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N E U R O S C I E N C E

Encoding of melody in the human auditory cortex
Narayan Sankaran1, Matthew K. Leonard1, Frederic Theunissen2, Edward F. Chang1*

Melody is a core component of music in which discrete pitches are serially arranged to convey emotion and meaning. 
Perception varies along several pitch-based dimensions: (i) the absolute pitch of notes, (ii) the difference in pitch 
between successive notes, and (iii) the statistical expectation of each note given prior context. How the brain 
represents these dimensions and whether their encoding is specialized for music remains unknown. We recorded 
high-density neurophysiological activity directly from the human auditory cortex while participants listened to 
Western musical phrases. Pitch, pitch-change, and expectation were selectively encoded at different cortical sites, 
indicating a spatial map for representing distinct melodic dimensions. The same participants listened to spoken 
English, and we compared responses to music and speech. Cortical sites selective for music encoded expectation, 
while sites that encoded pitch and pitch-change in music used the same neural code to represent equivalent 
properties of speech. Findings reveal how the perception of melody recruits both music-specific and general-
purpose sound representations.

INTRODUCTION
Musical communication is a hallmark of human behavior that requires 
listeners to extract multiple time-varying features from a dynamic 
acoustic signal. This process leverages core spectrotemporal organizing 
principles of the human auditory system (1–3) and may share evo-
lutionary roots with language (4–6).

While music varies in its structure across cultures and genres, a 
defining feature across popular idioms is the serial arrangement of 
discrete pitch-units—or notes—to produce the emergent percept of 
melody (Fig. 1A). Considered in isolation, each constituent note within 
melody has a pitch, which is perceived along a low-to-high continuum 
according to its fundamental frequency (F0). Considered within its 
melodic context, these notes are imbued with higher-order attributes, 
reflecting the integration of prior information at progressively longer 
time scales (4, 7–9). For instance, the magnitude and direction of 
pitch-change between adjacent notes define the melodic interval and 
contour, respectively, linking the isolated sensory attribute of pitch 
with our perceptual experience of melody (10–12). Furthermore, lis-
teners with prior exposure are familiar with the statistical structure 
of Western music, and use this knowledge to generate expectations 
about the likelihood of upcoming notes conditioned on the prior 
sequence. In Fig. 1A, for example, the third-to-last note is relatively 
unexpected, violating the pattern and tonality established earlier in 
the phrase. The continuum along which melody violates or fulfills our 
expectations plays a central role in our aesthetic experience of music 
(13–19), and composers will intentionally modulate expectations to 
systematically generate patterns of tension and resolution as we listen.

Although these melodic features—pitch, pitch-change, and expec-
tation—convey distinct percepts, they derive from the same pitch-
related information computed over progressively longer temporal 
windows. This raises fundamental questions about their representation 
in the brain, such as whether they are spatially dissociable. Specifically, 
are different features of melody selectively encoded by distinct neural 
populations (20–21), or do the same populations jointly encode melodic 
features by modulating afferent pitch representations (22, 23)? This 

question has major implications for understanding how the brain 
represents information at different time scales within dynamic input 
streams (24).

In addition, the extent to which music is encoded by general au-
ditory mechanisms versus ones specialized for music remains debated 
(25–30). Recent work has found subregions in the human superior 
temporal gyrus (STG) that selectively respond to music over other 
sounds such as speech (31–33). While this is thought to reflect a 
specialized neural pathway for “music,” it remains unclear which 
musical properties drive this selectivity. Resolving this question is 
critical for understanding the nature and extent of specialization in 
the human brain for important domains of sound.

To address these questions, we used high-density electrocortico
graphy (ECoG) to record neural activity on the human cortical surface 
while Western participants listened to a set of Western monophonic 
musical phrases (see Materials and methods for stimulus details). 
These direct high-density recordings are necessary to resolve fine-
grained spatial tuning over millimeters of cortex to dynamic infor-
mation changing over milliseconds. Within auditory cortex, we 
characterized the encoding of melodic pitch, pitch-change, and 
expectation and determined the extent to which these properties 
were encoded within separate or overlapping neural populations. 
The same participants also listened to natural speech, and we deter-
mined whether melodic feature encoding was specific to music or 
shared across domains.

RESULTS
To examine the neural encoding of melody, we created a naturalistic 
stimulus set consisting of 208 short musical phrases of varied instru-
mentation (audio S1). Stimuli were designed to vary along three 
fundamental pitch-related dimensions (Fig.  1A): (i) the absolute 
pitch (based on the fundamental frequency; F0) of each note, (ii) the 
pitch-change between adjacent notes, and (iii) the expectation of 
each note conditioned on prior notes in the phrase. Expectation was 
calculated using a pretrained recurrent neural network [MelodyRNN; 
(34)] to estimate the surprisal of notes (negative log2 likelihood). 
Although these three measures are partially correlated, they contained 
sufficient independent variation for us to probe the extent to which 
they were independently encoded in the human auditory cortex 

1Department of Neurological Surgery, University of California, San Francisco, 675 
Nelson Rising Lane, San Francisco, CA 94158, USA. 2Department of Psychology, 
University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA.
*Corresponding author. Email: edward.​chang@​ucsf.​edu

Copyright © 2024 The 
Authors, some rights 
reserved; exclusive 
licensee American 
Association for the 
Advancement of 
Science. No claim to 
original U.S. 
Government Works. 
Distributed under a 
Creative Commons 
Attribution 
NonCommercial 
License 4.0 (CC BY-NC). 

mailto:edward.​chang@​ucsf.​edu


Sankaran et al., Sci. Adv. 10, eadk0010 (2024)     16 February 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

2 of 16

(fig. S1, Pearson’s correlation: pitch versus pitch-change: r =  0.14; 
pitch versus surprisal: r  =  −0.064; pitch-change versus surprisal: 
r = 0.025).

Eight participants listened to musical stimuli while we recorded 
ECoG activity from high-density arrays placed over the lateral surface 
of the cortex. To identify music-responsive cortical sites, we extracted 
the average high-frequency activity (HFA; 70 to 150 Hz) at each 
electrode during presentation of musical phrases (Fig.  1B). We 
observed activity primarily in the bilateral STG, spanning posterior 
to mid-anterior subregions. Across all participants, we identified 
224 electrodes with significant music-evoked responses relative to 
a silent baseline period (P < 0.01, Wilcoxon signed-rank tests, 
Bonferroni corrected).

Distinct neural populations encode pitch, pitch-change, and 
expectation in melody
Next, we examined the extent to which music-responsive neural 
populations encoded relevant melodic information. At three example 
electrodes, we aligned cortical activity to note onsets (Fig. 1C) and 
compared evoked responses to notes that had contrasting values of 
pitch (high versus low), pitch-change (ascending versus descending), 
or expectation (high versus low). At one electrode (Fig. 1C, left 
column), responses differentiated notes in distinct pitch ranges but 
did not differentiate notes with contrasting pitch-change or expectation 
values. At a different electrode (Fig. 1C, middle column), responses 
differentiated descending from ascending pitch-changes but not 
contrasts in either pitch or expectation. Last, at a third electrode 

Fig. 1. Melodic pitch, pitch-change, and expectation modulate STG activity during music listening. (A) Three melodic features visualized for an example melody: 
(i) Absolute pitch (measured in Hz), defined by the fundamental frequency (F0) of each discrete note. (ii) Pitch-change between adjacent notes. The magnitude of 
change (interval) is measured in semitones, while the direction of change (contour) is binary. (iii) Melodic expectation (measured in bits) indicates the surprisal of each 
note (negative log2 likelihood) conditioned on prior notes. Expectation was measured using a pretrained model of Western melody (MelodyRNN). (B) Electrodes across 
all participants (N = 8) plotted on a common brain. Color indicates the peak evoked high-frequency activity (HFA) averaged across all musical phrases. (C) Responses 
at three example electrodes demonstrating distinct tuning to pitch (left column), pitch-change (middle column), and expectation (right column). Each feature 
distribution is divided into two equal bins (median split). Traces indicate the mean ± SE of cortical responses within each bin. Black markers underneath traces indicate 
time points during which responses in the two bins significantly differed (P < 0.001; independent two-sample t test, Bonferroni corrected; marker size indicates 
t-statistic magnitude).
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(Fig. 1C, right column), responses differentiated the expectation of 
a note but not its pitch or pitch-change. These response patterns 
demonstrate the sensitivity of local neural populations to distinct 
dimensions of melody (see fig. S2 for all electrodes).

To quantify the encoding of these melodic dimensions at each 
electrode, we used temporal receptive field (TRF) modeling, which 
predicts continuous neural activity from a set of stimulus features 
(35). In addition to the three melodic features of interest, we included 
the stimulus spectrogram and temporal landmarks indicating phrase 
and note onsets as predictors in TRF models. The inclusion of these 
additional predictor variables statistically controls for the cortical 
processing of features unrelated to—but potentially correlated with—
pitch, pitch-change, and expectation (see fig. S3 for full TRF predictor 
matrix).

Across electrodes, melodic and acoustic features explained a 
substantial portion of the variance in neural activity [max R2 (co-
efficient of determination) = 0.35, mean R2 = 0.12], with the highest 
R2 values in an example participant located at cortical sites in the 
mid-to-anterior STG (Fig. 2A). Performance was particularly high 

relative to the upper limit defined by each electrode’s noise ceiling 
(36, 37), with models, on average, predicting 70% of the explainable 
variance.

To determine the extent to which specific melodic features were 
encoded in single electrode activity, we computed the unique variance 
(∆R2) explained by pitch, pitch-change, and expectation within TRF 
models (see Materials and Methods). Within the STG of individual 
participants, we found electrodes that significantly encoded all three 
features (P < 0.01, permutation tests). Crucially, encoding at single 
electrodes tended to be dominated by a singular melodic feature, 
with little-to-no encoding of the other two features (Fig. 2B).

Across all participants, the three melodic features were encoded 
within largely nonoverlapping subsets of electrodes, with 80% of 
electrodes significantly tuned to a singular feature. Directly comparing 
the encoding of pitch, pitch-change, and expectation across electrodes 
(Fig. 2C), we found that the ∆R2 attributed to any one feature was 
highly orthogonal to the ∆R2 attributed to the other two features 
(linear mixed-effects, random effects grouped by participant, all β 
not significantly different from zero, all t < 2.65, all P > 0.05). Thus, 

Fig. 2. Separate neural populations encode melodic pitch, pitch-change, and expectation. (A) Top: Distribution of TRF model and noise-corrected R2 values across 
electrodes. Noise-corrected values are obtained by dividing model R2 values by estimates of the noise ceiling. Bottom: Model R2 values (indicated by darkness of mark-
ers) and corresponding neuroanatomical locations for an example participant. (B) Unique variance (∆R2) explained by pitch, pitch-change, and expectation. Size of pie 
charts indicate the magnitude of ∆R2. (C) Scatter plots comparing ∆R2 explained by two given features. Electrodes are represented by markers and pooled across all 
participants, with colors indicating features with significant ∆R2 (permutation tests, P < 0.01). (D) Electrode locations along the posterior-anterior axis of each hemi-
sphere, normalized across participants to a common anatomical landmark. Marker size indicates normalized ∆R2. Vertical red lines indicate the weighted-mean location 
of feature encoding. Asterisks indicate significance level: **P < 0.01. (E) TRF weights for three example electrodes whose locations are shown in (B). Weights indicate 
tuning to low pitch (e1), ascending pitch-change (e2), and unexpected notes (e3). (F) Tuning to pitch. Matrix columns correspond to electrodes with significant ∆R2 
explained by pitch, ordered by F0 of peak response. Right: Orange markers indicate F0 at which peak response tuning is observed. (G) Tuning to pitch-change. Electrodes 
are grouped by clusters (k-means, k = 3) with colored bars above matrix indicating cluster membership. Right: Tuning profiles for electrodes within each cluster. Thin 
solid lines indicate individual electrode tuning. Thick dashed lines indicate linear functions fit separately on ascending and descending ranges of pitch-change. (H) Tun-
ing to expectation. Right: For each electrode, green markers indicate rank-order correlations between HFA and expectation across all notes. a.u., arbitrary unit. LH, left 
hemisphere; RH, right hemisphere.
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melodic features were not jointly encoded within the same neural 
populations. Rather, each feature was selectively encoded within a 
distinct subpopulation in the STG.

We next asked whether the distinct subpopulations responsible 
for encoding pitch, pitch-change, and expectation were anatomically 
organized. We found that the three features were represented within 
highly overlapping regions along the posterior-to-anterior axis of 
the STG (Fig. 2D; see Fig. 2B and fig. S3B for organization within 
individual participants). In the right hemisphere, pitch-change was 
encoded anterior to expectation (linear mixed effects, randomized 
block design, Bonferroni corrected: t31 = 3.50, P = 0.0056). Despite 
this spatial difference, the representation of melodic features did not 
strongly segregate into anatomically distinct subregions. Rather, the 
independent encoding of pitch, pitch-change, and expectation 
occurred in an interdigitated subject-specific spatial map across 
the STG.

Beyond determining whether auditory cortical populations encode 
important dimensions of melody, we sought to specify the format in 
which this information is coded. To answer this, we first inspected 
model weights (Fig. 2E) for three example electrodes that had signifi-
cant ∆R2 explained by pitch (e1), pitch-change (e2), and expectation 
(e3). Consistent with their corresponding ∆R2 values (Fig.  2C), 
weights were concentrated over a single feature at each electrode 
and revealed clear patterns of tuning to low pitch at e1, ascending 
pitch-changes at e2, and more unexpected notes at e3.

Next, we focused on the specific format in which pitch was coded. 
Across all electrodes with significant ∆R2 explained by pitch, we 
characterized patterns of response tuning by visualizing the modula-
tion in activity across the F0 range spanned by the stimulus (Fig. 2F). 
This revealed a diversity of broad tuning profiles, with maximal 
responses tiling the F0 range from low (90 Hz) to mid-high (300 to 
700 Hz) values.

While we used F0 as a proxy for pitch, pitch perception is influenced 
by several other acoustic properties that are correlated with F0 (38, 
39), including the centroids of the spectral and spectral-modulation 
profiles (r = 0.75 and r = −0.4, respectively, across all notes in the 
current stimulus). We therefore asked whether these two alternate 
spectral features could explain pitch encoding above and beyond the 
F0. First, we examined F0 tuning in different stimulus subsets with 
distinct spectral profiles. We found highly consistent F0 tuning across 
spectrally distinct stimuli (fig. S4). Next, we used a variance parti-
tioning approach to determine whether spectral modulations could 
explain neural responses better than F0. However, model R2 values 
were significantly higher when using F0 rather than modulations 
(t14 = 4.6; P = 3.9 × 10−4). In addition, F0 continued to explain ∆R2 
even when TRF models controlled for spectral modulations (fig. S5). 
Thus, while pitch perception is influenced by multiple acoustic 
attributes, the pitch encoding we currently observe is best accounted 
for by F0 and cannot be explained by the spectral profile or spectral 
modulations in the stimulus.

We next examined tuning across electrodes with significant ∆R2 
explained by pitch-change, visualizing the modulation in activity 
across the range of pitch-changes spanned by the stimulus (Fig. 2G 
and fig. S8A). Prior behavioral research suggests separability in the 
representation of a pitch-change’s precise magnitude (interval) and 
general direction (contour) (10, 12). In contrast, we found tuning 
patterns at local populations that represented both contour and 
interval information. Most electrodes (63%) had a rectified-linear tuning 
profile, with responses positively modulated by the magnitude of 

change within a given direction (ascending or descending) to which 
an electrode was selective (Fig. 2G, left and right clusters, k-means 
clustering). In addition, we found a smaller subset of electrodes that 
responded proportionally to interval magnitude regardless of direction 
(Fig.  2G, central cluster). Thus, STG populations tuned to pitch-
change represented both melodic contour and interval information.

Psychophysical evidence suggests that listeners detect pitch-
changes by tracking either the F0 of adjacent notes or their individual 
harmonic components (38, 40). We sought to determine which of these 
two possibilities drove the pitch-change tuning observed in ECoG 
activity. First, we divided the musical stimulus into two distinct subsets: 
one in which harmonics provided an unambiguous cue to the di-
rection of pitch-change, and another in which they did not (leaving 
only the F0 as a reliable cue; see Materials and Methods). Crucially, 
we found that tuning to pitch-change was consistent across these 
two subsets (fig. S6). To further dissociate harmonic cues from those 
based on the F0, we created two sets of artificial melodic stimuli. 
One set was composed of harmonic complex tones, while another 
comprised tones in which higher-order components were jittered, 
rendering them inharmonic and lacking a reliable F0. We identified 
an electrode at which activity was modulated by pitch-change in 
both original melodies and harmonic stimuli. Crucially, activity at 
this electrode was not modulated by pitch-change for inharmonic 
stimuli (fig. S7). Together, these findings suggest that the encoding 
of pitch-change in STG derives from the detection of changes in 
F0 across successive notes.

Last, we examined the encoding of expectation, which reflects 
the degree to which successive notes in melody conformed to or 
departed from sequential patterns and learnt structural rules of 
Western tonal music (fig. S9). Across electrodes with significant ∆R2 
explained by expectation, we consistently found a monotonic rela-
tionship, whereby more unexpected notes evoked stronger responses 
(Fig. 2H). These results demonstrate that, in higher-order auditory 
cortex, perception of melody recruits multiple anatomically and 
functionally independent subpopulations, each selectively tuned to 
information along a different pitch-related dimension, spanning 
basic spectral to time-integrated and statistical structure.

Music-selective activity reflects encoding of 
melodic expectation
Beyond identifying how relevant information is encoded, a major 
goal of auditory neuroscience is to determine the nature and extent 
of specialization in the human brain for music compared with other 
acoustically complex and behaviorally relevant sounds such as speech. 
While recent work has found subregions in the STG that are selec-
tively activated by music over other sounds (31–33), the underlying 
information to which these subregions are tuned remains unclear.

To address this question, we presented the same eight participants 
with naturally spoken English sentences (audio S2). We hypothesized 
that music selectivity reflects tuning to information that exclusively 
exists within music. Specifically, while pitch and pitch-change are 
acoustic properties that describe information that exists across 
different domains, melodic expectation describes the unique sequence 
structure of music. We therefore predicted that the degree to which 
populations selectively respond to music (over speech) directly reflects 
the extent to which they encode expectation.

To identify music selective electrodes, we first compared the rela-
tive magnitude of music and speech responses (Fig. 3A). From this, 
we derived a selectivity index (SI) ranging from −1 (speech selective) 
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to +1 (music selective), which quantifies the degree to which a given 
electrode preferentially responded to a given domain. While most 
electrodes responded to both music and speech, we nevertheless 
identified a substantial number of electrodes that were consistently 
and strongly selective for musical phrases over spoken utterances 
(Fig. 3B).

Anatomically, music-selective electrodes (defined as electrodes 
with SI > 0.2; see Materials and Methods) were widely distributed 
and interdigitated with other sound-responsive populations in the 
STG (Fig. 3C). The music selectivity of electrodes was independent 
of location in the right hemisphere (linear mixed effects, randomized 
block design, Bonferroni corrected: t123 = 1.97, P = 0.13) and weakly 
biased toward posterior regions in the left hemisphere (t130 = 2.45, 
P = 0.032). Further, within-subject comparisons revealed only one 
participant in which the spatial distribution of music selective elec-
trodes differed from that of nonselective electrodes (Wilcoxon rank 
sum tests, Z = −3.03, P = 0.014 in one participant, all other P > 0.05). 
Thus, we find little evidence for the clustering of music selectivity 
into a dedicated auditory subregion.

While the existence of music selective populations is consistent 
with prior studies (31), we next sought to evaluate our key hypothesis—
that music selectivity specifically reflects the encoding of melodic 
expectation. We visualized the strength of expectation encoding (∆R2) 
as a function of domain selectivity (Fig. 3D). Consistent with our 
hypothesis, electrodes that encoded expectation were almost exclu-
sively more responsive to music than speech. Furthermore, across 
all music-selective electrodes, the degree of expectation-encoding 
predicted the magnitude of music selectivity (Fig. 3E; partial corre-
lation, r = 0.31, P < 0.001, permutation test). In contrast, there was 
no systematic relationship between selectivity and the encoding of 
pitch or pitch-change (pitch: r = −0.02, P = 0.6, contour: r = 0.006, 
P = 0.47. fig. S10).

As linguistic sequences can also be characterized by their statistical 
structure, and prior studies have shown robust encoding of phoneme-
based expectation in the STG (41, 42), we next sought to test the 
analogous hypothesis for populations that were speech selective. 
Using the same TRF modeling approach as before, we quantified the 
encoding of a set of acoustically and perceptually relevant speech 

Fig. 3. Music selective activity reflects the encoding of melodic expectation. (A) Average music versus speech responses for all electrodes. Marker colors indicate SI. 
(B) Single-trial rasters for an example electrode that demonstrates selective responses to music (blue) over speech (red). (C) Anatomical location of music-selective electrodes 
(SI > 0.2; blue markers) indicating broad distribution throughout STG. Histograms indicate distribution of music-selective electrodes relative to all other electrodes along 
the posterior-anterior axis. Vertical red lines indicate median location of distributions. (D) Average music versus speech responses for electrodes that encode melodic 
expectation [axes are identical to (A)]. Marker size and color indicate ∆R2 explained by expectation in TRF models. (E) Colored crosses indicate the partial correlation 
between SI and encoding of pitch (orange), pitch-change (magenta), and expectation (dark green) across all electrodes with SI ≥ 0. Gray error bars indicate 95th percentiles 
of permutation tests. (F) Average music versus speech responses for electrodes that encode phoneme-based expectation in speech. Marker size and color indicate ∆R2 
explained by phonetic expectation in TRF models of speech-evoked activity. (G) Partial correlation between SI and speech encoding across all electrodes with SI ≤ 0. n.s., 
not significant.
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features in sentence-evoked activity (see Materials and Methods for 
details). Mirroring music, we found that phoneme-based expectation 
was encoded by speech selective electrodes (Fig. 3F), with the degree 
of encoding predicting the magnitude of speech selectivity (Fig. 3G; 
expectation: r = −0.42, P < 0. 001, pitch: r = −0.026, P = 0.65, contour: 
r = 0.054, P = 0.77). Thus, rather than a domain-general mechanism for 
representing auditory sequence statistics, the relevant statistics of music 
and speech are encoded within two independent substrates of the STG.

So far, results suggest that selectivity for music reflects the encoding 
of its higher-order sequence structure, rather than its lower-order 
acoustic properties. However, music has an acoustic structure that is 
inherently different from that of speech, particularly in terms of the 
spectral and temporal modulation patterns to which STG populations 
are sensitive (43–46). We therefore sought to explicitly test whether 
low-level acoustic differences—rather than expectation—explain 
music selectivity. To do so, we created a third stimulus that was 
acoustically identical to speech except that it contained the pitch 
structure of melody (Fig. 4, A to C, and audio S2 and S3). Specifi-
cally, for every speech utterance, we created a “melodic speech” 
counterpart by warping the continuous pitch within each syllable onto 
the nearest discrete Western musical-scale tone. This manipulation 
left all other acoustic features, such as vowel formants and amplitude 
envelopes, unchanged (compare Fig. 4, A and B). As a result, the 
spectrograms of speech and melodic speech signals were highly similar, 
with correlations close to 1 along both the spectral (r = 0.998) and 
temporal (r = 0.995) axis. For a subset of original sentences (118 of 
499), their melodic speech counterparts formed coherent Western 
diatonic melodies, which we determined using a musical key-finding 
algorithm (47, 48).

To evaluate the perception of melodic speech, an independent 
cohort of listeners (N = 11) rated the extent to which they heard a 
melody within each token on a scale ranging from 0 (sounds such as 
regular speech) to 10 (sounds such as a song). We found that all tokens 
were perceived to contain melody, albeit with wide variation in the 
degree to which this was the case (Fig. 4D). Furthermore, ratings were 
consistent across listeners (average inter-rater reliability: r = 0.35, 
P = 2.3 × 10−27, permutation test), suggesting that they served as a 
reliable proxy for the degree to which ECoG participants experienced 
melodic speech as melody.

A subset of ECoG participants (N  =  2) who previously heard 
music and speech stimuli were also presented with melodic speech. 
At music-selective electrodes, we first asked whether melodic speech 
elicited similar responses to music. If so, this would specifically 
implicate information imparted by the morphing of original speech 
into discrete musical tones—and not other spectrotemporal features—
as the basis of music selectivity. For an example music-selective 
electrode, melodic speech elicited robust responses that were qualita-
tively similar in magnitude to those evoked by music and stronger 
than those evoked by speech (Fig. 4E). Such an enhanced response 
to melodic speech versus regular speech was primarily observed at 
music-selective electrodes (Fig. 4F; one-sample t tests; music-selective: 
t11 = 3.99, P = 0.0011; shared: t46 = 1.12, P = 0.13; speech-selective: 
t35 = 0.27, P = 0.39) and was positively correlated with electrodes’ 
SI (r = 0.66; P = 1.8 × 10−6). Thus, inserting the pitch structure of 
melody into a stimulus that otherwise had the spectrotemporal 
characteristics of speech was sufficient to elicit music-like responses 
at music-selective electrodes.

We next asked whether enhanced responses to melodic (versus 
regular) speech specifically arose from the encoding of melodic 

expectation. Because listeners were unlikely to develop melodic 
expectations for stimuli that were not clearly perceived as melody, 
we first asked whether the magnitude of melodic-speech responses 
scaled with ratings of perceived melodiousness. At an example music-
selective electrode, we observed a positive correlation between ratings 
and responses (r  =  0.24; P  =  0.01; Fig.  4G). This correlation was 
observed across all music-selective electrodes (one sample t tests; 
t11 = 2.66, P = 0.011; Fig. 4H) but not at shared (t46 = 0.55, P = 0.29) 
or speech-selective electrodes (t35 = −1.96, P = 0.97). These results 
imply that music-selective responses were driven by information 
only available to the extent that stimuli were perceived as melody.

Last, to explicitly examine how responses to melodic speech were 
modulated by features of melody, we extracted the pitch, pitch-change, 
and melodic expectation of each token (again using melodyRNN to 
extract expectation). We divided the distribution of these three features 
into two equal bins (median split) and examined the corresponding 
neural responses in each bin. At an example music-selective electrode, 
responses to melodic speech were significantly modulated by expec-
tation (independent two-sample t tests; P < 0.05 from 90 to 210 ms 
after note onset). However, we only observed this modulatory effect 
for tokens that induced a relatively strong percept of melody (Fig. 4I, 
top versus bottom row). In contrast, responses were not modulated 
by pitch or pitch-change (independent two-sample t test, P > 0.05). 
Mirroring natural music, the degree to which expectation modulated 
melodic speech activity predicted electrode SI, while modulation due 
to pitch or pitch-change did not systematically vary with selectivity 
(partial correlations, significance evaluated via permutation tests; 
pitch: r = −0.011, P = 0.55; pitch-change: r = −0.11, P = 0.79; 
expectation: r = 0.28, P = 0.016; Fig. 4J). Together, the above results 
indicate that, when listening to both music and melodic speech 
alike, domain-selective activity specifically reflects the encoding of 
melodic expectation.

Encoding of pitch and pitch-change is shared across music 
and speech
Having established that the encoding of melodic expectation is 
functionally specialized for music, we next probed whether lower-
level dimensions of melody—pitch and pitch-change—are represented 
by domain-general populations using a shared neural code across 
music and speech. First, we characterized speech along dimensions 
that are acoustically equivalent to melodic pitch and pitch-change. 
To do so, we extracted the pitch contour of each sentence and computed 
the suprasegmental changes between the median pitch of adjacent 
syllables (Fig. 5, A and B). Although not identical, distributions of 
pitch and pitch-change were highly overlapping across the two 
domains (Fig. 5C).

Next, for electrodes that significantly encoded pitch or pitch-
change in music, we examined the extent to which they encoded 
information along the same dimension of speech. As with music, we 
computed the unique variance (∆R2) explained by each feature 
within TRF models of speech-evoked activity. We then directly 
compared ∆R2 values across the two domains (Fig. 5D). We found 
strong correlations in the extent to which electrodes encoded either 
pitch (r = 0.82, P = 2.3 × 10−4) or pitch-change (r = 0.79, P = 3.1 × 
10−8) across the two stimulus domains, indicating that neural 
populations strongly tuned to a given dimension of melody were 
generally tuned to the same dimension of speech.

While the above findings suggest that the same populations 
encode pitch and pitch-change across domains, we next probed the 
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Fig. 4. Music selectivity is independent of low-level spectrotemporal properties. (A) Spectrogram of an example speech token. Overlaid blue lines indicate pitch 
contour. Dark red lines above and to the right indicate temporal and spectral envelopes respectively. (B) Melodic speech spectrogram for the same token as in (A), 
illustrating a similar spectrotemporal structure to speech. Musical notation underneath indicates the discrete musical pitch of each syllable. (C) Pitch distributions 
show that melodic speech discretizes syllabic pitch to the nearest Western musical note. (D) Left: Distribution of mean ratings indicating the extent to which indepen-
dent listeners (N = 11) heard each melodic speech token as melody. Red dashed lines indicate 5th, 50th, and 95th percentiles of distribution. Right: Inter-rater reli-
ability. (E) Mean evoked responses to music, speech, and melodic speech at a music-selective electrode. Responses are time-locked to the onset of tokens (music 
phrases or sentences) and averaged across all tokens. (F) Response difference indicating the extent to which melodic speech elicited larger responses than speech 
across electrodes split into speech-selective (SI < −0.2), shared (−0.2 < SI < 0.2), and music-selective (SI > 0.2) bins. Marker colors indicate electrodes’ SI. (G) Scatter 
plot showing correlation between the peak response to melodic speech (x axis) and perceptual ratings (y axis) across all tokens for the same electrode as (E). 
(H) Response-rating correlations across all electrodes split into the same selectivity-dependent bins as in (F). (I) Tuning to melodic features within melodic speech for 
the same music-selective electrode as (E). Tuning is computed separately for tokens perceived more (top row) and less (bottom row) like melody. Responses are 
grouped based on the median split along each feature dimension. (J) Colored crosses indicate partial correlations between SI and the modulation of melodic speech 
responses by melodic features. Gray bars indicate the 95th percentiles of permutation tests.
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extent to which these populations represented information using 
a domain-general neural code. We computed tuning curves for the 
overlapping range of pitch and pitch-change across music and 
speech. This overlapping range spanned from 80 to 265 Hz for pitch, 
and −4 to +4 semitones for pitch-change (Fig. 5C). Both within 
and across electrodes, tuning profiles were highly correlated 
across domains for pitch (r = 0.70, P = 1.6 × 10−27; Fig. 5E, top) and 

pitch-change (r = 0.82, P = 1.6 × 10−74; Fig. 5E, bottom), indicating 
a highly conserved neural code across music and speech.

To further quantify the extent of domain generalization, we first 
trained linear classifiers to decode pitch (Fig. 5F, top) or the direction 
of pitch-change (Fig.  5F, bottom) from electrode activity pooled 
across participants. We trained separate classifiers to decode infor-
mation in music and speech activity. We then tested these classifiers 

Fig. 5. Shared representations of pitch and pitch-change across music and speech. (A and B) Pitch and pitch-change representations for example music and speech 
tokens. Orange lines indicate pitch contours overlaid on stimulus spectrograms. Pitch-change in speech is based on differences in median syllabic pitch, specified at syllable 
onsets. (C) Partially overlapping pitch (top) and pitch-change (bottom) distributions in music and speech. Red boxes indicate overlapping regions of feature space. (D) ∆R2 
explained by pitch (top) and pitch-change (bottom) in TRF models of music (x axis) versus speech (y axis). (E) Tuning curves for pitch (top) and pitch-change (bottom) 
within music and speech. Tuning is characterized for every pitch or pitch-change encoding electrode (x axis) across the overlapping range of feature-space found in music 
and speech (y axis). For pitch, columns are ordered by the F0 corresponding to peak HFA in music. For pitch-change, columns are ordered by increasing HFA difference 
between ascending and descending changes. (F) Linear classification accuracy when decoding pitch (top) or the direction of pitch-change (bottom) from corresponding 
neural activity across electrodes. Classifiers are trained and tested on neural activity either within (darker colored bars) or across domains (lighter colored bars). Errors indicate 
95% distribution of bootstrap tests. Horizontal black lines indicate chance accuracy.
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using activity from either the same domain (darker bars) or the op-
posite domain (lighter bars) to the one in which they were trained. 
As expected, within-domain decoding accuracy was well above 
chance for both features (bootstrap tests, all P < 0.001). Crucially, 
when decoders were tested across domains, accuracy remained well 
above chance for both pitch and pitch-change (bootstrap tests, all 
P < 0.001). In particular, for pitch-change, within and across domain 
decoding did not significantly differ (bootstrap difference tests: music 
generalization, P = 0.07; speech generalization, P = 0.42). Thus, in 
contrast to the encoding of melodic expectation, lower-level properties 
of melody are represented by general-purpose auditory populations 
using a neural code that is highly generalizable to speech.

DISCUSSION
While neuroimaging research has long implicated the STG in the 
perception of melody (49–52), the specific information represented 
in this region has remained unclear. Using high-density direct record-
ings from the human auditory cortex, we demonstrated the extrac-
tion of multiple perceptually critical features of melody. Furthermore, 
comparing the neural encoding of music with speech, we revealed 
how this process recruits both music-specialized and general-purpose 
mechanisms.

We showed that the STG contains a spatial map for representing 
different pitch-based properties of melody, consistent with a model 
in which distinct types of information are processed in dissociable 
pathways (19–21). The fact that pitch, pitch-change, and expectation 
are not jointly encoded is notable, given that each progressively 
higher-order feature derives from the temporal integration of lower-
order features. Such a spatial code may arise via parallel projections 
from earlier cortical or subcortical regions (53). Future work should 
identify the inputs to each subpopulation to explicitly determine the 
network architecture supporting perception.

Current findings also clarify the nature and extent of specialization 
for music in the human brain. Previous research has found music-
selective cortical activity (31–33, 46), yet the stimulus information 
driving this activity has remained unclear. Here, we showed that music-
selectivity is systematically driven by the encoding of melodic expec-
tation. This encoding occurred in a format consistent with predictive 
coding theory, whereby more unexpected notes evoked larger re-
sponses (18, 54–56). Our results thus demonstrate functional spe-
cialization in the human brain for encoding the statistical structure 
of a behaviorally relevant domain of sound. Future work should 
determine the degree to which this encoding is bottom-up, reflecting 
regularities within recent stimulus history, versus top-down, poten-
tially requiring feedback from higher-order cortical regions (57).

Last, we revealed the extent to which auditory representations 
are shared across music and speech. Decades of neurophysiological 
work in nonhuman animals has characterized the encoding of pitch 
agnostic to sound domain (58, 59). More recently, human electro-
physiology has examined the encoding of pitch within the domain 
of speech (19, 60). Despite these advances, a cross-domain comparison 
to evaluate the extent to which music and speech recruit shared 
auditory representations has been outstanding. Evidence from be-
havioral and lesion studies has been conflicting, with research pro-
viding evidence for both shared (27, 61–62) and domain-specific (63) 
mechanisms. Leveraging the spatiotemporal resolution of ECoG, we 
provided direct evidence that STG representations of pitch and pitch-
change are largely shared across domains. These domain-general 

representations localized to anterior regions of the STG, consistent 
with prior reports of pitch-sensitive cortical regions (64).

Perception of melody requires the successful extraction of multiple 
features from a dynamic acoustic signal. Correspondingly, we have 
shown that melody is not processed by a single monolithic region. 
Rather, leveraging both general-auditory and music-specific mecha-
nisms, different neural subpopulations across a spatial map encode 
distinct melodic features, spanning basic spectrotemporal to time-
integrated and statistical structure.

MATERIALS AND METHODS
Participants
Eight patients undergoing treatment for intractable epilepsy par-
ticipated in the study (see table S1 for demographic and clinical 
information). One additional patient participated in a control experi-
ment involving presentation of harmonic or inharmonic complex 
tones (see below) and was also presented with a partial dataset of 
music (three of the six blocks). Participants were implanted with 
4-mm-spaced subdural electrode grids unilaterally over peri-Sylvian 
regions for clinical monitoring of seizure-related activity. Grid place-
ment was determined solely by clinical considerations. One patient 
reported a history of tinnitus while all others reported having normal 
hearing. All patients were nonmusicians with the extent of prior formal 
musical training ranging from 0 to 8 years (table S1). All participants 
provided written informed consent before experimental testing. The 
study was approved by the University of California, San Francisco 
Committee on Human Research.

Software
Analyses were carried out using custom-written scripts in MATLAB 
2016b (MathWorks; www.mathworks.com) and Python. Cortical sur-
face reconstruction was performed using Freesurfer and electrodes 
were localized using a Python package (img-pipe). Melodic ex-
pectation was extracted using publicly available Python toolboxes 
(https://github.com/magenta/) (34). All other melodic features were 
extracted in MATLAB using the music information retrieval toolbox 
(65) and custom-written scripts. Melodic speech stimuli were created 
by manipulating the pitch of speech stimuli in Praat (66). Syllable 
onsets and offsets in speech were detected using a forced aligner 
(https://babel.ling.upenn.edu/phonetics).

Stimuli and procedure
All participants passively listened to natural music and speech stimuli, 
while we recorded ECoG activity. Two of these participants addi-
tionally listened to a control stimulus, which we refer to as melodic 
speech. All stimuli were delivered through free-field speakers from 
a Windows laptop at a sample rate of 44.1 kHz (melody) or 16 kHz 
(speech and melodic speech).
Music
A stimulus set comprising 214 distinct monophonic musical phrases 
(total duration  =  23.4  min, mean phrase duration  =  6.57 s) was 
compiled by sampling directly from natural solo instrumental re-
cordings. Six purely percussive phrases were excluded from analysis. 
Remaining phrases comprised 4578 discrete notes, with a mean 
density of 3.4 notes/s. Phrases collectively featured 18 different 
Western instruments in genres broadly categorized as classical, jazz, 
or folk (see table S2 for example of source material). Phrases were 
presented in pseudorandom order and separated by silent intertrial 

https://babel.ling.upenn.edu/phonetics
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intervals ranging from 0.7 to 1.5 s. Participants heard each phrase 
once, with data collected across five separate listening blocks that 
each lasted approximately 4 min. An additional block contained 
10 repetitions of 10 phrases. Musical phrases were chosen to avoid 
well-known melodies, and participants reported being unfamiliar 
with most phrases.
Speech
Speech stimuli comprised a selection of 499 English sentences from 
the TIMIT corpus (67), spoken by a variety of male and female 
speakers with regional North American accents. Speech stimuli 
were presented to participants in a similar fashion to music—in 
pseudorandom order across four separate listening blocks with an 
additional block containing 10 repetitions of 10 sentences. Sentences 
had a mean duration of 2.05 s (SD = 0.4).
Melodic speech
Melodic speech control stimuli were created by altering the pitch of 
TIMIT tokens while leaving all other spectrotemporal features of speech 
intact. To create melodic speech, we first calculated the median pitch 
of each syllable and identified the closest Western musical pitch. We 
then warped each syllable’s continuous pitch onto its nearest discrete 
musical value, thereby transforming each syllable into a discrete 
musical pitch event (Fig. 4, A to C). To verify that this process did 
not significantly change the spectrotemporal structure of speech, we 
compared the spectral and temporal profiles of melodic speech and 
speech. Specifically, to compare temporal structure, we averaged 
power across all frequency bands of the spectrogram to extract the 
temporal envelope for every token. We concatenated all tokens into 
two vectors for speech and melodic speech, respectively, and com-
puted their linear correlation. As expected, temporal envelopes were 
nearly identical (r = 0.995). To compare spectral structure, we con-
catenated power across frequency bands at every time point in the 
spectrograms into two vectors for speech and melodic speech, re-
spectively. Spectral envelopes were strongly correlated (r = 0.998). 
To evaluate whether melodic speech generated coherent melodies, 
we first applied an automatic musical key-finding algorithm to each 
token (47, 48). This algorithm returns a series of 24 correlation coef-
ficients, indicating the extent to which the sequence of pitches aligns 
with the canonical pitch distributions of the 24 Western diatonic keys 
(12 major and 12 minor). We retained tokens with a maximum 
correlation coefficient greater than 0.6, resulting in 118 melodic 
speech tokens. For comparison, the mean correlation coefficient 
when applying key finding to the natural musical stimuli was 0.77 
(SD = 0.11). To encourage listeners to process melodic speech in a 
musical manner, and thus generate melodic expectations, we pre-
sented melodic-speech tokens grouped by their tonality and primed 
the first token within each tonality with a diatonic triad chord indi-
cating the tonality. The duration of the entire melodic speech stimulus 
was 3 min.
Harmonic and inharmonic tones
For a subset of the original music stimulus (47 of 214 phrases), we 
used the F0 and note durations of melodies to generate synthesized 
tone sequences. This subset was pseudo-randomly chosen, such that 
it contained pitch and pitch-change ranges representative of the entire 
musical stimulus. We synthesized two versions of each melody, one 
consisting of harmonic tones and the other consisting of inharmonic 
tones. Each tone consisted of six harmonic components including 
the F0 with the relative power of each component preserved from 
original melodies. We applied a tapered cosine window to each tone 
with 10-ms onset and offset ramps. To create inharmonic tones, we 

followed the identical procedure to that used in (38, 40). Specifically, 
we jittered the frequency of each harmonic, excluding the fundamental, 
by a random amount chosen from the uniform distribution U(−0.5, 
0.5). This value was multiplied by the F0 and added to the frequency 
of the respective harmonic. To reduce beating, jitter values were fur-
ther constrained, such that all frequency components were separated 
by at least 30 Hz. For a given melody, the same profile of jitter values 
was applied to every note.

Melodic feature extraction
Note onset times and their corresponding absolute pitch values were 
extracted using the Music Information Retrieval toolbox (65) and 
verified manually. Pitch-change was then calculated by subtracting 
the pitch value of the previous note from that of the current note and 
expressed in semitones. To extract melodic expectations, we used a 
recurrent neural network model (MelodyRNN; https://github.com/
magenta/) that applies natural language modeling approaches to model 
melodic sequence structure. We used an off-the-shelf implementation 
in which the model was pretrained on a large corpus of approximately 
45,000 Western popular melodies pulled from the Lakh MIDI dataset 
(https://colinraffel.com/projects/lmd/). The model was trained with 
the following parameters: learning rate = 0.001, batch size = 128, 
number of layers = 2 × 512 nodes, attention length = 40, and drop-
out rate = 0.5. Internal model weights were optimized during training 
to maximize the probability mass assigned to the note occurring at 
tn+1 given the pitch and duration of previous notes from t1:n.We 
used the “Attention” configuration of melodyRNN [see (34, 68) for a 
detailed explanation], which enables the model to learn long-term 
dependencies characteristic of music that traditional Markov-based 
approaches fail to capture (69). For all phrases in the current stimulus 
set, MelodyRNN was used to calculate the surprisal of each note, 
defined as the negative log probability of the note e that occurred at 
position i, given the MIDI pitch and duration (quantized to the 
nearest 16th note) of preceding notes in the melody

We also computed the uncertainty of the melody at each time 
step, which is defined as the entropy of the probability distribution 
over an alphabet of K = 120 possible notes

Surprisal and uncertainty are complementary measures in that 
the former indicates the extent to which an event deviated from pre-
existing expectations, while the latter conveys the specificity of those 
expectations in anticipation of the event. While these measures are 
highly correlated (r = 0.32, P < 0.001; fig. S1) and produced similar 
patterns of neural tuning (fig. S3C), we found that surprise modulated 
evoked responses to a greater degree than uncertainty (fig. S2). While 
MelodyRNN has been found to generate realistic melodies (34, 68), 
we sought to validate its ability to accurately model listeners’ expec-
tation. To do so, we also computed expectation using a traditional 
Markov approach (70). Values obtained using the two different 
modeling approaches (MelodyRNN versus Markov-based) were 
correlated (surprise: r  =  0.59, P  <  0.001; uncertainty: r  =  0.38, 
P < 0.001); however, we found that MelodyRNN explained a greater 
amount of variance in neural activity than Markov-based estimates 

Surprisal(ei) = − log2p(ei∣e1, … , ei−1)

Uncertainty(ei)= −
∑

e∈K

p(ei∣e1, … , ei−1)log2p(ei∣e1, … , ei−1)
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(t = 4.48; P = 1.01 × 10−5), which may reflect its ability to model 
long-distance dependencies as noted above.

Neural recordings and preprocessing
ECoG activity was acquired at a sampling rate of 3051.8 Hz using 
either a 256-channel PZ2 amplifier or 512-channel PZ5 amplifier 
connected to an RZ2 digital acquisition system (Tucker-Davis Tech-
nologies, Alachua, FL, USA). We recorded the local field potential of 
each electrode and removed line noise using notch filters at 60, 120, 
and 180 Hz. Bad channels with variance indistinguishable from noise 
or continuous epileptiform activity were removed, and time segments 
on remaining channels that contained electrical or motor artifacts 
were marked and excluded. We used the log-analytic amplitude of the 
Hilbert transform to filter the signal into eight log-spaced bands in 
the high-gamma range from 70 to 150 Hz and took the first principal 
component across these bands to extract stimulus-related activity 
(71, 72). The resulting HFA was downsampled to 100 Hz. When 
fitting TRF models, we normalized activity by subtracting the mean 
and dividing by unit variance (i.e., the z score) using activity across 
entire recording blocks. In general, for naturalistic stimuli such as 
music, we have found that this normalization approach yields high-
er TRF performance and more stable weights than normalizing to a 
local baseline. However, for analyses involving the comparison of 
activity across stimulus domains (for instance, when deriving the 
SI), signals were renormalized relative to the mean and SD of a 
500-ms silent period preceding each individual token. This was done 
to account for the unequal stimulus-to-silence ratio of music and 
speech blocks, ensuring that activity was normalized to an unbiased 
baseline across different listening domains. We verified that this 
approach produced equal prestimulus baseline HFA values across 
music, speech, and melodic speech (e.g., Fig. 4E).

Electrode localization
Electrodes were localized on each participant’s brain by coregistering 
the preoperative structural T1 magnetic resonance imaging (MRI) 
with postoperative tomography scans. Locations were superimposed 
onto a three-dimensional reconstruction of each patient's cortical 
surface using a custom-written imaging pipeline (73). For localizing 
electrodes on a common atlas across patients, we used a nonlinear 
alignment procedure described in (73) to warp electrode locations 
from the patient’s native space to the cvs_avg36_inMNI152 tem-
plate (74).

Electrode selection
We first aligned continuous ECoG activity to the onset of musical 
phrases and viewed the peak of each electrode’s evoked response, 
averaged across all phrases, on a common brain map (Fig. 1B). To 
screen for music-responsive electrodes, we applied a statistical test 
comparing the activity at each time point during sound presentation 
to activity during a silent period preceding each phrase (signed-rank 
P < 0.05; Bonferroni correction for multiple time points and electrodes). 
Electrodes with a significantly higher magnitude of activity during 
sound presentation than baseline for a continuous window of at least 
200 ms were considered responsive and included in subsequent analyses 
(n  =  224 music-responsive electrodes across eight participants). 
The same statistical procedure was applied for evaluating speech-
responsive sites, and we included the union of music and speech-
responsive electrodes (n = 342) in all cross-domain analyses (Figs. 3, 
4, and 5). For an additional participant presented with synthesized 

harmonic/inharmonic tones, we identified sound-responsive elec-
trodes using the same procedure as above (n = 7 electrodes).

Single-electrode sensitivity to contrasts in melodic features
To directly visualize whether responses at individual electrodes were 
sensitive to the pitch, pitch-change, or expectation of notes, we 
divided each feature’s distribution into two equal bins (median split) 
and examined the corresponding cortical activity within each bin 
during the epoch from 100 ms before to 400 ms after the onset of 
notes (Fig.  1C). To limit intrinsic correlations that exist between 
pitch and pitch-change (r = 0.14, P < 0.001; fig. S1), we excluded 
notes from the upper and lower quartile of the pitch distribution 
from this analysis only (we later use TRF modeling to overcome the 
issue of correlated features). Binned responses at each time point 
were compared using independent two-sample t tests (P <  0.001, 
Bonferroni corrected for time points, temporal threshold > 50 ms). 
The above procedure was applied for every electrode to understand 
how activity was modulated by each melodic feature (fig. S2).

TRF modeling of music evoked activity
To further quantify the extent to which different sources of melodic 
information were encoded in continuous activity at each electrode, 
we fit linear TRF models. We discretized the pitch, pitch-change, 
and expectation of each phrase into N bins (see below), with each 
bin forming a unique row in the [features × time] stimulus matrix. 
We used binary predictors that were sparsely coded at note onsets to 
specify a given feature’s value (see fig. S3A). For pitch, we discretized 
values into 24 equally spaced (in log-hertz space) bins between the 
5th and 95th percentile of the pitch distribution. Pitch values in the 
lowest and highest 5% of the distribution were placed into the first 
and last bins, respectively. By defining these percentile bounds, we 
prevent unstable estimates that can occur when extreme bins contain 
too few data points. The number of bins was chosen such that the 
lowest 12 pitch bins overlapped with the pitch distribution in speech 
(see below). We used the same approach to discretize both surprisal 
and uncertainty into eight bins. For pitch-change, the distribution in 
music is naturally discretized into semitone bins. To avoid bins with 
little data points, we created distinct bins for each pitch-change 
between [−5, +5] semitones and placed pitch-changes lower or 
higher than −5 and  +5 semitones, respectively, in two additional 
bins. In addition to modeling neural responses to the three melodic 
features, the full TRF model also included the auditory spectrogram 
(a peripheral stimulus representation), which we extracted using the 
NSL toolbox (75) and downsampled to 25 logarithmically spaced bands 
spanning six octaves between 0.08 and 8 kHz. We also included two 
binary predictors specifying the onset location of phrases and notes, 
respectively. These temporal landmark features allow us to statistically 
control for the contribution of onset-from-silence responses (76) and 
the presence or absence of a note when evaluating the contribution of 
specific melodic information. Last, we included a sparse predictor at 
note onsets that specified the number of times a note with the same 
pitch had consecutively occurred previously within the phrase. This 
“note repeat” predictor controls for the effects of stimulus specific 
adaptation that may be confounded with low expectation contexts. 
Before fitting, predictors were scaled between 0 and 1 by dividing them 
by the magnitude of the maximum value in each bin. This ensured 
that all estimated beta values were scale free and comparable across 
predictors, with beta magnitude being an index for the contribution 
of a predictor to model performance.
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Neural activity at each time point HFA(t) was modeled as a 
weighted linear combination of features of the stimulus X within a 
window spanning t − 400 ms to t + 100 ms. For each feature f, this 
resulted in a set of weights, b1…,d, with d = 50 for a sampling frequency 
of 100 Hz across the 500-ms window (Fig. 2B and fig. S3).

Models were estimated separately for each electrode using L2 
regularization (ridge regression) and fivefold cross-validation. For 
each cross-validation fold, we trained models on 80% of the data and 
evaluated them on the held out 20%. The regularization parameter 
was estimated using a 10-way bootstrap procedure within each 
training fold before a final value was chosen as the average optimal 
value across folds. Model performance was evaluated as the Pearson’s 
correlation between actual and predicted brain responses. These 
correlations were squared to obtain the R2, a measure of the portion 
of variance in neural activity explained by the model (Fig. 2A and 
fig. S3).

Noise ceiling
To evaluate how well TRF models performed relative to an upper 
limit on explainable variability, we computed the noise ceiling for 
each electrode using the adjusted split-half correlation approach 
(36, 37) applied to a subset of musical phrases that were repeated 
11 times to participants. First, we randomly split trials into two 
groups and computed the R2 value between the averages of the two 
groups. We repeated this process many times to obtain an average of 
the distribution of values, which we inserted into the equation

where M represents the number of stimulus repetitions. We divided 
true TRF R2 values by these noise-ceiling estimates to obtain the 
distribution of noise-corrected R2 values (Fig. 2A).

Variance partitioning of TRF models
To estimate the contribution of a specific feature to the full TRF 
models (Fig. 2, B and C), we computed its unique variance explained 
(∆R2). For a given feature of interest G, we fit a reduced TRF model 
that predicted neural activity using all features except G. We then 
evaluated the unique variance explained by G as the difference in R2 
between the full and the reduced models

The unique variance explained by expectation was estimated as 
the combined contribution of both surprisal and uncertainty. The 
significance of each feature’s unique variance contribution was cal-
culated using a permutation test. Specifically, we shuffled the rows of 
the predictor matrix corresponding to a feature of interest, leaving 
all other rows (corresponding to other features that were not being 
tested) intact. We then fit a TRF model to the permuted predictor 
matrix. Repeating this procedure 200 times, we arrived at a null distri-
bution. True ∆R2 values that fell above the 95th percentile of these 
permuted ∆R2 values were considered significant.

Independent encoding of melodic features
To determine whether the three melodic features were encoded by 
overlapping or independent neural populations, we directly compared 
encoding using linear mixed-effects models. Specifically, for each of 
the three electrode subsets that significantly encoded pitch, pitch-
change, and expectation, respectively, we modeled the response 
variable as the encoding (∆R2) of a given feature. We included fixed-
effects terms for the encoding of the other two features and random 
effects for the intercept and slope grouped by participant. Inclusion 
of these random effects terms ensured that results were not driven 
by unequal representation of a given participant in pooled data.

To examine whether the encoding of pitch, pitch-change, and 
expectation was spatially organized along the STG (Fig. 2D), we 
extracted electrode locations along the posterior-anterior axis of the 
brain and normalized each participant’s locations to the point at 
which the central sulcus meets the sylvian fissure. Normalizing to a 
common anatomical landmark avoids warping individuals' electrode 
locations to a common brain, better preserving the relative spatial 
differences in the encoding of each feature. Within each hemisphere, 
we assessed whether the distribution of electrodes encoding different 
features differed in their posterior-to-anterior location using linear 
mixed-effects models with a randomized block design in which blocks 
correspond to participants.

Melodic feature tuning
For electrodes that significantly encoded a melodic feature (based 
on TRF ∆R2), we sought to further characterize their tuning patterns—
that is, the format by which information was encoded. In addition to 
inspecting corresponding TRF weights (Fig. 2E), we examined tuning 
patterns in the raw HFA using the same bin edges as that used in 
constructing TRF stimulus matrices. To produce time-collapsed 
tuning matrices (Fig. 2, F to H), we estimated each electrode’s peak 
encoding latency K relative to the onset times of notes in the stimulus. 
This estimate was based on the lag at which the magnitude of TRF 
weights was maximal. For every musical note onset at time t, we 
then binned the HFA at time t + K. Responses in each bin were then 
averaged, and tuning across bins was normalized by removing the 
mean and dividing by unit variance.
Tuning to pitch
To further quantify tuning across pitch-encoding electrodes, we cal-
culated the F0 corresponding to the peak-HFA in tuning curves for 
each electrode (Fig. 2F, right). While we used F0 as a proxy for pitch, 
to examine whether pitch tuning could be explained by other acoustic 
variables that are correlated with F0, we examined how tuning was 
impacted by the spectral profile (fig. S4) or the spectral modulation 
profile (fig. S5) of notes. To dissociate between the spectral profile 
and F0, we examined pairs of note clusters that spanned comparable 
pitch ranges but differed in their spectral profiles (fig. S4, B and C). 
This was achieved by grouping notes by instrument or by manually 
selecting clusters of notes with anticorrelated spectral profiles across 
fixed F0 ranges. For every electrode, we characterized F0 tuning sepa-
rately within each cluster, and correlated the two resulting F0-tuning 
curves (fig. S4E). To test whether F0 tuning could be explained by 
tuning to rates of spectral modulation, we first extracted the spectral 
modulation profile of notes using the nsltoolbox (75) using 16 bins 
between 0.25 and 4 octaves per cycle. We then fit a TRF model that 
included these 16 spectral modulation bins as predictor variables 
along with other melodic and acoustic predictors. We assessed 
whether replacing F0 with spectral modulation predictors could 
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yield comparable model R2 values (fig. S5C). We also assessed whether 
F0 was able to explain unique variance in the models above and 
beyond what spectral modulation variables could explain (fig. S5D).
Tuning to pitch-change
For pitch-change encoding electrodes, we used k-means clustering 
to group electrodes with similar tuning profiles (Fig. 2G, right). We 
chose k = 3 as this produced distinct and interpretable clusters. We 
sought to determine whether the encoding of pitch-change relied on 
tracking F0-changes versus changes in individual frequency com-
ponents. We took two complementary approaches to address this 
question. First, we asked whether tuning to pitch-change was depen-
dent on whether high-order frequency components (above the F0) 
provided a reliable cue to pitch-change direction (fig. S6). We classified 
every pitch-change in the music stimulus based on whether com-
ponents (excluding F0) provided an unambiguous versus ambiguous 
cue to the direction of pitch-change. To classify a pitch-change as either 
ambiguous or unambiguous, for every harmonic component of a given 
order, we determined whether the most proximate component (in log-
hertz space) within the next note had the same or different order. 
Pitch-changes in which at least 50% of all nearest components were 
of a different order were classified as ambiguous. Consistent with 
prior research, we found ambiguity primarily at interval magnitudes 
greater than three semitones (38). In a second approach, we analyzed 
neural data from one participant presented with synthesized melodies 
composed of either harmonic or inharmonic tones in addition to 
music (fig. S7). Because of limited electrode coverage over auditory 
regions, we found relatively few sound-responsive electrodes (n = 7; 
see electrode selection procedure above). We compared evoked 
responses to ascending versus descending changes across all three 
conditions (music, harmonic, and inharmonic; independent two-
sample t tests, P < 0.05, temporal threshold > 50 ms). In addition to 
pitch-change, we identified one electrode at which responses were 
significantly modulated by F0 in music and harmonic tone conditions 
(Pearson’s correlation between F0 and HFA r > 0.2 for both conditions, 
P < 0.001) but not the inharmonic condition (r = 0.04, P > 0.05). No 
electrodes were significantly modulated by expectation across all 
three conditions (independent two-sample t test on median-split 
responses, all P > 0.05).
Tuning to expectation
For expectation encoding electrodes, we tested for monotonic encoding 
by computing the rank order correlation between the response to each 
note and its corresponding expectation value (Fig.  2H, right). To 
further visualize tuning, we divided the distribution of expectation 
into four equal-spaced bins and plotted the corresponding neural 
responses across time in each bin (fig. S9A).

Domain selectivity
To characterize the extent to which activity at each electrode was 
stronger for music or speech (Fig. 3A), we derived a domain SI ranging 
from −1 (speech selective) to +1 (music selective). For each electrode, 
we concatenated activity evoked during the first second of music 
and speech tokens, respectively, into two vectors, which we then 
compared using an independent two-sample t test. We used the 
resulting test statistic as a proxy for domain selectivity, normalizing 
values so that the largest magnitude across all electrodes was equal 
to 1. To determine whether music selectivity was anatomically clustered 
(Fig.  3C), we extracted electrode locations along the posterior-
anterior axis of the brain and normalized each participant’s locations 
to the point at which the central sulcus meets the sylvian fissure. 

Within each hemisphere, we then compared the location of music-
selective electrodes (SI > 0.2) with that of all other electrodes (SI < 0.2) 
using linear mixed-effects models with a randomized block (where 
blocks correspond to participants). We further conducted within-
participant comparisons of the location of music-selective versus 
nonselective electrodes using Bonferroni-corrected rank sum tests. 
To ensure results were not an artifact of the SI threshold of 0.2, we 
repeated these analyses using a cutoff value of 0.33 and verified that 
results remained unchanged. Specifically, linear mixed-effects analyses 
confirmed that music-selective electrodes did not anatomically differ 
from other electrodes in both left (t  =  1.15, P  =  0.25) and right 
(t = 0.23, P = 0.82) hemispheres, and all within-subject comparisons 
between the two distributions were insignificant (P > 0.1, ranksum 
tests). Last, we conducted a power analysis to examine whether the 
absence of evidence for a music-selective region was due to limitations 
in sample size. On the basis of prior work showing the existence of 
an anterior music-selective patch of STG, we estimated a 20-mm 
difference in the mean location of music-selective versus nonselective 
electrode distributions along the posterior-anterior axis. From initial 
pilot data collected from two participants, we estimated a 1:7 ratio of 
music-selective to nonselective electrodes (which closely approximated 
the eventual ratio of 47 of the 342 electrodes). We used an alpha = 0.05 
and statistical power  =  80%. Power analyses revealed that nine 
music-selective and 63 nonselective electrodes was sufficient to 
achieve statistical power. Because our empirical sample size exceeded 
this in both hemispheres (left hemisphere = 23 music selective, 194 
nonselective; right hemisphere = 24 music selective, 101 nonselective), 
we concluded that the current sample sizes were sufficient.

Relationship between melodic feature encoding 
and selectivity
To determine whether music-selectivity was explained by the en-
coding of pitch, pitch-change, or expectation, we computed the partial 
correlation between the ∆R2 explained by each feature and the SI 
across all electrodes with SI > 0 (Fig. 3E and fig. S10). For a given 
feature, partial correlations controlled for the ∆R2 explained by the 
other two features. Partial correlations also controlled for the mag-
nitude of the mean music response on each electrode (electrodes with 
stronger music responses were more likely to be music-selective and 
have greater ∆R2 values by default, leading to spurious correlations). 
Significance was evaluated by randomly permuting the SI and ∆R2 
values before correlating permuted variables. This procedure was 
repeated 10,000 times to define a null distribution. Cases in which 
the true correlation exceeded 95% of the null distribution were con-
sidered significant. Similarly, to determine whether speech selectivity 
was explained by the encoding of relevant features of speech (fig. 3G, 
see below), we applied the same procedure as above, evaluating partial 
correlations between ∆R2 and SI across all electrodes with SI < 0.

TRF modeling of speech
To model speech-evoked activity at each electrode, we applied the 
same TRF pipeline that was previously used to model music-evoked 
activity. We modeled features of speech that were analogous to musical 
pitch, pitch-change, and expectation. To code pitch in the stimulus 
matrix, we discretized the continuous pitch contour of sentences 
into 12 equally spaced bins. To extract pitch-change, we computed 
the difference between the median pitch of the current and prior 
syllable, discretized values into semitone-spaced bins, and coded 
each interval as a separate row in the stimulus matrix at the onset of 
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syllable nuclei. To consider sequence statistics in speech that are 
comparable to melodic expectation, we extracted and modeled both 
phoneme surprisal and cohort entropy, as defined by (42). These 
values are mathematically equivalent to those calculated earlier for 
music, with phonemes in place of notes. Specifically, phoneme sur-
prisal is the inverse of the conditional probability of each phoneme 
give the preceding phonemes in a word

where cohorti is the set of all possible words at position i and freq(c) 
is the summed frequency of all words in cohort c. Cohort entropy is 
the Shannon entropy of the cohort at each phoneme, given by

where pword is the relative frequency count of the given word within 
a language corpus [see (42) for details]. We specified these values in 
the stimulus matrix at the onset of each phoneme and discretized 
both variables into eight bins. To control for the contribution of ex-
traneous speech features, we included the spectrogram and two 
binary predictors specifying sentence and syllable-nuclei onset loca-
tions. All other aspects of the TRF fitting procedure and estimation 
of unique variances were identical to the modeling approach used 
for music.

Analysis of melodic speech
We evaluated the extent to which melodic speech tokens elicited a me-
lodic percept by conducting a behavioral test on an independent set of 
listeners (N = 11; Fig. 4D). After hearing each token, subjects rated the 
extent to which they heard a melody on a continuous scale of 0 to 10. 
Subjects were explicitly instructed to use regular speech and song as per-
ceptual anchors corresponding to ratings of 0 and 10, respectively.

To assess the extent to which electrodes responded more strongly 
to melodic speech over regular speech (Fig. 4F), we computed the 
normalized difference in evoked activity at each electrode

We evaluated the ∆HFA for electrodes within three different 
groups: speech selective (SI < −0.2), shared (−0.2 < SI < 0.2), and 
music selective (SI > 0.2). Within each bin, we used a one-sample t 
test to assess whether the mean ∆HFA was significantly greater than 
zero, which would indicate enhanced responses to melodic versus 
regular speech. We verified that enhanced responses to melodic 
versus regular speech remained even when the tokens preceded by 
chords were excluded from the analysis. To evaluate whether melodic 
speech responses scaled with the degree to which they were perceived 
as melody, we correlated the average ratings across listeners with the 
peak HFA elicited by corresponding tokens (Fig. 4G). We computed 
this correlation for all electrodes and grouped values into the same 
three SI-based bins as above (Fig. 4H). Within each bin, we used 
one-sample t tests to evaluate whether mean correlations were sig-
nificantly different from zero.

We examined tuning to features of melody in melodic speech by 
first extracting pitch, pitch-change, and expectation from every token. 

We divided each feature distribution into two bins (using the medi-
an split) and inspected corresponding neural responses in each bin. 
Because melodic speech tokens with female speakers were rated as 
more melodic than those with male speakers (Wilcoxon rank-sum: 
P = 6.65 × 10−5, z = −4), to avoid speaker identity–driven effects, we 
binned neural responses separately for male and female subsets of 
the data before averaging across gender. We did this separately for 
tokens that were perceived as more versus less melodic (using the 
median split of perceptual ratings). For a given feature, we compared 
electrode responses in the two bins using independent-sample t tests 
and used the resulting test statistic as a proxy for the strength of tuning 
to that feature. We used partial correlations to predict SI from tuning 
to melodic features, evaluating significance using permutation-
based null distributions (Fig. 4J).

Cross-domain comparison of pitch and 
pitch-change encoding
To compare encoding of pitch and pitch-change across domains, we 
correlated the ∆R2 values explained by a given feature across TRF 
models of music and speech (Fig.  5D). To compare music and 
speech tuning curves (Fig. 5E), we confined our analysis to the range 
of overlapping pitch and pitch-change values across the two domains 
(Fig. 5C). For pitch, we focused on the F0  range from [86 Hz to 
252 Hz]. This corresponded to the 5th to 49th percentiles and the 2.5th 
to 97.5th percentiles of the pitch distributions in music and speech, 
respectively. For pitch-change, we focused on the set of nine intervals 
from [−4, +4] semitones, corresponding to the 9th to 91st percentiles 
and the 3.5th to 98th percentiles of the pitch-change distributions in 
music and speech, respectively. As when previously computing tuning 
curves (Fig. 2, F to H), we only used HFA at the time point corre-
sponding to peak encoding (estimated based on the time point of 
maximal TRF weights). To characterize pitch tuning, we grouped 
neural responses to notes (for music) or to voiced portions of an 
utterance (for speech) into 12 log-hertz spaced bins. We quantified 
the similarity in neural codes across music and speech by computing 
the linear correlation between tuning curves across all electrodes.

Cross-domain decoding of pitch and pitch-change
We used a cross-domain decoding approach to quantify the extent 
to which neural codes for pitch and pitch-change generalized across 
domains (Fig. 5f). Specifically, we trained linear discriminant classifiers 
(77, 78) to decode either the pitch or the direction of pitch-change 
from cortical responses pooled across electrodes. For pitch, we 
discretized the distribution into four classes (chance accuracy = 25%). 
For pitch-change, we classified activity for descending versus ascending 
changes (chance accuracy = 50%). For the purposes of evaluating 
generalization of pitch-change, we chose to classify contour (as-
cending versus descending) rather than specific interval information, 
as intervals are not well defined in speech. To evaluate decoding 
accuracy within domain, we used 10-fold cross validation to main-
tain independent test and train datasets. For decoding across domain 
(e.g., train on music, test on speech), we used all the data in each 
domain to train and test models. Before decoding, we equalized the 
number of observations of each class (observations per class for 
pitch: N = 355 for music, N = 6598 for speech; observations per class 
for pitch-change: N  =  1243 for music, N  =  689 for speech) and 
centered the data in each domain to have mean = 0. Statistical inference 
was performed by bootstrapping data and re-applying the entire de-
coding analysis pipeline on each run (N runs = 200).

Surprisal(ei) = − log2
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