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Abstract. One of the main goals of most future CMB experiments is the precise measurement
of CMB B-mode polarization, whose major obstacle is the Galactic foregrounds. In this paper,
we evaluate the foreground cleaning performance of the variants of the ILC method on partial
sky B-modes and analyze the main sources of biases on the BB power spectrum. Specially,
we compare the NILC, the cILC (in three domains) and the cMILC methods for AliCPT-1
simulations. We find that the cILC methods implemented in harmonic space and needlet space
are both competent to clean different models of foregrounds, which bias the tensor-to-scalar
ratio about 0.008 at maximum, and constrain the tensor-to-scalar ratio to r < 0.043 (95%CL)
for the AliCPT-1 configuration. We also note that the deviation of the estimated noise bias
from the actual one for ILC, dubbed the noise bias error (NBE) in this paper, might make
significant effects on the power spectrum for a small footprint and low signal-to-noise ratio
CMB experiment. We finally obtain its relation with respect to the noise residual which fits
well with the simulated results.

Keywords: CMB B-modes, Foreground Cleaning, ILCar
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1 Introduction

The Cosmic Microwave Background (CMB) anisotropies provide direct information about
the origin and history of our universe. Observations of the CMB radiation in the last two
decades (e.g., COBE [1], WMAP [2] and Planck [3]) have been in excellent agreement with
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the ΛCDM model with very tight constraints on its parameters. However, despite ΛCDM
success in explaining the observations, it has some well-known problems: horizon, flatness and
magnetic monopole. To alleviate them, the universe is supposed to undergo an inflationary
epoch with a nearly exponential expansion. One of the most important predictions of cosmic
inflation is the existence of primordial gravitational waves (PGW) generated from vacuum
fluctuations in the early Universe (about 10−35s after the Big Bang). These PGWs would leave
a faint imprint on the CMB polarization, known as primordial B-modes [4]. The amplitude of
the primordial B-mode power spectrum at degree angular scales is related to the amount of
the PGWs, which is parameterized by the tensor-to-scalar ratio r. Thus, measuring r would
enable us to distinguish different classes of early Universe models (e.g., [5, 6]).

Attracted by the ‘smoking-gun’ evidence of inflation, the measurement of the CMB pri-
mordial B-modes has been the main scientific goal of current CMB experiments, such as
POLARBEAR [7], ACTpol [8], SPTpol [9] and BICEP/Keck [10]. However, measuring the
primordial CMB B-mode can be challenging due to the tiny signal and the various contam-
inants, such as the Galactic emissions, the instrumental noise and the CMB gravitational
lensing, which converts E-modes into B-modes [11]. The current tightest upper limit of the
tensor-to-scalar ratio, r < 0.032 (95%CL), is given by a combination of Planck PR4 and BI-
CEP2/Keck Array 2018 (BK18), BAO and CMB lensing data [12]. Many on-going and future
ground-based telescopes, as well as, space-based CMB experiments aim to reach higher sensi-
tivity in order to be able to measure the primordial B-modes, such as the Simons Observatory
[13], QUBIC [14], AliCPT [15], LiteBIRD [16], CMB-S4 [17].

Contamination from polarized foreground signals, especially the Galactic thermal dust
and the synchrotron emission, must then be disentangled from the B-mode signal by the
so-called ‘component separation’ methods. These methods are usually divided into blind,
parametric and template removal techniques. Blind methods, such as ILC (Internal Linear
Combination) [18, 19], FastICA (Fast Independent Component Analysis) [20] and SMICA
(Spectral Matching Independent Component Analysis) [21, 22], usually rely on the statistical
independence of components of various physical origins for their separation in multi-frequency
observations, without assumptions of foregrounds. Parametric methods, such as Commander
[23] and FG-Buster [24, 25], model the foregrounds with spectral laws where parameters are
fitted to the observed data. The parametric methods build an end-to-end Bayesian framework
to estimate the parameters, but their effectiveness relies on the model. Template removal
methods like SEVEM (Spectral Estimation Via Expectation Maximisation) [26] construct a
set of foreground templates from the data.

The ILC method and its variants, such as the Needlet ILC (NILC) [27], play an important
role in the CMB analysis of future experiments given our poor knowledge of the polarized
foregrounds’ properties. One of the caveats on the partial-sky analysis of B-modes is what
is known as EB leakage [28, 29]: the decomposition from partial-sky QU maps into E- and
B-modes will give rise to a considerable leakage from E-modes to B-modes. Directly applying
ILC to Q and U maps separately is conceptually problematic since subtracting a constant
contribution from Q or U is equivalent of introducing a pattern on the E and B modes.
One should either linearly combine the QU maps to obtain the cleaned QU signals, e.g.
PILC (Polarization ILC) [30], or try to reconstruct the pure B-modes from QU maps before
applying the ILC methodology. The PILC (constructing a complex-weight linear combination
of Q ± iU such that the quantity ⟨P 2 = Q2 + U2⟩ of the final map is minimized) makes a
tradeoff between minimizing the variance of E-modes and B-modes. Thereby, it may not be
effective as a cleaning method to be applied in the CMB B-modes map recovery. Therefore,
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we adopt a novel template cleaning method [31] to extract the pure B-modes maps, and then
apply several component separation methods on the multi-frequency B maps to clean the
foregrounds.

Some authors already forecast on the performance of the standard ILC and NILC on
B-modes mock data for some future experiments [32–39]. However, considering smaller sky
fractions and lower sensitivities, such blind methods may give rise to a foreground-induced bias
of the order r ∼ 0.01 [33, 37]. Semi-blind extensions of ILC, such as cILC (constrained ILC)
[40] and cMILC (constrained Moment ILC) [33], are proposed to project out some foreground
components by constraining the multi-frequency weights using the assumed-known average
of the spectral energy distribution (SED). This methodology is able to effectively reduce the
foreground bias with the disadvantage of rising the uncertainty. In this paper, we consider
both NILC and cILC algorithms implemented in the pixel, harmonic and needlet domains,
as well as, the cMILC implemented in the needlet domain.

In our analysis, we use the mock data of seven frequency bands combining the WMAP K-
band, the 4 Planck HFI bands and the 2 AliCPT-1 bands, which in total spans from 23GHz
to 353GHz. The AliCPT (Ali CMB Polarization Telescope), a ground-based experiment
located in Tibet, will measure CMB polarization in the northern hemisphere at 90GHz and
150GHz [15]. The focus is on the trapezoid-shaped sky patch at the northern hemisphere
with fsky ∼ 7%, centering at RA = 170◦ and DEC = 40◦ for the Celestial coordinate.

Our paper is organized as follows. In Section 2, we introduce the standard ILC method
and its variants. In Section 3, we describe the sky simulations used in our analysis. In
Section 4, we present the implementation details of the cILC method. In Section 5, we show
the results of B-mode reconstruction and analyze the sources of biases. Finally, we conclude
in Section 6.

2 Methods

2.1 Standard ILC

The ILC method is widely used in recovering the CMB map from the observed sky using
several frequency channels without any assumption of foreground emissions and noise. The
cleaned CMB map is constructed as a linear combination of the multi-frequency data where
the variance is minimized, leaving the CMB component unchanged.

First we model the observed sky as a linear mixture of different emissions. For the cth

emission component, let us assume it can be decomposed into a spatial template sc(p), which
varies with the position in the sky, and a SED ac(ν), which only depends on the frequency.
The model for the observed data in the frequency band ν, where ν ∈ {1, 2, . . . , nν}, at pixel
p can be written as:

d(p) = As(p) + n(p) , (2.1)

where n(p) = [n(ν, p)]T is a nν × 1 column vector of multi-frequency instrumental noise,
s(p) = [sc(p)]

T is a nc×1 column vector of multi-component templates, and d(p) = [d(ν, p)]T

is a nν × 1 column vector of the observed data. A denotes the nν × nc mixing matrix of the
emission components with elements ac(ν). Note that hereafter, the observed data is already
deconvolved to a common beam and resolution: dνℓm =

b0ℓ
bνℓ
dν,obsℓm , where b0ℓ and bνℓ are the

common beam window function and the beam for each frequency band, respectively. dνℓm is
the harmonic coefficients of d(ν, p), and dν,obsℓm is the harmonic coefficients of the raw data.
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The ILC method defines the estimated CMB map as a linear combination of all observed
frequency maps with a constraint of weights

∑
ν wν(p) = 1:

ŝCMB(p) = wT (p) · d(p)

= sCMB(p) +
∑
ν

wν(p)
∑
c

ac(ν)sc(p) +
∑
ν

wν(p)n(ν, p) ,
(2.2)

where ŝCMB(p) is the estimate of the true CMB anisotropies sCMB(p), w(p) = [wν(p)]
T is

a nν × 1 column vector, and c sums over foregrounds in the second term. Here, we assume
that the CMB signal is frequency independent after calibration with respect to CMB, i.e.
aCMB(ν) = 1. The weights wν(p) are obtained by minimizing the ensemble variance of the
ILC-cleaned map ⟨ŝ2CMB(p)⟩, using the Lagrange multiplier method, when the variance of the
error (ŝCMB − sCMB) is therefore minimized. In practice, the variance localized at pixel p is
estimated empirically by the averaged variance of the observed data over the vicinity of the
p-th pixel. Defining the nν × 1 CMB mixing vector as a = [1, . . . , 1]T , the ILC weights are
given as:

wILC(p) =
Ĉ

−1
a

aT Ĉ
−1

a
, where Ĉ(p) =

1

Np′

∑
p′∈V (p)

q(p′, p)d(p′)†d(p′) . (2.3)

Here Ĉ is the nν × nν covariance matrix of the data as an estimate of the real covariance
matrix, V (p) is the vicinity of the pixel p, and q(p′, p) is some type of weight of p′ around the
p-th pixel (for instance a Gaussian smooth kernel centered at p).

The method above implemented in pixel space is denoted as pILC. Likewise, the ILC
implemented in harmonic space is denoted hILC, just replacing the pixel p to the harmonic
mode (ℓ,m), and the vicinity V (p) to the binning of (ℓ,m)s around ℓ. The hILC weights are
given by:

wℓ =
Ĉ

−1
ℓ a

aT Ĉ
−1
ℓ a

, where Ĉℓ =
∑

ℓ′∈B(ℓ)

ℓ′∑
m=−ℓ′

d†
ℓ′mdℓ′m . (2.4)

The covariance matrix Ĉℓ is summed over the bin B(ℓ) centered at ℓ and the foreground-
cleaned CMB map is ŝℓm = wT

ℓ · dℓm. The ILC in needlet domain is introduced in next
section.

2.2 NILC

The needlet ILC, as a refinement of ILC, has been applied to extract CMB T-modes and
E-modes for various experiments [41–43]. The sky map of each channel is decomposed into a
set of harmonic-filtered maps, which are localized in harmonic domain, and for each filtered
map a perfect localization in pixel domain can be done by ILC independently. The observed
data is filtered by the needlet bands:

dν,jℓm = hjℓd
ν
ℓm , (2.5)

where the needlet bands hjℓ satisfying
∑

j(h
j
ℓ)

2 = 1 are responsible for the localization in
harmonic space. The cosine and Gaussian needlet bands are commonly used in NILC.

Assuming HEALPix pixelization [44], the spherical needlet function is defined as:

ψjk(p) =

√
4π

Nj

∑
ℓm

hjℓYℓm(p)Y ∗
ℓm(njk) , (2.6)
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where Nj is the NPIX parameter of the j-th needlet map, and njk refers to the k-th pixel of
the j-th needlet map. The j-th needlet map transformed from the observed data d(ν, p) is
then given by:

bνj (njk) =
4π

Np

∑
p

d(ν, p)ψ∗
jk(p)

=

√
4π

Nj

∑
ℓm

hjℓd
ν
ℓmYℓm(njk) ,

(2.7)

while its inverse transformation is given by:

dνℓm =
∑
jk

bνj (njk)

√
4π

Nj
hjℓY

∗
ℓm(njk) . (2.8)

The needlet transformation is a linear operation. The final NILC map is transformed
from the individually-cleaned needlet maps, which are linearly combined by the input multi-
frequency needlet maps for each needlet band j:

ŝNILC
ℓm =

∑
jk

bNILC
j (njk)

√
4π

Nj
hjℓY

∗
ℓm(njk) , (2.9a)

bNILC
j (njk) =

∑
ν

wNILC
ν,j (njk)b

ν
j (njk) . (2.9b)

Just as the pixel domain ILC method, the NILC weights are given by:

wNILC
j (njk) =

Ĉ
−1
jk a

aT Ĉ
−1
jk a

. (2.10)

To estimate the covariance matrices for the k-th pixel of the j-th needlet scale Cjk =
Cν1×ν2
jk = ⟨bν1j (njk)b

ν2
j (njk)⟩, we compute the empirical covariance Ĉjk by averaging the

needlet coefficient products bνj (njk)b
ν
j (njk) over some domain of pixels around pixel k, which

can be written as:
Ĉν1×ν2
jk =

1

Nk

∑
k′

qj(k, k
′)bν1j (njk′)b

ν2
j (njk′) , (2.11)

where qj(k, k′) are weights dependent on the needlet scale. More details are introduced in
Section 4.3.

The final NILC cleaned map is inverse spherical harmonic transformed (SHT) to pixel
space as:

ŝNILC(p) =
∑
ℓm

ŝNILC
ℓm Yℓm(p) . (2.12)

2.3 Constrained ILC

The constrained ILC (cILC) method [40] introduces an assumption about the SED of the
main foreground components. By construction, it adds constraints to cancel those unwanted
components. However, while this process reduces the residual foregrounds, it increases the
noise level as an expense.
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Given the mixing matrix, the constraints are given by:∑
ν

wcILC
ν ac(ν) = ec , (2.13)

where ec is 1 for CMB and 0 for all foreground components modeled in the mixing matrix.
The cILC weights are given by:

wT = eT
(
AT Ĉ

−1
A
)−1

AT Ĉ
−1
, (2.14)

where Ĉ is the covariance matrix of the data. The cILC cleaned CMB map is given by
ŝCMB = wT · d.

As the ILC, the cILC can also be implemented in pixel, harmonic and needlet domain,
hereafter denoted by cpILC, chILC and cNILC, respectively.

2.3.1 The mixing matrix

The mixing matrix used in cILC is determined by the assumed SEDs of the foreground
components of interest, which, in our analysis, are synchrotron and thermal dust. We model
the SED of CMB anisotropies as a differential black body, of synchrotron emission as a power
law with a fixed spectral index of βsync = −3, and of the thermal dust as a modified black
body with the dust temperature of Tdust = 19.6K and the dust spectral index of βdust = 1.59,
for data in Rayleigh-Jeans brightness temperature units. These SED parameters are from the
Planck constraints on polarized foregrounds [45, 46]. The SEDs after calibration to the CMB
thermodynamic temperature are written as:

aCMB(ν) = 1 ,

async(ν) =
gν
gνs

(
ν

νs
)βs ,

adust(ν) =
gν
gνd

(
ν

νd
)βd+1 exp (xd(νd))− 1

exp (xd(ν))− 1
,

(2.15)

where xd(ν) ≡ hν
kBTd

, νs = 23GHz and νd = 353GHz are the reference frequencies of syn-
chrotron and dust emissions, respectively. gν is the unit conversion factor from µKRJ to
µKCMB.

In principle, the adopted SED parameters should fit the real sky foregrounds to optimize
the foreground cleaning, and should be position-dependent in the best case for the actual data
with parameters varying over the sky. On the other hand, given lack of prior knowledge of the
polarized foregrounds, the mixing matrix should be robust enough to be applied on different
sky models. Therefore, in Section 5.4 we test the cILC method on four different foreground
models (introduced in Section 3.4).

2.4 Extensions: constrained Moment-ILC

The constrained Moment-ILC (cMILC) [33] is an extension of cILC that adds several nulling
constraints on the SEDs of the main moments of the foreground emissions. Assuming that the
SED of the cth component varies over the sky, we can expand the mixing amplitude around
some fixed pivot SED parameters β̄ = (β̄1, . . . β̄n)

T :

ac(ν,β(p)) =
∑
k

∑
α1+···+αn=k

(β1(p)− β̄1)
α1 · · · (βn(p)− β̄n)

αn

α1! · · ·αn!

∂kac(ν, β̄)

∂β̄α1
1 · · · ∂β̄αn

n
. (2.16)
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Table 1: Summary Table of seven channels used in our simulations, including WMAP K-
band, AliCPT 95GHz and 150GHz bands, Planck HFI bands. σPn is the map noise level for
polarization. Note that the noise levels are computed by fitting the noise power spectra in the
sky patch with the white noise spectra, where the Planck levels are slightly lower than the
values from Table 4 of [48]. The ideal channel-combined noise level is about 10µK-arcmin.

Instruments WMAP AliCPT Planck HFI
Frequency(GHz) 23 95 150 100 143 217 353
Beam size(arcmin) 52.8 19 11 9.7 7.3 5.0 4.9
σPn (µK-arcmin) 496 13 18 78 65 91 404

Under the approximation of the finite-order expansion, the derivative terms can all be ana-
lytically computed in terms of the channel ν and the fixed β̄. Similar with the cILC method,
we add constraints to null these high-order moments of the foreground SED:∑

ν

wcMILC
ν

∂kac(ν, β̄)

∂β̄α1
1 · · · ∂β̄αn

n
= ec . (2.17)

It can be seen that the constraint turns to that of cILC when k = 0. The additional constraints
(of k = 1, 2, . . . ) further reduce the residual foreground with an expense of increasing the
residual noise power. Besides, the number of observation channels cannot be less than the
number of constraints to ensure the solvability of the weights. In this work, with seven bands
involved, cMILC is considered up to the first order (k = 1) and implemented in needlet space
with an additional constraint corresponding to the first order derivative of the thermal dust
with respect to the dust temperature Td. More specifically, the new constraint is given by:∑

ν

wcMILC
ν

∂adust(ν)

∂Td
|T̄d

= 0 , (2.18)

where the pivot SED parameters are the same as the parameters of the mixing matrix.

3 Simulations

The simulated data sets are based on the first season observation of the future CMB ex-
periment AliCPT, with Planck HFI four bands and WMAP K band combined as ancillary
simulations to improve the efficiency of foreground removal. Unlike simulations in [47], our
maps are not generated from time-ordered data (TOD), and instrumental systematics like
filtering effects are not involved in our analysis, which can be generally modeled as a set of
transfer functions independent of the foreground removal process. Each realization includes
observations of seven frequency channels: the 95GHz and 150GHz bands of AliCPT mission,
four bands of Planck HFI instruments(100, 143, 217 and 353GHz), and the WMAP K band
(23GHz). The input maps are the sum of CMB, noise and foregrounds smoothed with the in-
strumental Guassian beams information listed in Table 1. We adopt a HEALPix Nside = 1024
pixelization scheme.

3.1 Masks

The AliCPT scanning region in the first observation season centers at RA = 180◦, DEC = 30◦

in the northern sky, covering about 17% of the sky area, as shown in Figure 1. In the
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(a) binary masks (b) inverse variance

Figure 1: Masks in the AliCPT-1 data analysis. (a) From the outer to inner region, the
figure shows the AliCPT-1 observation patch (yellow), the 20µK mask (light orange), and the
UNP mask( dark orange), with sky fractions of 13%, 10%, 6.7%, respectively. (b)The inverse
variance of the polarization noise at 150GHz. The black curve shows the boundary of the
UNP mask, inside which is the UNP-inv mask.

foreground cleaning pipeline, we adopt two binary masks: the ‘20µK’ mask and the ‘UNP’
mask. They are shown in Figure 1. The 20µK mask is defined by masking the pixels with
the noise standard deviation above 20µK at NSIDE=1024 for the 150GHz channel. We then
further remove the sky above declination of 65◦, obtaining a mask with fsky = 6.7% named
the UNP mask. We also divide the UNP mask by the variance of the polarization noise at
150GHz, hereafter named the UNP-inv mask.

3.2 CMB

We produce two sets of lensed CMB data (AL = 1) with a fiducial tensor-scalar ratio of
r = 0.03 and the null value r = 0.0, with each of the sets containing 300 seven-channel
simulations. The CMB maps are Gaussian realizations generated from the power spectra
generated by the CAMB [49] package using the best-fit Planck 2018 parameters1 [3]. The
lensing effects are added by the LensPyx [50] package. Unless specified, the CMB realizations
with r = 0.03 are used in the following analysis.

3.3 Noise

The instrumental noises for AliCPT-1 and WMAP-K channels are Gaussian white realizations
generated from the noise variance maps of AliCPT-1 bands and WMAP K band (upgraded
to Nside = 1024), respectively. For Planck HFI four bands, we use Planck FFP10 noise
simulations from the Planck Legacy Archive2.

1Specifically, the parameters include dark matter dencity Ωch
2 = 0.120, baryon density Ωbh

2 = 0.02237,
scalar spectral index ns = 0.9649, optical depth τ = 0.0544, Hubble constant H0 = 69.36 km s−1 Mpc−1 and
the primordial comoving curvature power spectrum amplitude As = 2.10× 10−9.

2http://pla.esac.esa.int/pla
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Figure 2: The debeamed polarization noise power spectra Nℓ/b
2
ℓ of our seven frequency

channels. For reference, the white noise spectra with noise levels of 10, 50 and 100 µK-arcmin
are plotted as three dashed curves from bottom to top. The black solid curve is the channel-
combined noise spectrum, which is about 10 µK-arcmin. The lensed CMB BB spectrum
(black dotted curve) and the tensor BB spectrum with r = 0.03 (black dot-dashed curve) are
also plotted for comparison.

The debeamed polarization noise power spectra Nℓ/b
2
ℓ =

ℓ(ℓ+1)
2π Nℓ/b

2
ℓ for seven channels

are shown in Figure 2. We hereafter omit the b2ℓ factor since the noises are all debeamed in
the final cleaned map. The ideal noise level combining the data of all channels is about 10
µK-arcmin, given by Nℓ = [

∑
ν N

−1
ℓ,ν ]

−1.

3.4 Foregrounds

The diffuse foregrounds include various components, such as synchrotron, thermal dust,
anomalous microwave emission (AME), free-free and CO emissions. However, the synchrotron
emission and the thermal dust are known to be two main polarization contaminants among
them. We do not consider the polarized point sources in our main analysis since they are not
modeled in the cILC method, but we show in Appendix A that their effects are negligible to
the extent of current sensitivity. In order to properly assess the performance of cILC methods
on various sky models, we use four Galactic models based on the Planck Sky Model (PSM)
[51] to generate our foreground simulations using the Python Sky Model (pysm [52]) package.
The models are specified as follows:

- AliCPT foregrounds: In this model, the thermal dust polarization maps are generated from
the GNILC template of the Planck 2018 release [43], scaled to different frequencies by a
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modified blackbody SED with the dust temperature and spectral indices from the GNILC
Planck 2015 dust maps best-fit [53]. The synchrotron polarization template is based on the
Planck 2018 SMICA map, and it is scaled by a power law SED with a fixed βs of -3.08. In
this work, this is our baseline model.

- d0s0: The d0s0 pysm model uses the 353GHz map from Planck 2015 release as the thermal
dust polarization template, and the WMAP 9-year 23 GHz Q/U map [54] as the syn-
chrotron template, with fixed spectral indicies of βs = −3, βd = 1.54 and Td = 20K. The
polarization templates are smoothed with a Gaussian kernel of FWHM 2.6◦ for thermal
dust and 5◦ for synchrotron, and have small scales added via the procedure described in
[55].

- d1s1: The templates for the d1s1 pysm model are the same as d0s0. The spatially varying
spectral indices for thermal dust are obtained from the Planck 2015 Commander dust map
[56]; for synchrotron βs is derived using a combination of the Haslam 408 MHz data and
WMAP 23 GHz 7-year data [57].

- d10s5: The thermal dust maps are based on the Planck 2018 GNILC maps [43], which
present a larger variation of βd and Td parameters at low resolution than the d1 model.
The synchrotron templates are the same as s1, with the spectral index map from s1 rescaled
based on the S-PASS data [58]. Small-scale structures are added as Gaussian realizations
of power-law power spectra.

Four sets of multi-frequency foregrounds are generated using the above models. A set of
B-mode maps (CMB, noise and foreground) at 150GHz for AliCPT-1 is shown in Figure 3.
The B-mode maps are obtained by the template cleaning method (see Section 4.1).

4 Pipelines: CMB B-mode reconstruction

We now implement the NILC, chILC, cpILC, cNILC and cMILC methods on the multi-
frequency data sets, where the cMILC is implemented in needlet space. First we have to
extract the pure B-mode maps from the input partial-sky QU maps considering the partial-
sky effects. Then we apply the ILC cleaning process on the B-mode maps in pixel, harmonic
or needlet domain. Finally, we compute the noise debiased power spectra and extract the
tensor-to-scalar ratio value from it.

4.1 EB leakage and Power spectrum estimation

Two effects must be considered when reconstructing the full-sky power spectrum from a
partial-sky map: the EB leakage, and the mode coupling of the pseudo power spectrum. The
template cleaning method introduced by Liu et al. [31] is an efficient way to remove the EB
leakage in pixel domain, which can suppress the leakage to a level of r ∼ 10−4 − 10−5 over
ℓ ∼ 60.

The template cleaning steps are as follows.

1. The masked polarization map P = (Q,U) is decomposed into the so-called E and B
family maps: PE = (QE , UE) and PB = (QB, UB), which is done by (Q,U) → E;B →
(QE , UE); (QB, UB).

2. Obtain P ′
B in the same way from the masked E family PE , i.e. PE → P ′

E ;P
′
B.
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(a) CMB (b) Noise (c) AliCPT FG

(d) d0s0 FG (e) d1s1 FG (f) d10s5 FG

Figure 3: One sample of the simulated CMB, noise and foreground B-mode maps at 150GHz
band after template cleaning with 6◦ C2 apodization of the 20µK mask.

3. Use the masked P ′
B as a E-B leakage template to remove the leakage from the masked

PB by linear fitting.

After correcting the EB leakage and foreground cleaning, we compute the B-mode power
spectrum with the pseduo-Cℓ (PCL) estimator using the NaMASTER [59]3 python package,
which takes the masking, binning, pixel-window and beaming effects into account.

In order to assess the accuracy of power spectrum estimation on foreground-free maps,
we apply the template cleaning and the PCL process on 100 CMB-only simulations smoothed
with Gaussian beams of either FWHM=52.8 arcmin or 11 arcmin as the possible common
beams, corresponding to the largest beam among our frequency channels and the beam used
in AliCPT for NILC [60], respectively. First, we obtain the real B-mode maps from the
full-sky CMB simulations as reference. The simulations using the 20µK mask go through
the template cleaning pipeline to correct for the leakage. The corrected B-mode maps are
then masked again by the 20µK mask with 6 degree C2 type apodization in order to reduce
the high leakage residual on the boundary of the mask [31]. Finally, we apply PCL on the
leakage-cleaned maps to reconstruct the full-sky power spectra. The estimated BB power

3https://github.com/LSSTDESC/NaMaster
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Figure 4: Left: the RMS defined as Eq.(4.1) and the PCL residual averaged over 100 CMB-
only simulations with the beam size of either 11 arcmin or 52.8 arcmin. Right: the ratios
between the residual of the estimated power spectrum and the input BB power spectrum.
The relative PCL residuals are also shown by dashed curves.

spectra are binned with ∆ℓ = max{30, 0.3ℓmin} (where ℓmin is the starting multipole of a bin)
from ℓ = 40 to 600.

To evaluate the residual leakage, we compute the RMS error which depends only on the
error of template cleaning as:

∆ =

√√√√ 1

Nsim

Nsim∑
i=1

(D̂ℓ −Dreal
ℓ )2 , (4.1)

where D̂ℓ is the estimated power spectrum for each simulation and Dreal
ℓ is obtained by

running NaMASTER on the real full-sky B maps with the 6◦ C2 apodized 20µK mask. Besides,
the difference between Dreal

ℓ and the input CMB spectrum DBB
ℓ (which are bandpowers in

practice) reflects the residual power spectrum only from the PCL estimation. The RMS error
(i.e. the error from the residual EB leakage) as well as the mean PCL residual ⟨Dreal

ℓ −DBB
ℓ ⟩

are shown in the left panel of Figure 4. The right panel shows the ratio between the residual of
the estimated power spectrum and the input BB power spectrum, ⟨D̂ℓ−DBB

ℓ ⟩/DBB
ℓ , averaged

over 100 CMB-only simulations. It can be seen that the RMS or the residual leakage is
negligible. Thus nearly all the residual comes from the PCL estimator (as shown in the right
panel), while the PCL residual surpasses the power spectrum for r = 0.03 over ℓ ∼ 300 in the
case of FWHM=52.8 arcmin. The PCL residual might come from the large computational
uncertainty of the deconvolved power spectrum after dividing by the beam function squared
(see Figure 5 for the beam functions). Since the bias of the power spectrum estimation at
the beam size of 52.8 arcmin exceeds the 1σ threshold over ℓ ∼ 400, the multipole range is
restricted from 40 to 400 when adopting the common beam of 52.8 arcmin. Hereafter, unless
specially mentioned, we adopt FWHM=11 arcmin as the common beam while discarding the
K-band data at scales of ℓ > 300 to avoid the extreme noise amplification of this specific
frequency channel.

4.2 ILC implemention in harmonic domain

Here, we clarify the detailed procedure of foreground cleaning using cILC in harmonic space.
After template cleaning, the multi-band B-mode maps masked by the UNP-inv mask are
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Figure 5: The window fuctions of seven needlet bands. The beam functions of 11 arcmin
and 52.8 arcmin are added for ancillary view.

transformed to harmonic space and reconvolved to a common beam. The ℓ-dependent empir-
ical covariance is averaged by the aℓms over the bin range [0.6ℓ, 1.4ℓ] with weights of (2ℓ+1).
We then multiply the cILC weights computed from the covariance matrix by the channel-
wise B-mode aℓms, resulting in the cleaned B-mode aℓm. The final full-sky power spectrum
is obtained by PCL after debiasing the noise power spectrum.

4.3 ILC implemention in needlet (pixel) domain

The ILC implemention in needlet space is somewhat more complicated than in harmonic space
due to the discriminatory handling of multi-scale needlet bands. The maps after template
cleaning are reconvolved to a common beam and decomposed into needlet coefficients, where
the cosine bands are adopted as the needlet bands in this work, as shown in Figure 5. The
cosine window functions can be written as:

hjℓ =



cos(
π

2

ℓjmid − ℓ

ℓjmid − ℓj−1
mid

) , ℓj−1
mid ≤ ℓ < ℓjmid ,

cos(
π

2

ℓ− ℓjmid

ℓj+1
mid − ℓjmid

) , ℓjmid ≤ ℓ < ℓj+1
mid ,

0 , otherwise ,

(4.2)

where j ∈ {1, 2, . . . , nj}, h1ℓ = 1 when 0 ≤ ℓ < ℓ1mid, and h
nj

ℓ = 1 when ℓ ≥ ℓ
nj

mid. The seven
needlet bands used in our tests are listed in Table 2. Note that the needlet maps of larger
scales containing less modes are therefore downgraded to lower Nsides. Just like for chILC, we
discard K-band data for those needlet bands covering the range of ℓ > 350, i.e. the 6th and
7th bands. The needlet coefficients are also reconvolved with a common beam of 11 arcmin
FWHM.

The covariance matrices Ĉjk for the k-th pixel of the j-th needlet scale are estimated
as follows: first we downgrade the j-th needlet maps of every channel to a super Nside of
Nside(j)/4. Then, the product of downgraded needlets of two channels ν1 and ν2,
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Table 2: The needlet bands used for needlet decomposition and the corresponding smoothing
FWHMs when computing the covaraince matrix.

Band(j) 1 2 3 4 5 6 7
ℓjmid 15 30 60 120 210 300 1000
Nside(j) 32 64 128 256 512 1024 1024
FWHM(◦) 124 72 36 20 15 4.2 3.5

bν1j (njk)b
ν2
j (njk), is smoothed with a Gaussian beam whose FWHM varies with the scale j.

Each channel pair of needlets returns a covariance map, of which the k-th pixel is taken as
the (ν1, ν2) element of the covariance matrix Ĉjk. The estimated covariance contains the
information of pixels in a disk centered at the k-th pixel, averaged by a Gaussian beam. The
smoothing FWHMs of seven needlet bands are listed in Table 2. The FWHM values are
chosen such that the ILC bias [27] is under 3% of the CMB.

We compute the weights for each njk from the covariance matrix independently and
project them on the channel-wise needlet maps to obtain the foreground-cleaned needlet
maps. Finally we synthesize them to the final cNILC cleaned map, as the inversion of needlet
decomposition.

The cILC in pixel space (cpILC) is basically a simple version of cNILC without needlet
filtering. Note that in this case ℓ is limited up to 300 since the debeamed K band data over
the limit would be too large to recover any useful information. As mentioned in Section 2.4,
the cMILC is implemented in needlet space adding one more constraint. Thereby, the only
processing difference between cMILC and cNILC is that the mixing matrix of cMILC contains
an additional column vector describing the SED of the derivative of the thermal dust.

4.4 Noise debiasing

It is essential to debias the noise power spectrum from the foreground-cleaned power spectrum
where the residual noise power is the predominant component for B-modes. The noise bias
can be properly corrected either by the cross spectrum of two data splits between which
the noises are uncorrelated, or by estimating the residual noise power spectrum from noise
simulations. In this work, we estimate the noise bias from 100 noise simulations projected by
the cILC(or NILC) weights obtained by the mock data.

4.5 Fitting the tensor-to-scalar ratio

We fit the tensor-to-scalar ratio r with the estimated power spectra by the Markov Chain
Monte Carlo (MCMC) simulations. Ignoring the slight non-Gaussianity from the foregrounds
given the large number of multipoles in a bin, the Gaussian likelihood of r given the binned
cILC cleaned power spectrum Ĉℓb is:

−2 lnL(r) =
∑
ℓbℓb′

[
Ĉℓb − rCr=1

ℓb
− C lens

ℓb

] [
M−1

fid

]
ℓbℓb′

[
Ĉℓb′ − rCr=1

ℓb′
− C lens

ℓb

]
, (4.3)

where ℓb, ℓb′ are indices for the multipole bins, rCr=1
ℓb

+C lens
ℓb

is the binned theoretical B-mode
power spectrum with multipole range [40, 200] including 5 ℓbs, and the fiducial covariance
matrix, [Mfid]ℓbℓb′ = ⟨(Ĉfid,ℓb − ⟨Ĉfid,ℓb⟩)(Ĉfid,ℓb′ − ⟨Ĉfid,ℓb′ ⟩)⟩ is computed from 300 cILC-
cleaned simulations with r = 0 and the foregrounds same with the fitted data. The theoretical
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spectrum is computed from CAMB with the best-fit parameters of Planck 2018 results [3]. We
do no delensing to the B-mode power spectrum. The above likelihood is multiplied by a
uniform prior of r ∈ [0, 1] to obtain the unnormalized posterior P (r|d). We set a MCMC
chain including 10000 samples satisfying the posterior distribution using the emcee [61] python
package. Therefore, the mean r-value extracted from the distribution of 10000 samples can
be taken as the best-fit r for the estimated power spectrum, with the uncertainty σ(r) (also
extracted from the distribution) due to the cosmic variance of noise and residual foregrounds
embedded in the fiducial covariance matrix.

5 Results

In this section, we present the results of the foreground-cleaned maps and the estimated B-
mode power spectra using different ILC methods. The input realizations are the sum of CMB,
noise and AliCPT foregrounds unless specified. We analyze the possible sources of bias and
quantitatively analyze the bias in our results in Section 5.3 and 5.3.1. We present the results
considering various foregrounds while using the assumed mixing matrix in Section 5.4. We
compute the best-fit r and its uncertainty for different cases in Section 5.5.

5.1 Maps

First we illustrate the effectiveness of ILC methods on recovering the CMB map. The cleaned
CMB maps and the residual foreground and noise contaminations of NILC, cNILC and
cMILC, three ILC methods with increasing number of constraints, are shown in Figure 6.
The residual contaminations are produced by applying the same ILC weights on the input
foreground and noise maps with the input simulations. It can be seen that the additional
constraints on foregrounds improve the foreground removal at the expense of increasing the
noise residual in the recovered maps. Which method is the best depends on the object to
study. On the map level, adding the constraints introduces much more noise contaminations
than the foregrounds further removed. On the power spectrum level, as the noise residual can
be properly estimated by noise realizations, it becomes significant to reduce the foreground
bias.

5.2 Power spectra

The comparison of the estimated power spectra using NILC, chILC, cpILC, cNILC and cMILC
and their respective uncertainties are shown in Figure 7. The effectiveness and the accuracy
of foreground cleaning can be quantified in a straightforward way by analyzing both noise
and the foreground residuals. They are obtained by linearly combining the input noise and
foregrounds simulations with the ILC weights obtained from the input realization.

It can be seen that compared to NILC, adding constraints reduces the foreground residual
significantly while increasing the noise residual since the variance wT Ĉw with constrained
weights cannot remain as small as the unconstrained variance (see Eq.(39) of [33]). The
cMILC adds more constraints than cILC, resulting in the lowest residual foreground at the
expense of the largest noise level. Moreover, the performance of the cpILC is poor, meaning
that its foreground residual and noise residual are both higher than chILC and cNILC. The
chILC result is fairly similar to the cNILC result, except its overall lower noise level and
slightly lower foreground residual at scales of ℓ ∼ 100.

The ILC method makes a tradeoff between reducing the residual foregrounds and re-
ducing the residual noise. The ILC in harmonic space does not take into account the spatial
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(a) NILC cleaned map (b) NILC residual noise (c) NILC residual foregrounds

(d) cNILC cleaned map (e) cNILC residual noise (f) cNILC residual foregrounds

(g) cMILC cleaned map (h) cMILC residual noise (i) cMILC residual foregrounds

Figure 6: The cleaned CMB maps, the residual foreground maps and the residual noise
maps. From top to bottom are results from NILC, cNILC and cMILC.

variation of the noise and the foregrounds, where the noise dominates at high latitude and
the foregrounds dominate near the Galactic plane, thus being unfit for use over large sky
patches. On the other hand, the ILC in pixel space does not take into account the harmonic
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Figure 7: The comparison between the BB residual noise power spectra (upper), the BB
residual foreground power spectra (middle) and the estimated CMB BB power spectra D̂BB

ℓ

(lower) with different methods. Different colors represent different foreground cleaning meth-
ods. The power spectrum of cpILC has a limit of ℓmax = 300 as mentioned in Section 4.3.

variation where the noise dominates at small scales and the foregrounds dominate at large
scales. Typically, the ILC in needlet space computes the optimal weights both across the sky
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and the scales given the localization both in pixel space and in harmonic space.
In our sky patch, the foreground maps are nearly uniform, which narrows the advantage

of localization in both pixel space and favours a fine division in harmonic space. Therefore,
the chILC, which assigns weights at each multipole, performs nearly equally well with the
cNILC. The cNILC would be expected more advantaged than chILC in cleaning a patch of
spatially-varying foregrounds. As for different foreground models in Figure 10, we find that
the cNILC does render lower residual foregrounds but a slightly higher noise level in exchange.

Both chILC and cNILC reduces the foregrounds to a low level, which is already low
enough. Hence adding yet more constraints with the disadvantage of increasing the noise
level might not be a wise choice. For this reason, we will not adopt cMILC in the following
tests in view of its large uncertainty of power spectrum estimation. Furthermore, neither
NILC nor cpILC will be discussed in the following analysis since they are not able to clean
the foregrounds substantially.

5.3 Bias analysis

In this section, we compute analytical estimates of the potential biases of cILC other than
the foreground and noise residuals and compute its level in practice. The cILC cleaned map
can be decomposed into three components, the CMB signal, the residual foreground and the
residual noise:

ŝcILCℓm = sℓm +wT
ℓ a

fg
ℓm +wT

ℓ nℓm . (5.1)

where the residual noise is the dominant component, while the residual foreground level is of
the order r ∼ 0.01 for the tensor spectrum at the large scales. Therefore, it is safe to omit
the correlations between the residual foreground and other emission components. Then the
power spectrum of the cILC cleaned map is given by:

ĈcILC
ℓ = C lens

ℓ + rCr=1
ℓ + Cres.fg

ℓ +N res.
ℓ + 2Cs×res.n

ℓ , (5.2)

where the chance correlation between CMB and the residual noise Cs×res.n
ℓ , also denoted as

the ‘ILC bias’ [27], can be restricted to a negligible level given enough modes to sample
the covariance. The residual noise N res.

ℓ is debiased by the average of 300 noise realizations
weighted by the same cILC weights, denoted by N̄ res.

ℓ . The lensing term C lens
ℓ is assumed to

be known in this work, with the lensing noise to be studied in the future.
Averaged over realizations, the residual bias of the noise-debiased cILC power spectrum

is given by:

Rℓ ≡ ⟨ĈcILC
ℓ − N̄ res.

ℓ − Cs
ℓ⟩ = ⟨Cres.fg

ℓ ⟩+ ⟨N res.
ℓ − N̄ res.

ℓ ⟩+ 2⟨Cs×res.n
ℓ ⟩ , (5.3)

where Cs
ℓ = C lens

ℓ + rCr=1
ℓ is the input CMB power spectrum and the brakets denote the

ensemble averaging. More specifically,

Rℓ = ⟨Cres.fg
ℓ ⟩+ ⟨wT

ℓ (N ℓ − N̄ ℓ)wℓ⟩+
1

2ℓ+ 1

ℓ∑
m=−ℓ

⟨s∗ℓmwT
ℓ nℓm + sℓmwT

ℓ n
∗
ℓm⟩ , (5.4)

where N ℓ = 1
2ℓ+1

∑ℓ
m=−ℓnℓmn†

ℓm. The foreground residual can be easily obtained by pro-
jecting the input foregrounds on the weights. The second term, named the noise bias error
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Figure 8: Ratios of biases from different sources, with the left panel for chILC and the right
panel for cNILC. Each panel shows the total bias (blue) with the error bar of σ(Ĉℓ)/

√
Nsim

and its components: the residual foregrounds (orange), the ILC bias (red) and the noise bias
error (cyan).

(NBE), is fully discussed in Section 5.3.1. The third term, i.e. the ILC bias, is described
theoretically by the following formula:

2⟨Cs×res.n
ℓ ⟩ = 2(nc − nν)

Nkfsky
⟨Cs

ℓ⟩ , (5.5)

where Nk is the number of coefficients in the needlet (harmonic) domain as computing the
covariance matrix, fsky ≈ 5.9%4 is the sky fraction, nc = 3 represents the number of con-
straints, and nν = 7 is the number of involved channels. In practice, we exclude the ℓ
(njk) mode from the empirical covariance matrix used to compute the weights of ℓ (njk), i.e.
ℓ′ ̸= ℓ in Eq.(2.4)(k′ ̸= k in Eq.(2.11)), which is commonly used to reduce the ILC bias by
avoiding the correlation between the ILC weights and the data sets which the weights are
applied on. The actual ratios between the mean ILC bias and the input CMB power spectrum
2⟨Cs×res.n

ℓ ⟩/⟨Cs
ℓ⟩ are plotted in Figure 8. As seen in the plot, the actual ILC bias, mostly

negative, is of order 1% of the CMB power spectrum. The deviation of the actual ILC bias
from its negative expectation (Eq.(5.5)) could be attributed to its large uncertainty compared
to its small amplitude.

The mean biases of the residual foreground and the noise bias error are also obtained
from simulations. We compute their ratios to the input CMB power spectrum, as shown in
the right panel of Figure 8. We also plot the total biases ⟨Ĉℓ −Cs

ℓ ⟩/Cs
ℓ , whose error bars are

given by the uncertainty of the mean residual bias σ(Ĉℓ)/
√
Nsim = σ(Ĉℓ)/10. As seen in the

plot, the biases for chILC and cNILC are mainly from NBE at small scales of ℓ>100, and
from residual foregrounds at large scales. Since the NBE and the ILC bias are both within
the uncertainty of the estimated noise bias at all scales, we do not consider it necessary to
debias them.

4The effective sky fraction of the inverse noise variance weighted mask is given by feff
sky = ⟨M⟩2/⟨M2⟩ where

M is the weight of the mask.
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5.3.1 Noise bias error

In our analysis of the bias, we find that the estimated noise bias is systematically lower than
the actual noise bias (obtained from the actual noise projected by the cILC weights) due to
the fact that the cILC weights are conceptually designed to minimize the power spectrum
of the actual data which is dominated by the actual noise. The error, however, is rarely
mentioned by the previous works of ILC either because they use the cross spectra of data
splits to cancel the noise bias or their simulations are not dominated by the noise. To make
it clear, the third term of Eq.(5.1) is the residual noise, whose power spectrum is dubbed the
noise bias N res.

ℓ = wT
ℓ N̂ ℓwℓ, while the estimated noise bias averaged over noise simulations

is N̄ res.
ℓ = wT

ℓ N̄ ℓwℓ. Since the noise covariance dominates the total covariance matrix,
as the weights (dependent on the realization) varying, the minimum point of wT

ℓ Ĉℓwℓ is
approximately the minimum point of wT

ℓ N̂ ℓwℓ; thus the cILC weights also nearly minimizes
the noise bias of the particular noise realization, i.e. wT

ℓ N̂ ℓwℓ ≤ wT
ℓ N̄ ℓwℓ for almost any

noise realization. The difference between the actual and estimated noise bias, named the
noise bias error, is approximated (See Appendix B for the derivation) as:

⟨N res.
ℓ − N̄ res.

ℓ ⟩ = ⟨wT
ℓ (N̂ ℓ − N̄ ℓ)wℓ⟩ ≈

2(nc − nν)

Nkfsky
N̄ res.

ℓ . (5.6)

In our application, nc = 3, nν = 7 at ℓ < 300 or 6 otherwise, the effective sky fraction of the
UNP-inv mask fsky ≈ 5.9% and Nk is the number of coefficients involved when computing
the covariance matrix in an cILC implementation, e.g., Nk ∼ 14000 at ℓ ∼ 100 for the chILC.
Typically we use larger Nk to estimate the covariance matrix at smaller scales.

We compute the noise bias estimated from 100 noise simulations and the actual noise
power spectrum for the chILC using both different binning sizes of the covariance matrix
and different noise levels. In chILC, the covariance matrix Ĉℓ is computed by averaging
the covariance over harmonic modes in ℓ ± ∆ℓ/2. The noise bias error and its theoretical
expectations for chILC are plotted in Figure 9. Being close to the theoretical results, the
noise bias error reduces with the binning size (or Nk) increasing.

As seen in the lower plot, the ratio between the noise bias error and the mean residual
noise does not vary with the noise level, as expected from Equation 5.6. The noise bias
error is about 0.8% of the mean residual noise at ℓ ∼ 100, which is negligible compared to
the uncertainty of the noise bias σ(N res.

ℓ )/
√
Nsim ≈

√
1

(2ℓ+1)∆ℓbfskyNsim
N̄ res.

ℓ where ∆ℓb is the
binning size in the NaMASTER power spectrum estimation and Nsim is the number of noise
simulations used to debias the noise.

We investigate possible ways to mitigate the ILC noise bias error. Theoretically, either
fixing the weights independent of the realizations, or crossing two different data splits to null
the average noise bias should eliminate this kind of error. Here we use the Jackknife method,
where the input maps are two data splits with the same CMB and foregrounds but different
Gaussian instrumental noises. We first obtain the cILC weights from the average of two data
splits, then apply the weights onto two splits individually and compute their cross power
spectrum to get rid of the noise bias. The results shown in Appendix C have verified that
the Jackknife would not produce the noise bias error.

5.4 Other foreground models

We apply chILC and cNILC on four sets of simulations with four types of foregrounds intro-
duced in Section 3.4 to test the robustness of the mixing matrix. As seen in Figure 10, both
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Figure 9: Upper: The noise bias errors from simulations (solid) compared to their theoretical
expectations (dashed) in chILC. Lower: The ratios between the noise bias error and the mean
residual noise under different noise levels (0.3, 0.5 and 1.0 times the real noise level) in chILC.

methods are able to reduce all types of foregrounds effectively. The noise residual hardly
varies among models since the data share the same noise realizations, while the foreground
residual depends on the particular foreground model. The new PySM synchrotron model
s5 has more power than the older models s0 and s1. The PySM dust model d10 has more
decorrelation than either d0 or d1 dust models. The larger residual foregrounds for d10s5
compared to d0s0 and d1s1 likely originates in the complexity of the d10s5 model.

5.5 Estimation of the tensor-to-scalar ratio

We estimate the tensor-to-scalar ratio r from the mean measured power spectrum after fore-
ground cleaning using chILC and cNILC on our simulated data with four different foreground
models. The results are summerized in Figure 11. The best-fit r values and the correspond-
ing 1σ error bars are shown in red, with the input value r = 0.03. We can see that the
true value r = 0.03 is within 1σ error bars for all cases. For AliCPT foregrounds we obtain
r = 0.037 ± 0.018 (r = 0.036 ± 0.018) for chILC (cNILC). For the null tests with the input
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Figure 10: Results of chILC (red) and cNILC (blue) debiased power spectra and the residual
noise and foreground spectra for four different foreground models. The noise residuals are
plotted as solid curves and the foreground residuals are plotted as dashed curves.

Table 3: Upper: the best-fit r and its uncertainties for the mean cILC cleaned power spec-
trum with the input r = 0.03. Lower: the 2σ constraints (95%CL) on r for the null test
without the tensor B modes.

rin = 0.03 chILC cNILC
AliCPT r = 0.037± 0.018 r = 0.036± 0.018

d0s0 r = 0.027± 0.016 r = 0.028± 0.017

d1s1 r = 0.027± 0.016 r = 0.029± 0.017

d10s5 r = 0.038± 0.018 r = 0.038± 0.018

Null Test(rin = 0) chILC cNILC
AliCPT r < 0.043 r < 0.043

d0s0 r < 0.033 r < 0.034

d1s1 r < 0.034 r < 0.034

d10s5 r < 0.044 r < 0.044

of r = 0, the chILC results of best-fit r and 2σ upper limits are shown in green arrows and
bars respectively, which are similar to the cNILC results. The results are also summarized in
Table 3. In the null tests of the AliCPT foregrounds, the 95% CL upper limit of r is 0.043
for both chILC and cNILC. With the simpler foreground models like d0s0 and d1s1, the
constraint could reach r < 0.033 due to the lower foreground bias.
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Figure 11: Left upper: The posterior distribution of r for both chILC (orange) and cNILC
(blue) tests with the input value r = 0.03 and AliCPT foregrounds. Right upper: The
posterior distribution of r for both chILC and cNILC null tests with the input r = 0 and
AliCPT foregrounds. Lower: The best-fit tensor-to-scalar ratio r of chILC and cNILC results
with the four models considered here. For the input r = 0.03, the best-fit values for r are
shown in red squares with 1σ error-bars. For the null tests with input r = 0, the best-fit
r values are shown in green arrows with 2σ upper limits in gree bars, and only the chILC
results are shown since they are close to the cNILC results.

6 Conclusions

The precise measurement of the CMB B-mode power spectrum as well as the tensor-to-
scalar ratio demands an elaborate component separation method in order to balance the
minimization of the statistical uncertainty and the systematic bias. Without many priors on
the Galactic foregrounds, the ILC method and its variants are competent candidates for the
future ground-based CMB experiments.

We evaluate the foreground cleaning performance of some variants of the ILC method on
partial sky B-modes. We carry out NILC, cMILC, and the cILC methods in different domains
(cpILC, chILC, cNILC) on a northern sky patch using the AliCPT, WMAP-K and Planck
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HFI combined mock data. We mainly focus on the cILC methods in harmonic (chILC) and
needlet (cNILC) domain since the NILC results show larger foreground bias. According to
our results, there are advantages in different aspects when we use both chILC and cNILC.

In terms of the power spectrum, the cILC in harmonic space renders slightly less noise
residuals and smaller uncertainties on estimation of the power spectrum and the tensor-to-
scalar ratio. The cNILC method renders less foreground residuals, thus reducing the system-
atic errors. The results of both methods are similar due to the relatively low and uniform
foreground contamination in our sky patch. On the other hand, the foreground cleaning
performance of the cILC in pixel space is poor due to the properties of the data. Moreover,
using cMILC in the AliCPT patch results in high noise uncertainty, despite lowest foreground
residuals.

Additionally, doing ILC in harmonic space is about two times computationally faster
than that in needlet space, since the size of the covariance matrix for harmonic ILC is smaller
on average. Applying the NILC costs plenty of computational hours on needlet transfor-
mation. Our results using different foregrounds also demonstrate that our mixing matrix is
compatible to various foreground models.

Analysis of main biases on power spectra shows that other than the foreground residual
and the ILC bias, the estimated noise bias cannot accurately counteract the actual noise bias
given the large noise level and the finite size of the domain where we compute the covariance.
Fortunately, this error (named the noise bias error) could be limited to a negligible order
compared to the uncertainty of the estimated power spectrum. We firstly derive its relation
with respect to the noise residual which fits well with the results from simulations. We also
illustrate that the Jackknife approach crossing two data splits would not produce this error.

We estimate the tensor-to-scalar ratio r for our estimated power spectra, concluding that
the methods bias r in about 0.008 at maximum for all cases with an uncertainty no larger
than 0.018. For the null tests without primordial B-modes, we obtain a constraint of r <
0.043 (95%CL) applying cNILC/chILC on AliCPT-1 mock data, and r < 0.033 (95%CL) using
the simpler d0s0 sky model. Note that since currently we have not yet involved all possible
systematics, the constraints might be underestimated and could not be directly compared to
the best limit r < 0.034 (95%CL) of pure CMB experiments from combined Planck PR4 +
BK18 data, or r < 0.032 (95%CL) with BAO data involved further [12]. Nevertheless, the
future observations with lower noise would be promising to further constrain the results.

A Effects of point sources

Here, we add a simulated polarized point source map to the data sets. The input point sources
are modeled based on the radio source catalogue of the Planck Sky Model [51]. These point
sources are masked by a point source mask produced by the matched filter and inpainted
before the cILC implementation. Since the point sources are independent of other compo-
nents, we compute the residual point source power spectra from cNILC and chILC methods
by projecting the input point source maps on the cILC weights, as shown in Figure 12. It
can be seen that the contribution of residual point sources is negligible compared to the bias
of residual foregrounds.

We preprocess the input maps to diminish the effects of point sources. First, we identify
the point sources on the HFI 100GHz temperature map using the outlier method [62] and
obtain the point source mask using the matched filter with a threshold of 3σ. Then we mask
the QU maps with the point source mask and use the template cleaning method to obtain
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Figure 12: Testing chILC and cNILC methods considering the point sources. Left: the
debiased power spectra and the noise, foreground and point source residuals. Right: the
masked point source B-mode map at 150GHz after template cleaning.

the B-mode maps with the point sources masked. Finally, we inpaint the B maps using the
iSAP [63] package. The procedure after point source preprocessing is the same with the basic
B-mode reconstruction pipeline.

B Derivation of the noise bias error

In this appendix we compute the analytical form of the noise bias error, which must be
carefully accounted for under cases of low signal-to-noise ratio. The derivation is in harmonic
space while the result is general in all domains.

B.1 The noise bias error in standard ILC

The input data is modelled as dℓm = asℓm + f ℓm + nℓm where sℓm is the CMB signal, f ℓm

the foregrounds and nℓm the noise term. Ignoring the binning scheme till the final form of
the noise bias error, the estimated covariance matrix (in harmonic ILC) at ℓ is given by:

Ĉℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

dℓmd†
ℓm = Ĉs

ℓaa
T + N̂ ℓ + F̂ ℓ +Λℓ , (B.1)

where

Ĉs
ℓ =

1

2ℓ+ 1

ℓ∑
m=−ℓ

sℓms
∗
ℓm , (B.2)

N̂ ℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

nℓmn†
ℓm , (B.3)

F̂ ℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

f ℓmf †
ℓm , (B.4)
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Λℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

(sℓman†
ℓm + s∗ℓmnℓmaT ) . (B.5)

We ignore the cross terms between the foregrounds and the CMB or noise. Hereafter, the
‘hat’ over some quantity denotes the empirical estimation from one realization while the ‘bar’
denotes the ensemble average. Then the average terms

C̄ℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

⟨dℓmd†
ℓm⟩ = C̄s

ℓaa
T + N̄ ℓ + F̄ ℓ , (B.6)

C̄s
ℓ =

1

2ℓ+ 1

ℓ∑
m=−ℓ

⟨sℓms∗ℓm⟩ , (B.7)

N̄ ℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

⟨nℓmn†
ℓm⟩ , (B.8)

F̄ ℓ =
1

2ℓ+ 1

ℓ∑
m=−ℓ

⟨f ℓmf †
ℓm⟩ , (B.9)

where Λ̄ℓ = 0 assuming the CMB is not correlated to the noise.
The (harmonic) ILC weights

ŵT =
aT Ĉ

−1
ℓ

aT Ĉ
−1
ℓ a

(B.10)

are applied on the ℓ-mode input data sets.
Given the residual noise power spectrum N res.

ℓ = ŵT N̂ ℓŵ and the estimated noise bias
N̄ res.

ℓ = ŵT N̄ ℓŵ, the noise bias error is defined as the average of their difference:

⟨N res.
ℓ − N̄ res.

ℓ ⟩ = ⟨ŵT (N̂ ℓ − N̄ ℓ)ŵ⟩ . (B.11)

Assuming the noise realizations are independent among channels:

N̄ℓ,ij =
1

2ℓ+ 1

ℓ∑
m=−ℓ

⟨nℓm,in
∗
ℓm,j⟩ = δijσ

2
ℓ,i , (B.12)

where σ2ℓ,i is the mean noise power spectrum of the channel i.
Defining Ωℓ = N̂ ℓ − N̄ ℓ, the cosmic variance of the Gaussian white noise is given by:

⟨Ωℓ,ijΩℓ,i′j′⟩ =
1

(2ℓ+ 1)2

∑
mm′

(⟨nℓm,in
∗
ℓm,jnℓm′,i′n

∗
ℓm′,j′⟩ − ⟨nℓm,in

∗
ℓm,j⟩⟨nℓm′,i′n

∗
ℓm′,j′⟩)

=
σ2ℓ,iσ

2
ℓ,j

2ℓ+ 1
(δii′δjj′ + δij′δji′) .

(B.13)

Defining ∆ℓ = Ĉℓ − C̄ℓ, from Eq.(B.1) and Eq.(B.6), we can write

∆ℓ = (Ĉs
ℓ − C̄s

ℓ )aa
T +Ωℓ + (F̂ ℓ − F̄ ℓ) +Λℓ . (B.14)
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When we consider the correlation between ∆ℓ and Ωℓ, only the second term of Eq.(B.14)
gives rise to the correlation. The first and the third correlation term vanish since the noise
and the CMB or foregrounds are uncorrelated, while the last correlation term vanishes since
it contains the third power of nℓm and the first power of sℓm. Therefore, we have

⟨∆ℓ,ijΩℓ,i′j′⟩ = ⟨Ωℓ,ijΩℓ,i′j′⟩ =
σ2ℓ,iσ

2
ℓ,j

2ℓ+ 1
(δii′δjj′ + δij′δji′) . (B.15)

Inserting the ILC weights to the noise bias error:

⟨N res.
ℓ − N̄ res.

ℓ ⟩ = ⟨ aT Ĉ
−1
ℓ

aT Ĉ
−1
ℓ a

(N̂ ℓ − N̄ ℓ)
Ĉ

−1
ℓ a

aT Ĉ
−1
ℓ a

⟩

= ⟨a
T Ĉ

−1
ℓ ΩℓĈ

−1
ℓ a

(aT Ĉ
−1
ℓ a)2

⟩ .

(B.16)

Since ∆ℓ is a small perturbation to Ĉℓ, we use the first order expansion:

Ĉ
−1
ℓ = [C̄ℓ +∆ℓ]

−1 ≈ C̄
−1
ℓ − C̄

−1
ℓ ∆ℓC̄

−1
ℓ . (B.17)

Writing (Eq.(A.11) of [27]):

1

aT [C̄
−1
ℓ − C̄

−1
ℓ ∆ℓC̄

−1
ℓ ]a

=
1

aT C̄
−1
ℓ a

1

1− ϵ
≈ 1

aT C̄
−1
ℓ a

(1 + ϵ) , (B.18)

where

ϵ =
aT C̄

−1
ℓ ∆ℓC̄

−1
ℓ a

aT C̄
−1
ℓ a

. (B.19)

The terms without ∆ℓ vanish since ⟨Ωℓ⟩ = 0. Keeping up to the first order terms of ∆ℓ:

⟨N res.
ℓ − N̄ res.

ℓ ⟩ ≈ 2

(aT C̄
−1
ℓ a)3

⟨(aT C̄
−1
ℓ ΩℓC̄

−1
ℓ a)(aT C̄

−1
ℓ ∆ℓC̄

−1
ℓ a)⟩

− 2

(aT C̄
−1
ℓ a)2

⟨(aT C̄
−1
ℓ ∆ℓC̄

−1
ℓ ΩℓC̄

−1
ℓ a)⟩ .

(B.20)

For the first term of Eq.(B.20)

⟨(aT C̄
−1
ℓ ΩℓC̄

−1
ℓ a)(aT C̄

−1
ℓ ∆ℓC̄

−1
ℓ a)⟩

=⟨[
∑
ijkp

(C̄
−1
ℓ )ijΩℓ,jk(C̄

−1
ℓ )kp][

∑
i′j′k′p′

(C̄
−1
ℓ )i′j′∆ℓ,j′k′(C̄

−1
ℓ )k′p′ ]⟩

=
∑
ijkp

(C̄
−1
ℓ )ij(C̄

−1
ℓ )kp

∑
i′j′k′p′

(C̄
−1
ℓ )i′j′(C̄

−1
ℓ )k′p′⟨Ωℓ,jk∆ℓ,j′k′⟩

=
2

2ℓ+ 1
[
∑
iji′

(C̄
−1
ℓ )ijσ

2
ℓ,j(C̄

−1
ℓ )ji′ ][

∑
pkp′

(C̄
−1
ℓ )pkσ

2
ℓ,k(C̄

−1
ℓ )kp′ ]

=
2

2ℓ+ 1
(aT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ a)2 .

(B.21)
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Here we use the symmetry of C̄ℓ. For the second term of Eq.(B.20)

⟨aT C̄
−1
ℓ ∆ℓC̄

−1
ℓ ΩℓC̄

−1
ℓ a⟩

=
∑

ijkpqr

(C̄
−1
ℓ )ij(C̄

−1
ℓ )kp(C̄

−1
ℓ )qr⟨∆ℓ,jkΩℓ,qr⟩

=
1

2ℓ+ 1

∑
ijkr

(C̄
−1
ℓ )ijσ

2
ℓ,jσ

2
ℓ,k[(C̄

−1
ℓ )jk(C̄

−1
ℓ )kr + (C̄

−1
ℓ )kk(C̄

−1
ℓ )jr]

=
1

2ℓ+ 1
[aT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ N̄ ℓC̄

−1
ℓ a+ aT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ a Tr(N̄ ℓC̄

−1
ℓ )] .

(B.22)

Ignoring the foreground term we have N̄ ℓ = C̄ℓ − C̄s
ℓaa

T . Using

aT C̄
−1
ℓ N̄ ℓC̄

−1
ℓ N̄ ℓC̄

−1
ℓ a ≈ aT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ (C̄ℓ − C̄s

ℓaa
T )C̄

−1
ℓ a

= (aT C̄
−1
ℓ N̄ ℓC̄

−1
ℓ a)[1− C̄s

ℓ (a
T C̄

−1
ℓ a)] ,

(B.23)

and
Tr(N̄ ℓC̄

−1
ℓ ) ≈ Tr[(C̄ℓ − C̄s

ℓaa
T )C̄

−1
ℓ ]

= Tr(I)− C̄s
ℓTr(aa

T C̄
−1
ℓ )

= nν − C̄s
ℓ (a

T C̄
−1
ℓ a) ,

(B.24)

Eq.(B.22) turns out to be

⟨aT C̄
−1
ℓ ∆ℓC̄

−1
ℓ ΩℓC̄

−1
ℓ a⟩

=
1

2ℓ+ 1
(aT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ a)[nν + 1− 2C̄s

ℓ (a
T C̄

−1
ℓ a)] .

(B.25)

Bring Eq.(B.21) and Eq.(B.25) to Eq.(B.20):

⟨N res.
ℓ − N̄ res.

ℓ ⟩ ≈ 4

2ℓ+ 1

(aT C̄
−1
ℓ N̄ ℓC̄

−1
ℓ a)2

(aT C̄
−1
ℓ a)3

− 2(nν + 1)

2ℓ+ 1

(aT C̄
−1
ℓ N̄ ℓC̄

−1
ℓ a)

(aT C̄
−1
ℓ a)2

+
4

2ℓ+ 1
C̄s
ℓ

aT C̄
−1
ℓ N̄ ℓC̄

−1
ℓ a

aT C̄
−1
ℓ a

.

(B.26)

Given the mean residual noise N̄ res.
ℓ ≈ aT C̄

−1
ℓ N̄ℓC̄

−1
ℓ a

(aT C̄
−1
ℓ a)2

and the mean power spectrum of the

ILC map C̄ILC
ℓ = ⟨ŵT Ĉℓŵ⟩ ≈ 1

aT C̄
−1
ℓ a

, replacing C̄s
ℓ with (C̄ILC

ℓ − N̄ res.
ℓ ), we get the final

form of the noise bias error

⟨N res.
ℓ − N̄ res.

ℓ ⟩ ≈ −2(nν − 1)

2ℓ+ 1
N̄ res.

ℓ . (B.27)

Considering the binning and partial-sky effects, we get

⟨N res.
ℓ − N̄ res.

ℓ ⟩ ≈ − 2(nν − 1)

(2ℓ+ 1)∆ℓbfsky
N̄ res.

ℓ , (B.28)

where ∆ℓb is the binning size of the empirical covariance matrix and fsky the sky fraction.
The general form in all domains (harmonic, pixel and needlet) is

⟨N res.
ℓ − N̄ res.

ℓ ⟩ ≈ −2(nν − 1)

Nkfsky
N̄ res.

ℓ . (B.29)
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B.2 The noise bias error in cILC

The data is modelled as dℓm = Asℓm+nℓm where A is the nν ×nc mixing matrix and sℓm is
the 3-dim vector of three sky components, the CMB, the thermal dust and the synchrotron.
The cILC weights are given by:

ŵT = eT (AT Ĉ
−1
ℓ A)−1AT Ĉ

−1
ℓ , (B.30)

where e = [1, 0, 0]T . The noise bias error is

⟨N res.
ℓ − N̄ res.

ℓ ⟩ = ⟨eT (AT Ĉ
−1
ℓ A)−1AT Ĉ

−1
ℓ ΩℓĈ

−1
ℓ A(AT Ĉ

−1
ℓ A)−1e⟩ . (B.31)

Using Eq.(B.17),

(AT Ĉ
−1
ℓ A)−1 ≈ (AT C̄

−1
ℓ A−AT C̄

−1
ℓ ∆ℓC̄

−1
ℓ A)−1

= (AT C̄
−1
ℓ A)−1(I − ϵ)−1

≈ (AT C̄
−1
ℓ A)−1(I + ϵ) ,

(B.32)

where
ϵ = AT C̄

−1
ℓ ∆ℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1 . (B.33)

Keeping up to the first order terms of ∆ℓ, the noise bias error includes two terms, of which
the first term:

2⟨eT (AT C̄
−1
ℓ A)−1ϵAT C̄

−1
ℓ ΩℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1e⟩

=2
∑
ijkp

(eT (AT C̄
−1
ℓ A)−1AT C̄

−1
ℓ )i⟨∆ℓ,ijΩℓ,kp⟩

(C̄
−1
ℓ A(AT C̄

−1
ℓ A)−1AT C̄

−1
ℓ )jk(C̄

−1
ℓ A(AT C̄

−1
ℓ A)−1e)p

=
2

2ℓ+ 1
(eT (AT C̄

−1
ℓ A)−1AT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1AT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1e

+ eT (AT C̄
−1
ℓ A)−1AT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1eTr[N̄ ℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1AT C̄

−1
ℓ ]) .
(B.34)

Inserting N̄ ℓ = C̄ℓ −AS̄ℓA
T where S̄ℓ =

1
2ℓ+1

∑ℓ
m=−ℓ⟨sℓms†ℓm⟩, the first term of Eq.(B.34)

becomes
2

2ℓ+ 1
[eT (AT C̄

−1
ℓ A)−1e− 2eT S̄ℓe+ eT S̄ℓ(A

T C̄
−1
ℓ A)S̄ℓe] , (B.35)

and the trace term of Eq.(B.34)

Tr[A(AT C̄
−1
ℓ A)−1AT C̄

−1
ℓ −AS̄ℓA

T C̄
−1
ℓ ] = nc − Tr[AS̄ℓA

T C̄
−1
ℓ ] . (B.36)

The second term of the noise bias error:

− 2⟨eT (AT C̄
−1
ℓ A)−1AT C̄

−1
ℓ ∆ℓC̄

−1
ℓ ΩℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1e⟩

=− 2
∑
ijkp

(eT (AT C̄
−1
ℓ A)−1AT C̄

−1
ℓ )i⟨∆ℓ,ijΩℓ,kp⟩(C̄

−1
ℓ )jk(C̄

−1
ℓ A(AT C̄

−1
ℓ A)−1e)p

=− 2

2ℓ+ 1
(eT (AT C̄

−1
ℓ A)−1AT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ N̄ ℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1e

+ eT (AT C̄
−1
ℓ A)−1AT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1eTr[N̄ ℓC̄

−1
ℓ ]) .

(B.37)
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Inserting N̄ ℓ = C̄ℓ −AS̄ℓA
T , the first term of Eq.(B.37) becomes

− 2

2ℓ+ 1
[eT (AT C̄

−1
ℓ A)−1e− 2eT S̄ℓe+ eT S̄ℓ(A

T C̄
−1
ℓ A)S̄ℓe] , (B.38)

and the trace term of Eq.(B.37)

Tr[I −AS̄ℓA
T C̄

−1
ℓ ] = nν − Tr[AS̄ℓA

T C̄
−1
ℓ ] . (B.39)

Summing all the terms above, the noise bias error

⟨N res.
ℓ − N̄ res.

ℓ ⟩ ≈ 2(nc − nν)

2ℓ+ 1
eT (AT C̄

−1
ℓ A)−1AT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1e . (B.40)

Given the mean residual noise N̄ res.
ℓ ≈ eT (AT C̄

−1
ℓ A)−1AT C̄

−1
ℓ N̄ ℓC̄

−1
ℓ A(AT C̄

−1
ℓ A)−1e, the

general form of the noise bias error for cILC is

⟨N res.
ℓ − N̄ res.

ℓ ⟩ ≈ 2(nc − nν)

Nkfsky
N̄ res.

ℓ . (B.41)

A comparison between the theoretical amplitude and the actual error from simulations
has been plotted in the lower panel of Figure 9, indicating that the above approximation is
sensible.

C Verifying NBE of Jackknife

As discussed in section 5.3.1, we are about to verify that the Jackknife method would produce
no noise bias error. First we add the same CMB and baseline foregrounds to different noise
realizations (

√
2 of the original level) to generate the mock data splits. In the Jackknife

pipeline, we apply the same cILC weights obtained from the combined data averaging two
data splits onto two splits respectively, and finally compute the cross power spectrum between
two cILC-cleaned split maps. The averaged residual noise power spectrum and its error bar
over 100 simulations are plotted in Figure 13. Indeed, the mean noise power spectrum for
Jackknife is consistent with zero at all scales (except for the largest one, where the multipole
modes are not enough to manifest the expectation).
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Figure 13: The mean residual noise cross spectrum for the Jackknife test. The plotted error
bars are σ(N̄ res.

ℓ ) = σ(N res.
ℓ )/10, denoting the uncertainty of the noise bias averaged over 100

noise simulations.
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