. Each of the institutions 

studied for this dissertation found that adapting to working within these two divergent cultures 

remained difficult. When specifically asked, one informant noted that the reasons a person may 

want to work on an academic project do not align with the way LSST needs to be managed for 

the NSF. He explained, “People don't come into academia for the money right? Typically it's for 

other perks, …the opportunity to be involved with something kind of grand... [But] at this point 

feels like we’re trying to check off boxes for bureaucrats” (ethnographic fieldnotes, 2015). Over 
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the course of the observations, each institution began to more successfully grapple with these 

competing cultures. 

4.2.4	RQ2	results	summary	

A number of perspectives emerged for what it means to manage astronomy data. The 

SDSS team documents parsed data management into three stages: Data Collection; Data Storage, 

Processing, and Transfer; and Long-Term Serving and Archiving. LSST documents did not 

describe data management in this kind of temporal fashion because the project is early in the full 

project life cycle. Since a temporal pattern across LSST documents did not emerge, these results 

were presented by document genre. Different LSST document authors described data 

management in terms of the remaining work to prepare for data collection, lists of tasks and 

responsibilities, or difficulties associated with the volume of the data and the speed with which it 

will need to be made available. The interviewees in all three populations described data across 

three rough temporal periods: Data Collection; Data Storage, Processing, and Transfer; and 

Long-Term Serving and Archiving. These three stages were the same across the large SDSS and 

LSST team projects, as well as the small- and medium-sized projects described by SDSS data 

end-user interviewees. The RQ2 ethnography findings illustrated nuance to these larger 

categorizations. SDSS ethnography findings showed the term “archive” held many meanings 

across the SDSS collaboration, and therefore there were different understandings of what long-

term data management entailed. LSST ethnography revealed different data management working 

traditions, which split along professional programming and university settings. While many 

university employees had never worked in large, dictated collaborations, the NSF requires 

precise recordkeeping to ensure LSST remains a good steward of federal funds. Each of the three 



  
  

149 
 

research methods elicited complementary understandings of the temporal and nuanced nature of 

astronomy data management in the study populations.  

Through close analysis and the combination of the three research methods, a descriptive 

model emerged showing the stages of sky survey data management over the course of a project. 

The RQ2 findings demonstrate that astronomy sky survey data management takes place over the 

course of a set of stages. As outlined in the presentation of the results, six data management 

stages emerged from the document and interview results from both the SDSS and LSST team 

members and the SDSS data end-users. Figure 7 illustrates the Sky Survey Data Stages that 

emerged from combining the temporal and nuanced ethnography findings with the document and 

interview results. Sky survey data are shown to originate with the sky survey team after project 

proposal, construction, and data collection. Data are then processed, documented, and released to 

potential end-users. The team members manage the data in the long-term, however “long-term” 

is defined locally. Once data are released, end-users can employ the data in their planned 

research. This end-user work often requires further data cleaning and processing, analysis, 

writing, and publication of findings. The derived data are sometimes then documented and 

released to other potential end-users, which begins the cycle anew. More often however, end-

users do not provide long-term data management for derived data, as detailed in 4.2.2.3 SDSS 

end-users long-term serving and archiving. 



  
  

150 
 

 

Figure 7 Sky Survey Data Stages 

Each data management life cycle stage depends on the successful implementation of the 

previous stage. For example, data cannot be released until they have been processed, nor can 

they be available for scientific reuse. While SDSS and LSST team members usually specialize in 

their data management tasks, end-users often must manage data from planning to disposition.  

4.3	RQ3	Results:	What	Expertise	is	Applied	to	the	Management	of	Data?	

The following results address the third research question (RQ3): What expertise is 

applied to the management of data? Documents, transcripts, and ethnography field notes were 

fully coded and all materials coded with “Important Skills, Abilities” were pulled from the 

NVivo software for closer analysis. The “Important Skills, Abilities” code captures all 

information related to workforce experience and expertise. Results are first presented based on 

findings from document analysis, then interviews, and finally findings from ethnography. 
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4.3.1 RQ3 documentation results 

The following are the findings from documents coded “Important Skills, Abilities.” 

SDSS documentation results are presented first followed by LSST documentation results. 

4.3.1.1 SDSS data management expertise in documents 

SDSS is often described as a pioneering project because lessons learned have influenced 

subsequent astronomy sky surveys. Team members describe a range of expertise they developed 

from working on the SDSS that they now apply to new projects, including the Dark Energy 

Survey (Yanny, 2011, p. 20). However at the time of SDSS I and II, a number of lessons were 

yet to be learned and a number of new kinds of expertise were not yet developed in the 

astronomy sky survey community. 

v Continual	expertise	and	learning	

The formal SDSS hierarchy reflects the breadth of expertise necessary for the 

collaboration to succeed. The following kinds of positions are within the SDSS leadership 

hierarchy: Astrophysical Research Consortium Board, Advisory Council, Advisory Council 

Executive Committee, Advisory Council, Chair, Director, Project Scientist, Project Manager, 

Spokesperson, Collaboration Council, Project Teams, Management Committee (Astrophysical 

Research Consortium, 1989, 2000, 2005). The NSF Project Execution Plan (PEP) reveals further 

kinds of expertise embodied throughout discrete components of the larger SDSS project. Of 

particular relevance to data management are Survey Operations, Data Processing, and Data 

Distribution. In the PEP, each of these components is broken down into a long list of required 

tasks and kinds of expertise. For example, the plan disambiguates “Survey Operations” into four 



  
  

152 
 

different components: Observing Systems, Observatory Operations, Data Processing, and Data 

Distribution (Kron, 2008, p. 4). 

By the early days of operations, the SDSS collaboration was aware that a breadth of 

astronomy, physics, and computer science expertise was necessary to collect and analyze the 

SDSS data successfully (Szalay et al., 2000, p. 2). A SDSS team member explained that an 

important lesson learned from the SDSS was to ensure depth of expertise by not allowing one 

individual to be the only expert along a critical path. He clearly explained,  

“Avoid single points of failure. OK, so this is totally obvious, but there are subtler 
aspects. If one person is allowed to become essential it implies that it’s proved 
impossible to find someone else who could fill their role. In consequence, if they 
are on the critical path, and problems arise, it’s hard to add resources to solve the 
problem” (Lupton, 2002, p. 9). 
 
However, despite the large number of team members and implemented hierarchy, SDSS 

team members acknowledged there was no way all potentially necessary expertise could be 

present at once within the collaboration. The SDSS made provisions to enable the team 

membership, and therefore range of expertise on hand, to grow over time. In particular, when an 

individual possesses a scientific expertise the collaboration currently lacks, there are ways to add 

that individual to the relevant parts of the project (Astrophysical Research Consortium, 2005, p. 

11). 

v Data-intensive	expertise	

SDSS data were collected and made available at such a relatively high volume and scale 

that it was beyond most astronomers’ expertise to manage (Margon, 1998, p. 6). At the time, the 

SDSS collaboration was aware that working with these data volumes was primarily limited by 

their data management learning curve. Margon explained, “All SDSS data will be entirely public, 
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on a schedule limited only by our (chiefly human) resources needed to process and calibrate this 

very large volume of information” (1998, p. 6).  

The SDSS collaboration soon discovered it would not just be the SDSS team members, 

but also the data end-users, who would require new expertise to work with these volumes of data. 

Some SDSS team member leaders explained, “In this era, astronomers will have to be just as 

familiar with mining data as with observing on telescopes” (Szalay et al., 2000, p. 2). Early in the 

SDSS data collection, team members recognized that many potential end-user scientists held 

little expertise working with big data (Szalay et al., 2000, p. 9). Given the level of expertise 

generally necessary to analyze large volumes of data, the SDSS team members who developed 

the data access mechanisms were highly successful at creating a way for end-users to search, 

retrieve, and use SDSS data. 

v Help	desk	

Despite the SDSS collaboration’s extensive data management tools and quality 

documentation, a help desk remains necessary to assist end-users. End-users ask a variety of 

scientific questions about SDSS data. Some of these questions require the end-user to understand 

the methodological details of how the SDSS team collected and processed the SDSS data. 

Indeed, “In many cases… Users often require support from SDSS personnel with expertise in the 

relevant parts of the pipeline to properly interpret the files provided; a helpdesk supported by the 

experts is essential” (Neilsen Jr. & Stoughton, 2006, p. 3). The importance of the help desk 

illustrates that the SDSS team members who built the infrastructure possess expertise beyond 

what can be recorded. For some science questions, team member expertise may prove essential. 

However, an individual, even one highly involved in the collection and processing of SDSS data, 

cannot answer all help desk questions. Full knowledge of the data requires a team. 
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4.3.1.2 LSST data management expertise in documents 

LSST data management documents and funding proposals acknowledge the need for 

many kinds of expertise available only through the engagement of faculty and staff from 

distributed locations (National Science Foundation, 2005). During a period of hiring in 2014, two 

presentations aimed at the larger LSST collaboration highlighted the dispersed expertise 

necessary for the LSST data management team. Figure 8 is an LSST presentation slide titled 

“Going Where the Talent is: Distributed Team” (Juric, 2014, p. 16; Kantor, 2014, p. 12). The 

figure demonstrates that expertise is required from seven different institutions to build the data 

management software stack. The stack involves six different kinds of modules, some 

components themselves requiring expertise from multiple locations. The LSST data management 

system is constructed through the expertise of a wide array of individuals geographically 

distributed across the U.S.  

 

 

Figure 8 The Distributed Nature of the Expertise Necessary to Develop the LSST Data Management Software Stack 
(Juric, 2014, p. 16; Kantor, 2014, p. 12). 
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v Software	engineering	knowledge	

Mario Juric, LSST Data Management Project Scientist, explained why the project 

requires building a new software stack, as opposed to amending existing software to LSST 

specifications. He included six reasons for new code, including the need for “running efficiently 

at scale,” and the need for the code to be agnostic and flexible over its predicted 25 years of use 

(Juric, 2014, p. 19). 

LSST team members refer to the project as one that requires collaborators to push the 

limits of computational capabilities. The Technology Innovation page on the LSST website 

explains, “The role of the experimental scientist increasingly is as inventor of ambitious new 

searches and new algorithms. Novel theories of nature are tested through searching for predicted 

statistical relationships across big databases” (“Technology Innovation | LSST public website,” 

2015). The expertise necessary to build software from scratch is more extensive than that of 

modifying existing software. LSST thus requires software engineers who write ambitiously, and 

not just make adaptations to existing software. 

v Big	data	expertise	

LSST data will be used for a broad range of scientific inquiries. Many of these 

investigations will not require experience working with big data; however, many will need the 

expertise necessary to analyze large datasets. Similar to SDSS, LSST is expected to enable 

breakthroughs in scientific research beyond known fields of inquiry (Ivezić et al., 2011, p. 28). 

To ensure LSST data will be used to their full potential, data management team members and 

data end-users will need to become familiar with big data analytical techniques and the data 

management necessities involved in utilizing big data. The LSST collaboration must face “Data 

Mining Challenges” (Ivezić et al., 2011, p. 20), and the collaboration has begun working with 
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experts outside astronomy including machine learning and statistics. Partnering with experts in 

data mining, statistics, and machine learning will likely enable more and different scientific uses 

of the LSST data.  

v Breadth	in	astronomy	expertise	

LSST is expected to contribute to the scientific goals of a broad range of astronomy 

inquiry. Due to the expansiveness of the field, it is not possible for the LSST team to possess 

high levels of expertise for every relevant avenue of astronomical investigation. Therefore, in 

addition to those paid through LSST funding to build LSST infrastructure, a cadre of scientists 

are preparing for LSST data by providing feedback to the systems under construction. Referred 

to as members of the “science collaborations,” many scientists donate their time to specify their 

scientific needs to the LSST community. The Science Book (2009) required significant 

analytical efforts from many members of the science collaborations. As of 2011, “eleven science 

collaborations have been established by the project in core science areas. As of the time of this 

contribution, there are over 250 participants in these collaborations, mostly from LSST member 

institutions” (Ivezić et al., 2011, p. 30). The role of the science collaborations and their members 

is vital to LSST because the project requires such a vast breadth of expertise.  

4.3.2	RQ3	interview	results	

The following results address the expertise necessary to manage astronomy data that 

emerged from the interviews. Results are presented first from the SDSS team, next from the 

LSST team, and finally from the SDSS data end-uses. Together, the SDSS team, LSST team, and 

SDSS end-users proceed through the three broad sky survey data stages as revealed in the RQ2 
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results: data collection; data storage, processing and transfer; and long-term serving and 

archiving (refer back to 4.2.2 RQ2 interview results). 

As already noted, the following interview findings are those that resulted from analysis of 

the interview transcript passages coded as “Important Skills, Abilities.” A few interview 

questions led to particularly illustrative responses. The LSST team member interview protocol, 

in particular, emphasized questions about experience and expertise. For example, two questions 

asked interviewees to consider the experience and expertise that has particularly benefitted their 

success in the field: “What experience/education/expertise do you think you in particular bring to 

LSST?” and “Are there skills or knowledge you gained from a different project that are 

particularly useful for LSST work?” While experience and expertise were not brought up as 

explicitly in other protocols, the experience and expertise necessary for data management work 

emerged from all interviews. For example, follow-up questions were often used to ask 

interviewees to delve further into how they were able to accomplish data management tasks. 

These follow-up questions often revealed the kinds of experience and expertise the interviewee 

identified as important to their data management work. The expertise necessary for data 

management at each of the temporal stages that emerged from RQ2 findings are now presented, 

beginning with the SDSS team interviews. 

4.3.2.1	SDSS	team	expertise	

 At the time of writing, the SDSS I and II had already reached the long-term serving and 

archiving project life cycle stage. Each of the results below thus addresses stages in the life of the 

SDSS data that have already occurred or begun. 
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v Data	collection	

The expertise specifically necessary for SDSS team data collection was rarely discussed 

in the interviews, most likely because interviews were conducted years after the SDSS I and II 

had completed data collection. This also speaks to the kind of expertise necessary for data 

collection, in that it was largely outside the scope of the expertise generally germane to this 

study’s populations. Interviewees were chosen for this study based on their relationship to SDSS 

data management efforts. Generally speaking, the individuals collecting data on the mountain are 

not the same individuals as those processing information at the data center or preparing the data 

for release. Once SDSS construction and commissioning were completed, an operations crew 

distinct from the data management individuals interviewed for this study, managed the data at 

the point of data collection. 

 However, there can be crossover between the individuals and teams writing the data 

processing software and those writing the “mountain-top software” (Moore, Staff Scientist, 

2012). While interviewed long after data collection was stabilized, Moore explained that 

sometimes the hardware and software on the mountain required management. For example, she 

wrote some of the mountaintop software, and sometimes returned when problems arose or 

updates were required (Moore, Staff Scientist, 2012). Largely outside of the scope of the study 

populations, data management software was, and continues to be, modified for data collection. 

v Data	storage,	processing,	and	transfer	

Three interviewees noted the importance of choosing an appropriate institution for the 

SDSS data center. They agreed the final SDSS choice was appropriate because it is a large 

institution with complementary and redundant expertise across staff. Hall explained the data 

center’s extensive previous experience with large volumes of physics data made it an excellent 
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institution to manage SDSS data. A team member at the data center explained that their staff 

have, “…expertise in dealing with large datasets. So that's one of the connections between 

particle physics and astronomy, was the so-called data processing, taking…large amounts of 

data…and turning it into something useful [for] scientists…” (Hall, Staff Scientist, 2013). 

Despite the data center’s experience primarily being in physics, and not specifically in 

astronomy, the institution had experience managing large datasets, which was the greater SDSS 

need. 

 Two interviewees spoke about the expertise surrounding the hardware needed to serve the 

SDSS data. Both interviewees referenced how SDSS required an external group to perform bulk 

data distribution. Brown explained they sent SDSS data releases to a team with the expertise to 

run large volumes of available hardware, “…then everybody else used to download from there, 

because they had... a lot of space to have, to hold our data, and also they had fast pipes to hook 

major centers in the world” (Brown, Staff Scientist, 2014). In addition to the hardware and 

bandwidth available for bulk data movement, SDSS team members relied on the external team 

because that team held expertise, which the SDSS team members did not necessarily possess. 

One SDSS team member explained that stable technical experience and expertise are not 

available just anywhere, “Like we have a just a superb sys admin and a really nice machine 

room, but it's not the sort of thing you would take a $50 million survey and say, ‘We're relying 

on this infrastructure’” (Watson, Professor, 2015).  

Two SDSS team members spoke to the importance of the SDSS software writers’ ability 

to self-teach and learn quickly. They explained that data-intensive astronomy was an actively 

changing environment, and required individuals who could adapt accordingly. Martin explained 

what he looks for in job candidates: “Because it’s changing so fast and our environment is 
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cutting edge in many ways… that nobody has the full spectrum [of expertise], but we try to find 

people who can learn fast and have some background” (Martin, Staff Scientist, 2012). SDSS 

team members needed to be able to learn quickly and remain up-to-date with ever-adapting 

technologies.  

v Long-term	serving	and	archiving	

SDSS did not plan for the long-term serving and archiving of the data in the early days of 

the project. One reason that they did not plan early on is the team members did not initially 

possess the long-term archival expertise needed for long-lived data management. Brooks 

explained, “…whenever we talk about data archives, it always comes up that to properly archive 

data, you need expertise… Astronomers, like physicists, we tend to believe we can just figure it 

all out ourselves…. I don't think it crossed our mind that there's people we could just call…” 

(Brooks, Professor, 2015). The SDSS did work with two university libraries to add long-term 

data management expertise to the project (Refer back to 4.1.3.1 SDSS data in ethnography). One 

SDSS team member in a leadership position discussed how collaborating with two university 

libraries during the SDSS archival phase brought important expertise to the team. He explained 

that the libraries taught the SDSS team to focus on the “long-term mindset,” adding metadata and 

documentation, migrating to new formats, gathering documents, and the libraries “probably 

pushed us to more than we would’ve ourselves” (Robinson, Staff Scientist, 2013). While library 

expertise on the collaboration benefitted SDSS according to this interviewee, three different 

SDSS team members noted SDSS continued to lack archival expertise present in the NASA 

science centers. An SDSS leader noted a NASA science center could have easily archived the 

SDSS data because of their existing expertise. Another SDSS leader noted the NASA science 

centers are reliable because the data archiving expertise is located in one place, which 



  
  

161 
 

encourages experts to remain in careers that build and exploit their expertise over time. Bell 

explained that one particular NASA science center is a great example of the confluence of 

expertise, 

“'Cause they have staff who know how to do all these things…. Yeah, it can even 
be hard to hire that expertise, because someone who's good at that, what are we 
gonna do? Tell them to move to Hawaii for three years so you can do this, and 
then you'll have no job at the end? Whereas, [NASA science center], you know it 
will still be there in 20 years” (Bell, Professor, 2015).  
 

In addition to noting the expertise available at the NASA science centers, two SDSS team 

members described how the SDSS team lacked the archival expertise necessary to 

accommodate long-term data serving and archiving. 

4.3.2.2	LSST	team	expertise	

LSST is currently in the construction phase of the project. Operations will likely not 

begin for another five years after this writing, with the end of data collection ten years further 

off. While data collection has not begun on the mountaintop, the LSST project data management 

team has team members at six primary institutions employing various skills to prepare for data 

collection.  

v Data	collection	

Similar to SDSS, most of the interviewees for this study do not describe their expertise as 

residing in the data collection stage. No LSST interviewees spoke about data management on the 

mountain or at the point of data collection. Therefore, no evidence was provided from these 

study populations for the kinds of expertise needed for LSST data collection. 
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v Data	storage,	processing,	and	transfer	

Four interviewees spoke about the expertise necessary to develop LSST data processing 

and management software. While data collection will not likely begin until 2020 (as of the time 

of this dissertation writing), the data management teams are heavily invested in developing the 

infrastructures necessary to support data processing. One SDSS leader explained that it will be 

important to maintain the expertise of those team members who are currently building the 

software pipelines. Martinez explained that while specifics cannot be predicted, the team knows 

LSST software will require updates and maintenance throughout operations, and so it is 

important to retain the expertise of those who initially built the software. He explained, 

“And the way to understand such a complex system is often related to doing 
complex simulations. So we cannot let our simulations team go after first light, 
we'll have to keep them…. And then with data management, too, once you learn 
how your data actually look like as opposed to what you thought they would look 
like. You need at least [a] few years to recode your pipelines and to make them 
good again and then you need to maintain them for a few years” (Martinez, 
Professor, 2014). 
 

While some kinds of expertise must be retained over the course of the LSST project, some are 

necessary only at specific points in the project. Martinez continued to explain that the kinds of 

personnel needed for data management can differ between stages, “… you want slightly more 

science-y people to define what the project is supposed to deliver. …in construction then you 

need people who are better at, for example, coding, who are better at programming…the profile 

changed over the time…” (Martinez, Professor, 2014). While different kinds of expertise prove 

more important at each LSST stage, past experience on the project remains important in each 

stage to retain continuity. 

 Nelson explained that expertise is important for writing LSST software, but so is working 

in a supportive environment of colleagues. He explained, “I'm not, ya know, formally trained in 



  
  

163 
 

software engineering. Everything that I have learned has been through experience…. And so 

having a community... Having an interaction around the solution I think just produces a better 

solution, in general” (Nelson, Staff Scientist, 2014). While Nelson was not formally trained in 

software engineering, he finds that working alongside his teammates allows them all to succeed 

in their work.  

Four interviewees discussed the kinds of technical expertise necessary for LSST data 

center staff. Staff expertise at the data center is often different than the expertise needed at the 

universities developing the software pipelines. The data center is where the data will be stored, 

processed, and made available to end-users. One interviewee at the data center listed off the 

kinds of experience needed for data management work there: Storage systems, workflow 

managing, processing of the data, storage and retrieving data to some extent, networking, 

administration of systems, security of systems (Diaz, Research Programmer, 2015). Given the 

breadth of expertise and experience needed in the data center, that team requires staff with 

expertise in computing, software, and networking, as opposed to experts in astronomy domain 

knowledge. Another data center interviewee explained the data center team members are 

intended to be more technical experts so the astronomers do not have to gain computer science 

expertise on top of their domain knowledge. The LSST team members working at the data center 

seek to provide the technical expertise to enable the LSST team to successfully manage their 

astronomy data. 

v Long-term	serving	and	archiving	

As noted in the RQ2 results, interviewees provided very few perspectives for the long-

term serving and archiving of LSST data. Three individuals predicted what kind of management 

might prove necessary in the long-term (refer back to the section on LSST team long-term 
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serving and archiving). However, no one noted the expertise necessary for long-term data 

management. Future social science research into LSST should investigate how long-term serving 

and archiving of the data is being planned, what the expectations are for data management, and 

what kinds of expertise are predicted to be necessary.  

4.3.2.3	SDSS	end-users	expertise	

SDSS data end-users are able to obtain sky survey data once team members make the 

data available to the public. At a different scale, data end-users also manage their data first 

through data collection, then data storage, processing and transfer, and finally through the extent 

to which they offer long-term serving or archiving (refer back to 4.2.2.3 SDSS data end-users). 

The expertise necessary for these three stages, within the context of data end-users, is expressed 

below. Jackson outlined a distinction between large sky surveys, and end-user research projects. 

He explained that in terms of expertise, when he works on an end-user project he requires the 

data management expertise for all stages of the research project. He explained,  

“But it tends to be that I'm a one-man factory and I do from start to finish. At least 
for this work, because I made the data...There's too much data and there aren't 
enough of us to... specialize on particular areas. So, you need to be able to do a bit 
of everything. So, it tends to be you... So, therefore, it becomes slightly more 
efficient to be vertical” (Jackson, Staff Scientist, 2012).  
 

Given that individuals or small teams need to possess all of the data management 

expertise necessary for their work (while the SDSS and LSST team members can rely on 

specific deep dives in expertise spread over a larger team), it is reasonable that sometimes 

end-user scientists may require outsourcing for portions of their work. 
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v Data	collection	

Five SDSS data end-users discussed the expertise necessary to obtain SDSS data from the 

collaboration. Three interviewees discussed the importance of knowing SQL as a necessary 

skillset for easy data retrieval. One interviewee noted that while SQL may not have been an 

expertise necessary for astronomers in the past, it has now become a critical skill. He explained 

that learning coding languages and how to use databases are important for asking new research 

questions, “You're not restricted by the options someone gave you on a pull-down menu, but you 

can just do anything that you can express in Python” (Bell, Professor, 2015). Another 

interviewee explained that, given the volume of data he works with, he often must employ his 

system administrator knowledge, which “was one of the engineering skills, that I learned as a 

grad student [in astronomy]. Was how to be sys[tem] admin[istrator] for my own machine” 

(Campbell, Professor, 2015). These interviewees explained that successfully accessing and 

retrieving data from the SDSS interface could require technical knowledge in managing 

hardware and software. 

v Data	storage,	processing,	and	transfer	

Three interviewees discussed the importance of having experience writing software to 

manage SDSS data during analysis. These interviewees mentioned specific programming 

languages, while also noting the preferred language may change over time. Not only does it take 

time to learn a new language, but also it may require rewriting existing code an end-user may 

rely on for multiple projects. A young faculty member explained why he continues to write in the 

script he first learned in graduate school instead of learning Python or another modern language: 

“And while in principle I should switch, it's so much work for me that I doubt I will ever do 

that…. Well, I mean I lose everything. So. You have to really start again” (Rogers, Professor, 
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2015). These interviewees noted they need software writing expertise to process and analyze 

their data, and that it can be difficult to find the time to continue learning and adopting new 

languages as they change in popularity over the course of their careers. 

v Long-term	serving	and	archiving	

No interviewees discussed the expertise necessary to manage personal research data in 

the long-term. RQ2 results presented the range of ways data are maintained following the 

publication of a journal article. Data may be organized on personal computers or institutional 

servers, and the media may be migrated forward over time, the data may be posted to a website, 

or simply forgotten. None of the ways end-users discussed data management after publication 

reflected on skills or expertise. Aside from recognizing the importance of media migration, no 

activities or kinds of expertise were noted in the long-term management of end-user data. 

4.3.3	RQ3	ethnography	results	

As of this writing, SDSS I and II operations are complete, while the LSST construction 

phase is ongoing. As the two projects are both sky surveys, and have overlapping leadership, 

many team members expect the LSST to benefit from lessons learned during SDSS. One 

important lesson learned by SDSS team members is that software engineering for a sky survey 

project is an intensive exercise that requires extensive dedicated resources. While the time and 

labor of many individuals has shown necessary to successfully generate sky survey software 

infrastructure, astronomy is a typical academic discipline in which rewards and promotions are 

determined largely by scientific journal article authorship, and not teamwork that results in 

infrastructure. The SDSS, and now the LSST, must grapple with how to reward staff members 

who have astronomy PhDs, but cannot spend time writing personal scientific papers while they 
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build sky survey infrastructures that benefit the discipline as a whole. As LSST seeks a full 

environment of team members with astronomy domain knowledge and computational skills, the 

leadership must consider how to reward this workforce in a way to retain the experience and 

expertise needed for LSST to succeed into the next decade.  

4.3.3.1	SDSS	expertise	in	ethnography	

SDSS team members learned a number of lessons that individuals have applied to 

subsequent astronomy surveys. Despite having to learn through trial and error, SDSS is today 

considered a great success. 

Visionary leaders are often cited as critical components of the SDSS data management 

end-user services (Finkbeiner, 2010). While it is not advised to expect faculty to build software 

systems in their spare time, a handful of such visionary SDSS team members did just that and 

enabled the project’s success. However, ethnographic work illustrates it was not just these 

individual visionaries, but a team-wide shared desire for project success that enabled SDSS to 

persevere through multiple waves of potential budget failures over the years. LSST staff now 

emphasize that new team members must have a sense of teamwork and a shared drive for the 

successful work of LSST as a whole. 

While they may or may not have realized it at the time, the visionaries and others who 

dedicated time to building the SDSS data management infrastructure sacrificed much for the 

good of the project and the domain as a whole. The PhD astronomers who dedicated their time 

and expertise to infrastructure building were unable to spend that time researching and writing 

scientific journal articles. For established faculty, the time spent on infrastructure was likely not 

problematic. However, junior astronomers’ careers may have suffered due to spending time on 

infrastructure instead of publishable scientific research. Since the academic tenure track is 
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designed to reward journal articles, and that is at odds with the SDSS’ need to produce 

infrastructure, individual careers have suffered for the good of the project. 

Study participants brought up the “scientist’s dilemma” regularly across the five years of 

fieldwork for this dissertation. Not new to SDSS or LSST, “the scientist dilemma occurs 

whenever highly-skilled, scientifically motivated people are needed for support work” 

(Kleinman et al., 2008, sec. 5). Much technical support work is necessary for sky surveys, 

however this infrastructure work can derail an individual’s chances at a tenure-track faculty 

position. A limited number of faculty were noted as having “beat” the system; they achieved 

faculty positions even after spending extensive time on infrastructure projects. However, most 

individuals who spent time building infrastructure now have staff-level, rather than faculty-level 

careers. Since their interviews, the two study participants most vocally unhappy with their staff-

level positions have since left academia for industry. Luckily, the majority of these staff 

informants explained that they were happy with staff-level, infrastructure building positions 

because they enjoyed working with software as much as, or more, than doing basic astronomy 

research. 

While many astronomers may have first realized the reward structure problem with 

SDSS, the scientist’s dilemma still shapes astronomy collaboration involvement. Some will 

speak to whoever will listen about the improperly placed incentives in infrastructure-building 

projects like SDSS and LSST (Finkbeiner, 2001). These large collaborations require individuals 

with domain and software-writing expertise, but career disincentives can prevent projects from 

finding excellent astronomy software engineers who are also interested in pursuing tenure-track 

careers.  
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4.3.3.2	LSST	expertise	in	ethnography	

As of 2016, the LSST Data Management team remained in the process of hiring to full 

capacity. The leaders work strategically, trying to hire well for the large amount of work still 

necessary and spanning multiple US institutions. The leader at one primary LSST data 

management institution seeks to create an “environment” of expertise for LSST work, beyond 

that of merely a group of individuals who can perform data management tasks. The team leader 

explained a rich environment is necessary to keep operations proceeding smoothly. He continued 

to explain that even though the LSST project spent the past few years in research and 

development, they are now in construction and soon astronomers and the general public will 

expect a system that provides data in a technically mature way. Instead of hiring a set of 

individuals, his focus is on hiring a sustainable team with large amounts of overlapping 

experience, to ensure a high-level end-user product. 

At another primary LSST data management institution, the team leader also described 

intentionally hiring a team of experts who overlap and complement one another’s expertise, as 

opposed to hiring individuals. He explained that while he wants to hire the extraordinary kind of 

person that cannot be duplicated, that would leave the group open to a single point of failure. 

From his experience working on SDSS, he learned that instead of relying on a small number of 

extraordinary individuals, the collaboration’s knowledge should be spread among team members. 

The knowledge of products and processes, big and small, should be distributed across many team 

members as it reduces the potential for failure in the case of team member loss. While continuing 

to hire extremely bright and experienced team members, multiple branches of the LSST data 

management team have noted that it is the team, as a whole, that will ensure success of the 

project, and not extraordinarily intelligent and devoted individuals. While SDSS may have relied 
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on visionary individuals, LSST has learned from that experience, and instead is trying to 

generate a workforce that includes a meshwork of teamwork, skills, and expertise.  

4.3.4	RQ3	results	summary	

The RQ3 findings from the documents, interviews, and ethnography in this study 

complement one another. Each of the three methods revealed the importance of both astronomy 

domain knowledge and data-intensive, technical experience for successful astronomy sky survey 

data management. SDSS documents revealed astronomy and data-intensive experience as team 

traits that can always be improved upon by adding more team members, as well as something 

that requires the long-term commitment of individuals to retain institutional memory and survey-

specific knowledge through the life of the project. LSST documentation discussed the necessity 

of a distributed team to ensure the range of experience and expertise necessary for project 

success. LSST documents also discussed the importance of team members encompassing both a 

depth of software engineering knowledge as well as a breadth in astronomy domain knowledge.  

RQ3 interview results confirmed the temporal phases that emerged from the RQ2 

document and interview results. Not only do interviewees in this study discuss data management 

in terms of three distinct temporal stages, the interviewees also discuss data management 

expertise in terms of these three stages. However, each study population focused on only one or 

two of the three stages (see Table 24). SDSS team members did not discuss data collection, 

instead focusing on data storage, processing, and transfer as well as long-term serving and 

archiving. In comparison, LSST team members only focused on the second of those three stages, 

while the SDSS data end-users failed to focus on the third stage. While all three populations 

discussed the experience and expertise necessary for data storage, processing, and transfer, only 
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the end-users discussed data collection, and only the SDSS team discussed the long-term serving 

and archiving of data. 

 SDSS Team LSST Team SDSS Data 
End-User 

Stage 1) 
Data Collection - - YES 

Stage 2) 
Data Storage, Processing, and Transfer YES YES YES 

Stage 3) 
Long-Term Serving and Archiving YES - - 

Table 24 Temporal stages in which experience and expertise were discussed 

In terms of the temporal understanding of the experience and expertise necessary to 

develop and use sky survey data, the initial responsibility is that of the sky survey team. The 

SDSS and LSST both have diversified workforces. On both projects, the data collection staff on 

the mountain is distinct from the multiple software processing teams located at universities, who 

are also distinct from the data storage and transfer teams located at national laboratories. The 

distinction between workforces “on the mountain” and those working at universities processing 

data is likely a reason why the SDSS and LSST team interviewees did not discuss data 

collection; the two team study populations focused on experts in the life cycle after data 

collection. Alternatively, end-user data collection was discussed because it is a necessary early 

step in the small- and medium-sized projects that employ SDSS data.  

While LSST is still early in the project and leaders have not yet considered the workforce 

responsible for long-term serving and archiving, SDSS has employed multiple workforces in that 

role. As of this writing, the SDSS workforce choice for long-term data management is a 

university astronomy department. LSST arguably has time to determine the appropriate 

workforce, and will likely use lessons learned by SDSS to make the determination. SDSS data 

end-users were shown to be less concerned with the management of their end-user data products 
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in the RQ2 results. This lack of concern explains why the end-users did not focus on expressing 

long-term serving and archiving experience and expertise.  

The RQ3 ethnography findings add further dimension to the documentation and interview 

findings. The ethnography findings revealed the SDSS team initially relied on visionary leaders 

for success, but learned that teamwork among a diverse collaboration proved more sustainable. 

LSST collaboration members learned this lesson in expertise sustainability from the SDSS 

project and described wanting to build a full “environment” of experts for the project. However, 

both projects are faced with problems ensuring successful career paths in academia for staff who 

focus time and effort on building infrastructure for the sky surveys. 

4.4	RQ4	Results:	How	Does	Data	Management	Differ	Between	Populations?	

As described in the Methods chapter, the interview population sample was developed to 

enable cross-comparisons between population demographics. Understanding participant 

perspectives across demographic dimensions reveals how data management differs between 

populations. Seven demographic dimensions were chosen because they were hypothesized to 

influence data management. Variety was ensured through interviewee institutional affiliation, 

career stage, level of astronomy education, current workforce, role in SDSS and LSST, and 

participation in theoretical research. Interviews were conducted over a five-year period. The 

seven demographic parameters are recapped in Table 25; refer back to the Methods chapter for 

operationalization of the demographic variables. 
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Demographic Parameter Variables 
Primary Institutional 
Affiliation 

University 
Research Institute 
Data Center 
National Laboratory 

Year of Interview 2011 
2012 
2013 
2014 
2015 

Career Stage 
 

Graduate Student 
Post-Doc 
Faculty Professor 
Faculty Emeritus/Retired 
Staff Programmer 
Staff Scientist 
Non-scientific staff 

Level of Astronomy 
Education 

No Higher Education 
Some Astronomy Graduate 
Work 
Astronomy PhD 
Other Graduate Degree 

Current Workforce Astronomer 
Computational Astronomer 
Computer Scientist 
Other (non-research) 

Role in SDSS and LSST SDSS Team 
LSST Team 
Both 
Neither 

Theorist? Yes 
No 

Table 25 Demographic parameters used in study population sampling design 

Generally speaking, data management was described in more ways, but with fewer 

demographic patterns, than had been hypothesized. The most prominent finding for how data 

management differs between populations is that overall, astronomy research data management 

does not divide decisively along most demographic parameters. However, the following 

subsections describe the patterns that did emerge within each demographic parameter in the 

sampling design. 
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4.4.1	Primary	institutional	affiliation	

Interviewee responses are grouped by the primary institutional affiliation of the 

interviewee. The majority of interviewees (nearly 80%) were affiliated with a university. More 

than 20% of interviewees were affiliated primarily with a research institute, data center, or 

national laboratory (refer back to Table 6).  

Institutional affiliation is a factor in determining how interviewees discussed data. Refer 

back to Table 22 for a breakdown of the ways data were described. University employees and 

research institute staff were highly likely to discuss data in terms of content, the product of data 

processing. Alternatively, no one from a data center or national laboratory described data based 

on its content as images, spectra, and catalogs. Instead, national laboratory staff were most likely 

to describe data in terms of level of processing. These findings confirm that those who are most 

likely to be working on scientific research are more likely to think of data as scientific content, 

whereas those who are most likely to be working on building data infrastructures for others to 

use are more focused on data as information that is processed through those infrastructures. 

Individuals who use data for research thus consider data in terms of its resultant scientific nature 

and less its nature as developing information; indeed, only individuals at a university described 

data in terms of its evidentiary value. Individuals who are not using data for immediate scientific 

research instead focus on the process of preparing data. These findings align with types of 

careers, and therefore the way data are used and managed, in each institution. 

 These results demonstrate the amount and kind of interaction individuals had with data 

influenced the way that they spoke about data. Individuals working at Data Centers and National 

Laboratories were more likely to work with data on a daily basis, often for building sky survey 

infrastructures, and thus were more likely to describe data in terms of its state or level of data 



  
  

175 
 

processing. These interviewees outside universities were not faculty members and were less 

likely to be concerned, for example, with the content (images, spectra, and catalogs), or the 

analytical uses of the data for publishing journal articles. Instead, those working infrastructures 

were most likely to refer to data in a manner resonating with the interactions they had with data, 

generally through pipeline development and data processing. Furthermore, LSST interviewees at 

data centers only described data in terms of the level of processing. Thus, primary institutional 

affiliation proved a distinguishing factor between data management perspectives. However, the 

explanation relates more to the types of careers interviewees at each kind of institution held, 

rather than to the type of institution per se. The institutions point more to the distinctions 

between interviewees affiliated with tenure-track research careers, than those who build 

infrastructures and do not rely on research publications for career advancement. 

4.4.2	Year	of	interview	

Interviewees are grouped by the year the interview was conducted. Exactly half (n=40) of 

the interviews were conducted in 2015. The other forty interviews were conducted at a rate of 

about ten interviews each year from 2011-2014 (refer back to Table 7). No patterns emerged to 

differentiate the ways interviewees described data based on the year of the interview. Instead, 

data and data management were described differently based on an individuals’ type of data work, 

and not the year they were asked to describe their data work. A strong pattern may not have 

emerged because there were three different interview protocols, and they were not evenly used 

over the five years of the study. For example, more SDSS team members were interviewed early 

in the study, while LSST team members were only interviewed in 2014 and 2015. SDSS data 

end-users were largely interviewed in sets either early or later in the study duration. More LSST 

team members were interviewed in 2015 (during LSST construction) than at any other time. This 
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may be a reason why data as processing was discussed considerably more in 2015 than in any 

other year. The year of the interview was not a factor in how data were interpreted, but instead 

served as a tool to recognize the extent to which active LSST team members understood data in 

terms of processing. 

4.4.3	Career	stage	

Interviewees are organized by their career stage at the time of the interview. 

Approximately 40% of interviewees were faculty, approximately 40% were staff, and the 

remaining nearly 20% of interviewees were graduate students or post-doctoral researchers (refer 

back to Table 8). Interviewees and ethnographic participants across career stages explained that 

students and post-docs are most likely to spend time manipulating, analyzing, and managing 

data. Faculty generally have less time to interact regularly with data, and instead coordinate 

research projects with younger scholars who work with the data to produce initial results. 

According to interviews and ethnography, students were much more likely to perform data 

calibration, management, and analysis regularly. Accordingly, faculty members were most likely 

to note that they were “behind” in learning the latest scientific software languages. Aside from a 

few who have made concerted efforts to learn new languages, most later career astronomers 

described using the programming language they learned in graduate school over their entire 

careers. Only later career staff scientists and emeritus faculty described data in terms of its 

evidentiary value. Younger scholars tended to work directly with data, while later scholars 

tended to coordinate research, which may explain why only late career interviewees discussed 

data theoretically, in terms of evidentiary value. 

Faculty had the broadest number of ways of describing data management. More 

specifically, those interviewees whose careers do not rely on writing scientific papers were more 
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likely to describe data as a process. Indeed, staff scientists were most likely to describe data in 

terms of its state than any other way. Interviewees actively engaged in academic research leading 

to journal articles were more likely to describe data as astronomical products: images, spectra, 

and catalogs. Thus, the extent to which an interviewee regularly interacts with data, and whether 

that is in a context of “doing science” or in managing data for others, influenced the way data 

management was discussed.  

Only later career professors and staff described data based on format, as digital 

information. This may be because these individuals began their careers using analog data, and 

thus make the distinction when discussing astronomy data. Additionally, there was a clear split 

between those who described data in terms of source or origin. Faculty never described data 

based on its source (i.e., the SDSS telescope or the MAST archive). Instead, this language was 

used by early career individuals (students and post docs) or staff working on sky survey teams. 

These differences show that early and late career individuals consider data differently in terms of 

format and origin. 

4.4.4	Level	of	astronomy	education	

Interviewees are grouped according to their level of astronomy education. Astronomy 

education here refers to a PhD in an astronomy-related field, which includes astronomy, 

astrophysics, or physics. While nearly 40% of the interviewees held staff positions, more than 

80% of the interviewees held astronomy-related PhDs (Refer back to Table 9). Interviewees with 

astronomy PhD degrees described data in many ways, though more than half described data in 

one of only two ways: either by its state (level of data processing) or by the content of the data 

(images, spectra, and catalogs). These two manners were also the most common ways data were 

described over all. 
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Those with computer science or other higher degrees never described data in terms of 

astronomy content (images, spectra, and catalogs) and never described data in terms of its 

scientific research use (for example, in relationship to a journal article). Indeed, only two 

interviewees of the 15 who lacked a PhD in an astronomy-related field discussed data in terms of 

its astronomical content. 

4.4.5	Current	workforce	

Interviewee responses are clustered by the kind of career the interviewee held at the time 

of the interview (refer back to Table 10). There are no evident patterns in the way interviewees 

described data when organized by current workforce. Similar to the other demographic 

dimensions, the two most common ways to describe data management were consistently the 

most common across all four workforces. The state of the data (level of data processing) and the 

content of the data (images, spectra, and catalogs) remain the most common ways to describe 

data management, regardless of current workforce. The type of institution for which the 

interviewee worked, described earlier, provides a clearer distinction between perspectives than 

does the current workforce.  

4.4.6	Role	in	SDSS	and	LSST	

The ways interviewees described astronomy data are grouped by whether the interviewee 

was a member of the SDSS team, the LSST team, both teams, or neither team (refer back to 

Table 11). Team membership (astronomer, computational astronomer, computer scientist, and 

other) is operationalized in the Methods chapter. Surprisingly, few patterns emerged in terms of 

how data management was described by team membership. Computational astronomers were 

more likely to describe data in terms of processing than any other way. Computer scientists never 
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described data in terms of its use for science or its evidentiary value. These two patterns were 

predictable based on the kinds of data work performed in each role. 

As across the other demographic variables, state (level of data processing) and content 

(images, spectra, and catalogs) were the most common ways data were described across all team 

affiliation categories. SDSS-only team members were slightly more likely to refer to data in 

terms of the source of the data (generally by referring to data as any information from the SDSS 

telescope and instruments). SDSS end-users were most likely to discuss data based on content 

rather than state. 

4.4.7	Theorists	

The interviewee responses regarding the definition of data are clustered according to 

whether or not an interviewee has been involved in theoretical research. Since the interview 

sample included individuals who built or used sky survey data, it was less likely that they would 

identify as theorists. Only about 10% of the interviewees are considered theorists for the purpose 

of this study (refer back to Table 12). Interviewees affiliated with theoretical research were very 

likely to describe data in terms of the state (level of data processing) of the data, which is 

consistent with non-theorists and across the other demographics already described. However, a 

larger percentage of theorists described data in terms of its digital medium than other 

demographic categories. Surprisingly, only one of the nine theorists described data in terms of its 

evidentiary value.  

4.4.8	Summary		

The interview sample includes an array of interviewees across seven different 

demographic dimensions. Surprisingly, most of these dimensions did not produce strongly 
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discernable distinctions in the ways interviewees described data management. The primary 

institutional affiliation of the interviewee proved to be the most useful way to distinguish 

interviewee perspectives, largely because it drew out the distinction between faculty and staff. 

However, examination of career stage unearthed the biggest distinctions between the amount and 

type of an individual’s direct interaction with data. Finally, while interviewees with computer 

sciences degrees and astronomy degrees often described data in terms of its state (level of 

processing), astronomy PhDs were more likely to describe data in terms of its content (images, 

spectra, and catalogs), while computer science degree holders described data in terms of its 

origin (specific astronomical instrument) or digital nature. 

Document analysis and ethnography confirmed the strong interview findings of these 

distinctions between interviewee demographic perspectives. For example, documents confirmed 

the types of tasks that experts with different educational backgrounds, and at different 

institutions, undertook. Ethnography confirmed the extent to which students and post-docs 

directly managed research data, as opposed to faculty who often worked on managerial tasks. 

Taken together, the demographic distinctions clearly expressed through the interviewee 

responses are confirmed and explained in each section above through contextual information 

provided by document analysis and ethnography. 
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5 Discussion 

The Sloan Digital Sky Survey (SDSS) and the Large Synoptic Survey Telescope (LSST) 

are two large, innovative astronomy sky surveys. The SDSS I and II completed operations in 

2008, while LSST is predicted to begin data collection in 2020. The two projects were conceived 

more than a decade apart and LSST endeavors to proceed with an even greater scale of data 

collection, data volume, and necessary expertise. The ultimate goal of each collaboration is to 

advance scientific understanding by generating and making available astronomy data. The data 

are then retrieved by end-users for scientific analysis, ultimately benefitting the field as a whole.  

The Discussion ultimately reveals that SDSS and LSST stakeholders define data through 

local, limited perspectives. Stakeholder perspectives on what it means to manage data, and the 

kind of expertise needed for data management are each colored by these diverging perspectives 

of what data are. Data management best practices for ground-based, astronomy sky surveys have 

not fully developed because individual stakeholders necessarily have these limited perspectives 

on what is involved in managing data.  

The Conclusion accepts that astronomy stakeholders have local, limited perspectives on 

data, data management, and data management expertise. Accepting those diverse perspectives, 

the Conclusion chapter looks to the future, addressing what can be done to develop and 

strengthen the ground-based astronomy sky survey workforces and other infrastructures 

necessary to manage data for the full research data life cycle.  

5.1	Summary	of	Results	

This dissertation is the result of a five-year qualitative study of the data practices of sky 

survey astronomers. The central question is: How does data management differ between 
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stakeholders, and to what end? To address how data management differs, the study first 

examined how the populations understand what astronomy research data are, then what 

astronomy data management entails, and finally what experience and expertise are applied to the 

management of astronomy data. Progressing through these successive research questions, the 

study sheds light on how and why data management differs between populations. 

A corpus of project documents, a diverse interview set, and weeks of ethnographic field 

notes were collected and iteratively analyzed. Specifically, 80 semi-structured interviews, 21 

workweeks of ethnography, and extensive document analysis were conducted. Data were 

assembled through qualitative coding software and analyzed to address each research question. 

The interviewee dataset matrix was developed to ensure participant breadth across seven 

characteristics (refer back to 3.2.2 Semi-structured interviews). These characteristics were 

Primary Affiliation, Year of Interview, Career Stage, Level of Astronomy Education, Current 

Workforce, Role in SDSS and LSST, and whether the stakeholder was a Theorist. 

Astronomy data stakeholder perspectives were found to differ regarding what data are, 

which influenced stakeholder understandings of data management. The remainder of this 

subsection advances through the four progressive research questions, ultimately revealing that 

data management differs based on stakeholder professional role, career stage, and level of 

astronomy education. 

5.1.1	What	are	astronomy	research	data?	

Stakeholders in this dissertation study describe SDSS and LSST data as either a process 

or a product. Data descriptions were tied to the ways individuals interacted with data. The 

distinction between process and product emerged through cross-analysis of the three study 

populations and the three research methods. Data were described across a temporal spectrum, for 
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example as information being collected, collected information, information being processed, 

processed information, information being analyzed, or analyzed information. This empirical 

confirmation that different SDSS and LSST stakeholders hold differing interpretations of what 

SDSS and LSST data are can serve as a critical communication tool in facilitating cross-

stakeholder discussions by acknowledging the differing perspectives of what data management 

entails. 

5.1.2	What	is	data	management	in	astronomy? 

As reflected in Figure 7, sky survey data management was described chronologically, 

beginning with data management work conducted by the sky survey team, leading up to and data 

release, and beyond.  Data management work is then conducted by scientific data end-users. Sky 

survey teams are responsible for the way the sky survey data are managed in the long-term, and 

sky survey data end-users are responsible for any long-term management of their resultant data 

products. 

5.1.3	What	expertise	is	applied	to	the	management	of	data?	

Documents, interviews, and ethnographic observations revealed stakeholder perspectives 

on the expertise necessary for data management, which also were expressed by study participants 

with the same temporal stages that emerged in descriptions of data management (Figure 7). The 

expertise necessary to manage SDSS and LSST data was described as a mix of astronomy 

domain knowledge and computational skillsets. The necessary experiences and expertise were 

described in relation to the temporal research life cycle period that the skills and knowledge were 

deployed. Beyond individuals possessing experience and expertise, the SDSS and LSST team 

members highlighted the importance of developing collaborative teams with overlapping and 
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complementary knowledgebases and skillsets. The importance of in-project experience and 

expertise retention throughout the full research life cycle was stressed also. SDSS data end-users 

usually lacked the resources to compile a stratified team and instead must rely on individual 

skillsets for success in their research projects, albeit at a smaller scale. 

5.1.4	How	does	data	management	differ	between	populations?	

Stakeholder perspectives on data management differ between populations based on 

professional role, career stage, and level of astronomy education. The primary institutional 

affiliation of the interviewee was the most distinguishing demographic, which revealed differing 

interviewee perspectives based on professional role. Individuals working at a university or 

research center were more likely to discuss data in terms of its content, which is a product of data 

processing that can be used for scientific research. They were more likely to be reliant on 

publishing scientific research papers for career advancement, and they described data 

management based on their relationships to data as information deployed for scientific research. 

Alternatively, data center and national laboratory staff were much less likely to describe data in 

terms of content, and were also less likely to have tenure-track-seeking career paths. Instead, 

these individuals at national laboratories were much more likely to discuss data as information 

that requires processing. The description of data as information requiring processing aligns with 

SDSS and LSST communities, because many SDSS and LSST processing pipelines staff are 

employed at national laboratories. Data management also varies between populations based on 

career-stage. Young tenure-track academics rarely participated in long-term infrastructure 

building. Young scholars instead focused on collecting and publishing short-term research results 

to further their careers. Very senior academics also rarely participated in these long-term projects 

early on, because they could fail to see new data by their career ends. As a consequence, much 
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infrastructure work was conducted by mid-career, tenure-track academics and staff members of 

all professional stages whose careers are not dependent on the “publish or perish” mantra. 

Finally, data management differs based on the level of astronomy education the stakeholder has 

earned. The extent to which a stakeholder has computer science expertise and astronomy domain 

knowledge determined the stratified role they played in the sky survey. 

5.2	Discussion	of	Findings	

This dissertation focused on examining SDSS and LSST data management 

infrastructures. These knowledge infrastructures were analyzed through the study’s research 

questions in terms of the data, data management practices, and workforces associated with SDSS 

and LSST. This study developed as a unique piece of inquiry from the UCLA Center for 

Knowledge Infrastructures (CKI). The author developed the specific research aims and 

questions, and the findings presented here are a distinct component of the larger UCLA CKI 

investigations. This dissertation is the result of the author’s iterative analysis, firmly planted in 

the tradition of Grounded Theory (Glaser & Strauss, 1967). To reduce the potential for biased 

interpretations, the themes discussed in this dissertation emerged through iterative reading and 

coding of the documents, interview transcripts, and ethnographic field notes. Interviews, field 

notes, and documents were coded iteratively using the UCLA CKI codebook, throughout the 

course of data collection, culminating in dedicated, immersive coding in Fall 2015. By repetitive 

reading, analyzing, and coding, trends emerged from the data. For research questions one, two, 

and three (RQ1-RQ3), one code was selected and closely analyzed. RQ4 was analyzed based on 

the accumulated findings from the first three research questions and according to the seven 

participant demographic variables used in this study. The research questions for this study are as 

follows: 
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1. What are astronomy research data? 

2. What is data management in astronomy? 

3. What expertise is applied to the management of data? 

4. How does data management differ between populations? 

 
This study was designed ultimately to understand RQ4: How does data management 

differ between populations? To ask this question, the first three RQs were employed to 

deconstruct the variables and to reveal the underlying assumptions present in the research 

question. The three questions built on one another to answer ultimately how data management 

diverges between populations. 

The SDSS and LSST projects both exhibit complex knowledge infrastructures that 

emerged from decades of project development and hundreds of collaborators. The term 

knowledge infrastructures is used in this study to refer to “robust networks of people, artifacts, 

and institutions that generate, share, and maintain specific knowledge about the human and 

natural worlds” (Edwards, 2010, p. 17). The SDSS and LSST each arose from within existing 

infrastructures while shaping simultaneously these existing and new infrastructures. Each project 

has, or is, constructing a mirror, telescope, and data collection site. The mountaintop facilities 

can be considered ecologies of infrastructures in their own right (Star & Ruhleder, 1996). At the 

same time, these two projects fit within the existing larger social, political, and technical 

infrastructures at hand for scientific investigation as a whole. These infrastructures are found at 

multiple overlapping scales or collaborative rhythms (Jackson et al., 2011, p. 247). Study 

participants are affiliated with universities, data centers, research institutes, and national 

laboratories; each institution both exists within and is its own knowledge infrastructure. 
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While distinct projects, each at different temporal stages, the SDSS and LSST 

infrastructures are interconnected in multiple ways. The first connection is through the 

workforce. More than 20% of this study’s interviewee population has been team members of 

both the SDSS and LSST (see Table 4). Many SDSS leaders, especially those who were students 

and post-docs during the period of SDSS data collection, now hold leadership positions within 

LSST: “A lot of the people who were involved in LSST were SDSS people, a lot of the 

institutions for example are similar…” (Hernandez, Post-Doc, 2012). The workforce carry-over 

and the international trust placed on SDSS data are reasons many of the same policies and 

practices were transferred from the successful SDSS project to LSST. 

The SDSS and LSST projects also overlap through data. As noted in section 4.2.3.2 

LSST data management in ethnography, SDSS data are used in LSST development. The LSST 

data center has copies of some subsets of the SDSS data. The center holds 3.5 terabytes of 

“SDSS” data and 11 terabytes of “Stripe82” data (the SDSS data from a specific portion of the 

night sky). LSST team members use the SDSS datasets, alongside simulated data developed by 

the LSST team, to test new calibrations and pipeline processes during LSST data management 

software construction. The SDSS and LSST projects are intricately connected to one another as 

both individuals and datasets pass from one project to another. The LSST has chosen largely to 

follow the path of SDSS in terms of the data collection and release plans, varying in scale but not 

quality.  

While infrastructures and scientific technologies are constantly evolving (Bell et al., 

2009; Borgman, 2007, 2015; Edwards et al., 2013; Van de Sompel, 2013), infrastructures emerge 

from within an existing context (Bowker, 2005; Ribes & Jackson, 2013). LSST would not be the 

project it is today without the existence and success of the SDSS. The value of the SDSS data 
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evolves beyond the SDSS itself, through its use in the next generation of sky survey 

development. SDSS data are used in LSST development generating a use case beyond that of the 

traditional end-user. 

5.2.1	Astronomy	research	data	

 To understand how data management differs between stakeholders, this study first 

investigated how stakeholders understand data. This study is an empirical examination of 

narrowly defined communities to understand their perceptions of data; it does not attempt to 

provide a definition of data that can be all things to all people. Instead, this dissertation confirms 

that similar to ‘beauty being in the eye of the beholder,’ stakeholders perceive data differently 

based on their institutional affiliation, career stage, and level of astronomy-related education. 

Given the different stakeholder perspectives in this study, SDSS and LSST data can be 

understood as multiple sides of a faceted diamond. 

SDSS and LSST stakeholders described and defined data as a process or product, 

contingent upon the point at which the stakeholder works along the research data life cycle. 

Depending on how a study stakeholder interacts with relevant infrastructure, collaboration, and 

dataset, their perspective on the importance and priorities of the SDSS and LSST data differ. The 

way data are understood in these sky surveys is locally contingent (boyd & Crawford, 2012; 

Gitelman & Jackson, 2013).  

SDSS and LSST stakeholders’ differing backgrounds and experiences shaped their 

perspectives on data, data management, and data management expertise. Computer science 

experts more often discussed data in terms of bits, because that meaning is consonant with their 

experiences. Interpreting data as bits also reflects a computer scientist’s career, as discussing 

images, spectra, and catalogs would not support career advancement in the field of computer 
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science. This understanding of data is very different from how SDSS end-users described data as 

images, spectra, and catalogs, or as information used for scientific research. These discrete 

meanings of data resonate with the prior experiences, current work, and future uses of data for 

each stakeholder.  

 SDSS and LSST stakeholders also often differed according to their role in the research 

data life cycle (refer back to 4.1.4 RQ1 results summary). The categorization emerged because of 

the distributed nature of the teams and the diverse necessary expertise applicable in these large 

sky surveys. As noted in the Results (refer back to 4.2.1.2 LSST data management in 

documents), the LSST documentation often referred to data based on the amount and kind of 

data management activities necessary to produce and prepare the data for use. For example, 

whether or not stakeholders believe LSST data exist (refer back to 4.1.3.2 LSST data in 

ethnography) is reflected by data management roles in the project. Interviewees who engaged in 

simulation activities for the data management team believe LSST data exist within the 

simulations. Diaz believes simulated data are “real data” even though they are not “from the sky” 

(Diaz, Research Programmer, 2015). Alternatively, a future LSST end-user who is not involved 

with building of the LSST simulations and data management system had the opposite 

perspective. She does not believe LSST data exist yet and said, “There isn't data yet, it's all 

simulation…. I don't believe in the fake universe” (Evans, Post-Doc, 2015). Diaz is a 

programmer developing the simulations via hands-on work for the LSST data management team; 

Evans is a researcher who hopes to one-day use LSST data. For the potential future end-user, 

LSST data do not exist yet, because there is no data for her to conduct her scientific research. For 

the LSST employed researcher on the data management team, simulation data are real LSST 

data, because he is currently using that data for the LSST project. This example illustrates the 
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dissertation’s finding that stakeholder perceptions of data are determined by their roles and 

interactions with data in the project. SDSS and LSST stakeholders include distributed and 

specialized workforces who hold diverging perspectives on data. 

Data definitions are locally contingent and should only be re-deployed in other contexts 

carefully. This dissertation’s results confirm that even highly regarded, broad data definitions are 

far from universal (Borgman, 2015; Consultative Committee for Space Data Systems, 2012; Fox 

& Harris, 2013; National Research Council, 1999; Renear et al., 2010). These findings reaffirm 

that data exist within a contextual setting (Latour, 1987, 1993; Latour & Woolgar, 1986; Rijcke 

& Beaulieu, 2014). This dissertation’s demonstration of stakeholder perspectives varying across 

process and product can serve as a starting point for cross-disciplinary conversations when a 

shared understanding of astronomy data remains illusory (Borgman, 2012a; Consultative 

Committee for Space Data Systems, 2002, 2012; Renear et al., 2010; Rosenberg, 2013). 

5.2.2	Astronomy	data	management	

Data management is a major undertaking in data-intensive sciences, including the SDSS 

and LSST projects. SDSS pipeline development and implementation was estimated at 25% of 

project personnel time and resource expenses (J. Gray, Slutz, et al., 2002, p. 2). Years later, the 

LSST budget dictates more than half of operations costs will go toward data management 

(National Science Foundation, 2014b). Previous research has also found that data-intensive 

projects like sky surveys usually devote a huge percentage of project time and resources to data 

management (Borne, 2013; Hey et al., 2009a; Szalay, 2011). The popular media often repeats the 

idea that 50%-80% of a data scientist’s work is spent cleaning data (Lohr, 2014). Given the 

massive financial and labor costs devoted to the processing and management of data in data-

driven sciences, it is unsurprising that many SDSS and LSST stakeholders discuss data based on 
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degree of processing. The SDSS and LSST documents and interviews confirm that data 

processing and management is a large percentage of the time and funding spent on the sky 

survey projects, even increasing over time. 

The results for each research question revealed temporal stages to research data, data 

management, and research data management expertise. However, the emergent stages regarding 

data are different than the temporal stages relative to data management and data management 

expertise. A comparison of the temporal stages that emerged from each RQ in this dissertation is 

presented in Table 26, and detailed throughout the Results. 

 RQ1) Astronomy 
Research Data 

RQ2) Data Management in 
Astronomy 

RQ3) Expertise Applied 
to Data Management in 
Astronomy 

SDSS/LSST 
Stage 1 

Data Collection  Proposal, R&D; 
Construction; Data 
Collection (Operations) 

 Data Collection 

SDSS/LSST 
Stage 2 

Data Processing Data Cleaning, Processing; 
Data Documentation, 
Release 

Data Storage, 
Processing, and Transfer 

SDSS/LSST 
Stage 3 

Data Analysis Long-Term Data 
Management 

Long-Term Serving and 
Archiving 

    

SDSS Data End-
User Stage 1 

Data Collection Proposal, Planning; Data 
Access, Retrieval 

Data Collection 

SDSS Data End-
User Stage 2 

Data Processing Data Cleaning, Processing; 
Analysis, Summary, 
Interpretation; Scientific 
Publication 

Data Storage, 
Processing, and Transfer 

SDSS Data End-
User Stage 3 

Data Analysis Data Documentation, 
Release; Long-Term Data 
Management 

Long-Term Serving and 
Archiving 

Table 26 Comparison of temporal stages between research questions 

While not conveyed verbatim by study participants as a “life cycle,” the documents, 

interviews, and ethnographic observations each revealed temporal ways stakeholders understood 

data, data management, and expertise. The distinction between the RQ1 and RQ2 columns in 
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Table 26 demonstrates stakeholders in this study understand the astronomy research data life 

cycle and the astronomy research data management life cycles as occurring in different temporal 

stages. While the data life cycle was considered complete after analysis, stakeholders articulated 

the importance of data management beyond an initial analytical need. 

Stakeholders also expressed a distinction between the temporal nature of data and the 

temporal nature of data management. Data are discussed as a completed product or as an ongoing 

process. When stakeholders thought of data, data were considered information for an immediate 

concern. When asked to consider data management, stakeholders expressed data as information 

for immediate and also potential future concerns. These findings demonstrate that the language 

used for discussing research data has temporal implications for data management. For 

stakeholders to consider data use beyond the immediate need, appropriate language must indicate 

the importance and potential future uses of data. The way stakeholders defined data directly 

shaped their perceptions for what could or should be involved in data management. 

The distinction is essential, because many still conflate research data and research data 

management life cycles. A number of life cycle models have been published; some provide a 

complicated, universal scientific research data life cycle (Higgins, 2008), while others try to 

reflect only a small research community (Wallis et al., 2008). Each of these models reflect a 

starting point when research ideas are conceived, and most point to an “indefinite end” in which 

data may be reused for perpetual analysis, re-starting the life cycle (Rots et al., 2002, p. 172). 

Ultimately, each data management life cycle reflects the concerns the authors found important. 

The DCC Curation Lifecycle Model describes itself as a “high-level overview of the 

stages required for successful curation and preservation of data…” (Higgins, 2008, p. 137). 

According to the original publication, the model is intended as only a data management life 
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cycle. However, the DCC Lifecycle is often re-deployed for many other aims, including as a full 

research life cycle, a data life cycle, and the original data management life cycle. Wallis et al.’s 

“Life cycle of CENS data” model from the same year is also only intended to reflect the data life 

cycle of a specific community (Wallis et al., 2008). Subsequent uses of these specific models, 

however, often fail to recognize the difference between a data life cycle and a data management 

life cycle (Pepe, Mayernik, Borgman, & Van de Sompel, 2009). The conflation of information 

existence and the tasks necessary to manage that information can derail collaborative efforts. The 

Swiss University Conference (SUC) presents “Data Life-Cycle steps and corresponding roles,” 

which allows the reader to recognize that a data life cycle is not the same as a data management 

life cycle (Blumer & Burgi, 2015). The Interagency Working Group on Digital Data (IWGDD) 

also clearly understood the distinction between a data (product) life cycle and a data management 

(process) life cycle (2009). In the IWGDD life cycle (Figure 9), different kinds of temporal 

stages are indicated through the use of multiple rings. One ring (Document, Organize, Protect, 

Access) indicates the stage of “Data Management Functions” (2009). The other ring indicates the 

data life cycle (Plan, Create, Keep, Disposition). While officially titled as a data life cycle model, 

the model incorporates both “Life Cycle Functions for Digital Data” and “Data Management 

Functions for Scientific and Technical Data” (2009, pp. B3-5). The stakeholders in this 

dissertation study understood data and data management with distinct temporal stages, just as the 

IWGDD discovered. 
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Figure 9 IWGDD Digital Data Life Cycle Model (2009, p. B3) 
 

The term life cycle implies that the accompanying model covers the full “life” of the data 

in question. The distinction between data and data management life cycles is important because 

each life cycle is necessarily generated by stakeholder(s) who focus the model on the 

components they find most important – often forsaking other parts of the “full” life cycle. Given 

divergent perspectives, data management for potential future reuse could be forgotten or 

identified as unimportant in models built for a different purpose. Choudhury et al. (2013; 2013) 

define data management as encompassing discrete tasks including storage, archiving, 

preservation, and curation. This model developed for and by library staff is necessarily limited. 

Compared to the temporal stages in this dissertation, the Choudhury, et al. model does not 

include earlier components of data management, such as data collection and processing. Figure 2 

only focuses on the role of library staff, as understood within a context at Johns Hopkins 

University. The four components of data management in that model serve as a “close-up” of only 

the “Stage 3” components of the temporal stages illustrated in this dissertation (Table 26). The 
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stakeholders’ perspectives strongly shape the development of the life cycle models. This 

dissertation examined the perspectives of the sky survey stakeholders, primarily focusing on the 

domain scientists. The Choudhury, et al. model instead focuses on the tasks of the libraries. Still 

others instead focus on the astronomy curation work performed by data center staff, splitting 

discussion and acknowledgement of these tasks by workforce (Norris et al., 2006, p. 4). Helpful 

for their immediate audiences, these segmented models are reminders that multiple kinds of 

workforces may be charged with discrete components of scientific data management, so a single 

individual may not be aware of the full life cycle. As data management work and expertise 

increasingly becomes stratified in data-intensive “big data” projects, more work is necessary to 

reconcile disparate perspectives. Generating a definition of data management that encompasses 

the full longevity of scientific work remains tedious, because data management practices differ 

between disciplines, stakeholders, and across the life of the data. 

At the time of writing, the data collected by the SDSS Phase I and II collaboration remain 

highly valuable for scientific research, and the LSST data are predicted to be at least as highly 

valued. Taken together, SDSS data generated by all four project phases have been used in over 

6500 peer-reviewed journal articles, which have been cited more than 300,000 times (ADS, 

2016; SDSS Collaboration, 2016). In 2015, including only the English language portions, the 

SDSS website had more than 63 million hits (SDSS Collaboration, 2014). One interviewee 

clearly explained the importance of the SDSS data: “So I use Sloan as a finding chart. … So I 

use it every day” (Wilson, Graduate Student, 2011). New journal articles continue to be 

published utilizing the multiple SDSS data releases. The “overwhelming majority” of science 

papers employing SDSS data have been written by end-users unaffiliated with the formal project 

(SDSS Collaboration, 2016). 
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Despite the extensive, daily use of SDSS data by astronomers worldwide, the SDSS 

collaboration is no different than most scientific projects. It is funded through a series of 

successive short-term grants, with specific beginning and end dates. SDSS collaborators believe 

that the SDSS data will remain important for decades, or possibly hundreds of years (Margon, 

1998; Yanny, 2011). The close of funding for LSST is more than a decade away, although the 

LSST collaboration expects the data will be scientifically useful for far longer (2014, NSF 

Proposal). SDSS data end-users’ long-term management of data products range from neglect to 

long-term storage and serving services. The heterogeneous extent to which individual end-users 

maintain their data confirms the indefinite and often unpredictable “end” to scientific research 

data (Rots et al., 2002).  

At each stage of the research life cycle, collaborations must prioritize different parts of 

the larger project to realize short and medium-term goals. To ensure future access however, the 

long-term view also warrants consideration, even at the early stages of the research life cycle. 

Ribes and Finholt (2009) employ “The Long Now” metaphor to reflect on how projects must 

manage competing priorities for the short-, medium-, and long-term benefit of the project. The 

SDSS and LSST are sky surveys with multi-decade histories, including expectations for the data 

to remain valuable for one or more decades into the future (N. Gray et al., 2012); “The Long 

Now” is a considerable period for these astronomy sky surveys. A particular difficulty for long-

term projects is that while funding is provided for shorter timespans, the data are expected to be 

scientifically relevant for decades. The SDSS and LSST are among scientific data projects that 

are “…intended to persist for decades, but whose financial support comes in increments of 

years” (Ribes & Finholt, 2009, p. 383). Funding is necessary to continue serving the SDSS and 

LSST data because data accessibility requires technological and human infrastructure, which are 
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both “precondition[s] to meaningful access and reuse…” (Berman & Cerf, 2013, p. 341; 

Edwards et al., 2013; Hine, 2006). The temporal misalignment of funding structures and funding 

needs is an example of differences in collaborative rhythms (Jackson et al., 2010, 2011; 

Steinhardt & Jackson, 2014). 

 In 2016, an SDSS team member and leader explained that the current SDSS I and II data 

management objective is to provide sufficient data management continuity to ensure SDSS data 

usability for an additional 15 years. Instead of promising naively to maintain the data forever, the 

team believes this finite timeline will permit other astronomy infrastructures to grow and 

additional telescopes to begin operations. By the end of that 15-year period, SDSS team 

members expect the SDSS dataset could then be integrated into a newer, larger astronomy 

project. For example, by 2030 or 2032, LSST infrastructures will likely be so strong that 

ingesting the full final SDSS Data Release would be a trivial exercise. However, continuous care 

for the SDSS data over the intervening 15 years requires committed resources and is not a trivial 

exercise (Borgman, 2015; Bowker, 2005; N. Gray et al., 2012; Parsons & Berman, 2013; Ray, 

2014a). The data will require a commitment of sustained funding, workforce expertise, and 

physical infrastructures; in fact, this long-term data management to enable future use can be 

considered a “grand challenge” (Ray, 2014a, p. 2). In effect, the data will require knowledge 

infrastructures be developed with the short, medium, and long-term management needs of the 

data in mind. While enabling scientific use of the SDSS data consistently over the long-term is a 

data management goal, the project struggles to retain that kind of continuity amid funding 

models providing only short- and medium-term options. While these stakeholders would prefer 

to be able to generate long-term infrastructures, funding patterns and the regular lifetimes of 
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physical and human infrastructures prevent long-lived knowledge infrastructures for scientific 

data. 

Some stakeholders believe that long-term data management is an integral component to 

the data life cycle; others are indifferent to managing data beyond its primary use. The data 

distinction that emerged from this study centers on data as process versus data as product. 

Stakeholders viewing data as a product, and the research life cycle as a data life cycle, may not 

focus on potential future uses. In contrast, stakeholders who view data as a process, and the 

research life cycle in terms of data management, may prioritize long-term efforts. Both 

perspectives are accurate and have meaning for the stakeholder; however only one prioritizes the 

long-term data management of information for potential future secondary uses.  

5.2.3	Data	management	expertise	

 The workforces involved in astronomy sky surveys may be the most important 

component of knowledge infrastructures: human infrastructure. Skilled workforces are essential 

to the success of the SDSS and LSST, because each project is an extremely complicated 

endeavor requiring geographically distributed individuals and teams to collaborate over years 

and even decades. 

Study stakeholders described expertise for the SDSS and LSST similarly to the way they 

spoke about data and data management. Just like data and data management, analytical expertise 

was revealed according to stages in the data management life cycle. Data management expertise 

was discussed based on the necessary data management work across points in the data life cycle. 

The data management activities and the expertise required to perform those activities are 

interrelated. Martinez, a leader in both SDSS and LSST, described two types of data 

management work in the LSST project: one with a known solution and one without a known 
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solution. The known solution may be difficult to manage, but a solution exists and the task can 

be accomplished with rigorous work. Alternatively, because LSST plans include pushing data-

intensive boundaries, a number of tasks need to be accomplished that have no known solution. 

Martinez explained, “So the actual data transfer is not a big deal. Even storing the data is not big 

deal… The big deal is to actually touch each bit of that data, to process the data and then to do 

something intelligent with it” (Martinez, Professor, 2014). Given that there remain unknown 

challenges in these sky surveys, the SDSS and LSST leadership realize that their teams can 

always use additional and complementary kinds of expertise. Questions remain unsolved, such as 

how to process and analyze the 15 terabytes of data that will be collected each day once the 

LSST survey begins. 

The LSST and SDSS workforces must be adaptive. It is not always clear what will prove 

to be the best mixture of experience and expertise, and expertise composition will depend on the 

individual roles played in the larger survey. In both the SDSS and LSST, data centers require 

individuals and teams of computer science experts. However, Martinez explained that personnel 

needs change over the course of the project, “… you want slightly more science-y people to 

define what the project is supposed to deliver. But once you go into construction then you need 

people who are better at, for example, coding…” (Martinez, Professor, 2014). The ratio of 

computer science experts to astronomy domain researchers on the sky survey teams remains 

fluid as the projects cycle through stages including planning, construction, operations, and 

archiving and serving data. 

Debate continues as how best to educate and develop a career path for the kinds of 

expertise necessary for SDSS and LSST data management team members, who require both 

domain expertise and computational knowledge. These specialists are essential to the success of 



  
  

200 
 

modern sky surveys, and yet their job titles remain unclear and educational and career paths are 

unstandardized. Attempts to identify the critical data management workforce competencies 

needed result in lists of kinds of expertise (Choudhury, 2013; Engelhardt et al., 2012; Hedstrom, 

2012; Hedstrom et al., 2015; Y. Kim et al., 2011; Swan & Brown, 2008). This dissertation does 

not endeavor to compile yet another list of the expertise needed for SDSS and LSST 

participation, as it would likely be outdated by the time of publication. These lists of typical 

examples of data, data management, or expertise are often unhelpful (Borgman, 2015, p. 28) as 

highly technical jobs and careers are in flux and adapt quickly. As Martin explained, sky survey 

team members need the ability to adapt to change, without knowing what that change will entail,  

“…Yeah, I mean the tools keep changing. Projects, long term projects have the 
disadvantage that they have to sort of come up with design plans or other 
standards like what languages to use and things like that and what's the effect if 
we're going to stick with them… So, because the context will change in the next 
10 years significantly... We really have to essentially keep that in mind and 
prepare for this transition. It's not clear what's going to be the main solution, but 
it's clear that it's going to change” (Martin, Staff Scientist, 2012). 
 

The lack of an existing educational or career path for astronomy data management experts is a 

symptom of the quickly changing and adapting skillsets projects like the SDSS and LSST 

require. 

The documents, interviews, and ethnography observations analyzed for this dissertation 

provide two expansive areas that stakeholders revealed as critical for SDSS and LSST data 

management work. Astronomy domain knowledge and computational literacy were consistently 

described as essential kinds of expertise for SDSS and LSST data management workforces. 

However, instead of providing long lists of skillsets, stakeholders noted that it was more 

important that data managers are able to learn new skills than that they necessarily already 

possess a particular set of expertise at a given time. Martin went on to explain, “Because it's 
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changing so fast and our environment is cutting edge in many ways… nobody has the full 

spectrum, but we try to find people who can learn fast…” (Martin, Staff Scientist, 2012). The 

ability to continue learning domain and computational skills, as well as the ability to work as a 

team with other experts, were seen as the strongest kinds of workforce expertise for SDSS and 

LSST data managers. 

The kind of data management expertise revealed in this dissertation resonates with the 

concept of “pi-shaped” expertise. Pi-shaped experts are members of a workforce who have a 

shallow breadth of general knowledge and extensive knowledge of two domains (Braniff, 2009; 

Feldman, 2006; Hartman, 2005; Szalay, 2012). In terms of SDSS and LSST data management, 

the two deep domains are astronomy knowledge and computational knowledge. The inclusion of 

astronomy and computational sciences into the required expertise, such as with pi-shaped 

experts, is one way of indicating astronomy sky surveys are data-intensive sciences. 

The scale and distribution of work in these data-driven projects is more extensive than 

many fields. A single individual cannot be an expert in all aspects of the full SDSS or LSST 

research life cycle (Borgman, 2015). Instead collaboration members must develop trust between 

institutions and individuals (Committee on NASA Astronomy Science Centers, & National 

Research Council, 2007; Kitching et al., 2013; Research Information Network, 2008). Without 

respected connections between each institution in the project, neither SDSS nor LSST could 

operate at scale. Systemic trust, which requires leadership traits and the ability to contribute 

respectfully, is essential to these data-intensive collaborations. 

 Interviewees for this dissertation bemoaned a dearth of long-term data management 

workforce expertise. This finding aligns with Hedstrom et al.’s (2015) detection that highly 

skilled and well-trained workforces necessary to build and maintain data management 
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infrastructures are lacking. Noting the dearth of highly skilled workforce members, participants 

instead sought a full “environment” of expertise. In the three study populations, stakeholders 

minimized project reliance on individuals and instead focused on developing teams with 

overlapping skillsets. Ribes and Finholt noted concerns over holes in expertise when explaining 

that, “…in the face of short-term funding, CI [cyberinfrastructure] projects will attempt to 

transition to facilities by forming alliances with the persistent institutions of science in their 

domain fields” (2009, p. 394). In astronomy, facilities more persistent than the SDSS or LSST 

collaborations are the NASA science centers (Committee on NASA Astronomy Science Centers, 

& National Research Council, 2007). 

The NASA science centers possess the centralized expertise for management through the 

full life cycle of astronomy data. In 2015, Professor Bell explained that another astronomy 

collaboration he participates in had secured a long-term solution for access and preservation of 

their dataset. He explained the difficulties in securing that kind of long-term data expertise, 

“Yeah, it can even be hard to hire that expertise, because someone who's good at that, what are 

we gonna do? Tell them to move to Hawaii for three years so you can do this, and then you'll 

have no job at the end?” (Bell, Professor, 2015). Data collected under the auspices of Bell’s 

project will be managed at one of the NASA science centers, which provides continuity of 

knowledge infrastructures and workforces to support long-term data management. Dr. Bell 

explained his relief that a NASA science center accepted their project data. He understands that 

finding stable data management expertise is challenging and especially difficult to secure for 

smaller projects where data were collected outside the context of a larger mission.  

The NASA science centers themselves were built for NASA-funded investigations, 

which are primarily space-based endeavors. The SDSS and LSST are largely funded from the 
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NSF and private funders, and are ground-based projects, therefore outside of the mission of the 

NASA science centers. SDSS team members did once propose that their data be included in a 

NASA science center, however the proposal was denied due to the science center’s space-based 

mission (Gonzalez, Professor, 2013).  

 Study participants from the three study populations consistently referred to the NASA 

science centers as the prime example of a stable environment of expertise. MAST, for example, 

employs dedicated, full-time staff to manage the Hubble telescope data through the full life of 

the data (Zimmerman, 2008, pp. 166–167). The physical and human infrastructures exist within a 

single geographic location and provide data management for large, long-term NASA missions 

(Committee on NASA Astronomy Science Centers, & National Research Council, 2007, p. 3). 

MAST and other NASA science centers specifically work to “serve as the interfaces between 

astronomy missions and the community of scientists who utilize the data” (Committee on NASA 

Astronomy Science Centers, & National Research Council, 2007, p. 1). As noted in this 

dissertation, sky survey team members and data end-users often have different understandings of 

data and data management. Also confirmed in this dissertation, expertise generally is divided 

based on the stage of the project, so few people have a full understanding of how data are 

processed through the full life cycle (Borgman, 2015). Similar to MAST, a persistent team able 

to liaise between these two communities and experts throughout the project could be a strong 

asset to the SDSS and LSST projects. 

The long-term, overlapping expertise at NASA science center institutions is the envy of 

many participants in this study. While devoted individuals may have ensured the SDSS project 

survived tumultuous times (Finkbeiner, 2010), it was the widespread commitment of team 

members that ensured SDSS project success overall. SDSS survived potential terminations of 
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funding, often thanks to the efforts of individuals who went above and beyond their assigned 

duties (Finkbeiner, 2010). 

In hindsight, SDSS leaders confirmed that the project worked more smoothly when 

expertise and information were spread across team members. LSST team members noted that 

they value this SDSS lesson and are instead building a set of staff with complementary strengths 

and overlapping skillsets. While SDSS may have relied on visionary individuals, the LSST is 

relying on a web of teamwork, skills, and expertise. Compelling leadership forged SDSS 

success, and LSST leadership agrees that relying on individuals would leave their project open to 

points of failure (Moore, Staff Scientist, 2015). 

SDSS and LSST are data-intensive scientific projects that require infrastructures beyond 

the scale of individual researchers (Burns et al., 2014; National Science Board (U.S.), 2005; 

Schroeder & Meyer, 2012). These human investments are essential to the success of data-

intensive science. Data management and data recombination is fundamental to seeing through 

the potential power of the relational, or networked, nature of big data (boyd & Crawford, 2012; 

Gitelman & Jackson, 2013, p. 8; Kitchin, 2014, p. 1; Kitching et al., 2013, p. 382; Van de 

Sompel, 2013).  

This dissertation confirms that data management aimed at enabling future data reuse is 

complex, depends on local circumstances, and requires consistent workforces and funding. These 

requirements suggest that ideally SDSS and LSST data management occur within an 

environment similar to a NASA science center. However, the NASA science centers themselves 

have missions to manage only space-based, NASA-funded projects. Most study participants 

recognize that the high level of data security supplied through NASA science center 

infrastructures is prohibitively expensive and unlikely for ground-based projects like the SDSS 
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or LSST. Ground-based projects have different funders, different funding models, and exist 

within different scientific cultures than that of space-based missions. 

The NSF is a major funding agency for ground-based astronomers. While many projects 

are funded through short-term grants, the NSF also has longer-term funding, including that for 

facilities. Perhaps the facilities funding model, combined with the NASA science center 

workforce model, could be used to sustain NSF-funded data, that like the SDSS and LSST are 

determined to be “long-lived digital data collections” (National Science Board (U.S.), 2005, p. 

40). Despite the cost differences, diverging missions, and cultural dissimilarities, the NASA 

science centers currently remain the best practice for long-term astronomy data management, 

whether ground- or space-based. 

 The preceding sections described how the three cumulating research questions for this 

dissertation built on one another and analyzed how the findings compare to existing literature. 

First, the study sought to understand how participants understood sky survey data. The data were 

understood as differing along temporal stages and as either a process or product. This data model 

directly revealed how study participants understood data management. Data management was 

described in temporal stages that reflect the work necessary to collect, process, and release the 

data. In turn, the expertise needed to participate in the sky survey projects was described based 

on the data management activities needed for each of these data management temporal stages. 

SDSS and LSST stakeholders described data, data management, and data management expertise 

based on the activities performed during the course of the project, all influenced by individuals’ 

perspectives on data. These findings provide the foundation to answer the fourth research 

question: How does data management differ between populations?  
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5.2.4	How	data	management	differs	between	populations	

This dissertation investigated what are data, data management, and data management 

expertise to whom, when, and why these differences matter. A wide variety of SDSS and LSST 

team members and end-users reflections were presented in the findings. Study participants were 

chosen to reflect a matrix of kinds of expertise and experience. These characteristics were 

Primary Affiliation, Year of Interview, Career Stage, Level of Astronomy Education, Current 

Workforce, Role in SDSS and LSST, and whether the stakeholder was a Theorist. These seven 

variables were chosen to generate a demographically varied set of interviewees. Workforce 

demographics of the study population are listed in Table 10 and roles in SDSS and LSST are 

listed in Table 4. The study was designed specifically with this population variety to enable 

critical analysis of the factors that influence stakeholder perceptions.  

As described in the previous subsections, SDSS and LSST stakeholders hold differing 

perspectives of what data are, and therefore what data management is and what data management 

expertise are necessary. These findings resonate with earlier work that describes how discrete 

perspectives across individuals can make up a coherent, larger workforce. Annemarie Mol shows 

how stakeholders in a Dutch university hospital define atherosclerosis differently based on their 

day-to-day work and their specific role in combating the disease (Mol, 2002). The results are 

also reminiscent of John Gall’s metaphor for ship-building: 

“Now if you go down to Hampton Roads or any other shipyard and look around 
for a shipbuilder, you will be disappointed. You will find—in abundance—
welders, carpenters, foremen, engineers and many other specialists, but no 
shipbuilders. True, the company executives may call themselves shipbuilders, but 
if you observe them at their work, you will see that it really consists of writing 
contracts, planning budgets and other administrative activities. Clearly, they are 
not in any concrete sense building ships” (Gall, 1976). 
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Just as shipyard employees describe their day-to-day tasks, so too do the SDSS and LSST 

stakeholders describe data management from their day-to-day perspectives. Software developers 

working on SDSS and LSST describe their work as writing software to build pipelines, not as 

building a sky survey. Similar to Gall’s company executives, the SDSS and LSST leaders are the 

most likely to describe their work in terms of developing sky surveys. However, each 

stakeholder’s perspective on data and data management is most closely influenced by the daily 

work they do for the project. Despite differing descriptions among team members, 

atherosclerosis is treated and ships are built. The SDSS was and the LSST likely will be highly 

successful sky surveys. The remainder of this section first describes specifically how stakeholder 

perspectives varied in this dissertation study. Next, these findings are coalesced into a ground-

based sky survey model of data management. Further elucidation of the model and its 

implications close the Discussion.  

5.2.4.1	Professional	Role	

Analyses of the professional roles stakeholders play in the sky survey data management 

life cycle revealed distinctions between the perspectives on data and data management. The 

following sub-sections discuss distinctions between team members and data end-users, SDSS 

and LSST team leaders, and SDSS library workforces. 

v Team	members	and	data	end-users	

A sharp contrast in how data, data management, and expertise were described emerged 

between individuals building infrastructure and those using resultant data for scientific research. 

Three study populations were chosen for this study: SDSS team members, LSST team members, 

and SDSS data end-users. Differences were predicted between these three populations. However, 
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it was surprising how similar members of the two teams were to one another and how sharply 

they differed from the SDSS end-users.  

The clearest example of the data management differences between team members and 

data end-users is the way they share and manage data in the long-term. Sky survey team 

members manage the SDSS and LSST data as part of the official project. The team then releases 

the project data and end-users retrieve said data. Often, end-users manipulate their copy of the 

project data by then combining it with other datasets or running it through additional processing 

pipelines. Additional processing by the end-user results in derived datasets. However, these 

derived datasets are rarely released or managed as consistently as the originally collected sky 

survey data.  

 Long-term data management includes ensuring data integrity, preventing cyber attacks, 

updating software, and performing hardware migrations over time. Most sky survey team 

members agree that data management activities are important for the team to perform, and the 

SDSS and LSST both promised their funding agencies that the data would remain available to 

end-users. In 2011, Brian Yanny spoke about the long-term care of the SDSS data by saying the 

data must be “preserved in a readable, understandable format for long periods of time…” which 

includes, “long term store copies” and “active working copies” of the data (Yanny, 2011). 

However, most end-users do not carefully perform these long-term data management activities 

on their derived datasets. This result parallels previous studies that demonstrate highly processed, 

derived datasets of individual and small group research projects are rarely provided long-term 

management (Norris et al., 2006, p. 7). 

There are a number of reasons why astronomy data end-users treat their collected data 

differently than the collaboration treats its data. Many of these motivations resonate with other 
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studies of why scientists do or do not share or archive their data. First, astronomy data, like all 

scientific data, are “incomprehensible and hence useless unless there is a detailed and clear 

description” of the provenance of the data (J. Gray, Szalay, et al., 2002, p. 5). Data sharing and 

long-term management are challenging and expensive undertakings, and can impact decisions 

throughout the project timeline (Abrams et al., 2009; Kitchin, 2014; Sands et al., 2014). 

Therefore, a project or individual must actively decide to provide a set of resources and expertise 

to ensure data are productively shared and managed in the long-term. 

Data management to enable future reuse by a team or as an individual can also prove 

daunting, because all potential future users and uses of a dataset cannot be predicted (Borgman, 

2012a, 2015; Fecher et al., 2015; Kratz & Strasser, 2015; Mayernik, 2011; Wallis, 2012; Wallis 

et al., 2013). Many end-user astronomers may not have the expertise or capacity to manage 

derived data as effectively as a large team could maintain sky survey data. While an individual 

manages data through the whole life cycle in the scope of end-user data projects, a more 

specialized workforce develops in sky surveys.  

 End-users may not consider their derived data as valuable enough to warrant data 

management efforts in the medium and long-term. Instead of managing their derived data, many 

blindly rely on sky survey projects to ensure the originally collected data are preserved and 

remain accessible over time. Others believe their data that is at least partially derived from SDSS 

data does not have value and therefore do not consider long-term data management activities. 

These astronomers do not perceive future data reuse value, because the derived data used for a 

research project could be easily or quickly re-derived from the original project dataset. Or, the 

end-user considers their derived data to only be of fleeting value, expecting the data or findings 

to be quickly supplanted by the next wave of technology. These findings resonate with earlier 
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studies that show researchers often lack the resources necessary to make data useful for sharing, 

data may not have been created with the intent of reuse, and they may not be able to imagine 

future uses of their data (Borgman, 2012a, 2015; Fecher et al., 2015; Kratz & Strasser, 2015; 

Mayernik, 2011; Wallis, 2012; Wallis et al., 2013). 

The preceding were the reasons provided by data end-users explaining why they do not 

provide long-term management for their derived datasets. However, those reasons rely on the sky 

survey team itself ensuring the durability and accessibility of the originally collected data in the 

long-term. The reasons also assume that the data they use is exactly the same as the original sky 

survey data. While most of the data management labor takes place before data are released to 

end-users, the infrastructure work continues after data have been released. A large amount of 

“invisible work” takes place to ensure data remain available to users. Therefore, data end-users 

rely on a misnomer: the sky survey team will perpetually manage the original datasets. 

v SDSS	and	LSST	leadership	

The voices expressed by SDSS and LSST leadership in documentation are distinct from 

the broader set of voices that emerged from team member interviews. SDSS documentation 

describes the SDSS data, or science archive, several ways over time: as images, spectra and 

catalogs, by level of data processing, as related to other information, as related to the public 

availability of information, or specifically based on the component parts. LSST data, data 

products, or the scientific database, were described in terms of images, spectra, and catalogs, the 

level of data processing, according to the work still required to prepare the data for use, the 

extent to which the data are public, and as one of the three levels of project data. A comparison 

of these differences is below in Table 27, and the documentation results are further 

contextualized with the three research methods in Table 17. 
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SDSS Documentation LSST Documentation 
Level of Data Processing Level of Data Processing 

Public Availability Public Availability 
As Related to Other Information  

 Work Remaining 
DAS, CAS, Raw, Software  

 Level 1, Level 2, Level 3 
Images, Spectra, & Catalogs Images, Spectra, & Catalogs 

Table 27 Comparison of the ways data were described in SDSS and LSST documentation 

Level of data processing was one of the most common ways interviewees and sky survey 

documentation described data. Team members from both sky surveys especially emphasized 

pipeline processing, confirming the important role of infrastructure building for both projects. 

This strong commitment to processing and calibration work results in uniform data. The resultant 

homogeneous dataset is an integral reason why sky survey data can be used for many kinds of 

research questions by disparate end-users (Borne, 2013). Data processing levels are integral to 

the way stakeholders understand and discuss data. According to a presentation by the LSST 

Project Scientist for Data Management, “The ultimate deliverable of LSST is not the telescope, 

nor the instruments; it is the fully reduced data. All science will be [sic] come from survey 

catalogs and images” (Juric, 2014, sec. 2). The underlining in this quotation is original, 

indicating the author intends to speak to the importance of processing.  

Beyond processing, SDSS and LSST documentation also often referenced data based on 

its public availability. Documentation for both projects often lauded plans for data release. 

However, interviewees rarely discussed the extent to which data were available beyond team 

members. For the SDSS, the Alfred P. Sloan Foundation was the largest funder, and the 

Foundation required the data be released beyond the project team (Finkbeiner, 2010). Similarly, 

as of the time of writing, LSST continues security resources to fund fully the project. To 

maintain enthusiasm from the NSF, LSST needs to reiterate that the resulting data will be made 
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available to all United States taxpayers. LSST leadership can use documents to convince funding 

agencies that the project is worth fully funding. While leadership focused on data availability in 

documentation, most sky survey team members minimized data release importance, because 

their interviews for this dissertation were not part of a larger agenda to securing funding. Instead, 

interviewees more often spoke about their work cleaning data, and therefore data were often 

discussed based on that level of processing.  

v SDSS	library	workforces	

The results also revealed important distinctions between the ways SDSS data were 

discussed by the astronomers and the library staff involved in archiving and serving the SDSS 

data from 2009-2013. As presented in the Results section 4.1.3.1 SDSS data in ethnography, two 

university libraries agreed to archive and serve the SDSS data for a five-year period. From 2007-

2009, the stakeholders met with one another to draft and sign Memoranda of Understanding 

(MOU). While MOUs generally help interdisciplinary communities define roles and 

responsibilities (Research Information Network, 2008; Shankar, 2010), disparate perspectives 

remained during the archiving and serving of the SDSS data. The libraries executed the task 

differently from one another based on the infrastructures at their disposal, including each existing 

workforce (Borgman et al., 2012). Earlier studies (Carusi et al., 2010; Edwards et al., 2011; 

Olson & Olson, 2000) note it is essential for collaborators to develop shared understandings. The 

SDSS long-term data management experiences from 2009-2013 reveal the communication 

difficulties that can occur when shared understandings are not generated and re-established over 

time.  

During ethnographic observations and interviews from 2012-2015, staff at both libraries 

described their participation in the SDSS project as successful. The libraries each felt positive 
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about the collaborative project because each gained experience managing scientific data, as well 

as providing a service to the SDSS astronomy community. A number of astronomers involved 

with the SDSS however, did not see the library collaborations as productive uses of funds.  

Astronomers and library staff held misaligned goals and expectations, despite years of 

planning, because the libraries and the SDSS leadership perceived the data and the data 

management tasks differently. It is foreseeable that the meaning of data, and what it meant to 

manage data, would be multiple and local (Hedstrom et al., 2015; Lynch, 2013; Star & Ruhleder, 

1996; Walters & Skinner, 2011). For example, Ribes and Jackson (2013) also discovered that the 

boundaries change depending on the lens by which a research subject considers data. In the 

context of their study, the boundaries of the “stream data archive” were malleable based on how 

far an interviewee was prodded to think about their data. They explained, 

 “When asked, ‘Where is the stream data archive?,” a researcher will first 
insistently direct us to a public online page with an embedded web service. But 
thereafter, with only a little further prodding from the interviewer, the database 
becomes multimedia: it is digital; it is paper and pen; it is water…. The archive’s 
borders stretch to a receding horizon that include the pen and paper field sheets 
backfilled for years, a cold room of samples, and the uncaptured experience of 
scientists and technicians entrusted with the production of the archive” (Ribes & 
Jackson, 2013, pp. 164–165). 
 
While the variety of perspectives on data could have been predicted because of particular 

workforces involved, the astronomers and library staff believed they had developed shared 

understandings from the years spent collaborating in the development of the MOU documents 

prior to the data management work beginning. Despite faithful attempts to generate shared 

meanings of SDSS data, each library and the SDSS astronomers held divergent understandings 

of what were the SDSS data and what it meant to archive and serve the data. 

For example, one of the libraries focused on carefully transferring and preserving the 

SDSS bits. In hindsight, the astronomers can now explain that they had been more concerned 
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with the serving portion of “archiving and serving.” The library staff were interpreting the SDSS 

data in terms of the bits that had been generated. The astronomers, as domain experts, interpreted 

the SDSS data in terms of its potential usefulness and scientific value. While the library staff 

successfully managed the bits, the astronomers actually wanted the data managed to ensure 

scientific use. This dissertation reveals the SDSS astronomers and participating library staff held 

misaligned data management expectations. This finding validates earlier studies where the 

definition of data is only seemingly shared among stakeholders (Borgman, 2012a, 2015; 

Borgman et al., 2012; Consultative Committee for Space Data Systems, 2002, 2012; Cronin, 

2013). 

5.2.4.2	Career	stage	

Interviewee relationships to the SDSS and LSST sky surveys differed by career stage 

(Career stage demographics for this study are listed in Table 8). 

v Sky	survey	participation	stages	by	career	stage	

Career stage was often referenced as a reason to join, or not join, an infrastructure-

building project. The SDSS and LSST projects were both envisaged by academic scientists. 

These academic scientists set in motion the sky survey projects, which were conducted largely 

by team members, and which were then used by a wide range of end-users. A basic timeline of 

when team members joined the SDSS and LSST projects is presented in Figure 10. 
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Figure 10 Sky survey participant career stages over time 

A small core of scientists in both the SDSS and LSST planned and guided each of these 

projects from the beginning. These scientists were generally mid- to late-career scientists. Young 

scientists were not involved in this very early stage for two reasons. First, they would not have 

the clout to propose a decades-long project. Second, early career scientists focus on attaining 

tenure, which is earned largely through timely publication of high quality scientific journal 

articles. The SDSS and LSST projects each require at least a decade of infrastructure-building 

work before survey data are collected. Early career scientists could not devote multiple years to 

building infrastructure, as it would hinder their ability to publish enough scientific analysis to 

attain tenure. However, very late career scientists also generally did not plan the SDSS or LSST 

because their careers could end before data collection. Due to the long timelines of these sky 

surveys, early and late career scientists rarely worked on the initial stages of these sky survey 

projects.  

Handful	of	mid-career,	tenure-track	scientists	

Many	research	scientist	infrastructure-builders;	
very	few	graduate	students;	some	scienti_ic	
advisory	board	members	

Scienti_ic	data	
end-users	at	all	
career	stages	
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Large teams are involved in the project as a whole during the research and development, 

construction, and operations stages of the SDSS and LSST projects. This workforce is larger for 

LSST than SDSS, because the scale of the project is much larger. The team members involved 

are generally employed in research scientist career tracks independent of scholarly journal article 

publications requirements. Years passed before SDSS data were collected, and more than a 

decade will pass before LSST data are collected. Without new data, team members have been 

unable to use their expertise in the projects to analyze new data and publish scientific journal 

articles. Similarly, graduate students are highly unlikely to be involved with infrastructure-

building, particularly in the early stages of a sky survey project, because they need to ensure data 

are collected and usable within a timeframe that allows for analysis and writing of theses and 

dissertations. 

Alternatively, LSST has motivated a large number of scientists to participate in project 

planning and construction, even before data are collected. Scientists participate in working 

groups that can influence how the survey will be conducted. In 2016, team members in the nine 

active Science Collaboration working groups each provide scientific case studies related to their 

ongoing research interests to influence the survey cadence. Survey cadence describes how data 

will be collected; discrete data collection patterns better support different kinds of science. These 

scientists contribute time and effort to working groups before the LSST data are collected, 

because they may be able to influence the project to prioritize their astronomy specialization. 

Collaboration members may also gain a better understanding of the data prior to its public 

release, speeding up their ability to use collected data once they are made available.  

Finally, the majority SDSS or LSST associates are data end-users. These data end-users 

include the scientists and team members. Joining these team and working group members are 
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hundreds to thousands of individuals who deploy the data for scientific research as end-users. 

Given the long period over which sky surveys are conducted, persons at different career stages 

participate in sky surveys in numerous ways and at distinct times. 

v Sky	survey	participation	incentives	by	career	stage	

There are incentives for future data end-users to join the SDSS or LSST collaboration 

years or decades before data become available. First, these academics can help drive how the 

project is planned and built, they can advocate for the project to enable better data collection for 

their research questions. However, while scientists involved in a sky survey early can influence o 

how the project is made, the investment may not pay off for possibly decades. While it may 

require a long-term time investment, these scientists have intimate knowledge of the data and 

metadata before they are made public. The intricacies of born-digital sky survey data are vast; 

after it has been released, new end-users will have a steep learning curve before they can use the 

data for scientific analysis effectively. Interviewee Gray, an LSST Science Collaboration 

member, explained why it is worth committing time to the LSST prior to data collection, “… you 

could say, ‘…here's what we expect the measurement to be’ …when you get the real data, and 

you find it's something else, then you have to explain why. So you've already done the 

machinery, right?” (Gray, Professor, 2015). The SDSS had only a short proprietary period, and 

the LSST plans to effectively have no proprietary period. Those who have dedicated time to 

infrastructure building will benefit from having deep knowledge of the data before public 

release. While there may not be a specific proprietary period, those familiar with the project can 

begin using the data immediately, whereas newcomers must first become acquainted with the 

dataset. For many scientists in mid-career, the benefits of helping form the research directives 
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and developing pre-release familiarity with the dataset, provide great incentive for dedicating 

time to building sky surveys like SDSS and LSST. 

Younger scientists generally cannot devote time to a project that is not yet collecting 

data, and instead benefit from the rich trove of sky survey data that are publicly released. 

However, while they benefit from data availability, they must wait until after release to learn the 

intricacies of the data, how data collection decisions were made, and the other factors that 

influenced how the data were collected and processed. 

Scientists involved in sky survey development must invest resources for many years prior 

to collection and use of the data, although they have the opportunity to optimize the data for their 

interests and are ready to analyze the data immediately upon its availability. Young scientists 

may not have the time to devote resources into the building of the project, but eventually benefit 

from an abundant cache of data. Sky survey projects may require decades of planning and 

construction before scientific data are generated and released, and therefore the career stages of 

survey participants follow very clear patterns in SDSS and LSST. 

5.2.4.3	Level	of	astronomy	education	

While distinctions between sky survey team members and data end-users were predicted 

by the research design, the strength of the distinction was stronger than expected. The differences 

are particularly surprising because the majority of interviewees (73/80) hold, or are pursuing, a 

PhD in astronomy (refer back to Table 9). While astronomy expertise is indispensable, the SDSS 

and LSST also require team members outside the traditional astronomy curriculum expertise. For 

example, some LSST team members have computer science degrees, not astronomy degrees. 

Broad expertise is important at each stage of the project. For example, the LSST data center 

requires more computer science experts and fewer astronomy domain experts during project 
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construction. Martinez explained, “But once you go into construction then you need people who 

are better at, for example, coding, who are better at programming…” (Martinez, Professor, 

2014). This LSST expertise pattern is expected to change once data are collected and more 

domain experts are needed to ensure the project moves forward scientifically. 

More than half of this dissertation study’s astronomy PhD degree-holders described data 

in only two ways: by the state (level of data processing), or by the content of the data (images, 

spectra, and catalogs). Alternatively, study participants with computer science degrees never 

described data in terms of the content of images, spectra, and catalogs. While astronomy PhD-

holders often described data based on its scientific use, computer science degree holders never 

referenced data based on its scientific use. More specifically, interviewees employed at 

universities were most likely to describe data based on its content. 

University employed study participants share with astronomy-related PhDs a likelihood 

to be in jobs requiring they work with data for their own scientific research (as opposed to 

working with data to build infrastructure for others to use). Interviewees focused on writing 

scientific journal articles (largely those with astronomy-related PhDs and working in university 

settings), data were understood in terms of their content as astronomical images, spectra, and 

catalogs. 

Alternatively, those with computer science degrees were most likely to describe data in 

terms of the digital medium or project source. When data were described in terms of its digital 

nature, they were describing data based on its medium. For example, they referred to data as bits, 

or zeros and ones. These computer scientists considered astronomy data as computational 

information to be managed. Similarly, examples of data described by source would include when 

individuals referenced data by describing its project or instrument of origin. For example, data 
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were described as anything resulting from the SDSS detectors. This way of understanding data 

attributes the data definition to its source, anything created by a certain instrument or from a 

certain site. These notions of data reflect computer scientists’ relationship to the data. This 

finding aligns with Borgman et al.’s (2012) research from the Center for Embedded Network 

Sensing (CENS). CENS research showed that domain scientists viewed data as central to their 

projects, whereas computer scientists and technicians viewed data as a means to test their 

instrumentation. These dissertation findings demonstrate that as sky survey workforces bring 

together team members with different educational backgrounds, their perspectives may remain 

distinct even while working on the same project.  

5.2.5	Model	of	Sky	Survey	Data	Management	

 The preceding discussion of the dissertation results was used to construct a model of data 

management in ground-based astronomy sky surveys. The model brings together the results from 

each research question, method, and study population and presents a holistic illustration of the 

sky survey data management life cycle. The model is presented in Figure 11. 

 

 

Figure 11 Sky Survey Data Management Life Cycle model 
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 As detailed in the Results chapter and in the preceding sections of the Discussion chapter, 

perspectives on sky survey data, data management, and data management expertise differed 

based on a stakeholder’s professional role in the sky survey, their career stage, and their level of 

astronomy education. These differences in stakeholder perceptions are illustrated in the cogs on 

the left and right of the figure, and the sky survey data management life cycle is presented at the 

center of the model.  

5.2.5.1	Data	as	a	Process 

The left side of the model represents stakeholders who view data as a process. Data 

perspectives were clustered into this classification when data were identified as information 

undergoing a process or when data were perceived in terms of the practices and contexts 

surrounding data production. The 15 ways data as a process emerged from documents, 

interviewees, and ethnographic participants was presented in Table 22. These perspectives 

include references to data as information cleaned and processed to a certain degree and 

information that has value through its relationship to other information.  

Staff working at national laboratories or data centers usually described data as a process. 

These stakeholders likely described data as a process because their day-to-day interactions with 

the sky survey project involved hands-on SDSS data processing (or for LSST stakeholders, 

hands-on development of the procedures by which the data will be processed). These 

stakeholders, including graduate students, post-docs, and team members without astronomy-

related PhD degrees, are often referred to as pi-shaped experts (refer back to section 2.3.2 Data 

management expertise). These individuals’ careers do not rely on the ‘publish or perish’ mantra 

of scientific research because they are in staff positions, are early career, or their expertise is in 

business or computer science instead of within astronomy.  
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5.2.5.2	Data	as	a	Product	

The right side of the model reflects the perspectives of stakeholders who view data as a 

product. There are 11 ways data as a product emerged from documents, interviewees, and 

ethnographic participants, which was presented in Table 22. These perspectives include 

references to data as digital information or bits, or data as images, spectra, and catalogs. These 

perspectives on data were more likely to reference the nature of the data specifically as 

astronomical information. In these examples, data were perceived as objective representations of 

reality, divorced from their context of production. 

Stakeholders who perceived data as a product were more likely to have tenure-track 

careers and work in a university or a research center. These stakeholders were usually faculty, 

had completed their PhD degrees, and those degrees were in astronomy or a related field. These 

stakeholders were more likely to describe data as a product because of the nature of their 

interactions with data. As revealed in section 4.2.2.3 SDSS data end-users, students and post-

docs are more likely to work in the data collection and cleaning phases of research, while faculty 

are more likely to focus their time on the research management, analysis, and writing phases of 

the research process. Faculty view data as a product, because their daily tasks center on the 

analysis of information, as opposed to the activities involved in collecting and preparing data for 

analysis. Faculty participation in the processing of data has waned, and they instead employ data 

for scientific analysis once it is already processed. These distinctions between data as a process 

and data as a product are further summarized in section 4.1.4 RQ1 results summary and will be 

discussed in more depth in section 5.2.6 Sky Survey Data Management Model Explanation and 

Significance. 
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5.2.5.1	Data	Management	Life	Cycle	

 The center of the model illustrates the research data management life cycle for sky 

surveys. The model begins with proposal writing and R&D work, which are generally completed 

by tenure-track, mid-career faculty stakeholders who view data as a product (sky survey 

participation by career stage is further detailed in 5.2.4.2 Career stage). These stakeholders 

develop the project vision and begin the sky survey life cycle. Essential to this stage is 

convincing funders and future team members of the importance of the project and the value of 

the eventually collected data. 

After faculty leaders have sustained funder buy-in and recruited a starting staff, the bulk 

of the data management life cycle is then carried out by those staff who view data as a process. 

These steps in the sky survey life cycle include construction, data collection or operations, and 

data cleaning, processing, and documentation. Non-tenure-track staff who see data as a process 

are the bulk of those who participate in the sky survey at this point in the life cycle. 

At distinct points in the sky survey life cycle, data are prepared and released for end-

users. Sky survey leaders, who describe data as the product being released, are those who 

publicize the formal data releases. These sky survey leaders must convince external astronomers 

that the data are valuable for scientific use. Similar to their work securing funding, sky survey 

leaders must recruit data end-users for the project to be successful. 

The final data release marks the end of data collection and is traditionally the end of sky 

survey funding. Following the close of operations, any steps toward long-term data management 

take place. These long-term data management actions take place by staff who view data as a 

process. However, the extent to which long-term data management occurs depends on initial 

planning by sky survey leadership, who view data as a product. The model thus compares 
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stakeholder perspectives on data within the data management life cycle. The following sub-

section explains the model and why it is important.  

5.2.6	Sky	Survey	Data	Management	Model	Explanation	and	Significance	

The Sky Survey Data Management Life Cycle model presented in Figure 11 illustrates 

the ways disparate sky survey stakeholder data perceptions intersect with points in the data 

management life cycle. These different perspectives can be explained through multiple 

stakeholder demographic variables, including the stakeholder’s relationship to the data at 

different points in the life cycle, their role in building infrastructure or writing scientific journal 

articles, and their engagement with stakeholders external to the sky survey (including funders 

and potential data end-users). The reason some stakeholders viewed data as a process, while 

others viewed it as a product, is thus explained by the life cycle.  

5.2.6.1	Data	as	a	Process	

One explanation for why perspectives on data diverged across stakeholders is the extent 

to which a stakeholder is involved directly with managing sky survey data, as identified in 

previous studies (Gall, 1976, 2002; Mol, 2002; Orphanides, 2017). As revealed in section 4.4.3 

Career stage, early career tenure-track stakeholders, including students and post-docs, as well as 

sky survey staff, are more likely to work with data closely. Alternatively, astronomy faculty are 

more likely to manage or oversee data collection and processing. This proximity to the daily, 

hands-on, work involved in data management influences perspectives on data and data 

management. 

Early career stakeholders and staff viewed data as a process, within context, because of 

their close relationship to the many practices involved in preparing data before release. These 
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stakeholders are intimately familiar with the labor, infrastructures, relationships, and decisions 

that went into collecting and preparing the data for release. Having participated in these 

processes, staff members know of any weaknesses in the data and understand the decisions that 

went into developing the data management workflows. As Latour explained, these staff see data 

as “science in the making” (1987). Far from each datum being an objective truth, these staff 

engaged in meetings where specific decision-making developed the processing software, which 

cleans and calibrates collected data, in one way versus another. They directly witnessed how the 

individuals making up the sky survey team influenced how the data are processed. For example, 

their work removing instrument artifacts from images demonstrates the imperfect nature of 

scientific data collection and processing. To these staff team members, sky survey data are not a 

perfectly clean Latourian black box (1987), they instead have viewed deep into the work 

processes that collected and processed the data. Staff hold essential roles and perspectives in sky 

surveys because they embody how data are processed through the life cycle. 

5.2.6.2	Data	as	a	Product	

Stakeholders who expressed a perception of data as a product also developed their 

perspectives because of their roles in the sky survey life cycle. Mid-career, tenure-track faculty 

are generally the instigators of complex sky surveys, as revealed in section 5.2.4.2 Career stage 

and Figure 10. Tenure-track positions within universities and data centers enable faculty to 

manage the larger scientific goals while students and staff directly collect and process data. 

These faculty generally control decisive points in the sky survey: they have constructed the 

funding proposals as well as the framing of each data release. Faculty sky-survey leaders hold 

essential roles in the sky survey because their visions and the manner in which they explain the 

project to external stakeholders are essential factors in the success of the project overall.  
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v Proposal;	R&D	

Tenure-track faculty, including sky survey leaders, often describe data as a product, 

because it is in the project’s best interest to do so. This dissertation model reveals that two points 

in particular when faculty are intimately involved in the sky survey process (Proposal, R&D and 

Data Release), necessitate that these faculty perceive and express data as a product.  

The mid-career, tenure-track faculty who begin sky surveys express data as a product 

through funding proposals, journal articles, and presentations, because the ability to gain project 

funding and community buy-in likely require that perspective. Limited funds are available for the 

astronomy community; the process of obtaining funding from public or private sources is 

intensely competitive. Developing the trust of funders is an essential component of securing 

funding for a sky survey. In proposals, sky survey leaders present the data they plan to collect as 

objective information that will be useful for scientific advancement. 

These faculty demonstrate certainty to funders, because highlighting the contingent 

nature of data could undermine their message and instead demonstrate that the project team does 

not have the capacity or expertise to generate an excellent dataset. SDSS was able to secure 

multiple grants from the Alfred P. Sloan Foundation, as well as other funders, in part due to their 

ability to persuade funders of the efficacy of the dataset they were to produce. LSST leaders have 

been generating funds planning to total more than one billion dollars; the NSF and other funders 

would be less likely to invest these large sums of money in stakeholders who describe their 

future data as locally contingent. LSST was rated first in the 2010 Decadal Survey (Committee 

for a Decadal Survey of Astronomy and Astrophysics; National Research Council, 2010) 

partially because of the ability of the leaders to describe the future dataset as objectively valuable 

scientific data products. Indeed, LSST proposals to the NSF declare that the resulting data will 
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benefit not only astronomers, but that, “the broader impacts of the LSST will be profound, as 

scientists, the public, and schoolchildren around the world will have ready access to the data” 

(National Science Foundation, 2005, 2010a). 

While all astronomers and funders are aware that science takes place within a context, 

bringing that information to the forefront of an application would likely instill concern of 

inadequate planning. Instead, SDSS and LSST leaders described the project and future data as 

objective, scientifically-sound images, spectra, and catalogs.  

v Data	Release	

The other period in the sky survey life cycle in which faculty play a pivotal role is the 

point of data release. The collected and processed data are presented as a formal release, in 

which a single data release journal article can purportedly provide all the information necessary 

for successful use of the dataset. These staff thus understand data as “ready-made science” 

(Latour, 1987). This black box view of the data at the time of release may be essential to gaining 

the trust of the broader astronomy community. As described in section 2.2.2 Sustainability, end-

users must trust sky survey team members for the choices made during data collection and 

processing. 

 SDSS is considered a success in many ways, including because the broader astronomy 

community highly trusts and frequently uses the data. As noted in section 4.1.1.1 SDSS data in 

documents, the public release of SDSS data was an important milestone in project development 

as it ensured continued support from funders and the end-user community. Trust in the data 

product by external end-users is essential; sky survey leaders have incentives to present data as 

spotless, objective sources of scientific truth. If these leaders were to present sky survey data as a 

contingent process, astronomers could be less likely to trust the end product. While all 
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astronomers are aware to some extent that data are made in a context, bringing that subjective, 

contingent information to the forefront of a data release could cause doubt in the scientific 

community. To be accepted, the data must be recognized as objective information with truth-

value and thereby useful for scientific research. If the broader community does not trust the data 

for use, then the sky survey will ultimately be a failed project. 

5.2.6.3	Astronomy	Knowledge	Infrastructures	

The perspectives of data as a process or a product, as illustrated throughout the life cycle 

in the data management model, reflect the larger knowledge infrastructures within which these 

sky surveys are embedded (Edwards, 2010; Jackson et al., 2011; Star & Ruhleder, 1996). These 

findings indicate sky survey leaders likely must perceive and relate data as a product in order for 

the sky survey to be successful. 

Sky surveys are embedded within larger infrastructures, including the highly competitive 

funding apparatus that leaves no room for a nuanced view of information as a process. Faculty 

must persuade themselves, funders, and the larger astronomy field of the objective nature of their 

projects’ data releases. This need for sky survey leaders to convince external stakeholders of the 

value of the data means that leaders often directly influence external stakeholders to perceive the 

data as a product. This dissertation model thus reveals that funding agencies and the broader 

astronomy community are taught to understand sky survey data results as a product. 

The necessity of presenting astronomy data as a black box to further project success has 

implications for long-term data management. As data are always presented as a product to 

funders and to the broader astronomy field, the processes necessary to prepare and manage data 

in the short-, medium-, and long-term are often invisible to anyone outside of the project. Indeed, 

the metaphorical black box conceals the intricacies involved in the work. This invisibility can 



  
  

229 
 

contribute to funders and the external astronomy community not being aware of the challenges 

and highly specialized expertise necessary for data collection, processing, and long-term 

management because these details are always hidden under the black box.  

 Funders may not appreciate the infrastructures and workforce necessary to truly manage 

the value of data in the long-term, because they are not involved in the day-to-day processes and 

are only ever presented data as a product. SDSS collaborators believe SDSS data will remain 

important for decades, or possibly hundreds of years (Margon, 1998; Yanny, 2011). However, 

presenting data as a product whenever communicating with external stakeholders, such as 

funders, may dissuade these agencies from devoting sufficient resources to ensuring data are 

available beyond data collection and the traditional end of funding. 

The broader knowledge infrastructures at play in astronomy today, including the methods 

to acquire funding, the manner in which to recruit and sustain a workforce, and the ways to 

garner the trust of fellow astronomers have caused sky survey leaders to present sky survey data 

as a product. While internal staff understand the process and expertise involved in sky survey 

data management, these details are not made explicit to the external community because of the 

way these funding infrastructures and community practices have evolved. It is because of these 

infrastructures that leaders present data as a product, which can prevent funders and the broader 

community from fully understanding the process and expertise necessary to sustain data into the 

long-term. The Conclusion chapter provides a more nuanced examination of the implications of 

this black-boxing of scientific data for long-term infrastructures and the workforces involved in 

data management. 
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6 Conclusion 

“I define getting, understanding, and characterizing the astrophysical objects in 
data as a scientific task… [But,] if you ask the average member of the AAS, the 
American Astronomical Society, they'll say, ‘…He hasn't done any science in 
years,’ because I haven't done any science, in that sense, in years….” 
(Staff Scientist, 2012). 
 
A new era of scientific data collection and analysis is underway. The wave of data-

intensive research promises to propel scientific knowledge gains by enabling the collection and 

combination of data at a scale and complexity never before possible. However, strong data 

management knowledge infrastructures must be in place to enable the discoveries promised by 

data-intensive science. Digital data must be managed properly throughout the research data life 

cycle to retain the efficacy of the information bytes as well as the contextual metadata, 

documentation, and relationships to other information. Astronomy sky survey data, like other 

scientific data, are “incomprehensible and hence useless” without accompanying contextual 

information about how data were collected, processed, and curated (J. Gray, Szalay, et al., 2002, 

p. 5). 

While the sky survey data management model revealed in this dissertation (Figure 11) 

demonstrates the importance of framing data as a product to gain the trust of the community, 

data are also understood as a process by the stakeholders intimately involved in collection and 

processing. A single gap in the life cycle can prevent data from being retained and reused into 

the future (Borgman, 2015), and therefore data must be considered as a process when planning 

for long-term data management. Only through sustainable workforces and digital infrastructures 

can research data appropriately be used, recombined, and reanalyzed in the age of data-intensive 

science.  
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The following subsections conclude this dissertation. The first subsection discusses the 

factors that prevent sustainable workforces and expertise in the SDSS and LSST. Many study 

participants expressed the workforce conundrum as a point of angst in their career development. 

Many SDSS and LSST sky survey team members felt under-rewarded for their essential 

contributions to these sky survey projects. Astronomy sky survey leaders are encouraged to 

consider the career path desires of current and future team members. In particular, sky survey 

leaders are encouraged to respect and find non-financial ways to reward team members, even 

when their work may initially seem “invisible.” This section is intended to increase awareness of 

the disparate reward structures available to highly educated staff involved in SDSS and LSST 

infrastructure work. Sky survey staff are not rewarded based on the essential nature of their 

skillsets for project success, and these misaligned rewards structures reveal a point of weakness 

for the sustainability of long-term sky survey projects.  

Second, factors that inhibit long-term sky survey infrastructures are examined. Funding 

bodies and other policy makers are encouraged to consider the importance of providing funding 

for data management beyond the end of data collection. As revealed in this dissertation’s sky 

survey data management model (Figure 11), funders and policy makers inherently are provided 

only the data as a product perspective. Funders are thus not given all perspectives of what data 

are. The presentation of data as a product, which can black box the infrastructures necessary to 

sustain the value of data, may partially explain why sky survey funding ends before long-term 

data management begins. Perspectives on data will always vary to some extent; stakeholders 

should focus on what can be done to translate between when stakeholders see data as a process, 

and when data is seen as a product, to construct collaboratively long-term infrastructures. The 
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dissertation concludes with a discussion of the limitations of this study and a glimpse at future 

work. 

6.1	Difficulties	Sustaining	Sky	Survey	Expertise	

This dissertation highlighted the workforces and activities required for effective sky 

survey data management across the research life cycle. Recent astronomy sky surveys, including 

the SDSS and LSST, are examples of data-intensive scientific investigations. The term data-

intensive science refers to the data collection, processing, and analysis in which scientific 

questions are investigated by, “analyzing hundreds of billions of data points” (Mayer-

Schonberger & Cukier, 2013, p. 11). Often referred to as a new era of science, the implications 

for data management based on these quantitative differences in the scale of data collection must 

be addressed. Data-intensive sciences may require new data practices, including more resources 

for data cleaning and analysis rather than data collection (Borne, 2013; Hey et al., 2009a; Szalay, 

2011). These changes may require a highly adaptable workforce. As this dissertation revealed, an 

essential factor in the success of these projects is that of securing qualified, sustainable 

workforces. 

The data management workforces essential to the success of the SDSS and LSST projects 

require expertise in both astronomy and in computational techniques. These “pi-shaped” experts 

have proven essential to the functioning of the SDSS and LSST (refer back to Figure 3). While 

demand remains for pi-shaped experts to work on the LSST data management team, these 

experts are in short supply (Kitchin, 2014; Ray, 2014a). Reasons for the dearth in trained experts 

are the poor incentives that dissuade astronomy students from pursuing pi-shaped careers. 

Tenure-track careers are at odds with infrastructure-building activities. One senior scientist often 
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explains to her students that decisions to work on scientific software will damage their potential 

tenure-track career opportunities, 

“The real problem though is that I can't take a good graduate student honestly and 
tell them they ought to work on this stuff [scientific software] because they're not 
going to have a career. If they want to end up at a major university then they 
should not become… software… they shouldn't specialize in that. So that's why I 
think it needs... That's I think the real change that if it were a respected part of the 
community…” (Moore, Staff Scientist, 2012).  
 
The conundrum remains and shapes the future of astronomy sky surveys and many other 

data-intensive research fields: The expertise needed for data management is that of pi-shaped 

staff who are experts in astronomy and the computational sciences. However, individuals 

pursuing computational work are unable to publish scientific articles concurrently, which 

remains essential for acquiring competitive tenure-track career opportunities.  In the data 

management model revealed in this dissertation study, tenure-track stakeholders and staff 

stakeholders are shown to have distinct responsibilities in the data management life cycle, as 

well as distinct perspectives on data (Figure 11). The following subsections discuss this 

conundrum, its implications for the future of astronomy sky surveys, and how sky survey leaders 

can reflect on these findings. 

6.1.1	Data	management	expertise	reward	structures	

One reason it is difficult for astronomy sky surveys to maintain data in the long-term, is 

because existing workforce reward structures encourage discontinuity. Multiple factors may 

prevent a single data team from continuously managing SDSS or LSST data in the short, 

medium, and long-term. One obvious notion is that the workforce of a multi-decade project will 

include retirements, but there are other nuanced reasons why individuals are dissuaded from 

managing data in the long-term. For example, data managers usually desire job security beyond 
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that of the 3-5 year funding cycle. The rhythms of collaborative funding (Jackson et al., 2010) 

are often shorter than the length of long-term projects, which creates uncertainty, and are much 

shorter than the full career of an individual. The finitely funded SDSS and LSST projects must 

also attempt to hire strong data management workforces. However, the inherently short-term 

nature of individual projects can be detrimental to the career and work-life balance of a data 

manager. Professor Bell confirmed that NASA science centers fulfill the requirements for data 

management continuity because, “… you know it will still be there in 20 years, and someone can 

go get a job there and have the confidence they have a future at the institution” (Bell, Professor, 

2015). However, as discussed in section 5.2.3 Data management expertise, the strong data 

management career options at NASA science centers are not available for ground-based 

astronomy investigators. 

As with most disciplines, staff technologist positions in astronomy are less lucrative than 

faculty research positions and are often funded on short-term grants that lack long-term stability. 

These staff are not provided as many resources (such as post-docs or students) and are generally 

not as well respected in the discipline, despite often having the same education and experience as 

their faculty peers. Due to this hierarchy, time spent performing tasks such as documentation and 

software programming is often viewed as distractions from performing the “science” necessary 

for faculty advancement.  

While a sustainable data management workforce is essential for the success of data-

intensive sciences (National Science Board (U.S.), 2005; Research Information Network, 2008), 

many interviewees for this dissertation felt their expertise was under-appreciated. Many 

interviewees in non-tenure track jobs wanted to share their frustration at their difficulty obtaining 

tenure-track careers. Despite holding PhDs in astronomy or computer science and contributing 
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essential expertise to the sky survey, they felt their work and compensation were relegated to that 

of untrained support staff. One reason for this discrepancy is that most university and academic 

systems are built to prioritize rewarding scientific analysis, as quantified through journal article 

publications. Time spent generating infrastructures—including building tools and performing 

data management tasks—has been considered a detriment to time spent “doing science” and 

writing journal articles (Levine, 2014; Ribes & Finholt, 2009; Star & Ruhleder, 1996). While 

many SDSS and LSST infrastructure building staff members enjoy their work, some feel 

participating in the sky survey team has stunted their careers. While SDSS and LSST could not 

collect or release data without the tireless efforts of these team members, the data management 

work is not rewarded as highly as those who perform scientific investigations from that resulting 

data (Ribes & Finholt, 2009).  

The SDSS team interviewees in this dissertation were usually heavily invested members 

of the collaboration. Some had committed years to writing data management software and 

performing other team duties for SDSS. Following the conclusion of SDSS I and II, many of 

these team members went on to contribute their distinctive expertise to newer projects like the 

Dark Energy Survey (DES), the Hyper Suprime-Cam on the Subaru Telescope, and the LSST. 

While some SDSS team members have participated in both infrastructure building and scientific 

research projects using the SDSS data, many have not found the resources to actually use the 

SDSS data for their own research. One senior team member acknowledged that SDSS relied on 

individuals who were willing to forgo their science, and therefore their career goals, for the good 

of the project (Perez, Emeritus Scientist, 2013). 

 Data management careers, in astronomy as well as other disciplines, lack an established 

and accepted educational path and workforce structure (Hedstrom et al., 2015; National Science 
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Board (U.S.), 2005; Ribes & Finholt, 2009). The development of clear career trajectories could 

increase professional opportunities for highly skilled, pi-shaped academics (Bowker, 2005; 

Hedstrom et al., 2015). Robert Lupton, a leader in both SDSS and LSST, explained that current 

reward structures in universities and astronomy do not properly support essential infrastructure-

building work – whether that work is with hardware or software. Lupton also exposed that 

current workforce incentives are unsustainable. Specifically, Lupton suggested that new projects 

should learn from SDSS: 

“Find some way to reward people working on the project. In SDSS we did this by 
promising them early access to the data via a proprietary period. Not only is this 
impossible for publically funded projects, but it doesn’t really work very well. 
One problem is that the promise of data in the distant future doesn’t help a post-
doc much; another is that the community (at least in the US) doesn’t value work 
on the technical aspects of a large project. …My personal belief is that the only 
long term way out of this is to integrate instrumentation (hardware and software) 
into the astronomy career path, much the way that the high-energy physicists 
appear to have done (at least from the outside)” (Lupton, 2002, p. 10). 

 

While modern scientific collaborations require experts from complementary disciplines, 

universities remain structured to support best those whose expertise fits within a single discipline 

(Bowker, 2005, p. 125; Hedstrom et al., 2015).  

A reward structure hierarchy is not a novel scientific investigation phenomenon (Blair, 

2010; Shapin, 1989). However, the highly educated, pi-shaped team members from this study 

seem to expect a stronger set of rewards from the university environment. It has never been 

expected that all, or even most, astronomy PhD-holders will gain employment in a university 

faculty position. According to statistics from the American Institute of Physics, only 

approximately 10% of those who receive a PhD in Astronomy or Astrophysics in the US will go 

on to hold full-time, tenure-track faculty jobs (Ivie, Ephraim, & White, 2009; Mulvey & 

Nicholson, 2014; Nicholson & Mulvey, 2011; S. White, Ivie, Ephraim, & Anderson, 2010). The 
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PhD-holding pay scale is even lower at universities than in private industry or in government 

work (G. Anderson & Mulvey, 2012; Mulvey & Pold, 2014). Despite the fact that only a small 

percentage of US-based astronomy PhD-recipients are known to go on to tenure-track faculty 

careers, many interviewees in this dissertation study expected a better-rewarded career for 

themselves because of their in-demand, pi-shaped expertise. 

6.1.2	Data	management	as	invisible	work	

As revealed in this dissertation, sky survey data management work is often hidden under 

the metaphorical black box when data are presented to external stakeholders. Further black 

boxing of long-term data management needs occurs through interviewees noting their reliance on 

Moore’s Law for the success of SDSS, LSST, or their personal research. By referencing Moore’s 

Law, these interviewees are saying that as time passes, data management costs become smaller. 

However, while data storage costs have continued to decrease over time, storage is only one 

component of data management. According to the Data Conservancy (Figure 2), data storage is a 

basic long-term data management activity, but it may be the least expensive component of the 

four activities (Choudhury, 2013; Choudhury et al., 2013). 

 Human labor and other resources are required to ensure data are managed over time. 

Long-lived data must be migrated through successive software and hardware iterations. Beyond 

migration, data must also be continuously checked for bit rot and other technical errors. To 

maintain the value of scientific data, documentation and other curatorial services must also be 

performed. While essential, data maintenance work can become invisible; as an infrastructure 

becomes more ubiquitous, it also becomes less apparent (Borgman, 2000). The long-term sky 

survey data management work may be considered invisible work as it becomes routine 

(Borgman, 2015; Bowker, 2005; Daniels, 1987; Ribes & Finholt, 2009; Ribes & Jackson, 2013; 
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Star & Strauss, 1999). The work becomes invisible when performed well, and often is only 

brought to the forefront of attention when problems arise. As revealed in this dissertation’s data 

management model (Figure 11), long-term data management activities partially are invisible, 

because data are presented to external stakeholders as a product instead of a process. With data 

always appearing as a black box, the practices and workforces necessary for long-term data 

management have become invisible. Professor Bell complained that many stakeholders fail to 

realize the costs associated with enabling astronomy data access and preservation. He 

sarcastically exclaimed, “Kind of tragic, things do cost money. People are like, "Why didn't you 

do it?" "Well, it costs money." This isn't a gigabyte dataset that you put on your home page” 

(Bell, 2015).  

Some interviewees in this dissertation study were oblivious to the technical and human 

resource expenses associated with ensuring availability and usability of SDSS data over time. 

One astronomy professor and former member of the SDSS Board of Governors believed long-

term data management was not something the SDSS collaboration ever needed to consider. 

When asked about the plans for the longer-term care of the SDSS data that facilitate data-

intensive discoveries, he responded, “Well, I think we made an agreement with NSF that all data 

would become public after blank length of time and that basically took care of it” (Anderson, 

Emeritus Professor, 2012). While acknowledging the need for a “permanent archive,” Anderson 

did not have a sense of data preservation costs or the need for an accessible, actively served copy 

of the data. He continued,  

“I mean, what we did is we made it all public. And that was our obligation and it 
was to our interest to do so. … Once we made it public, it's public. So you know, 
Lincoln wrote the Gettysburg Address, he didn't have to archive that for all time. 
But people liked it; they could collect it and put it in their drawer. [laughter] 
Because it's just bits. In other words, if this is public, then anybody can collect all 
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those bits and do with them what they want” (Anderson, Emeritus Professor, 
2012).  
 

Professor Anderson assumed that releasing the SDSS data inherently meant that valuable data 

would be saved. However, this assumption has proven false, and instead digital data require 

continuous, intentional management by experts to remain preserved and usable over time 

(Borgman, 2000; Hedstrom et al., 2015). As a senior scholar with a naïve understanding of data 

management efforts, Professor Anderson’s perspective provides a clear example of how work 

becomes invisible. Despite some SDSS leadership misperceptions, these short, medium, and 

long-term data management tasks require sustainable physical and human infrastructures 

(Bowker, 2005, p. 114).  

Ignorance of the invisible work necessary to ensure long-term maintenance may be one 

reason for the under-valuing of data management work and the common lack of planning and 

budgeting foresight for long-term data management. As demonstrated in Figure 10 Sky survey 

participant career stage, sky survey leadership is largely separated by career stage. Results also 

confirmed that as astronomers become more senior, they are increasingly involved in the 

management of students and post-docs, who are then the ones directly analyzing datasets, which 

resonates with Wallis’ findings of the roles of students and post-docs at the Center for Embedded 

Networked Sensing. A temporal expertise gap results: those most familiar with current data 

management practices are too early in their careers to be sky survey leaders; at the same time, 

current sky survey leaders may have dated understandings of the effort required to manage sky 

survey data.  

However, ignorance of the labor required for long-term data management can be 

combatted. As shown in this dissertation’s data management model, acknowledgement of the 

labor involved in data management is a result of the broader infrastructures surrounding sky 
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surveys. Sky survey leaders, funders, and the other workforces surrounding these sky surveys 

(including Dean and Provost-level leaders at universities) must acknowledge the divide in 

perspectives between staff who work directly with data and later career faculty who manage data 

collection and analysis. Ongoing acknowledgement of the differences between data as a process 

and data as a product, coupled with efforts by leaders to understand the resources needed to 

properly manage data, are necessary steps to making data management work visible. Long-term 

data management requires funding, hardware and software, and an expert workforce. The SDSS 

and LSST are large-scale projects and require high levels of what may currently be invisible 

infrastructure work in design and development, maintenance, infrastructure construction, and 

system administration.  

6.1.3	Astronomy	sky	survey	leadership 

Many essential SDSS and LSST team members are “pi-shaped” experts. Pi-shaped 

experts in terms of the SDSS and LSST possess a high degree of expertise in both astronomy and 

computational science. Data-intensive sciences often require expertise that crosses these 

disciplinary boundaries (Bell et al., 2009; Bowker, 2005; Szalay, 2012). The specific nature of 

asking new research questions, which can only be answered by the combination of multiple 

datasets, is the hallmark of data-intensive sciences and what necessitates inter-disciplinary 

expertise. Pi-shaped sky survey team members are recruited and hired because of their extensive 

expertise that generally includes a PhD in astronomy or a related discipline. However, LSST has 

not been able to easily attract and retain the needed pi-shaped team members for open data 

management positions.  

While many potential recruits may desire to be part of the fast-moving and forward-

thinking LSST team, the downsides to joining an infrastructure-building team member persist. 
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As just described, working as a SDSS or LSST infrastructure-building team member will likely 

hinder future career opportunities. However, the repercussions of this conundrum can be 

reduced. First, SDSS and LSST leadership must inform potential team members honestly of the 

ways participation in the SDSS or LSST could hurt their chances at obtaining tenure-track 

faculty positions. Second, existing sky survey students, post-docs, and staff should be treated 

respectfully, regardless of their hierarchical position on the sky survey team. While some team 

members made a concerted choice to join an infrastructure team, because they enjoy the work, 

others described unintentionally landing in an unwanted position. Given the university hiring and 

promotion climate, individuals who want to pursue tenure-track faculty careers should not be 

encouraged to join infrastructure-building projects. As described earlier, interviewee Moore is 

forthright with her students about the ways infrastructure work detracts from time that could be 

spent writing scientific papers.  

Most interviewees drew a sharp line between infrastructure building, and “doing 

science.” In this dissertation’s data management model, this distinction is that all work taking 

place on behalf of the sky survey is infrastructure work, while analysis of its resulting datasets is 

scientific work. Some SDSS team members have remained so busy with SDSS and other 

emerging infrastructure projects that they never found time to use SDSS data for their own 

personal scientific research projects. Current LSST team members are generally granted 20% of 

their work schedule for “science time.” However, many have not actually used the allotted time 

for personal science because of the extensive time demands of the LSST infrastructure building 

team. For example, staff scientist Stewart explained that while he is granted science time as part 

of his LSST job, the time is taken up by LSST priorities, and he has yet to use that time to further 

his own scientific interests (Stewart, Staff Scientist, 2015). The practical nature of developing 
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sky survey infrastructures often prevents PhD astronomers from continuing their scientific 

research projects and nearly always prevents them from attaining tenure-track faculty careers. In 

the long-term, sky survey team leaders could use their academic influence to help shape reward 

structures to support better the pi-shaped expertise they need for sky survey collaboration 

success. In the meantime, sky survey leaders should be honest with current and future students, 

post-docs, and staff about the career repercussions that result from choosing paths in astronomy 

infrastructure building and data management.  

Despite the hierarchical organizational structures in SDSS and LSST, all sky survey team 

members should be treated with respect, and their contributions should be acknowledged. Some 

SDSS and LSST team members noted they felt their service to their sky survey project was not 

treated with due respect. For example, Campbell explained how different sky survey projects 

demonstrate different levels of career support for their staff. He explained how in one sky 

survey, he felt supported by the faculty involved but in another he felt, “that the people kind of in 

the trenches doing the work were not getting that kind of credit or that kind of exposure” 

(Campbell, Professor, 2015). He went on to explain that existing reward structures do not 

encourage staff to join and remain in sky survey projects and suggested, “the trick is to keep 

these people on, you've got to reward them somehow. Not just monetarily, but their career. 

…you need to support the people working for you, and it's tough to do on these big projects” 

(Campbell, Professor, 2015). Campbell and others feel they require more support from SDSS or 

LSST leaders to support their careers while they spend years supplying their expertise to working 

on essential infrastructures. One reason team members may feel their work is disregarded is 

because they are performing invisible work. SDSS and LSST leaders will benefit their projects 
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by appreciating all team members, preventing essential work from becoming invisible and 

particularly under-rewarded. 

Respecting the contributions of all team members is important for the individuals 

involved, as well as the overall team confidence. Morale is important for SDSS and LSST, 

because the projects can span a decade or more and require geographically disparate teams to 

coordinate with and trust one another. High staff turnover can hinder project timelines and 

ultimate project success. When team members leave, they take with them the institutional 

knowledge and relationships necessary for project continuity. Two interviewees for this 

dissertation have since left the SDSS and LSST collaborations and moved to industry careers. 

They chose to leave academia, because they not only were unable to obtain faculty tenure-track 

careers, and they felt SDSS or LSST leadership undervalued their infrastructure contributions to 

the project. 

Team members are essential to the SDSS and LSST collaborations. Sky survey team 

members must work for up to a decade before end-users can employ the resulting data for 

scientific articles. While some team members will also use the resultant data for scientific 

analysis, many will find themselves too busy with infrastructure to pursue that end goal. While 

SDSS and LSST datasets cannot be collected, processed, and released without the work of many 

infrastructure team members, these contributions are often overlooked. However, team members 

must feel appreciated and supported in their sky survey work for the project to retain continuous 

expertise. Disrespect in each project hierarchy will reduce the supply of willing highly qualified, 

pi-shaped available to sky survey teams even further. 

This dissertation has opened the black box of long-term data management, demonstrating 

the essential roles and perspectives of the staff who manage data across the research life cycle. A 
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dearth in the number of pi-shaped experts in data-intensive science remains at least partially 

because the academic reward-structure is at odds with supporting these new, essential experts 

(Kitchin, 2014; Ray, 2014a). Sky survey stakeholders should work together to determine and 

establish career paths and best practices that can reward and support sky survey staff in ways 

comparable to the essential skills they bring to the team. For example, this study has shown that 

even when LSST staff are presented with 20% time for their own scientific work, staff tend to 

find themselves too busy to use the time for anything other than their regular infrastructure-

building duties. Different models could incentivize these essential pi-shaped staff to remain in 

sky surveys and academia instead of losing these talented individuals to industry. Perhaps teams 

could be constructed in a way that scientific sabbaticals can be offered without stalling 

infrastructure development. Perhaps sky survey projects at different stages of development could 

share proprietary data access among one another. In this way, the astronomy community could 

work together to support the retention of crucial staff. Specific models could be built into 

funding requests to support the intellectual and scientific pursuits of the staff that are crucial for 

infrastructure building, but who are not currently appropriately rewarded to the extent that their 

expertise is necessary. Perhaps business or industry leaders who specialize in incentives and 

workforce development should be consulted to intentionally develop a stronger astronomy 

workforce ecosystem that supports sky survey staff.  

6.2	Difficulties	Sustaining	Digital	Infrastructures	

As shown in this dissertation, sky survey data management stakeholders are diverse and 

distributed, each with their own set of understandings for what data management entails. This 

dissertation has served to collect, analyze, and provide suggestions for data management best 

practices based on the holistic perspective obtained by conducting this study and presented in 



  
  

245 
 

Figure 11. Data management in the short, medium, and long-term requires monetary resources, 

sustainable workforces, and sustained infrastructural commitments. 

The SDSS and LSST projects represent incredible feats of cross-disciplinary 

collaboration. As shown in the Results chapter, the SDSS compiled a dataset considered by the 

worldwide astronomy community as a gold standard to calibrate other datasets. Some end-user 

study participants went further to note that their research relies daily on SDSS data. The 

thousands of published scholarly articles employing SDSS data further confirm the authority and 

quality of SDSS data, which influences research well beyond that of the members of the initial 

collaboration. LSST is well on its way to becoming just as critical. Jointly, these two ground-

based, astronomy projects have a successful history of data collection, processing, and release. 

However, despite these undeniably successful undertakings, a major impediment prevents these 

datasets from being sources of information into the future. 

The “Availability-Usability Gap” has emerged from the SDSS and LSST communities, 

illustrating the differences between funder mandated data management plans and the actual 

accessibility of data given current infrastructures (Levine, 2014, p. 129). Funding agencies and 

policy makers should hold community forums in consideration of long-term data funding for 

prominent datasets. SDSS and LSST have operated on multiple grants of two to ten years in 

length (refer back to 4.1.1 RQ1 documentation results). Each individual award provided funds to 

support a distinct portion of the research life cycle. However, there remains a vulnerability to the 

sustainability of these quality datasets. Appropriately funded during data planning, collection, 

processing, and release, budgeted financial support for long-term data management remains rare. 

This dissertation revealed the research life cycle for SDSS and LSST (refer back to Figure 7). 
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Figure 12 focuses in on the data management life cycle model to highlight the point at which 

funding traditionally ends for sky surveys and many other scientific investigations. 

 

Figure 12 Traditional end of funding for sky survey projects 

Long-term data management, beyond data collection and release, was not factored into initial 

SDSS I and II funding proposals and budgets. As just presented, one reason for this is because 

data are presented to funders as a product, which makes invisible the practices and workforces 

necessary for long-term data management.  

Despite the end of project funding, the SDSS data retain enormous value through 

continued use by end-users. SDSS I and II data have remained available to end-users after 2008 

through a series of cobbled-together efforts. First, a sum of funds were unused at the end of 

funding for operations, and the Astrophysical Research Consortium chose to deploy those funds 

to support data management for five years (see sections 4.1.3.1 SDSS data in ethnography and 

SDSS library workforces). Second, additional teams of astronomers sought funding to continue 

use of the SDSS facilities. These projects ultimately were funded, and the data collected through 

the SDSS III and IV collaborations have been added to the initial SDSS I and II dataset. While 

SDSS IV remains funded, the growing database of SDSS I-IV materials continue to be managed 

and served. Finally, a few individuals within the SDSS project team have devoted their personal 
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resources to ensure the SDSS I and II data are preserved into the near future. However, each of 

the three ways SDSS data have remained archived and served from 2009 to now have been 

serendipitous, were not strategically planned for, and could have crumbled at any point. Indeed, 

these three interim solutions are fragile, temporary infrastructures (Borgman et al., 2016). 

Instead, durable infrastructures are necessary to support SDSS data management. Data 

management for LSST data has also not been considered beyond the end of operations. LSST 

staff even noted that they are unable to plan for long-term data management, citing how funders 

have scoped their current project funding to focus solely on construction. SDSS data are highly 

used, years after the end of their operations. LSST data are expected to be the same, and LSST 

documents have asserted the extensive lifetime expected of the data (refer back to 4.1.1.2 LSST 

data in documents). However, there is a stark gap in data management infrastructure planning 

and action for the long-term. 

As illustrated in Figure 12, traditional agency funding ends prior to activities focused on 

the long-term archiving and serving of data. Table 26 shows that SDSS and LSST stakeholders 

life cycle stages interpretation depend on whether the discussion is focused on data, data 

management, or data management expertise. Interviewees discussed a longer, more nuanced life 

cycle when discussing data management, while long-term data management was largely ignored 

when discussing data. This dissertation has demonstrated that stakeholder conversations must 

explicitly focus on data management beyond initial use, referencing data as a process and not as 

a product. Without explicit redirection of planning toward future reuse, astronomy project 

planning is destined to end with “data analysis” and initial journal article publication as found in 

this dissertation study’s RQ1 conversations (refer back to Table 26). Funding agencies and sky 
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survey leadership must continue to re-focus project planning discussions toward future data reuse 

for data-intensive advances to occur. 

Sustainable funding is essential because archiving and serving require knowledge 

infrastructures. Data management before, during, and beyond data collection are active 

processes. Data require hardware and software upgrades and migrations and bit rot analysis, to 

name a few of the actions necessary for digital information bit management. However, this 

dissertation demonstrates that data are more than only bits of information to be digitally stored; 

data must also be retained as scientific evidence that can be used for research (refer back to 4.1.4 

RQ1 results summary). Active data curation is necessary to develop and maintain relationships 

between data at distinct processing levels, and between data and other kinds of information 

including documentation and metadata. Finally, for data to remain usable, the information must 

be served actively, which includes a host of other system administration and help desk tasks. 

While a dark archive may prove cheaper and ensure preservation, that decision limits access. 

This dissertation study data management model specifically has shown that SDSS and 

LSST data are not just bits, but also evidence for scientific use, and require serving as well as 

archiving. Continuous acts of data management require funding, and without them digital data 

can become unreadable quickly (Borgman, 2015). Sustainable archiving and serving of scientific 

data requires ongoing investments in the knowledge infrastructures and workforces surrounding 

these collaborations. These ongoing investments currently do not exist however for ground-based 

astronomy projects, which are funded through individual grants a few years at a time and cease 

when data collection is complete. 

Federal and private funding may have prioritized the SDSS and LSST projects, because 

their proposals indicated the enormous future potential in future decades of data-intensive 
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scientific uses and reuses of their data. Traditional funding models effectively support astronomy 

when the field is scoped by individual investigators using private telescopes (Bowker, 2005; 

Mayer-Schonberger & Cukier, 2013). However, collaborative efforts like SDSS and LSST 

require shared telescope facilities, which may also impact the funding models and infrastructures 

appropriate for that work. Traditional funding models do not support the invisible labor required 

to enable data availability beyond operations, while the promises of future data-intensive 

achievement require that data remain available beyond the period of a single project (Burns et 

al., 2014; Schroeder & Meyer, 2012). When funding ceases upon data collection completion, or 

even shortly thereafter, the research community is unable to realize the full potential of these 

multi-million and billion dollar scientific investments. 

End-users will be unable to continue using SDSS or LSST data if the data are not 

continuously archived and served. As described in 4.2.2.3 SDSS data end-users, SDSS data end-

users rely on continued access to SDSS data, and do not retain copies of the data because they 

expect always easily to re-attain the data through the collaboration website. While some 

pervasive infrastructures were effectively adapted to modern “big science” approaches to 

astronomy research, the prompt end of funding following data collection remains a problem for 

the community, inhibiting advances from data-intensive science. 

While many funding agencies encourage the development of data management plans and 

enabling data access (Directorate of Mathematical and Physical Sciences Division of 

Astronomical Sciences (AST), 2010; Holdren, 2013; National Institute of Health, 2003; National 

Science Foundation, 2010b), the infrastructures to support these expectations do not exist yet in 

ground-based astronomy community. Despite funding proposal promises to facilitate scientific 

findings beyond data collection, SDSS, LSST, and other similar projects are unable to fulfill 
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those promises because long-term astronomy and funding infrastructures do not exist to support 

such work. As noted in Figure 12, financial support decisively falls off after data collection is 

complete, and community infrastructures like NASA science centers do not exist in ground-

based astronomy. 

LSST data undeniably will be used highly beyond the end of the ten-year survey. 

However, the haphazard ways SDSS data were maintained after survey close cannot serve as 

data management solutions for LSST. Instead, funding and personnel must be dedicated early to 

ensure the archiving and serving of LSST data until the point at which the community itself 

decides the data no longer require maintenance. Judging by the impact of the SDSS data on the 

astronomy community, LSST data are expected to remain an important part of astronomy 

research for a decade or more beyond data collection. The scientific community, rather than the 

common three-to-five year funding model, should determine when datasets are no longer 

archived and served. 

Some disciplines have largely resolved the funding gap problem for data management 

beyond the close of data collection grants. For example, the Inter-University Consortium for 

Political and Social Research (ICPSR) established shared infrastructures to support social 

science research data. While the NSF largely funds projects through short-term grants, like those 

supporting LSST, NSF also has longer-term, large “facilities” funding models (National Science 

Board (U.S.), 2005). Even space-based, NASA-funded astronomy research data are distributed to 

NASA science centers following the end of a mission (Committee on NASA Astronomy Science 

Centers, & National Research Council, 2007). Those communities have established 

infrastructures to archive and serve important data following the end of funding for the 

individual created projects. Each of those solutions is discipline specific. ICPSR uses a paid 



  
  

251 
 

membership model to manage shared data. NASA science centers rely on continued favorable 

performance reporting and congressional appropriations. However, in ground-based astronomy, 

there is no established infrastructure by which a project can hand-off its data for expert archiving 

and serving beyond individual project funding.  

Ground-based projects like the SDSS and LSST are prioritized for funding in part 

because the data be collected and used in the short-term, and then the data are expected to be 

reused and combined in many ways into the future to serve important components of data-driven 

research. However, SDSS and LSST leaders and funding agencies are failing to recognize the 

chasm disconnecting data collected through project funding and reuse after project close. 

Anderson was a senior SDSS leader, and yet his understanding of archiving and serving SDSS 

data falls far short of the necessary steps to enable data-intensive science: "We put it up on the 

web, so it's good, it's done" (Anderson, Emeritus Professor, 2012). 

Systemic change in ground-based astronomy funding rhythms is necessary to ensure data 

remain usable following data collection, enabling the promises of data-driven research. However, 

this change requires the development of knowledge infrastructures available at the end of the 

project life cycle to support data management. Thus, the current sky survey data management 

model revealed in this dissertation study must be amended by stakeholders to include the 

funding, infrastructures, and workforces necessary for long-term data management for data-

intensive reuse. As the social sciences and NASA-funded projects have established these bridges 

for their communities, a center(s) may be required to house the knowledge infrastructures 

necessary to support ground-based astronomy data beyond the end of project funding.  

The sustainability model that will work best for ground-based astronomy is not yet clear. 

Funding agencies should work alongside scientists to determine the best path forward to bridge 
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the gap in support for ground-based astronomy research data. Stakeholders will need to 

determine the kinds of workforces and technical infrastructures necessary to sustain data, which 

data are determined to have long-term value, what length of time datasets require management, 

and other pressing details. These determinations must arise from within the community, and be 

aided by funders who invested in the long-term impact of their investments. This necessary field-

wide work is urgent; as time passes, data become increasingly vulnerable to bit rot and other 

forms of mismanagement. 

6.3	Limitations	

This dissertation does not attempt to discuss data management expertise across all of 

science, or even the full discipline of astronomy. The intended population was that of modern, 

ground-based optical sky survey team members and end-users. In practice, the study populations 

were the SDSS and LSST data management team members, as well as end-users of SDSS data. 

SDSS and LSST are not the only sky surveys in astronomy, but are arguably some of the best 

funded and most respected. The same workforce stratification within these two teams may not be 

reasonably expected in other surveys.  

 This dissertation is also limited by the length and intensity of the study. While a five-year 

study involving interviews and observations provides a strong set of data, increasing the 

longitudinal nature of the study, as well as increasing the depth of investigation, could vastly 

improve the study of these projects. Ideally, the number of study years would be increased to 

ensure observations of the full life of a sky survey. Long-term, fully immersive ethnographic 

participant observation fieldwork, as identified by the anthropology community, would provide a 

stronger set of evidence for the ways workforces interact with one another across time and place. 

Alternatively, the internal validity of this dissertation may be influenced by the years-long nature 
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of the study. Maturation of study participants can have an effect on findings as “people are 

continually growing and changing” (Babbie, 2007, p. 230). To lessen the impact of maturation 

on this study, all documents, transcripts, and observations include indications of the year they 

took place. Year of interview was also a demographic factor in interview analysis. 

 Finally, this study was limited by study population self-selection. Observations and 

interviews were not conducted with individuals who were disinterested in study participation for 

any reason. Some potential for study bias is present, however, the right for a study participant to 

opt-in is critical to the ethical nature of the study and cannot, and will not, be rescinded. 

6.4	Future	Work	

Given the abundance of interviews conducted for this dissertation, and the fact that only a 

portion of the vast materials were exposed within this document, further analyses should be 

conducted with the 80 interview transcripts. The transcripts remain protected under the UCLA 

IRB, and the UCLA CKI team members should continue to investigate these findings.  

 First, data collection for the current case studies should continue to increase the 

longitudinal nature of the study and the potential for more thorough analysis. The UCLA CKI 

has investigated SDSS since 2009; LSST has only been studied since 2014. The CKI should at 

minimum continue to study LSST to obtain comparable depths of understanding for both 

astronomy sky survey projects. Ideally, LSST will continue to be studied through the transition 

from construction to commissioning and further as funding allows. 

  The interviews conducted for this study were distributed and diverse. Interviewees were 

affiliated with 26 institutions, and clustered based on seven demographic variables. However, 

while the coverage was broad, study analysis could have improved by also including specific 

stakeholder institutions as an interviewee variable. For example, preliminary analysis indicates 
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collaborative differences between team members at each LSST data management institution. 

Future work includes coordinating with fellow team members at the UCLA CKI to analyze the 

consistencies and differences between SDSS and LSST stakeholders at different institutions. 

 Astronomy data are not the only kinds of information integral to astronomy research. 

Important contextual information may include the software that has processed, or is necessary to 

analyze, the data (Borgman, 2015; N. Gray et al., 2012; Howison & Bullard, 2016). Software 

revealed itself during analysis as an important information type for astronomy research. 

However, it quickly became difficult to discover the boundaries between data and software. 

Further research is needed to understand the role that data, software, and other kinds of 

information play in astronomy sky surveys.  

Finally, further research is necessary to understand the way sky survey team members are 

rewarded and how their educations and careers progress. Pi-shaped stakeholders, who are experts 

at astronomy as well as software engineering and infrastructure building, hold an essential 

knowledgebase for sky survey growth. However, study participants expressed displeasure that 

infrastructure work is often “invisible” and rarely results in tenure-track faculty careers. At the 

same time, sky survey participants noted difficulty finding the data management experts needed 

for their projects. Highly skilled individuals are poorly rewarded, even though they are in high 

demand. Further research should be conducted to gather more evidence about the current reward 

structures and their implications for successful research data management now and into the 

future. 

6.5	Closing	Remarks	

As discussed in the Introduction chapter, information preservation during the 

Renaissance was not an inherent result of the printing press and only occurred because society 
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also specifically acted to respect and preserve information (Blair, 2010, p. 61). Sky survey 

leaders, funders, and other policy makers can no longer remain naïve to the notion that data 

management requires sustainable resources; while these workforces and infrastructures may 

currently be absent, black boxed, or “invisible,” they remain essential to reap the promised 

benefits of data-intensive science. Society must once again make a conscious effort to archive 

and serve information. While many funders have begun requiring data management plans, a 

further social change is also necessary. Funders must also acknowledge the human and physical 

infrastructures necessary to accomplish the effective data management they champion for in 

these plans. In the era of data-intensive science, data must be managed beyond that of initial use, 

because combining and re-combining various datasets in data-intensive research promises to 

enhance scientific understanding. These promised insights can only be made if data are managed 

beyond data collection; however, data project funding currently ceases at data collection close. 

Just as was the case with the printing press in the Renaissance, advances in data-intensive 

scientific collection techniques do not inherently beget archived and served datasets of value. It 

is only through active decision-making and long-term planning that SDSS and LSST data will 

remain available beyond initial use. 

The first step in the process of planning for SDSS and LSST long-term legacies is to 

accept that stakeholders, including astronomers, computer scientists, librarians, and funders, 

have differing perspectives. The next step is to move forward inclusive of these diverse 

perspectives, instead of despite them. By recognizing these data management perspectives, 

including those of process and product across the full research data life cycle, the strongest 

sustainability plans and research infrastructures can be developed and deployed. 
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A consistent, expert workforce with a reliable salary is necessary to ensure the 

appropriate long-term management and utility of scientific data (Committee on NASA 

Astronomy Science Centers, & National Research Council, 2007; Research Information 

Network, 2008). Funding, or a lack thereof, impacts the stability of all knowledge infrastructures, 

including the human expertise critical to ensuring data usefulness for years to come (Berman & 

Cerf, 2013; Edwards et al., 2013; Hine, 2006). While funding for data collection and scientific 

investigation are important, additional funding beyond the point of initial scientific return is 

necessary to retain the research efficacy of data over time. For SDSS and LSST data to remain 

usable over the long-term, a new funding model and a full environment of sustainable expertise 

that bridges the current chasm in the research life cycle are required. These changes may 

resemble NSF facilities, NASA science centers, social science consortia like ICPSR, or perhaps a 

solution not yet envisioned. It is only once stakeholders acknowledge the true costs of data 

management beyond collection (instead of remaining naïve to “invisible” workforces and 

currently absent infrastructures) that the SDSS and LSST can contribute fully to the data-

intensive science revolution already underway.  
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Appendix	I:	Sloan	Digital	Sky	Survey	Timeline	
 
 
 
 
	
  



  
  

258 
 

Appendix	II:	Large	Synoptic	Survey	Telescope	Timeline	
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Appendix	III:	Interviewee	Demographics	
 
 
 
 

 
 
 
 
 

 
 

 
 

 
 
 

Primary	AfWiliation	

University	

Research	Institute	

Data	Center	

National	Laboratory	

Year	of	Interview	

2011	

2012	

2013	

2014	

2015	
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Career	Stage	
Graduate	Student	

Post-Doc	

Faculty	Professor	

Faculty	Emeritus/
Retired	
Staff	Programmer	

Staff	Scientist	

Non-scienti_ic	staff	

Level	of	Astronomy	Education	

No	Higher	Education	

Some	Astronomy	
Graduate	Work	

Astronomy	PhD	

Other	Graduate	Degree	
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Current	Workforce	

Astronomer	

Computational	
Astronomer	

Computer	Scientist	

Other	(non-research)	

SDSS	or	LSST	Team	AfWiliation	

SDSS	team	

LSST	team	

Both	

Neither	

Theorist?	

Yes	

No	
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Appendix	IV:	Interview	Consent	Form	

 

 
 

CONSENT TO PARTICIPATE IN INTERVIEW 
 

The Transformation of Knowledge, Culture, and Practice in Data-Driven Science: 
Research study conducted by PI Prof. Christine L. Borgman of Information Studies, and Co-PI Prof. 
Sharon Traweek of Gender Studies and History at the University of California, Los Angeles. This 
project is funded for by the Alfred P. Sloan Foundation and the NSF. [Full proposal descriptions 
available on request.] 
 
Please read this form carefully and feel free to ask any questions you may have about this study 
and the information given below. You will be given an opportunity to ask questions and your 
questions will be answered. You will be given a copy of this consent form. This consent form 
applies to adults (18 years or older).  

 
 
 
Name  

Affiliation  

City  State  Country  

Date  

 
 
1. I hereby agree to participate in at least one individual and/or cohort interview and/or to be observed 

in connection with the research project named above. I understand that I will be asked about my 
participation in data-intensive science projects, my research data practices, and collaborations with 
colleagues involved in these projects. 

 
2. The interview may be audio or video recorded. In the interview I may be identified by name, subject 

to my consent. I may also be identified by name in any transcript (whether verbatim or edited) of 
such interview, subject to my consent. If I choose to remain anonymous, I know that my name will 
not appear in the transcript or reference to any material contained in the interview. I know that, in 
the case of choosing to remain anonymous, my interview will only be identified by a tracking 
number. 

 
3. I understand that each interview will take approximately one to two hours and that I can withdraw 

from the project without prejudice prior to the execution and delivery of a deed of gift, a form of 
which is attached hereto. In the event that I withdraw from the interview, any recording made of the 
interview will be either given to me or destroyed, and no transcript will be made of the interview.  
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4. Subject to the provisions of paragraph five below, I understand that, upon completion of the 
interview, the recording and content of the interview belong to PI’s Christine L. Borgman and 
Sharon Traweek, and that the information in the interview can be used by them in any manner they 
will determine, including, but not limited to, use by researchers in presentations and publications. 

 
5. (i) No one will use or exercise any rights to the information in the interview prior to the signing of 

the deed of gift; (ii) the deed of gift will be submitted to me for my signature at completion of the 
interview; and (iii) restrictions on the use of the interview can be placed in the deed of gift and 
will be accepted as amending the researchers’ rights to the content of the interview. I 
understand that I have the right to review, edit, or erase the recordings of the interview before I 
sign the deed of gift. 

 
6. Any restrictions as to use of portions of the interview indicated by me will be edited from the final 

copy of the transcript. 
 
7. I understand that at the conclusion of this particular study and upon signing the deed of gift, the 

recordings and one copy of the transcript will be kept by the principal investigator of this project, 
Prof. Christine Borgman, Graduate School of Education & Information Sciences at UCLA. 

 
8. If I have questions about the research project or procedures, I know I can contact the principal 

investigators of this project: 
 

 
Prof. Christine Borgman 
University of California at Los Angeles 
Graduate School of Education & Information 
Studies 
borgman@gseis.ucla.edu 
(310) 825-6164 

 

Prof. Sharon Traweek 
Department of Gender Studies 
University of California at Los Angeles 
traweek@history.ucla.edu 

    (310) 825-4601  

 
 

If you wish to ask questions about your rights as a research participant or if you wish to voice any 
problems or concerns you may have about the study to someone other than the researchers, please 
call the Office of the Human Research Protection Program at (310) 825-7122 or write to Office for 
Protection of Research Subjects, UCLA, 11000 Kinross Avenue, Suite 211, Box 951694, Los Angeles, 
CA 90095-1694. 

 
 
 
 
The content of this informed consent document is drawn from: 

Center for the History of Physics, American 
Institute of Physics:  

http://www.aip.org/history 
http://www.aip.org/history/oral_history/ 

conducting.html  

Indiana University Center for the Study of History 
and Memory [CSHM]: 

http://www.indiana.edu/~cshm/ 
http://www.indiana.edu/~cshm/informed_consent

.pdf 
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CONSENT TO PARTICIPATE IN INTERVIEW 
 

 
Step 1: Check one of the following 

___ I agree to be identified by name in 
any transcript or reference to any 
information contained in this 
interview. 

 ____ I wish to remain anonymous in any transcript 
or reference to any information contained in 
this interview, and I wish to have my 
transcript only identified by an internal 
tracking number. 

 
 
 
Step 2: Optional Restrictions 

___ I wish to restrict access to recordings and transcripts of this interview to the following kinds of 
researchers:  

 ___ initial research team conducting the interviews [led by PI’s Borgman & Traweek]  

 ___ university-based researchers _____________________________________ 

 ___ others________________________________________________________ 

  These restrictions to recordings and transcripts of this interview are for the following 
number of years___________ 

___ I wish to add the following restrictions ____________________________________ 

___________________________________________________________________ 

___________________________________________________________________ 

 

 

Ø Interviewee signature _______________________________________________________ 

Address  _____________________________________________________________________ 

  ______________________________________________________________________ 

  ______________________________________________________________________ 

Phone number __________________________________________________________________ 

Consent date ____/____/____ 
 
 
 
Interviewer signature ________________________________________________________________ 
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Appendix	V:	Interview	Deed	of	Gift	Form	

	

 

 
 

ORAL HISTORY DEED OF GIFT 
 
The Transformation of Knowledge, Culture, and Practice in Data-Driven Science: 
Research study conducted by PI Prof. Christine L. Borgman of Information Studies, and Co-PI Prof. 
Sharon Traweek of Gender Studies and History at the University of California, Los Angeles. This 
project is funded for by the Alfred P. Sloan Foundation and the NSF. [Full proposal descriptions 
available on request.] 

I, ________________________________________ hereby give to Prof. Christine Borgman and Prof. 
Sharon Traweek for scholarly and educational use the audio or video recordings of individual and 
cohort interview(s) conducted with me  
by ____________________________________________ on _________________________ [date]  

I understand that I can authorize others to make any use of the content of these recordings, and that 

Prof. Borgman and Prof. Traweek will, at my request, make available a copy of those recordings for 

such use. 

Step 1: Please check one of the following 

_____   I agree to have my oral history interview 
stored for future use by the Principal 
Investigator and/or research team 

_____   I do not want my oral history interview 
stored for future use by the Principal 
Investigator and/or research team. 

Step 2: Restrictions (optional)

If I wish to remain anonymous in any interview transcript or reference to any information contained in 
this interview, I will specify that restriction here: 

_________________________________________________________________________________ 

The foregoing gift and grant of rights is subject to the following restrictions: 
_________________________________________________________________________________________ 

Step 3: Signatures 

This agreement may be revised or amended by mutual consent of the parties undersigned: 

 

_______________________________________ 
Interviewee signature, date 

 

_________________________________________ 
Interviewer name, signature, and date 

 
The content of this document is drawn from: 

Center for the History of Physics, American Institute of Physics:  
http://www.aip.org/history 
http://www.aip.org/history/oral_history/ conducting.html  

Indiana University Center for the Study of History and Memory: 
http://www.indiana.edu/~cshm/ 
http://www.indiana.edu/~cshm /informed_consent.pdf 



  
  

266 
 

References	
 
Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., Anderson, S. F., 

Annis, J., … Zucker, D. B. (2003). The first data release of the Sloan Digital Sky Survey. 

The Astronomical Journal, 126(4), 2081–2086. https://doi.org/10.1086/378165 

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., Prieto, C. A., An, D., 

… Zucker, D. B. (2009). The seventh data release of the Sloan Digital Sky Survey. The 

Astrophysical Journal Supplement Series, 182(2), 543–558. https://doi.org/10.1088/0067-

0049/182/2/543 

About Us | DAMA. (2015, July 12). Retrieved July 13, 2015, from http://dama-dach.org/about-

us/ 

Abrams, S., Cruse, P., & Kunze, J. (2009). Preservation is not a place. International Journal of 

Digital Curation, 4(1), 8–21. https://doi.org/10.2218/ijdc.v4i1.72 

Accomazzi, A. (2011). Linking literature and data: Status report and future efforts. In A. 

Accomazzi (Ed.), Future Professional Communication in Astronomy II (pp. 135–142). 

Springer New York. https://doi.org/10.1007/978-1-4419-8369-5_15 

Accomazzi, A., & Dave, R. (2011). Semantic interlinking of resources in the Virtual Observatory 

era. Proceedings of Astronomical Data Analysis Software and Systems XX, ASPC 442, 

415–424. 

Accomazzi, A., Derriere, S., Biemesderfer, C., & Gray, N. (2012). Why don’t we already have 

an Integrated Framework for the Publication and Preservation of all Data Products? 

Astronomical Society of the Pacific Conference Series, 461, 867–870. 



  
  

267 
 

Accomazzi, A., Grant, C. S., Eichhorn, G., Kurtz, M. J., & Murray, S. S. (1996). The ADS 

Article Service data holdings and access methods. In Astronomical Data Analysis 

Software and Systems V, A.S.P. Conference Series (Vol. 101, p. 558). 

Accomazzi, A., Henneken, E., Erdmann, C., & Rots, A. (2012). Telescope bibliographies: An 

essential component of archival data management and operations. In Proc. SPIE 8448, 

Observatory Operations: Strategies, Processes, and Systems IV (Vol. 8448, p. 84480K). 

https://doi.org/10.1117/12.927262 

Accomazzi, A., Kurtz, M. J., Henneken, E. A., Chyla, R., Luker, J., Grant, C. S., … Murray, S. 

S. (2015). ADS: The next generation search platform. In LISA VII: Open Science: At the 

Frontiers of Librarianship (Vol. 492, p. 189). 

Ackerman, M. S., Hofer, E. C., & Hanisch, R. J. (2008). The National Virtual Observatory. In 

Scientific Collaboration on the Internet (p. 135). 

ADS. (2016). The SAO/NASA Astrophysics Data System. Retrieved April 11, 2016, from 

http://adswww.harvard.edu/ 

Altman, M., Borgman, C. L., Crosas, M., & Martone, M. (2015). An introduction to the joint 

principles for data citation. Bulletin of the American Society for Information Science and 

Technology, 41(3), 43–45. https://doi.org/10.1002/bult.2015.1720410313 

Altman, M., & Crosas, M. (2013). The Evolution of Data Citation: From Principles to 

Implementation. IASSIST Quarterly, 37(Spring), 62. 

Anderson, G., & Mulvey, P. (2012). Physics Doctorates Initial Employment: Data from the 

Degree Recipient Follow-Up Survey for the Classes of 2009 and 2010. Focus On. 

Statistical Research Center of the American Institute of Physics. 



  
  

268 
 

Anderson, W. L. (2004). Some challenges and issues in managing, and preserving access to, 

long-lived collections of digital scientific and technical data. Data Science Journal, 3, 

191–201. https://doi.org/10.2481/dsj.3.191 

Association of Research Libraries. (2009). The research library’s role in digital repository 

services: Final report of the ARL Digital Repository Issues Task Force. Washington, DC: 

Association of Research Libraries. 

Astronomy and Astrophysics Survey Committee. (2001). Astronomy and astrophysics in the new 

millennium. Washington, DC: National Academy of Sciences. 

Astrophysical Research Consortium. (1989). Principles of Operation of the Sky Survey Project. 

Astrophysical Research Consortium. (2000). Principles of operation for the Sloan Digital Sky 

Survey. 

Astrophysical Research Consortium. (2005). Principles of operation for the Sloan Digital Sky 

Survey II (PoO-II). 

Astrophysical Research Consortium. (2008). Appendix. SDSS long-term scientific data archive. 

In Memorandum of understanding between X and the Astrophysical Research 

Consortium concerning archiving and serving data from the Sloan Digital Sky Survey. 

Atkins, D., Dietterich, T., Hey, A. J. G., Baker, S., Feldman, S., Lyon, L., & et al. (2011). Final 

report. Advisory Committee for CyberInstrastructure Task Force on Data and 

Visualization: National Science Foundation. 

Australian National Data Service (ANDS). (2017, January 11). ANDS Guide: Creating a data 

management framework. Retrieved from http://www.ands.org.au/guides/creating-a-data-

management-framework 



  
  

269 
 

Babbie, E. R. (2007). The practice of social research (11th ed.). Belmont, CA: Thomson 

Wadsworth. 

Baker, K. S., & Millerand, F. (2010). Infrastructuring ecology : challenges in achieving data 

sharing. In J. N. Parker, N. Vermeulen, & B. Penders (Eds.), Collaboration in the new life 

sciences (pp. 111–138). Farnham, Surrey, England; Burlington, VT: Ashgate. 

Baker, K. S., & Yarmey, L. (2009). Data Stewardship: Environmental Data Curation and a Web-

of-Repositories. International Journal of Digital Curation, 4(2), 12–27. 

https://doi.org/10.2218/ijdc.v4i2.90 

Ball, A. (2012, February 13). Review of Data Management Lifecycle Models. Bath, UK: 

University of Bath. 

Bates, J., Goodale, P., & Lin, Y. (2015). Data Journeys as an approach for exploring the socio-

cultural shaping of (big) data: The case of climate science in the United Kingdom. In 

iConference 2015 Proceedings. iSchools. 

https://doi.org/https://www.ideals.illinois.edu/handle/2142/73429 

Becla, J., Hanushevsky, A., Nikolaev, S., Abdulla, G., Szalay, A. S., Nieto-Santisteban, M. A., 

… Gray, J. (2006). Designing a multi-petabyte database for LSST. In Proc. SPIE 6270, 

Observatory Operations: Strategies, Processes, and Systems (Vol. 6270, p. 62700R–

62700R–8). https://doi.org/10.1117/12.671721 

Becla, J., Nikolaev, S., Abdulla, G., Szalay, A. S., Nieto-Santisteban, M., Thakar, A., … Rosing, 

W. (2005). LSST data access overview. In Bulletin of the American Astronomical Society 

(Vol. 37, p. 1207). 

Bell, G., Hey, A. J. G., & Szalay, A. S. (2009). Beyond the Data Deluge (Computer Science). 

Science, 323(5919), 1297–1298. https://doi.org/10.1126/science.1170411 



  
  

270 
 

Benderly, B. L. (2008). Taken for Granted: Fitting the Job Market to a T. Science. 

https://doi.org/10.1126/science.caredit.a0800130 

Berman, F., & Cerf, V. G. (2013). Who will pay for public access to research data? Science, 

341(6146), 616–617. https://doi.org/10.1126/science.1241625 

Bicarregui, J., Gray, N., Henderson, R., Jones, R., Lambert, S., & Matthews, B. (2013). Data 

Management and Preservation Planning for Big Science. International Journal of Digital 

Curation, 8(1), 29–41. https://doi.org/10.2218/ijdc.v8i1.247 

Blair, A. M. (2010). Too much to know: managing scholarly information before the modern age. 

New Haven [Conn.]: Yale University Press. 

Blanton, M. R., Schlegel, D. J., Strauss, M. A., Brinkmann, J., Finkbeiner, D., Fukugita, M., … 

Zehavi, I. (2005). New York University Value-Added Galaxy Catalog: A Galaxy Catalog 

Based on New Public Surveys. The Astronomical Journal, 129(6), 2562–2578. 

https://doi.org/10.1086/429803 

Blumer, E., & Burgi, P.-Y. (2015, December). Data Life-Cycle Management Project: SUC P2 

2015-2018. Swiss Journal of Information Science (RESSI), 16. 

Boellstorff, T. (2012). Ethnography and virtual worlds: A handbook of method. Princeton: 

Princeton University Press. 

Bollacker, K. D. (2010). Avoiding a Digital Dark Age. American Scientist, 98(2), 106–110. 

Borgman, C. L. (1999). What are digital libraries? Competing visions. Information Processing & 

Management, 35(3), 227–243. https://doi.org/10.1016/S0306-4573(98)00059-4 

Borgman, C. L. (2000). From Gutenberg to the Global Information Infrastructure: Access to 

Information in the Networked World. Cambridge, MA: MIT Press. 



  
  

271 
 

Borgman, C. L. (2007). Scholarship in the Digital Age: Information, Infrastructure, and the 

Internet. Cambridge, MA: MIT Press. 

Borgman, C. L. (2012a). The conundrum of sharing research data. Journal of the American 

Society for Information Science and Technology, 63(6), 1059–1078. 

https://doi.org/10.1002/asi.22634 

Borgman, C. L. (2012b). Why Are the Attribution and Citation of Scientific Data Important? In 

P. F. Uhlir (Ed.), Report from Developing Data Attribution and Citation Practices and 

Standards: An International Symposium and Workshop. National Academy of Sciences’ 

Board on Research Data and Information. (pp. 1–8). Washington, D.C.: The National 

Academies Press. 

Borgman, C. L. (2013, February). Local or global? Making sense of the data sharing imperative. 

British Library, London. 

Borgman, C. L. (2015). Big data, little data, no data: Scholarship in the networked world. 

Cambridge, MA: MIT Press. 

Borgman, C. L., Bates, M. J., Cloonan, M. V., Efthimiadis, E. N., Gilliland-Swetland, A. J., 

Kafai, Y. B., … Maddox, A. B. (1996). Social aspects of digital libraries. Final report to 

the National Science Foundation (Background paper for UCLA - National Science 

Foundation Workshop). 

Borgman, C. L., Darch, P. T., Sands, A. E., & Golshan, M. S. (2016). The durability and fragility 

of knowledge infrastructures: Lessons learned from astronomy. In Proceedings of the 

Association for Information Science and Technology (Vol. 53, pp. 1–10). ASIS&T. 

Retrieved from http://dx.doi.org/10.1002/pra2.2016.14505301057 



  
  

272 
 

Borgman, C. L., Darch, P. T., Sands, A. E., Pasquetto, I. V., & Golshan, M. S. (2015, April 16). 

If Data Sharing is the Answer, What is the Question?: Proposal to the Alfred P. Sloan 

Foundation. 

Borgman, C. L., Wallis, J. C., & Enyedy, N. (2007). Little science confronts the data deluge: 

Habitat ecology, embedded sensor networks, and digital libraries. International Journal 

on Digital Libraries, 7(1–2), 17–30. https://doi.org/10.1007/s00799-007-0022-9 

Borgman, C. L., Wallis, J. C., & Mayernik, M. S. (2012). Who’s got the data? Interdependencies 

in science and technology collaborations. Computer Supported Cooperative Work, 21(6), 

485–523. https://doi.org/10.1007/s10606-012-9169-z 

Borne, K. D. (2013). Virtual Observatories, Data Mining, and Astroinformatics. In T. D. Oswalt 

& H. E. Bond (Eds.), Planets, Stars and Stellar Systems (Vol. 2, pp. 403–443). 

Dordrecht: Springer Netherlands. Retrieved from DOI: 10.1007/978-94-007-5618-2_9 

Borne, K. D., Jacoby, S., Carney, K., Connolly, A., Eastman, T., Raddick, M. J., … Wallin, J. 

(2009). The revolution in astronomy education: Data science for the masses (State of the 

Profession Position Paper submitted to the Astro2010 Decadal Survey). 

Boroski, B. (2007, November). 5-Year Plan for hosting the SDSS data archive. Presented at the 

Advisory Council II Meeting, Chicago O’Hare Hilton. 

Bowker, G. C. (2005). Memory Practices in the Sciences. Cambridge, Mass.: MIT Press. 

Bowker, G. C., & Star, S. L. (1999). Sorting Things Out: Classification and Its Consequences. 

Cambridge, Mass.: The MIT Press. 

boyd,  danah, & Crawford, K. (2011). Six Provocations for Big Data. In A Decade in Internet 

Time: Symposium on the Dynamics of the Internet and Society. Oxford Internet Institute, 

University of Oxford. 



  
  

273 
 

boyd,  danah, & Crawford, K. (2012). Critical Questions for Big Data: Provocations for a 

cultural, technological, and scholarly phenomenon. Information, Communication & 

Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878 

Braniff, E. (2009, September 4). Hiring and Cultivating a New Kind of Talent:  Today’s 

Problems Call for Expert Generalists, or “Pi-Shaped” Talent. Advertising Age. 

Brunner, R. J., Csabai, I., Szalay, A., Connolly, A. J., Szokoly, G. P., & Ramaiyer, K. (1996). 

The Science Archive for the Sloan Digital Sky Survey. In Astronomical Data Analysis 

Software and Systems V (Vol. 101, p. 493). 

Brunsmann, J., Wilkes, W., Schlageter, G., & Hemmje, M. (2012). State-of-the-art of long-term 

preservation in product lifecycle management. International Journal on Digital 

Libraries, 12(1), 27–39. https://doi.org/10.1007/s00799-012-0081-4 

Buckland, M. K. (1991). Information as thing. Journal of the American Society for Information 

Science, 42(5), 351–360. https://doi.org/10.1002/(SICI)1097-

4571(199106)42:5<351::AID-ASI5>3.0.CO;2-3 

Buckland, M. K. (1997). What is a “document”? Journal of the American Society for Information 

Science, 48(9), 804–809. https://doi.org/10.1002/(SICI)1097-

4571(199709)48:9<804::AID-ASI5>3.0.CO;2-V 

Budavari, T. (2010, July). Virtual Observatory technologies. Presented at the Big Data for 

Science Workshop, NCSA Summer School 2010. 

Burns, R., Vogelstein, J. T., & Szalay, A. S. (2014). From Cosmos to Connectomes: The 

Evolution of Data-Intensive Science. Neuron, 83(6), 1249–1252. 

https://doi.org/10.1016/j.neuron.2014.08.045 



  
  

274 
 

Carlson, S., & Anderson, B. (2007). What Are Data? The Many Kinds of Data and Their 

Implications for Data Re-Use. Journal of Computer-Mediated Communication, 12(2), 

635–651. https://doi.org/10.1111/j.1083-6101.2007.00342.x 

Carusi, A., Darch, P. T., Lloyd, S., Jirotka, M., de la Flor, G., Schroeder, R., & Meyer, E. (2010). 

Shared Understandings in e-Science Projects: A report from the ‘Embedding e-Science 

Applications: Designing and Managing for Usability’ project. 

CDS. (2016). SIMBAD Astronomical Database. Retrieved April 11, 2016, from http://simbad.u-

strasbg.fr/simbad/ 

Choudhury, G. S. (2010, March). The Data Conservancy: A Blueprint for Research Libraries in 

the Data Age. Retrieved from https://jscholarship.library.jhu.edu/handle/1774.2/34014 

Choudhury, G. S. (2013, August). Open access & data management are do-able through 

partnerships. Keynote Lecture presented at the ASERL Summertime Summit: “Liaison 

Roles in Open Access & Data Management: Equal Parts Inspiration & Perspiration,” 

Georgia Institute of Technology, Klaus Advanced Computing Center. Retrieved from 

http://hdl.handle.net/1853/48696 

Choudhury, G. S., Palmer, C. L., Baker, K. S., & DiLauro, T. (2013, January). Levels of services 

and curation for high functioning data. Poster presented at the International Digital 

Curation Conference, Amsterdam. 

Clarke, A. (2005). Situational analysis: Grounded theory after the postmodern turn. Thousand 

Oaks, Calif.: SAGE Publications, Inc. 

Claver, C. F., & LSST Systems Engineering Integrated Product Team. (2015). LSST system 

requirements (No. LSE-29). 



  
  

275 
 

CODATA-ICSTI Task Group on Data Citation Standards Practices. (2013). Out of Cite, Out of 

Mind: The Current State of Practice, Policy, and Technology for the Citation of Data. 

Data Science Journal, 12, CIDCR1-CIDCR75. https://doi.org/10.2481/dsj.OSOM13-043 

Colwell, R. (2009, November). Science Professionals: Master’s Education for a Competitive 

World. Presented at the Professional Science Master’s (PSM) Sixth Biennial Meeting, 

Washington Court Hotel, Washington, DC. 

Committee for a Decadal Survey of Astronomy and Astrophysics; National Research Council. 

(2010). New worlds, new horizons in astronomy and astrophysics. Washington, D.C.: 

The National Academies Press. 

Committee on Enhancing the Master’s Degree in the Natural Sciences, Board on Higher 

Education and Workforce, Policy and Global Affairs, & National Research Council. 

(2008). Science Professionals: Master’s Education for a Competitive World. Washington, 

D.C.: National Academies Press. 

Committee on NASA Astronomy Science Centers, & National Research Council. (2007). Portals 

to the Universe: The NASA astronomy science centers. Washington, D.C.: National 

Academies Press. Retrieved from DOI: 10.17226/11909 

Connolly, A. (2014). LSST data management: Prospects for processing and archiving massive 

astronomical data sets. 

Consultative Committee for Space Data Systems. (2002). Reference model for an Open Archival 

Information System (OAIS) (Recommendation for space data system standards No. 

CCSDS 650.0-B-1 Blue Book) (pp. 1–9). Washington, D.C. 



  
  

276 
 

Consultative Committee for Space Data Systems. (2012). Reference model for an Open Archival 

Information System (OAIS) (Recommendation for space data system practices No. 

CCSDS 650.0-M-2 Magenta Book). Washington, D.C. 

Cornell University. (2016). arXiv.org e-Print archive. Retrieved from http://arxiv.org/ 

Corrall, S. (2012). Roles and responsibilities -- libraries, librarians and data. In G. Pryor (Ed.), 

Managing research data (1st ed.). London: Facet Publishing. 

Critchlow, T., & Van Dam, K. K. (2013). What Is Data-Intensive Science? In K. K. van Dam 

(Ed.), Data-intensive science (pp. 1–13). Boca Raton, Fla.: CRC Press. 

Cronin, B. (2013). Thinking about data. Journal of the American Society for Information Science 

and Technology, 64(3), 435–436. https://doi.org/10.1002/asi.22928 

Crosas, M. (2013). A data sharing story. Journal of EScience Librarianship, 1(3). 

https://doi.org/10.7191/jeslib.2012.1020 

Crosas, M., Carpenter, T., Shotton, D., & Borgman, C. L. (2013, March 2). Amsterdam 

Manifesto on Data Citation Principles. Retrieved from 

http://www.force11.org/AmsterdamManifesto 

Crowston, K., & Qin, J. (2011). A capability maturity model for scientific data management: 

Evidence from the literature. Proceedings of the American Society for Information 

Science and Technology, 48(1), 1–9. https://doi.org/10.1002/meet.2011.14504801036 

Daniels, A. K. (1987). Invisible Work. Social Problems, 34(5), 403–415. 

https://doi.org/10.2307/800538 

Darch, P. T., Borgman, C. L., Traweek, S., Cummings, R. L., Wallis, J. C., & Sands, A. E. 

(2015). What lies beneath?: Knowledge infrastructures in the subseafloor biosphere and 



  
  

277 
 

beyond. International Journal on Digital Libraries, 16(1), 61–77. 

https://doi.org/10.1007/s00799-015-0137-3 

Darch, P. T., & Sands, A. E. (2015). Beyond big or little science: Understanding data lifecycles 

in astronomy and the deep subseafloor biosphere. In iConference 2015 Proceedings. 

Newport Beach, CA: iSchools. Retrieved from 

https://www.ideals.illinois.edu/handle/2142/73655 

Darch, P. T., & Sands, A. E. (2017). Uncertainty About the Long-Term: Digital Libraries, 

Astronomy Data, and Open Source Software. In 2017 IEEE/ACM Joint Conference on 

Digital Libraries (JCDL). Toronto, Canada. 

Data and Visualization Task Force. (2011). National Science Foundation Advisory Committee 

for Cyberinfrastructure Task Force on Data and Visualization (Final Report). 

Data Conservancy: Home. (2014). Retrieved from http://dataconservancy.org/home 

Data management | LSST public website. (2015). Retrieved August 15, 2015, from 

http://lsst.org/about/dm/ 

Data management system requirements | LSST public website. (2015). Retrieved August 15, 

2015, from http://lsst.org/about/dm/requirements 

Data Processing Levels for EOSDIS Data Products - NASA Science. (2010, November 8). 

Retrieved August 15, 2015, from http://science.nasa.gov/earth-science/earth-science-

data/data-processing-levels-for-eosdis-data-products/ 

Data products | LSST public website. (2015). Retrieved August 15, 2015, from 

http://lsst.org/about/dm/data-products 



  
  

278 
 

Digital Curation Centre. (2005). Digital Curation and Preservation: Defining the research 

agenda for the next decade (Report of the Warwick Workshop - 7 & 8 November 2005). 

Warwick, UK. 

Directorate of Mathematical and Physical Sciences Division of Astronomical Sciences (AST). 

(2010). Directorate of Mathematical and Physical Sciences Division of Astronomical 

Sciences (AST) Advice to PIs on Data Management Plans. National Science Foundation. 

Djorgovski, S. G., & Williams, R. (2005). Virtual Observatory: From concept to implementation. 

In From Clark Lake to the Long Wavelength Array: Bill Erickson’s Radio Science. ASP 

Conference Series (Vol. 345, p. 517). 

Edwards, P. N. (2010). A Vast Machine: Computer Models, Climate Data, and the Politics of 

Global Warming. Cambridge, MA: The MIT Press. 

Edwards, P. N., Jackson, S. J., Chalmers, M. K., Bowker, G. C., Borgman, C. L., Ribes, D., … 

Calvert, S. (2013). Knowledge infrastructures: Intellectual frameworks and research 

challenges (p. 40). Ann Arbor, MI: University of Michigan. Retrieved from 

http://deepblue.lib.umich.edu/handle/2027.42/97552 

Edwards, P. N., Mayernik, M. S., Batcheller, A. L., Bowker, G. C., & Borgman, C. L. (2011). 

Science Friction: Data, Metadata, and Collaboration. Social Studies of Science, 41(5), 

667–690. https://doi.org/10.1177/0306312711413314 

Ekbia, H., Mattioli, M., Kouper, I., Arave, G., Ghazinejad, A., Bowman, T., … Sugimoto, C. R. 

(2015). Big data, bigger dilemmas: A critical review. Journal of the Association for 

Information Science and Technology, 66(8), 1523–1545. 

https://doi.org/10.1002/asi.23294 



  
  

279 
 

Engelhardt, C., Strathmann, S., & McCadden, K. (2012). Report and analysis on the training 

needs survey (Education and Culture DG: Lifelong Learning Programme). DigCurV – 

Digital Curator Vocational Education Europe. 

Eschenfelder, K. R., & Shankar, K. (2016). Designing Sustainable Data Archives: Comparing 

Sustainability Frameworks. iSchools. https://doi.org/10.9776/16243 

Estrin, D., Michener, W. K., & Bonito, G. (2003). Environmental cyberinfrastructure needs for 

distributed sensor networks: A report from a National Science Foundation sponsored 

workshop. Scripps Institution of Oceanography, La Jolla, CA. 

Fecher, B., Friesike, S., & Hebing, M. (2015). What Drives Academic Data Sharing? PLoS ONE, 

10(2), e0118053. https://doi.org/10.1371/journal.pone.0118053 

Feldman, S. (2006, October). Summary and Closing. Presented at the Services Science, 

Engineering and Management Conference - Education for the 21st Century Conference, 

IBM Palisades. 

Finkbeiner, A. K. (2001). “Invisible” Astronomers Give Their All to the Sloan. Science, 

292(5521), 1472–1475. https://doi.org/10.1126/science.292.5521.1472 

Finkbeiner, A. K. (2010). A Grand and Bold Thing: the Extraordinary New Map of the Universe 

Ushering in a New Era of Discovery. New York: Free Press. 

Flannery, D., Matthews, B., Griffin, T., Bicarregui, J., Gleaves, M., Lerusse, L., … Kleese, K. 

(2009). ICAT: Integrating Data Infrastructure for Facilities Based Science. In Fifth IEEE 

International Conference on e-Science, 2009. e-Science ’09 (pp. 201–207). 

https://doi.org/10.1109/e-Science.2009.36 



  
  

280 
 

Fox, P., & Harris, R. (2013). ICSU and the Challanges of Data and Information Management for 

International Science. Data Science Journal, 12, WDS1-WDS12. 

https://doi.org/10.2481/dsj.WDS-001 

Freemon, M., & Kantor, J. P. (2013). LSST Data Management Infrastructure Design (No. LDM-

129). 

Galison, P. (1997). Image and Logic: A Material Culture of Microphysics. Chicago: University 

Of Chicago Press. 

Galison, P., & Hevly, B. W. (Eds.). (1992a). Big science: the growth of large-scale research. 

Stanford, Calif.: Stanford University Press. 

Galison, P., & Hevly, B. W. (1992b). Big Science: The Growth of Large-Scale Research. 

Stanford, Calif.: Stanford University Press. 

Gall, J. (1976, December 26). Why nothing works the way it’s supposed to. The New York 

Times. 

Gall, J. (2002). The Systems Bible: The Beginner’s Guide to Systems Large and Small. General 

Systemantics Press. 

Ginsparg, P. (2011). arXiv at 20. Nature, 476(7359), 145–147. https://doi.org/10.1038/476145a 

Gitelman, L., & Jackson, V. (2013). Introduction. In L. Gitelman (Ed.), “Raw Data” Is an 

Oxymoron. Cambridge, Massachusetts: The MIT Press. 

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for 

qualitative research. Chicago: Aldine Pub. Co. 

Goble, C., & De Roure, D. (2009). The impact of workflow tools on data-intensive research. In 

A. J. G. Hey, S. Tansley, & K. Tolle (Eds.), The fourth paradigm: Data-intensive 

scientific discovery (pp. 137–146). Redmond, WA: Microsoft. 



  
  

281 
 

Goodman, A. A. (2009, March). Seamless Astronomy. Poster presented at the External Research 

Symposium 2009, Microsoft Research. 

Goodman, A. A., Fay, J., Muench, A. A., Pepe, A., Udompraseret, P., & Wong, C. (2012). 

WorldWide Telescope in research and education. In Astronomical Data Analysis 

Software and Systems XXI: November 6-10, 2011, Paris, France. ASP Conference Series 

(Vol. 461, pp. 267–270). Astronomical Society of the Pacific. 

https://doi.org/https://dash.harvard.edu/handle/1/11688788 

Goodman, A. A., & Wong, C. G. (2009). Bringing the night sky closer: Discoveries in the data 

deluge. In A. J. G. Hey, S. Tansley, & K. Tolle (Eds.), The fourth paradigm: Data-

intensive scientific discovery (pp. 39–44). Redmond, WA: Microsoft. 

Gray, J., Slutz, D., Szalay, A. S., Thakar, A. R., vandenBerg, J., Kunszt, P. Z., … Slutz, D. 

(2002). Data mining the SDSS SkyServer database (No. MSR-TR-2002-01) (pp. 189–

210). Microsoft Research. 

Gray, J., Szalay, A. S., Thakar, A. R., Stoughton, C., & vandenBerg, J. (2002). Online Scientific 

Data Curation, Publication, and Archiving. Cs/0208012. 

Gray, N., Carozzi, T. D., & Woan, G. (2012). Managing Research Data in Big Science (This 

report was prepared as part of the RDMP strand of the JISC programme Managing 

Research Data.). University of Glasgow. 

Greenberg, J. (2009). Theoretical considerations of lifecycle modeling: An analysis of the Dryad 

repository demonstrating automatic metadata propagation, inheritance, and value system 

adoption. Cataloging & Classification Quarterly, 47(3–4), 380–402. 

https://doi.org/10.1080/01639370902737547 



  
  

282 
 

Gunn, J. E., & Knapp, G. R. (1993). The Sloan Digital Sky Survey (Vol. 43, p. 267). Presented at 

the Sky Surveys. Protostars to Protogalaxies. 

Hahn, K., Lowry, C., Lynch, C., & Shulenberger, D. (2009). The university’s role in the 

dissemination of research and scholarship — a call to action (Research on Institutional 

Repositories: Articles and Presentations No. 31). Washington, DC: AAU, ARL, CNI, and 

NASULGC. 

Hand, E. (2009). The world’s top ten telescopes revealed. Nature News. 

https://doi.org/10.1038/news.2009.81 

Hanisch, R. J. (2012). Science initiatives of the US Virtual Astronomical Observatory. In 

Astronomical Data Analysis Software and Systems XXI, Paris, France, 6-10 November, 

2011. ASP Conference Series (Vol. 461, p. 271). Astronomical Society of the Pacific. 

Hanisch, R. J. (2013, August 12). The future of the Virtual Observatory. Retrieved August 13, 

2013, from http://www.usvao.org/2013/08/12/the-future-of-the-virtual-observatory/ 

Hanisch, R. J., Farris, A., Greisen, E. W., Pence, W. D., Schlesinger, B. M., Teuben, P. J., … 

Warnock, A. (2001). Definition of the Flexible Image Transport System (FITS). 

Astronomy and Astrophysics, 376(1), 359–380. https://doi.org/10.1051/0004-

6361:20010923 

Hartman, P. (2005, October 27). The Art and Science of Being an IT Architect: Are you Pi-

shaped? Retrieved February 7, 2016, from 

Hasan, H., Hanisch, R. J., & Bredekamp, J. (2000). NASA’s astrophysics data archives. 

Astrophysics and Space Science, 273(1), 131–139. 

https://doi.org/10.1023/A:1002620613422 



  
  

283 
 

Hedstrom, M. (2012, December). Digital data curation - examining needs for digital data 

curators. Presented at the Fondazione Rinascimento Digitale International Conference 

2012, Florence, Italy. 

Hedstrom, M., Dirks, L., Fox, P., Goodchild, M., Joseph, H., Larsen, R., … Title, A. (2015). 

Preparing the Workforce for Digital Curation. Washington, D.C.: National Academies 

Press. 

Heidorn, P. B. (2011). The Emerging Role of Libraries in Data Curation and E-science. Journal 

of Library Administration, 51(7–8), 662–672. 

https://doi.org/10.1080/01930826.2011.601269 

Henneken, E. A., Eichhorn, G., Accomazzi, A., Kurtz, M. J., Grant, C., Thompson, D., … 

Murray, S. S. (2010). How the literature is used a view through citation and usage 

statistics of the ADS. In H. J. Haubold & A. M. Mathai (Eds.), Proceedings of the Third 

UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space 

Science (pp. 141–147). https://doi.org/10.1007/978-3-642-03325-4_12 

Henneken, E. A., Kurtz, M. J., & Accomazzi, A. (2011, June 28). The ADS in the Information 

age - impact on discovery. 

Henneken, E. A., Kurtz, M. J., Eichhorn, G., Accomazzi, A., Grant, C. S., Thompson, D., … 

Warner, S. (2007). E-prints and journal articles in astronomy: A productive co-existence. 

Learned Publishing, 20(1), 16–22. https://doi.org/10.1087/095315107779490661 

Henneken, E. A., & Thompson, D. (2013). ADS labs: Supporting information discovery in 

science education. In Communicating Science: A National Conference on Science 

Education and Public Outreach, 2012 (Vol. 473, p. 207). Tucson, AZ: Astronomical 

Society of the Pacific. 



  
  

284 
 

Henry, C. (2012). Introduction. In L. Jahnke, A. D. Asher, & S. D. C. Keralis, The problem of 

data. Washington, DC: Council on Library and Information Resources. 

Hey, A. J. G. (2015, May). The Fourth Paradigm: Data-Intensive Scientific Discovery, Open 

Science and the Cloud. High Energy Seminars at UC Davis presented at the High Energy 

Seminars at UC Davis, UC Davis. 

Hey, A. J. G., & Hey, J. (2006). e-Science and its implications for the library community. 

Library Hi Tech, 24(4), 515–528. https://doi.org/10.1108/07378830610715383 

Hey, A. J. G., Tansley, S., & Tolle, K. (Eds.). (2009a). Jim Gray on eScience: A transformed 

scientific method. In The fourth paradigm: Data-intensive scientific discovery (pp. xix–

xxxiii). Redmond, WA: Microsoft Research. 

Hey, A. J. G., Tansley, S., & Tolle, K. (Eds.). (2009b). The fourth paradigm: Data-intensive 

scientific discovery. Redmond, WA: Microsoft Research. 

Higgins, S. (2008). The DCC Curation Lifecycle Model. International Journal of Digital 

Curation, 3(1), 134–140. https://doi.org/10.2218/ijdc.v3i1.48 

Higgins, S. (2012). The lifecycle of data management. In Managing research data (1st ed., p. 

224). Facet Publishing. 

Hine, C. (Ed.). (2006). New infrastructures for knowledge production: Understanding e-science. 

Hershey, PA: Information Science Publishing. 

Holdren, J. P. (2013, February 22). Memorandum for the Heads of Executive Departments and 

Agencies: Increasing Access to the Results  of Federally Funded  Scientific Research. 

Executive Office of the President, Office of Science and Technology Policy. 

Howison, J., & Bullard, J. (2016). Software in the scientific literature: Problems with seeing, 

finding, and using software mentioned in the biology literature. Journal of the 



  
  

285 
 

Association for Information Science and Technology, 67(9), 2137–2155. 

https://doi.org/10.1002/asi.23538 

Huang, C. H., Munn, J., Yanny, B., Kent, S., Petravick, D., Pordes, R., … Brunner, R. J. (1995). 

Object-oriented modeling and design for Sloan Digital Sky Survey retained data (No. 

FNAL/C--95/390; CONF-9510286--4). Fermi National Accelerator Lab., Batavia, IL 

(United States). 

Humphrey, C. (2006). e-Science and the life cycle of research. IASSIST Communiqué. 

Interagency Working Group on Digital Data. (2009). Harnessing the power of digital data for 

science and society. Washington, D.C.: Report of the Interagency Working Group on 

Digital Data to the Committee on Science of the National Science and Technology 

Council. 

International Virtual Observatory Alliance. (2015). Retrieved from http://www.ivoa.net/ 

Ivezić, Ž., & LSST Science Council. (2011). LSST system science requirements document, 

v.5.2.3 (No. LPM-17). 

Ivezić, Ž., Monet, D. G., Bond, N., Jurić, M., Sesar, B., Munn, J. A., … SDSS Collaboration and 

LSST Collaboration. (2007). Astrometry with digital sky surveys: From SDSS to LSST. 

Proceedings of the International Astronomical Union, 3(S248). 

https://doi.org/10.1017/S1743921308020103 

Ivezić, Ž., Tyson, J. A., Abel, B., Acosta, E., Allsman, R., AlSayyad, Y., … Collaboration,  for 

the L. (2011, June 7). LSST: From science drivers to reference design and anticipated 

data products (Version 2.0). 



  
  

286 
 

Ivezić, Ž., Tyson, J. A., Abel, B., Acosta, E., Allsman, R., AlSayyad, Y., … Collaboration,  for 

the L. (2014, August 26). LSST: From science drivers to reference design and anticipated 

data products (Version 4.0). 

Ivie, R., Ephraim, A., & White, S. (2009). Astronomy Faculty: Results from the 2008 Survey of 

Physics & Astronomy Degree-Granting Departments. Statistical Research Center of the 

American Institute of Physics. 

Jackson, S. J., Ribes, D., & Buyuktur, A. (2010). Exploring Collaborative Rhythm: Temporal 

Flow and Alignment in Collaborative Scientific Work, 1–6. 

Jackson, S. J., Ribes, D., Buyuktur, A., & Bowker, G. C. (2011). Collaborative Rhythm: 

Temporal Dissonance and Alignment in Collaborative Scientific Work. In Proceedings of 

the ACM 2011 Conference on Computer Supported Cooperative Work (pp. 245–254). 

New York, NY, USA: ACM. https://doi.org/10.1145/1958824.1958861 

Joint Information Systems Committee (JISC), & Coalition for Networked Information (CNI). 

(2015). Scholarly communication: The journey towards openness (Conference report: 

Jisc CNI meeting 2014: Opening up scholarly communications. 10-11 July 2014, Bristol, 

UK). Jisc. 

Joint Leadership Group of the National Digital Stewardship Alliance. (2013). 2014 National 

Agenda for Digital Stewardship. National Digital Stewardship Alliance (NDSA). 

Juric, M. (2014, March). LSST data management: Data products and software stack overview. 

Presented at the Joint DES-LSST Workshop, Fermilab. 

Juric, M., Lupton, R. H., Axelrod, T., Bosch, J. F., Dubois-Felsmann, G. P., Ivezić, Ž., … Tyson, 

J. A. (2013). LSST data products definition document (No. LSST document LSE-163). 



  
  

287 
 

Kantor, J. P. (2014, August). Introduction to LSST data management. Presented at the LSST 

2014 Project and Community Workshop, Phoenix, AZ. 

Kantor, J. P., Axelrod, T., Becla, J., Cook, K., Nikolaev, S., Gray, J., … Thakar, A. R. (2007). 

Designing for peta-scale in the LSST Database (Vol. 376, p. 3). Presented at the 

Astronomical Data Analysis Software and Systems XVI. 

Karasti, H., & Baker, K. S. (2008). Digital data practices and the Long Term Ecological 

Research program growing global. International Journal of Digital Curation, 3(2), 42–

58. https://doi.org/10.2218/ijdc.v3i2.57 

Karasti, H., Baker, K. S., & Halkola, E. (2006). Enriching the notion of data curation in e-

Science: Data managing and information infrastructuring in the Long Term Ecological 

Research (LTER) network. Journal of Computer-Supported Cooperative Work, 15(4), 

321–358. https://doi.org/10.1007/s10606-006-9023-2 

Kennicutt Jr, R. C. (2007). Astronomy: Sloan at five. Nature, 450(7169), 488–489. 

https://doi.org/10.1038/450488a 

Kent, S. M. (1994). Sloan Digital Sky Survey. In Astronomical Data Analysis Software and 

Systems III (Vol. 61, p. 205). 

Kim, J., Warga, E., & Moen, W. (2013). Competencies required for digital curation: An analysis 

of job advertisements. International Journal of Digital Curation, 8(1), 66–83. 

https://doi.org/10.2218/ijdc.v8i1.242 

Kim, Y., Addom, B. K., & Stanton, J. M. (2011). Education for eScience professionals: 

Integrating data curation and cyberinfrastructure. International Journal of Digital 

Curation, 6(1), 125–138. https://doi.org/10.2218/ijdc.v6i1.177 



  
  

288 
 

Kitchin, R. (2014). The Data Revolution: Big Data, Open Data, Data Infrastructures and Their 

Consequences (1st edition). Thousand Oaks, CA: SAGE Publications Ltd. 

Kitching, T. D., Mann, R. G., Valkonen, L. E., Holliman, M. S., Hume, A., & Noddle, K. T. 

(2013). Data-Intensive Methods in Astronomy. In  lcolm Atkinson, R. Baxter, M. Galea,  

rk Parsons, P. Brezany, O. Corcho, … D. Snelling (Eds.), The DATA Bonanza (pp. 381–

394). John Wiley & Sons, Inc. Retrieved from DOI:10.1002/9781118540343.ch18 

Kleinman, S. J., Gunn, J. E., Boroski, B., Long, D., Snedden, S., Nitta, A., … Jester, S. (2008). 

Lessons learned from Sloan Digital Sky Survey operations (Vol. 7016, p. 70160B–

70160B–12). https://doi.org/10.1117/12.789612 

Kratz, J. E., & Strasser, C. (2015). Researcher Perspectives on Publication and Peer Review of 

Data. PLoS ONE, 10(2), e0117619. https://doi.org/10.1371/journal.pone.0117619 

Kron, R. G. (2008). Sloan Digital Sky Survey II Project Execution Plan (Version 1.2). 

Kron, R. G., Gunn, J. E., Strauss, M. A., Boroski, W. N., & Evans, M. L. (2005). Final Report to 

the Alfred P. Sloan Foundation (No. 99-12–1). 

Kron, R. G., Gunn, J. E., Weinberg, D. H., Boroski, W. N., & Evans, M. L. (2008). Final Report 

to the Alfred P. Sloan Foundation (No. 2004-3–11). 

Kunszt, P. Z., Szalay, A. S., Csabai, I., & Thakar, A. R. (2000). The Indexing of the SDSS 

Science Archive. In N. Manset (Ed.), (ADASS 9) Astronomical Data Analysis Software 

and Systems IX: proceedings of a meeting held at the Hilton Waikoloa Village, Hawaii, 

USA, 3 - 6 October, 1999 (Vol. 216, p. 141). San Francisco, Calif: Astronomical Society 

of the Pacific. 

Kurtz, M. J., Eichhorn, G., Accomazzi, A., Grant, C., Demleitner, M., & Murray, S. S. (2005). 

Worldwide use and impact of the NASA Astrophysics Data System digital library. 



  
  

289 
 

Journal of the American Society for Information Science and Technology, 56(1), 36–45. 

https://doi.org/10.1002/asi.20095 

Kurtz, M. J., Eichhorn, G., Accomazzi, A., Grant, C. S., Demleitner, M., & Murray, S. S. (1999). 

The NASA ADS Abstract Service and the distributed astronomy digital library. D-Lib 

Magazine, 5(11). https://doi.org/10.1045/november99-kurtz 

Kurtz, M. J., Eichhorn, G., Henneken, E., Accomazzi, A., Grant, C., Thompson, D., … Murray, 

S. (2007). myADS-arXiv: A fully customized, open access virtual journal. In American 

Physical Society March Meeting, March 5-9, 2007, abstract #U20.009. 

Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity and Variety" 

(Application Delivery Strategies No. File 949). META Group (Gartner). 

Large Hadron Collider (LHC). (2015). Retrieved November 8, 2015, from 

http://www.stfc.ac.uk/646.aspx 

Large Synoptic Survey Telescope: Home. (2016). Retrieved November 8, 2015, from 

http://www.lsst.org/lsst 

Latour, B. (1987). Science in action: How to follow scientists and engineers through society. 

Cambridge, MA: Harvard University Press. 

Latour, B. (1993). We Have Never Been Modern. (C. Porter, Trans.). Cambridge, MA: Harvard 

University Press. 

Latour, B., & Woolgar, S. (1979). Laboratory Life: The Social Construction of Scientific Facts. 

Beverly Hills: Sage Publications. 

Latour, B., & Woolgar, S. (1986). Laboratory Life: The Construction of Scientific Facts (2nd 

ed.). Princeton, N.J.: Princeton University Press. 



  
  

290 
 

Lee, C. (2009, December). Overview of DigCCurr matrix of digital curation knowledge and 

competencies. Presented at the Fourth meeting of the IDEA (International Data curation 

Education Action) Working Group, London, UK. 

Leonelli, S. (2013). Global Data for Local Science: Assessing the Scale of Data Infrastructures in 

Biological and Biomedical Research. BioSocieties, 8(4), 449–465. 

https://doi.org/10.1057/biosoc.2013.23 

Levine, M. (2014). Copyright, Open Data, and the Availability-Usability Gap: Challenges, 

Opportunities, and Approaches for Libraries. In J. M. Ray, Research Data Management: 

Practical Strategies for Information Professionals. West Lafayette: Purdue University 

Press. 

Lofland, J., & Lofland, L. H. (1995). Analyzing social settings: A guide to qualitative 

observation and analysis. Belmont, Calif.: Wadsworth. 

Lohr, S. (2014, August 17). For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights. 

The New York Times. 

LSST Data Management Wiki. (2015). [Wiki Site]. Retrieved November 8, 2015, from 

https://dev.lsstcorp.org/trac 

LSST project schedule. (2015). Retrieved November 8, 2015, from 

http://www.lsst.org/about/timeline 

LSST Science Collaboration, Abell, P. A., Allison, J., Anderson, S. F., Andrew, J. R., Angel, J. 

R. P., … Zhan, H. (2009). LSST Science Book, Version 2.0 (arXiv e-print). Retrieved 

from http://arxiv.org/abs/0912.0201 

Lupton, R. H. (2002, July). Lessons I Learned from SDSS. Tucson, AZ. 



  
  

291 
 

Lupton, R. H. (2010, April). Astronomical surveys: From SDSS to LSST. Presented at the 

Supercomputing Techniques in Astronomy, Santiago, Chile. 

Lynch, C. A. (2013). The Next Generation of Challenges in the Curation of Scholarly Data. In J. 

M. Ray (Ed.), Research Data Management: Practical Strategies for Information 

Professionals. West Lafayette, IN: Purdue University Press. 

Lyon, L. (2007). Dealing with data: Roles, rights, responsibilities, and relationships 

(Consultancy Report). Bath, UK: UKOLN. 

Manyika, J., Chui, M., Farrell, D., Van Kuiken, S., Groves, P., & Doshi, E. A. (2013). Open 

data: Unlocking innovation and performance with liquid information. McKinsey & 

Company. Retrieved from 

http://www.mckinsey.com/insights/business_technology/open_data_unlocking_innovatio

n_and_performance_with_liquid_information 

Margon, B. (1998). The Sloan Digital Sky Survey. Philosophical Transactions of the Royal 

Society A. 

Mayernik, M. S. (2011, June). Metadata Realities for Cyberinfrastructure: Data Authors as 

Metadata Creators (PhD Dissertation). UCLA, Los Angeles, CA. Retrieved from 

http://dx.doi.org/10.2139/ssrn.2042653 

Mayernik, M. S., DiLauro, T., Duerr, R., Metsger, E., Thessen, A., & Choudhury, G. (2013). 

Data Conservancy Provenance, Context, and Lineage Services: Key Components for 

Data Preservation and Curation. Data Science Journal, 12(0), 158–171. 

https://doi.org/10.2481/dsj.12-039 

Mayer-Schonberger, V., & Cukier, K. (2013). Big Data: A Revolution That Will Transform How 

We Live, Work, and Think. Boston: Houghton Mifflin Harcourt. 



  
  

292 
 

McCray, W. P. (2000). Large Telescopes and the Moral Economy of Recent Astronomy. Social 

Studies of Science, 30(5), 685–711. https://doi.org/10.1177/030631200030005002 

McCray, W. P. (2014). How Astronomers Digitized the Sky. Technology and Culture, 55(4), 

908–944. https://doi.org/10.1353/tech.2014.0102 

McKiernan, G. (2001). The NASA Astrophysics Data System Abstract Service: Astronomy. 

Library Hi Tech News, 18(7). https://doi.org/10.1108/lhtn.2001.23918gaf.003 

McNally, R., Mackenzie, A., Hui, A., & Tomomitsu, J. (2012). Understanding the ‘Intensive’ in 

‘Data Intensive Research’: Data Flows in Next Generation Sequencing and 

Environmental Networked Sensors. International Journal of Digital Curation, 7(1). 

https://doi.org/10.2218/ijdc.v7i1.216 

Merton, R. K. (1973). The Sociology of Science:  Theoretical and Empirical Investigations. 

Chicago: University of Chicago Press. 

Michener, W., Vieglais, D., Vision, T., Kunze, J., Cruse, P., & Janée, G. (2011). DataONE: Data 

Observation Network for Earth - Preserving Data and Enabling Innovation in the 

Biological and Environmental Sciences. D-Lib Magazine, 17(1), 3-. 

Miller, K. (2012, February 17). 5 Steps to Research Data Readiness | Digital Curation Centre. 

Digital Curation Centre. Retrieved from http://www.dcc.ac.uk/news/5-steps-research-

data-readiness 

Mol, A. (2002). The body multiple: Ontology in medical practice. Duke University Press. 

Moore, R. W. (2004). National Virtual Observatory architecture. In Toward an International 

Virtual Observatory (pp. 67–74). Retrieved from http://dx.doi.org/10.1007/10857598_10 

Mossink, W., Bijsterbosch, M., & Nortier, J. (2013). European Landscape Study of Research 

Data Management (p. 55). Utrecht: SURF Foundation. 



  
  

293 
 

Mulvey, P., & Nicholson, S. (2014). Astronomy Enrollments and Degrees: Results from the 2012 

Survey of Astronomy Enrollments and Degrees. Focus On. Statistical Research Center of 

the American Institute of Physics. 

Mulvey, P., & Pold, J. (2014). Physics Doctorates Initial Employment: Data from the Degree 

Recipient Follow-Up Survey for the Classes of 2011 and 2012. Focus On. Statistical 

Research Center of the American Institute of Physics. 

Munns, D. P. D. (2012). A single sky: How an international community forged the science of 

radio astronomy. The MIT Press. 

Murchison, J. M. (2010). Ethnography essentials: Designing, conducting, and presenting your 

research (1st ed). San Francisco: Jossey-Bass. 

NASA/IPAC Extragalactic Database (NED). (2016). Retrieved October 27, 2015, from 

https://ned.ipac.caltech.edu/ 

National Academies of Science. US CODATA and the Board on Research Data and Information, 

in collaboration with CODATA-ICSTI Task Group on Data Citation Standards and 

Practices. (2012). Developing Data Attribution and Citation Practices and Standards: An 

International Symposium and Workshop. Washington, DC. 

National Aeronautics and Space Administration, Science Mission Directorate. (2010). 

Introduction to the Electromagnetic Spectrum. Retrieved February 21, 2016, from 

http://missionscience.nasa.gov/ems/01_intro.html 

National Commission for the Protection of Human Subjects of Biomedical and Behavioral 

Research. (1978). Belmont Report: Ethical principles and guidelines for the protection of 

human subjects of research. Washington, DC: United States Government Printing Office. 



  
  

294 
 

National Digital Stewardship Alliance of the Library of Congress. (2013). The NDSA Levels of 

Digital Preservation V. 1. Retrieved July 26, 2013, from 

http://www.digitalpreservation.gov/ndsa/activities/levels.html 

National Health and Medical Research Council. (2007). Australian Code for the Responsible 

Conduct of Research (No. 39). 

National Information Standards Organization. (2004). Understanding metadata. Bethesda, MD: 

NISO Press. 

National Institute of Health. (2003). Final NIH Statement on Sharing Research Data (No. NOT-

OD-03-032). 

National Research Council. (1999). A Question of Balance: Private Rights and the Public 

Interest in Scientific and Technical Databases. Washington, D.C.: National Academies 

Press. 

National Science Board (U.S.). (2005). Long-Lived Digital Data Collections: Enabling Research 

and Education in the 21st Century (No. US NSF-NSB-05-40). Arlington, Virginia: 

National Science Foundation. 

National Science Foundation. (2005). Award #0551161: The Large Synoptic Survey Telescope 

(LSST) for design and development. Retrieved August 14, 2015, from 

National Science Foundation. (2010a). Award #1036980: Completion of the design and project 

development phases for construction readiness of the Large Synoptic Survey Telescope 

(LSST). Retrieved August 14, 2015, from 

National Science Foundation. (2010b). NSF Data Management Plans. Washington, D.C.: 

National Science Foundation. Retrieved from 

http://www.nsf.gov/pubs/policydocs/pappguide/nsf11001/gpg_2.jsp#dmp 



  
  

295 
 

National Science Foundation. (2012). Award #1227061: The Large Synoptic Survey Telescope 

final design phase. Retrieved August 17, 2015, from 

National Science Foundation. (2014a). Award #1202910: Construction of the Large Synoptic 

Survey Telescope (LSST) under the Major Research Equipment and Facilities 

Construction (MREFC) account. Retrieved August 14, 2015, from 

National Science Foundation. (2014b). NSF FY 2015 Budget Request to Congress: Major 

Research Equipment and Facilities Construction Funding (FY 2015 Budget Request to 

Congress). 

Neilsen Jr., E. H., & Stoughton, C. (2006). Running the Sloan Digital Sky Survey data archive 

server. In Astronomical Data Analysis Software and Systems XVI (Vol. 376, p. 42). 

Neuman, S. (2015, February 13). Internet Pioneer Warns Our Era Could Become The “Digital 

Dark Ages.” NPR.Org. 

Nicholson, S., & Mulvey, P. (2011). Astronomy Enrollments and Degrees: Results from the 2009 

& 2010 Surveys of Physics & Astronomy Enrollments and Degrees. Focus On. Statistical 

Research Center of the American Institute of Physics. 

Nielsen, H. J., & Hjørland, B. (2014). Curating research data: the potential roles of libraries and 

information professionals. Journal of Documentation, 70(2), 221–240. 

https://doi.org/10.1108/JD-03-2013-0034 

Nielsen, M. A. (2011). Reinventing discovery: the new era of networked science. Princeton, N.J.: 

Princeton University Press. 

Norris, R., Andernach, H., Eichhorn, G., Genova, F., Griffin, E., Hanisch, R. J., … Richards, A. 

(2006). Astronomical data management. In Highlights of Astronomy, XXVIth IAU 

General Assembly (Vol. 14). 



  
  

296 
 

NVO Interim Steering Committee. (2001). Toward a National Virtual Observatory: Science 

goals, technical challenges, and implementation plan. In R. J. Brunner, S. G. Djorgovski, 

& A. S. Szalay (Eds.), Virtual Observatories of the Future (Vol. 225, p. 353). 

Astronomical Society of the Pacific. 

Office of Scholarly Communication, University of California. (2013a). UC open access policy: 

Implementation plan. Retrieved May 15, 2014, from 

Office of Scholarly Communication, University of California. (2013b, July 24). Open access 

policy for the Academic Senate of the University of California. 

Olson, G. M., & Olson, J. S. (2000). Distance matters. Human-Computer Interaction, 15, 139–

178. 

Orphanides, A. (2017, March). It’s made of people: designing systems for humans. Opening 

Keynote presented at the Code4Lib 2017, Los Angeles, CA. 

Paisley, W. J. (1980). Information and work. In B. Dervin & M. J. Voigt (Eds.), Progress in the 

Communication Sciences (Vol. 2, pp. 114–165). Norwood, NJ: Ablex. 

Parmiggiani, E., Monteiro, E., & Hepsø, V. (2015). The Digital Coral: Infrastructuring 

Environmental Monitoring. Computer Supported Cooperative Work (CSCW), 24(5), 423–

460. https://doi.org/10.1007/s10606-015-9233-6 

Parsons, M. A., & Berman, F. (2013). The Research Data Alliance: Implementing the 

technology, practice and connections of a data infrastructure. Bulletin of the American 

Society for Information Science and Technology, 39(6), 33–36. 

https://doi.org/10.1002/bult.2013.1720390611 

Parsons, M. A., & Fox, P. A. (2013). Is data publication the right metaphor? Data Science 

Journal, 12, WDS32-WDS46. https://doi.org/10.2481/dsj.WDS-042 



  
  

297 
 

Pepe, A., Mayernik, M. S., Borgman, C. L., & Van de Sompel, H. (2009). Technology to 

Represent Scientific Practice: Data, Life Cycles, and Value Chains. ArXiv.Org. Retrieved 

from http://arxiv.org/abs/0906.2549v1 

Pepe, A., Mayernik, M. S., Borgman, C. L., & Van de Sompel, H. (2010). From Artifacts to 

Aggregations: Modeling Scientific Life Cycles on the Semantic Web. Journal of the 

American Society for Information Science and Technology, 61(3), 567–582. 

https://doi.org/10.1002/asi.21263 

Petascale R&D challenges | LSST public website. (2015). Retrieved August 16, 2015, from 

http://www.lsst.org/about/dm/petascale 

Pike, R., Stein, M., Szalay, A. S., & Tyson, T. (2001, February 5). Managing and Mining the 

LSST Data Sets. Retrieved from http://www.lsst.org/files/docs/data-challenge.pdf 

Pipelines | LSST public website. (2015). Retrieved August 16, 2015, from 

http://lsst.org/about/dm/pipelines 

Plante, R. L., Greene, G., Hanisch, R. J., McGlynn, T. A., Miller, C. J., Tody, D., & White, R. 

(2010). Building archives in the Virtual Observatory era. In N. M. Radziwill & A. 

Bridger (Eds.), Proc. SPIE 7740, Software and Cyberinfrastructure for Astronomy (Vol. 

7740, p. 77400K–77400K–12). https://doi.org/10.1117/12.857349 

Price, D. J. d. S. (1963). Little Science, Big Science. New York, NY, USA: Columbia University 

Press. 

Provost & EVP - Academic Affairs. (2015). University of California – Presidential Open Access 

Policy (No. UC-AA-15-0275). 



  
  

298 
 

Pryor, G., & Donnelly, M. (2009). Skilling Up to Do Data: Whose Role, Whose Responsibility, 

Whose Career? International Journal of Digital Curation, 4(2). 

https://doi.org/10.2218/ijdc.v4i2.105 

Ray, J. M. (2014a). Introduction. In Research Data Management: Practical Strategies for 

Information Professionals. West Lafayette, Ind: Purdue University Press. 

Ray, J. M. (Ed.). (2014b). Research Data Management: Practical Strategies for Information 

Professionals. West Lafayette, IN: Purdue University Press. Retrieved from 

http://www.jstor.org/stable/j.ctt6wq34t 

Regents of the University of Michigan. (2016). ICPSR - Inter-university Consortium for Political 

and Social Research. Retrieved April 2, 2013, from 

http://www.icpsr.umich.edu/icpsrweb/ICPSR/ 

Reichhardt, T. (2006). Which sites get cited? Nature, 439(7074), 251–251. 

https://doi.org/10.1038/439251a 

Reimann, J. D. (1994). Frequency estimation using unequally-spaced astronomical data (Ph.D.). 

University of California, Berkeley, United States -- California. 

Renear, A. H., Sacchi, S., & Wickett, K. M. (2010). Definitions of dataset in the scientific and 

technical literature. Proceedings of the American Society for Information Science and 

Technology, 47(1), 1–4. https://doi.org/10.1002/meet.14504701240 

Research Information Network. (2008, January). Stewardship of digital research data: a 

framework of principles and guidelines. Responsibilities of research institutions and 

funders, data managers, learned societies and publishers. 

Ribes, D., & Finholt, T. A. (2009). The Long Now of Technology Infrastructure: Articulating 

Tensions in Development. Journal of the Association for Information Systems, 10(5). 



  
  

299 
 

Ribes, D., & Jackson, S. J. (2013). Data Bite Man: The Work of Sustaining a Long-Term Study. 

In L. Gitelman (Ed.), “Raw Data” Is an Oxymoron (pp. 147–166). Cambridge, MA: The 

MIT Press. 

Rijcke, S. de, & Beaulieu, A. (2014). Networked Neuroscience: Brain Scans and Visual 

Knowing at the Intersection of Atlases and Databases. In C. Coopman, J. Vertesi, M. 

Lynch, & S. Woolgar (Eds.), Representation in Scientific Practice Revisited (pp. 131–

152). The MIT Press. 

Rosenberg, D. (2013). Data before the Fact. In L. Gitelman (Ed.), “Raw Data” is an Oxymoron 

(pp. 15–40). Cambridge MA: MIT Press. 

Rots, A. H., Winkelman, S. L., Paltani, S., & DeLuca, E. E. (2002). Chandra data archive 

operations. In Proc. SPIE 4844, Observatory Operations to Optimize Scientific Return III 

(Vol. 4844, pp. 172–179). https://doi.org/10.1117/12.460662 

Sallans, A., & Lake, S. (2014). Data Management Assessment and Planning Tools,. In J. M. Ray, 

Research Data Management: Practical Strategies for Information Professionals. West 

Lafayette: Purdue University Press. 

Sands, A. E., Borgman, C. L., Traweek, S., & Wynholds, L. A. (2014). We’re working on it: 

Transferring the Sloan Digital Sky Survey from laboratory to library. International 

Journal of Digital Curation, 9(2), 98–110. https://doi.org/10.2218/ijdc.v9i2.336 

Sands, A. E., Borgman, C. L., Wynholds, L. A., & Traweek, S. (2012, October). Follow the 

data: How astronomers use and reuse data. Poster presented at the ASIS&T 75th Annual 

Meeting, Baltimore, MD. 

Sands, A. E., Darch, P. T., Borgman, C. L., Golshan, M. S., & Traweek, S. (In Progress). From 

Sky to Archive: Long Term Management of Sky Survey Data. JASIST. 



  
  

300 
 

Sawyer, S. (2008). Data Wealth, Data Poverty, Science and Cyberinfrastructure. Prometheus, 

26(4), 355–371. https://doi.org/10.1080/08109020802459348 

Sayeed Choudhury on Data Stack Model. (2012). Retrieved from 

http://www.youtube.com/watch?v=3MD7KjZF34Y&feature=youtube_gdata_player 

Schroeder, R., & Meyer, E. T. (2012). Big Data: What’s New? Presented at the Internet, Politics, 

Policy 2012: Big Data, Big Challenges?, Oxford, UK: Oxford Internet Institute, 

University of Oxford and the US Social Science Research Council (SSRC). 

Science collaborations | LSST Corporation. (2015). Retrieved November 1, 2015, from 

https://www.lsstcorporation.org/science-collaborations 

SDSS Collaboration. (2014). SkyServer Website Traffic | SDSS. Retrieved November 11, 2014, 

from http://skyserver.sdss.org/log/en/traffic/ 

SDSS Collaboration. (2016, February 3). Science Results | SDSS. Retrieved February 4, 2016, 

from http://www.sdss.org/science/ 

SDSS scientific and technical publication policy. (2014, April 1). Retrieved from 

http://classic.sdss.org/policies/pub_policy.html 

Shankar, K. (2010). Biological Information and Its Users. In M. J. Bates & M. N. Maack (Eds.), 

Encyclopedia of Library and Information Sciences, Third Edition (pp. 615–623). Taylor 

& Francis. Retrieved from http://www.tandfonline.com/doi/abs/10.1081/E-ELIS3-

120043747 

Shapin, S. (1989). The Invisible Technician. American Scientist, 77(6), 554–563. 

Shapin, S., & Shaffer, S. (1985). Leviathan and the Air-Pump: Hobbes, Boyle, and the 

Experimental Life. Princeton: Princeton University Press. 



  
  

301 
 

Singh, V., Gray, J., Thakar, A. R., Szalay, A. S., Raddick, J., Boroski, B., … Yanny, B. (2006). 

SkyServer traffic report -- the first five years (TechReport No. MSR-TR-2006-190) (p. 

15). Microsoft Research. 

Sloan Digital Sky Survey: Home. (2016). Retrieved November 8, 2015, from 

http://www.sdss.org/ 

Smith, R. C. (1995). Observational astrophysics. Cambridge ; New York: Cambridge University 

Press. 

Smith, R. W. (1992). The Biggest Kind of Big Science: Astronomers and the Space Telescope. 

In P. Galison & B. W. Hevly (Eds.), Big science: the growth of large-scale research (pp. 

184–211). Stanford, Calif.: Stanford University Press. 

Stanton, J. M., Kim, Y., Oakleaf, M., Lankes, R. D., Gandel, P., Cogburn, D., & Liddy, E. D. 

(2011). Education for eScience professionals: Job analysis, curriculum guidance, and 

program considerations. Journal of Education for Library and Information Science, 

52(2), 79–94. 

Star, S. L. (1999). The ethnography of infrastructure. American Behavioral Scientist, 43(3), 377–

391. 

Star, S. L., & Ruhleder, K. (1996). Steps Toward an Ecology of Infrastructure: Design and 

Access for Large Information Spaces. Information Systems Research, 7(1), 111–134. 

https://doi.org/10.1287/isre.7.1.111 

Star, S. L., & Strauss, A. (1999). Layers of Silence, Arenas of Voice: The Ecology of Visible and 

Invisible Work. Computer Supported Cooperative Work (CSCW), 8(1–2), 9–30. 

https://doi.org/10.1023/A:1008651105359 



  
  

302 
 

Steinhardt, S. B., & Jackson, S. J. (2014). Reconciling rhythms: plans and temporal alignment in 

collaborative scientific work. In Proceedings of the 17th ACM conference on Computer 

supported cooperative work & social computing (pp. 134–145). ACM. 

Stoughton, C., Lupton, R. H., Bernardi, M., Blanton, M. R., Burles, S., Castander, F. J., … 

Zheng, W. (2002). Sloan Digital Sky Survey: Early data release. The Astronomical 

Journal, 123(1), 485–548. https://doi.org/10.1086/324741 

Study Group for Data Preservation and Long Term Analysis in High Energy Physics. (2012). 

Status report of the DPHEP Study Group: Towards a global effort for sustainable data 

preservation in high energy physics (No. DPHEP-2012-001). 

Swan, A., & Brown, S. (2008). The skills, role and career structure of data scientists and 

curators: An assessment of current practice and future needs (p. 34). Truro, UK: JISC. 

Szalay, A. S. (2011). Extreme Data-Intensive Scientific Computing. Computing in Science and 

Engineering, 13(6), 34–41. https://doi.org/10.1109/MCSE.2011.74 

Szalay, A. S. (2012, May). Scalable Data-Intensive Statistical Computations in Astrophysics. 

Presented at the From Data to Knowledge: Machine-Learning with Real-time and 

Streaming Applications, University of California, Berkeley. 

Szalay, A. S., & Gray, J. (2001). The World-Wide Telescope. Science, 293(5537), 2037–2040. 

https://doi.org/10.1126/science.293.5537.2037 

Szalay, A. S., & Gray, J. (2006). 2020 Computing: Science in an exponential world. Nature, 

440(7083), 413–414. https://doi.org/10.1038/440413a 

Szalay, A. S., Kunszt, P. Z., Thakar, A. R., & Gray, J. (1999). Designing and mining multi-

terabyte astronomy archives: The Sloan Digital Sky Survey (Original) (Technical Report 

No. MS-TR-99-30). 



  
  

303 
 

Szalay, A. S., Kunszt, P. Z., Thakar, A. R., Gray, J., & Slutz, D. (2000). The Sloan Digital Sky 

Survey and its archive. In Astronomical Data Analysis Software and Systems IX (Vol. 

216, p. 405). San Francisco, Calif: Astronomical Society of the Pacific. 

Technology Innovation | LSST public website. (2015). Retrieved August 16, 2015, from 

http://lsst.org/about/dm/technology 

Tenopir, C., Birch, B., & Allard, S. (2012). Academic Libraries and Research Data Services: 

Current Practices and Plans for the Future (ACRL White Paper). 

The Long Now Foundation. (est. 01996). The Long Now Foundation - Fostering Long-Term 

Thinking. Retrieved February 21, 2016, from http://longnow.org/ 

Thomas, B., Jenness, T., Economou, F., Greenfield, P., Hirst, P., Berry, D. S., … Berriman, G. 

B. (2014). Significant Problems in FITS Limit Its Use in Modern Astronomical Research. 

In Astronomical Data Analysis Software and Systems XXIII (Vol. 485, p. 351). 

Thompson, C. A., Mayernik, M. S., Palmer, C. L., Allard, S., & Tenopir, C. (2015). LIS 

Programs and Data Centers: Integrating Expertise. 

https://doi.org/https://www.ideals.illinois.edu/handle/2142/73662 

Traweek, S. (1988). Beamtimes and Lifetimes: The World of High Energy Physicists (1st 

Harvard University Press pbk.). Cambridge, Mass.: Harvard University Press. 

Treloar, A. (2014). The Research Data Alliance: globally co-ordinated action against barriers to 

data publishing and sharing. Learned Publishing, 27(5), 9–13. 

https://doi.org/10.1087/20140503 

Tyson, J. A. (1998). Dark matter tomography. In SLAC/DOE Pub. SLAC-R-538 (pp. 89–112). 

UCLA Center for Knowledge Infrastructures: Home. (2016). Retrieved from 

https://knowledgeinfrastructures.gseis.ucla.edu/ 



  
  

304 
 

UCLA Office of Research Administration. (2015). Office of the UCLA Human Research 

Protection Program (OHRPP). Retrieved November 4, 2015, from 

http://ora.research.ucla.edu/ohrpp/Pages/OHRPPHome.aspx 

Uhlir, P. F. (Ed.). (2012). For Attribution -- Developing Data Attribution and Citation Practices 

and Standards: Summary of an International Workshop. Washington, D.C.: The National 

Academies Press. 

US Census Bureau. (2014, September 15). Frequently Occurring Surnames from the Census 

2000. Retrieved November 11, 2015, from 

US Virtual Astronomical Observatory. (2012, 2016). VAO Home Page. Retrieved August 17, 

2012, from http://www.usvao.org/ 

Van de Sompel, H. (2013, April). From the Version of Record to a Version of the Record. 

Opening Plenary Session presented at the Coalition for Networked Information (CNI) 

Spring 2013 Membership Meeting, San Antonio, Texas. 

van der Graaf, M., & Waaijers, L. (2011). A Surfboard for Riding the Wave: Towards a four 

country action programme on research data (A Knowledge Exchange Report). 

VanderPlas, J. (2014a, August). Hacking Academia from Inside and Out. Breakout Session 

presented at the O’Reilly SciFOO, Mountain View CA. 

VanderPlas, J. (2014b, August 22). Hacking Academia: Data Science and the University. 

Retrieved November 6, 2014, from https://jakevdp.github.io/blog/2014/08/22/hacking-

academia/ 

Varvel Jr., V. E., Bammerlin, E. J., & Palmer, C. L. (2012). Education for data professionals: a 

study of current courses and programs. In Proceedings of the 2012 iConference (pp. 527–

529). New York, NY, USA: ACM. https://doi.org/10.1145/2132176.2132275 



  
  

305 
 

Virtual Astronomical Observatory (VAO) Project Execution Plan. (2010). (Version 1.1). 

Wallis, J. C. (2012). The Distribution of Data Management Responsibility within Scientific 

Research Groups (Ph.D. Dissertation). University of California, Los Angeles, United 

States -- California. 

Wallis, J. C., Borgman, C. L., Mayernik, M. S., & Pepe, A. (2008). Moving archival practices 

upstream: An exploration of the life cycle of ecological sensing data in collaborative field 

research. International Journal of Digital Curation, 3(1), 114–126. 

https://doi.org/10.2218/ijdc.v3i1.46 

Wallis, J. C., Rolando, E., & Borgman, C. L. (2013). If we share data, will anyone use them? 

Data sharing and reuse in the long tail of science and technology. PLoS ONE, 8(7), 

e67332. https://doi.org/10.1371/journal.pone.0067332 

Walters, T. O., & Skinner, K. (2011). New Roles for New Times: Digital Curation for 

Preservation. Washington, D.C.: Association of Research Libraries. 

Weber, N. M., Palmer, C. L., & Chao, T. C. (2012). Current Trends and Future Directions in 

Data Curation Research and Education. Journal of Web Librarianship, 6(4), 305–320. 

https://doi.org/10.1080/19322909.2012.730358 

Weinberg, A. M. (1961). Impact of Large-Scale Science on the United States Big science is here 

to stay, but we have yet to make the hard financial and educational choices it imposes. 

Science, 134(3473), 161–164. https://doi.org/10.1126/science.134.3473.161 

Wenger, M., Ochsenbein, F., Egret, D., Dubois, P., Bonnarel, F., Borde, S., … Monier, R. 

(2000). The SIMBAD astronomical database: The CDS reference database for 

astronomical objects. Astronomy and Astrophysics Supplement Series, 143(1), 9–22. 

https://doi.org/10.1051/aas:2000332 



  
  

306 
 

White, R. L., Accomazzi, A., Berriman, G. B., Fabbiano, G., Madore, B. F., Mazzarella, J. M., 

… Winkelman, S. (2009). The high impact of astronomical data archives. In astro2010: 

The Astronomy and Astrophysics Decadal Survey (Vol. 2010, p. 64P). 

White, S., Ivie, R., Ephraim, A., & Anderson, G. (2010). The Faculty Job Market in Physics & 

Astronomy Departments: Results from the 2008 Survey of Physics & Astronomy Degree-

Granting Departments. Statistical Research Center of the American Institute of Physics. 

WorldWide Telescope. (2013). Retrieved April 4, 2013, from 

http://www.worldwidetelescope.org/Home.aspx 

Xiang, H. X. (2008). Experiences Acquiring and Distributing a Large Scientific Database. In 

Second International Conference on Future Generation Communication and Networking 

Symposia, 2008. FGCNS ’08 (Vol. 2, pp. 14–19). 

https://doi.org/10.1109/FGCNS.2008.69 

XXVth General Assembly of the International Astronomical Union. (2003). Public access to 

astronomical archives (No. Resolution No. B.1.). Sydney, Australia. 

Yanny, B. (2011, May). The Sloan Digital Sky Survey archive. 

York, D. G., Adelman, J., Anderson, Jr., J. E., Anderson, S. F., Annis, J., Bahcall, N. A., … 

Yasuda, N. (2000). The Sloan Digital Sky Survey: Technical Summary. The 

Astronomical Journal, 120(3), 1579–1587. https://doi.org/10.1086/301513 

Zimmerman, R. (2008). The Universe in a Mirror: The saga of the Hubble Telescope and the 

visionaries who built it. Princeton, N.J.; Woodstock: Princeton University Press. 

 




