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Large-scale mutational analysis of transporters in the Solute Carrier Family 22:  

applications in rare disease and pharmacogenetics 

 

Megan Koleske 

 

ABSTRACT 

From disease diagnostics to precision dosing of medication, genome sequencing has the potential 

to revolutionize healthcare. A key challenge in translating genetic information into clinical action 

is understanding the phenotypic consequences of genetic variants in clinically important genes. 

Transporters encoded by genes in the Solute Carrier (SLC) family 22 have strong clinical 

relevance in rare genetic disease and pharmacogenetics. For example, loss-of-function variants in 

SLC22A5, encoding the carnitine transporter OCTN2, cause the rare metabolic disorder Carnitine 

Transporter Deficiency (CTD), and variants with functional consequences in SLC22A1, encoding 

the hepatic uptake transporter OCT1, contribute to interindividual differences in exposure and 

response for many commonly used medications. Experimental studies to uncover phenotypic 

consequences of coding region variants in transporters and other genes have struggled to match 

pace with the rate at which variants are identified by next-generation sequencing, slowing 

translation into clinically actionable information. The goal of this dissertation research is to 

experimentally and computationally address the key challenge of understanding the phenotypic 

effects of genetic variants in SLC22 transporters, with a primary focus on OCTN2 and OCT1.   

The dissertation begins with an overview of current practices and limitations in the interpretation 

of variation in genes underlying inborn errors of metabolism and drug response, detailing 
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experimental approaches to validating a variant as causative or pathogenic and summarizing 

advances in computational methods aiming to predict variant effect on protein function. We 

propose a vision for a genomic learning healthcare system (GLHS) that facilitates the translation 

RI�D�SDWLHQW¶V�JHQRPH�LQWR�FOLQLFDOO\�DFWLRQDEOH�LQIRUPDWLRQ�IRU�GLDJQRVWLF�DQd therapeutic 

purposes. After the overview, we present a rich set of experimental and computational 

approaches, which were developed and used to improve the functional prediction of genetic 

variants in OCTN2 for diagnosis of CTD. We functionally characterized 150 OCTN2 missense 

variants and found that 71% of variants had a significant effect on the uptake of carnitine. 25% 

of variants reduced transporter function to less than 20% of the wild-type OCTN2, a clinically 

meaningful threshold for CTD. We asked what was causing reduced function, and identified 

improper subcellular localization to be a major loss-of-function mechanism affecting 62% of 

variants. These data were then used in machine learning to build a protein-specific variant effect 

prediction model that accurately classified variants of OCTN2 as functional (>20%) or LOF 

(<20%) (area under the receiver operating characteristics curve 0.895±0.025). The machine 

learning models outperformed current models in terms of functional predictions of genetic 

variants in OCTN2. Limitations, however, included the number of variants experimentally tested 

to inform the models, which were limited by experimental methodologies. Therefore, we asked 

how we can increase throughput of SLC transporter variant phenotyping and transfer predictive 

models to other SLC22 family members. To this end, we developed a platform for deep 

mutational scanning (DMS) of a homolog of OCTN2 in the SLC22 family, OCT1 (SLC22A1) to 

increase the scale and diversify the phenotypes with which we can investigate functional 

genomics of transporters. We generated a landing-pad based cell system for expression of OCT1 

and validated the system with multiple assays involving diverse substrates and phenotypes: 
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uptake of the fluorescent substrate ASP+; uptake of the radiolabeled substrates MPP+ and 

metformin, and cytotoxicity of the OCT1 substrates, oxaliplatin and platinum analogs SM73 and 

SM85. We confirmed that OCT1 variants exhibit substrate-specific functional effects with 

variants p.R61C, p.P117L, and p.G401S. Then, we constructed a library of all 11,572 possible 

missense and single amino acid deletion variants to undergo functional and spatial 

characterization by the established DMS system. Data generated with this platform will be useful 

in the interpretation of OCT1 variants and clinically actionable for drug dosing purposes in 

precision medicine.  

In summary, this dissertation research led to a top performing model for predicting the functional 

effects of variants in OCTN2, which may be causal for CTD. Importantly, we addressed 

limitations in our model and developed experimental methodologies that extended both the scale 

of the genetic variants under investigation and the functional phenotypes assessed. Collectively, 

these methods together with artificial intelligence including machine and transfer learning 

methods should lead to comprehensive models for accurately predicting the function of coding 

region variants of all genes in the SLC22 family. These studies will pave the way to a new 

understanding of the effects of genetic variants in SLC transporters that are causal for human 

disease and diverse pharmacogenetic phenotypes.   
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Chapter 1: Organic Cation and Zwitterion Transporters 
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1.1 Abstract 

Transporters in the solute carrier superfamily (SLC) play critical roles in the absorption and 

disposition of numerous solutes in the human metabolome. The focus of this chapter is on 

transporters for two major categories of solutes: organic cations and zwitterions. The chapter 

begins with an overview of organic cation transporters (OCTs) and places a major focus on 

OCT1 (SLC22A1). Zwitterion transporters are described in the second section of the chapter, 

with the main focus on OCTN2 (SLC22A5). For both transporters, information is provided on 

tissue distribution, ligand selectivity, and transport mechanism. In addition, we include 

information from genetically engineered mouse models, as well as human genetic and 

pharmacogenomic studies describing clinical associations between genetic polymorphisms or 

mutations in the individual transporters and clinical phenotypes. As over half of prescription 

drugs are basic compounds, polymorphisms in OCTs have been associated with many 

pharmacogenomic traits. Further, as carnitine, a zwitterion, is a key molecule in fatty acid 

oxidation, many associations with zwitterion transporters include phenotypes that are ultimately 

related to disorders in energy production. The chapter ends with a brief discussion of future 

research that is needed to advance our understanding of organic cation and zwitterion 

transporters.  

1.2 Introduction to the Organic Cation Transporter Family 

Within the human SLC22 transporter family, the electrogenic organic cation transporter (OCT) 

subfamily consists of three members: OCT1 (SLC22A1), OCT2 (SLC22A2), and OCT3 

(SLC22A3). These transporters play important physiological and pharmacological roles, as they 

transport a variety of structurally diverse endogenous compounds and xenobiotics that have a net 
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positive charge at physiological pHs. Alterations in the expression and function of these 

transporters can lead to various pathophysiological conditions. As the first member of the family, 

rat OCT1 (Slc22a1) was cloned and characterized in 1994, followed by rat OCT2 (Slc22a2) in 

1996 (1). The third member, OCT3, was identified and cloned in both rat and human in 1998 (1). 

These three transporters share similar transport mechanisms and have overlapping ligand 

specificities; however, they differ in terms of their tissue distribution and the mechanisms 

involved in the regulation of their expression.  

1.2.1 Tissue Distribution  

Despite the similarity of ligand specificity and transport function, the tissue distribution of the 

three OCTs varies greatly in humans and other species (Fig. 1.1). Though expressed in many 

tissues, human OCT1 is most highly expressed in the liver and localized to the basolateral 

membrane of hepatocytes (1). In rodents, high expression of OCT1 is also observed on the 

sinusoidal membrane of hepatocytes (1). However, the expression and location of OCT1 in the 

kidney differs between human and rodents.  

Whereas in rodents, OCT1 is also expressed in the kidney and located on the basolateral 

membrane of proximal tubules, very low levels of OCT1 mRNA are detected in human kidney 

(2). In addition to the expression pattern in the kidney and liver of rodents, Oct1 is also 

expressed in rodent intestine on the basolateral membrane of enterocytes. In contrast, in the 

trachea and bronchi of human, rat, and mouse, OCT1 appears to be expressed on the luminal 

membrane of epithelial cells (1). In addition, low expression levels of human OCT1 (hOCT1) 

have been detected in other tissues including brain, heart, skeletal muscle, peripheral leukocytes, 

adrenal gland, mammary gland, immune cells, and adipose tissue (3).  
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1.2.2 Structure±Function Relationship 

In human, the genes SLC22A1, SLC22A2, and SLC22A3, which encode OCT1, OCT2, and 

OCT3, respectively, are localized within a cluster on chromosome 6q26-27 (1). Each of these 

genes comprise 11 exons and 10 introns. OCT1±3 contain 554, 555, and 556 amino acids, 

respectively. hOCT1 and hOCT2 are approximately 70% identical in amino acid sequence, 

whereas hOCT3 shares 50% sequence identity with hOCT1 and hOCT2 (1). The precise 

mechanism of binding and transport is not fully uncovered due to the lack of a high-resolution 

crystal structure (4). The predicted 2 and 3D structures of hOCTs consist of a typical major 

facilitator superfamily (MFS) fold of 12 Į-transmembrane helix domains arranged in a barrel-

shaped structure with a large cleft that opens in cytoplasm. The modeled 3D structures of all 

hOCTs are based on the crystal structure of the human SLC2A3 (GLUT3) transporter and display 

an outward-open conformation and putative cyclic C1 protein symmetry (4). The NH2- and 

COOH-terminal ends of the OCTs are intracellular (1). All three transporters contain a large 

(100+ amino acids) extracellular loop between transmembrane domain (TMD) 1 and TMD2 and 

a relatively large intracellular loop between TMD6 and TMD7 (1, 4). The large extracellular 

loop contains N-glycosylation sites (Asn-Xaa-Ser/Thr) and cysteine residues, features indicative 

of putative roles in drug binding and uptake. The large intracellular loop contains several 

predicted sites for protein kinase C (PKC)-dependent phosphorylation. Phosphorylation of these 

sites changes substrate selectivity (1, 4). In addition, homology models of inward-facing and 

outward-facing tertiary structures of OCTs have been generated based on E. coli transporters, 

lactose permease LacY and the glycerol-3-phosphate transporter GlpT (5). The transmembrane 

domains, and in particular the 4th and 10th transmembrane domains, are thought to be critically 

involved in substrate recognition by the OCTs, and differences between the three isoforms in 
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terms of substrate specificity may be related to differences in these regions. Extensive site-

directed mutagenesis followed by functional characterization of mutants has indicated that 

transported organic cations bind to amino acids in the innermost cavity of the outward open 

binding cleft. The binding sites for different transported organic cations are overlapping but 

nonidentical so that exchange of one amino acid in this innermost cleft may change affinity for 

one substrate but not another (5). These results suggest that OCT1, and likely all OCTs, contains 

multiple overlapping but nonidentical recognition sites for the various structurally diverse 

substrates. Further mutational analyses in OCT1 and OCT2 support the occurrence of a complex 

binding pocket in these transporters. The binding pocket might appear in inward- or outward-

oriented conformation and these conformations can differ in substrate affinity (6). On the basis 

of uptake studies for hOCT2, a model has been suggested where two substrates can bind 

simultaneously to the transporter. Upon binding, the resulting transporter/substrate1/substrate2 

complex cannot be translocated (7), suggesting an inhibition mechanism. However, it is 

important to note that given the broad substrate selectivity of the OCTs, the key domains or 

residues involved in substrate recognition may differ by substrate, even within the same protein.  

1.2.3 Transport Mechanism  

OCT1±3 function as uniporters (Fig. 1.2B), facilitating diffusion of substrates across the plasma 

membrane. Transport can be bidirectional, depending on substrate, and is driven by 

electrochemical gradients. The OCTs share several common features related to transport 

mechanism. First, modeling and mutational analysis suggest that OCTs follow an alternating-

access transport model. The substrate binds to the outward-open conformation of the transporter, 

which induces a conformational change. Then the substrate±transporter complex passes a 

transient occluded state to the inward-open conformation. Lastly, the substrate is released to the 
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cytoplasm and the transporter returns to the outward open conformation (6) (Fig. 2.2A). The 

structural changes of OCTs during the transport cycle require a rigid body movement of the six 

N-terminal TMDs against the six C-terminal TMDs, and a hinge domain in TMD 11 is crucial 

for this movement (5, 8). Second, the translocation of organic cations by OCTs is electrogenic 

and independent of sodium and chloride ions (5). The net transport of organic cations is driven 

by the intracellular negative membrane potential and the concentration gradient. Positively 

charged cations are taken up into cells according to the electrochemical gradient, and this process 

is membrane sensitive. Artificially modulating the membrane potential by replacement of 

extracellular Na+ with K+ changes the rate of transport by OCTs (9). Third, the transport direction 

of OCTs is bidirectional, and as noted, net transmembrane flux is dependent on the 

electrochemical gradient. In addition to cation influx, OCTs acting as efflux transporters have 

been demonstrated in multiple studies (1). Fourth, OCT1-���GHILQHG�DV�³SRO\-VSHFLILF´�2&7V��

can transport a variety of substrates with diverse molecular structures. As such, their substrates 

tend to have higher Km
 
values than those of the substrates for the more specific transporters, such 

as the neurotransmitter transporters (SLC6). In addition, OCT1±3 can be inhibited by a large 

number of compounds that are not transported. Common substrates of all OCTs are relatively 

low molecular mass (below 500 g/mol) and hydrophilic organic cations such as the prototypical 

cation tetraethylammonium (TEA), the neurotoxin MPP+, and the endogenous compound N-

methylnicotinamide (NMN). Several clinically important drugs have been shown to interact with 

all of the OCTs, including the antidiabetic drug metformin. Besides this, endogenous compounds 

such as the biogenic amine neurotransmitters (i.e., dopamine, epinephrine, nor- epinephrine, 

histamine, and serotonin) have been shown to interact with one or more OCT transporters (1). 

Although the OCT family shows broad overlap in substrate specificity, there are examples of 
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relatively isoform-specific and species-specific substrates and inhibitors. More details will be 

provided in the next section.  

1.3 OCT1 

1.3.1 Substrate and Inhibitor Selectivity  

Compounds that are commonly transported by hOCT1 include the model cations MPP+, TEA, 

tetrapropylammonium (TPrA), tetrabutylammonium (TBuA), N-methylquinine, and N-(4-4-azo-

n-pentyl)-21-deoxyajmalinium, the endogenous compounds choline, acetylcholine and agmatine, 

and the drugs quinidine, quinine, acyclovir, ganciclovir, metformin, sumatriptan, ondansetron, 

morphine, and several anticancer agents, (e.g., anthracyclines) (Table 1.1) (10). Both human and 

mouse OCT1 are high-capacity thiamine (vitamin B1) transporters that respond to the uptake of 

dietary thiamine to liver (11). The series of n-tetraalkylammonium (nTAA) compounds has been 

shown to have different affinity among human, rabbit, rat, and mouse OCT1. While the larger 

nTAAs are transported at greater rate in hOCT, the smaller nTAAs are transported at greater rate 

in rOCT1 or mOCT1 (12). It is suggested that molecular mass or hydrophobicity may affect 

differences in recognition of OCT substrates across species. In terms of inhibition, some 

inhibitors of OCTs show differences in potency among the individual subtypes. For example, the 

inhibition potency of phencyclidine, diphenhydramine, prazosin, citalopram, and atropine is 

greater for hOCT1 com- pared with hOCT2 and hOCT3. In contrast, corticosterone shows 

stronger inhibition on hOCT3 than OCT1 (1). Besides influx transport, OCT1 has been 

demonstrated as an efflux transporter of acylcarnitine from liver to plasma (13).  

1.3.2 Regulation  

In human, OCT1 is predominantly expressed in hepatocytes. Thus, the SLC22A1 gene is 

suggested to be regulated by the liver-enriched transcription factors, such as hepatocyte nuclear 
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factor 4a (HNF4a), CCAAT/enhancer binding proteins Į and E, hepatocyte nuclear factor 1a 

(HNF1a) and 3c (HNF3c). Two co-operating HNF4a response elements have been identified 

between nucleotides -1479 and -1441 of the 5ƍ-flanking regions of the SLC22A1 gene, which are 

upstream of the transcription initiation sites. In electrophoretic mobility shift assays (EMSA), 

recombinant HNF4a directly interacts with both sites. Mutation of these sites in SLC22A1 

promoter luciferase reporter constructs abolish transactivation (14). These motifs are conserved 

in primates, but not rodents, indicating different patterns of SLC22A1/ Slc22a1 gene regulation in 

these species (15). In addition, upstream stimulating factors USF1 and USF2 have been 

identified to regulate basal hepatic expression of OCT1 via a cognate E-box (15). OCT1 

expression can be modulated by ligand-dependent nuclear receptors such as pregnane X receptor, 

farnesoid X receptor, constitutive androstane receptor, glucocorticoid receptor or peroxisome 

proliferator- activated receptor D and J. In addition, the transcription expression level of OCT1 

can be regulated by epigenetic methylation (16). Moreover, OCT1 can be subject to post- 

translational modulation. Stimulation of either protein kinase A (PKA) or PKC increases uptake 

of the fluorescent compound ASP+ in HEK293 cells stably transfected with rat OCT1 (1). 

However, this effect may be species-dependent (17). As with rOCT1, hOCT1 appears to be 

positively regulated by the p56lck tyrosine kinase, as evidenced by reduced hOCT1 activity after 

treatment with aminogenistein. Human OCT1 has further been shown to be regulated by the 

Ca2+/calmodulin complex, which appears to affect the affinity of the tested substrates (17), 

possibly due to phosphorylation of the OCT1 protein.  

1.3.3 Animal Models  

In vivo studies in mice, in which individual transporters have been removed genetically 

(knockout mice) provide valuable insights in potential physiologic and biomedical functions of 
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OCTs. However, species differences between OCTs of humans and rodents impose limitations 

on the ability to apply conclusions obtained from the mouse experiments to humans. Oct1 

knockout mice are viable and fertile, with no obvious physiological abnormalities when 

compared with their wild-type littermates, suggesting that Oct1 has minimal impact on normal 

physiology (18). However, at the biochemical level, disruption of Oct1 in mice affects both lipid 

and glucose metabolism by reducing the hepatic uptake of thiamine (16). Additionally, 

disruption of Oct1 in mice has significant impact on the disposition of organic cations. For 

example, when administered the prototypical organic cation, TEA, Oct1í�í�mice show 

significantly reduced uptake of TEA into the liver. In accordance with reduced hepatic uptake of 

TEA, biliary excretion is lower in Oct1í�í�mice (18). Additionally, direct intestinal excretion of 

TEA is reduced by approximately 50%. In addition to TEA, Oct1í�í�mice have similar decreases 

in hepatic uptake of other OCT1 substrates (i.e., MPP+ and meta-iodobenzylguanidine (MIBG)) 

(18).  

In addition to pharmacokinetic effects, knockout of Oct1 in mice can have implications for 

prescription drugs, exemplified by metformin, an anti-hyperglycemic pre- scription medication 

used as a first-line treatment for Type 2 diabetes. Despite similar pharmacokinetic profiles 

between Oct1í�í�and wild-type mice, Oct1í�í�mice showed greater than 30-fold decrease in 

metformin uptake into liver, the site of action for metformin, compared with wild-type 

littermates (19). Further studies investigated the role of Oct1 in the development of metformin-

induced lactic acidosis, a leading toxicity from this drug. A significant increase in serum lactic 

acid concentration was observed after administration of metformin to wild-type mice, but only 

slight elevations in serum lactate were seen in Oct1í�í�mice (20). Taken together, these results 

suggest that OCT1-mediated metformin transport is a limiting step in metformin uptake into 
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liver, and that the lactic acidosis induced by metformin is related to the availability of the drug to 

its target organ. Recent studies have demonstrated large effects of knocking out Oct1 on the 

hepatic uptake and clearance of sumatriptan and fenoterol, and lesser effects on ondansetron 

(21).  

1.3.4 Human Genetic Studies  

Human OCT1 is the most polymorphic of the OCTs in terms of missense variants. In 2002, 7 

missense variants and an amino acid deletion, 420del, in OCT1 were identified in samples from 

Europeans, and in 2003, 14 missense variants and 420del were identified in OCT1 in samples 

from four major ancestral groups (22, 23). Since then, over 1000 single-nucleotide 

polymorphisms (SNPs) have been identified (24), 22 of which have been related to treatment 

outcome for drugs transported by OCT1. Among these variants, 21 are located in the protein-

coding region causing amino-acid substitutions, while one results in an amino-acid deletion 

(p.M420del). Notably, the frequency of missense alleles in OCT1 is ancestry-specific. European, 

African, and Latin American (Puerto Rican, Colombian and Mexican) populations present with 

higher variability than Asians and Pacific Islanders (24). Six variants in OCT1 have a global 

allele frequency > 0.02 (Fig. 1.3).  

Many nonsynonymous polymorphisms of OCT1 have been functionally characterized in vitro. 

The uptake of the cation OCT1 substrate 3H-MPP+ was reduced in Xenopus oocytes expressing 

variants p.R61C, p.C88R, p.G401S, p.P341L, p.G220V, and p.G465R that were identified in a 

large sample of ancestrally diverse healthy subjects (22, 23). Of the variants with significant 

functional differences from the reference OCT1, five (p.S14F, p.R61C, p.P341L, p.G401S, and 

p.G465R) occur at >1% allele frequency in at least one ancestral group. OCT1 variants p.P283L 

and p.R287G exhibit no uptake of either 14C-TEA or 3H-MPP+, although the protein level on the 
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membrane of these variants is comparable to reference OCT1. The results suggest that residues 

Pro283 and Arg287 have a substantial role in substrate recognition or the transport cycle of 

OCT1 (16). In another study, 12 OCT1 nonsynonymous variants were stably expressed in HEK 

cells, and metformin was used to characterize the uptake function of these variants (25). 

Although the mRNA expression of these variants is comparable to reference allele, 7 OCT1 

variants exhibit significantly reduced or lost metformin uptake. The GFP-tagged p.G465R and 

p.R61C variants display abnormal localization on the plasma membrane (25). Furthermore, the 

uptake of metformin is significantly reduced in cells expressing variants identified in Chinese 

and Japanese populations including p.Q97K, p.P117L, and p.R206C relative to the OCT1 

reference (26).  

Due to a high level of evidence from many in vitro uptake studies and clinical pharmacogenomic 

studies on SLC22A1, the importance of OCT1 as an emerging transporter on drug disposition, 

response, and toxicity has been highlighted and discussed by the International Transporter 

Consortium (ITC) (27). Many of these genetic associations have focused on the antidiabetic 

drug, metformin. However, studies of the effects of OCT1 polymorphisms on metformin 

pharmacokinetics and pharmacodynamics have been inconsistent. For example, while significant 

associations of missense OCT1 polymorphisms with metformin plasma concentrations were 

observed in several pharmacogenomics studies, other studies failed to observe such effects in 

either healthy sub- jects or patients with type 2 diabetes (16). Positron emission tomography 

(PET)/computed tomography (CT) using 11C-metformin showed that individuals who are carriers 

of the OCT1 reduced function variants, p.M420del and p.R61C, have decreased concentrations 

of metformin in the liver without changes in systemic plasma levels compared with individuals 

with reference OCT1 (16). Additional associations between OCT1 polymorphisms and drug 
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levels or response to prescription drugs other than metformin have been studied. These studies 

have demonstrated significant associations between reduced function nonsynonymous variants of 

SLC22A1 and the antimigraine drug, sumatriptan (16), the antinausea drug, ondansetron (28), 

and opiate analgesic drugs or their metabolites, including morphine and O-desmethyltramadol 

(16). More recently, OCT1 variants were also shown to significantly affect physiology and 

pathology. Human genome-wide association study data indicate a possible correlation between 

metabolic phenotypes and OCT1 genotypes, which may be related to the disposition of its 

endogenous substrates, thiamine, and acylcarnitine (11, 13, 29).  

1.3.5 Biomarkers and FDA Guidances for Transporter-Mediated DDIs  

Polypharmacy commonly exists in older and chronic disease populations. Transporters can 

interact with a wide range of endogenous and xenobiotic substrates. Significant drug±drug 

interactions (DDI) can lead to unfavorable efficacy and safety concerns, and therefore, industry, 

academia, and regulatory agencies have increased the recognition of transporter-mediated drug 

interactions. In 2010, the ITC proposed seven transporters as sites for DDIs including P-gp, 

BCRP, OATP1B1 and 1B3, OAT1 and 3, and OCT2 (30), which was updated to include 

MATEs. More recently, the ITC suggested that OCT1 and OATP2B1 be added (31). The FDA 

cites manuscripts from the ITC recently published DDI guidance documents, including one 

focused on in vitro DDI assessment and the other focused on clinical DDI evaluation. These 

guidances describe the conduct of in vitro transporter studies and the use of specific criteria to 

assess the potential for drugs to interact with transporters and either perpetrate DDIs or be 

subjected to DDIs. More recently, potential endogenous biomarkers for transporters are being 

explored as an additional approach to assess the DDI liability of drug candidates (32). For OCTs, 

potential biomarkers, which may lack specificity for individual OCT isoforms, include NMN, 
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tryptophan, and creatinine in addition to thiamine (32). Full assessment of the bio- synthesis and 

elimination pathways of these compounds as well as extensive studies validating their specificity 

and usefulness in predicting clinical DDIs are needed.  

1.4 Introduction to the Zwitterion Transporters  

Within the human SLC22 transporter family, the zwitterion transporter subfamily is composed of 

hOCTN1 (SLC22A4), hOCTN2 (SLC22A5), FLIPT1/SLC22A15 (SLC22A15), and CT2 

(SLC22A16), among others. These transporters play important physiological and 

pharmacological roles, acting in the influx and efflux of essential endogenous compounds (e.g., 

carnitine and ergothioneine), drugs, and various xenobiotics. Alterations in the expression and 

function of these transporters can lead to various pathophysiological conditions.  

1.4.1 Tissue Distribution  

In humans, OCTN2 is expressed ubiquitously at low levels in most tissues. Highest expression is 

observed in skeletal muscle, brain, kidney, intestine, cardiac tissue, and reproductive organs. 

0DQ\�RI�WKHVH�WLVVXHV�KDYH�KLJK�HQHUJ\�GHPDQGV�DQG�UHO\�KHDYLO\�RQ�IDWW\�DFLG�ȕ-oxidation for 

ATP production. OCTN2 expression in these tissues ensures carnitine stores are available to 

conjugate to intra- cellular long-chain fatty acids for translocation into the mitochondrial matrix 

ZKHUH�ȕ-oxidation occurs. In the kidney, OCTN2 is localized to the apical membrane of the renal 

proximal tubule where it functions largely in the reabsorption of renally excreted carnitine from 

urine to maintain systemic levels.  

1.4.2 Structure-Function Relationship 

Human OCTN (hOCTN) transporters are localized to the plasma membrane of the cell and are 

involved in the bidirectional transport of cations and zwitterions. The genes encoding hOCTN1 
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and hOCTN2 are found in relative proximity at the same locus on chromosome 5q31 (16). Each 

are encoded by 10 exons, with hOCTN1 composed of 551 amino acids and hOCTN2 composed 

of 557 amino acids. They are homologues²with 78% sequence identity at the mRNA level and 

76% sequence identity at the protein level. Additionally, these transporters share about 30% 

protein identity to OCT1±3. Similar to OCTs, OCTNs have predicted topology with 12 

transmembrane domains, cytoplasmic N- and C-termini, a large extracellular loop between 

TMD1 and TMD2 containing multiple glycosylation sites, and an intracellular nucleotide 

binding sequence motif (16). Facilitating sodium-dependent transport of some substrates, the 

OCTN transporters also contain sodium-recognition sites and can function as symporters (Fig. 

1.2B).  

1.4.3 Transport Mechanism  

Similar to the OCTs, the zwitterion transporters are believed to function through the alternating-

access transport mechanism. Multiple transport mechanisms have been observed for the OCTN 

transporters, depending on substrate. The zwitterion transporters can function as uniporters, like 

OCT1-3, translocating single substrates, or as cotransporters, transporting multiple substrates in 

the same direction (symport) or opposite directions (antiport) (Fig. 1.2B) (33). OCTN1 transports 

the zwitterion ergothioneine via a sodium-dependent symport uptake mechanism, but can 

transport other zwitterions (e.g., gabapentin) independent of sodium. OCTN1 can also act as a 

pH- dependent proton/cation antiporter (e.g., TEA), or a bidirectional organic cation uniporter 

(e.g., acetylcholine). OCTN2 acts as a secondary active sodium-dependent cotransporter for 

carnitine, facilitating symport of sodium and carnitine at a 1:1 ratio (16). OCTN2 transport of 

some cations, including TEA, is sodium-independent, while other cations are transported via 

proton/cation antiport (16).  
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1.5 OCTN2 

1.5.1 Substrate and Inhibitor Selectivity  

In vitro, hOCTN2 is multi-specific and has been shown to transport a number of endogenous 

compounds and xenobiotics (16). Primarily, OCTN2 is a sodium-dependent, high-affinity L-

carnitine transporter with a Km of 4 ȝ0��7R�D�OHVVHU�H[WHQW��2&71��WUDQVSRUWV�VRPH�VKRUW-chain 

acylcarnitines, including acetyl-L-carnitine and the drug metabolites pivaloylcarnitine and 

valproylcarnitine. OCTN2 transports the prototypical cation, TEA, in a sodium-independent 

manner. Other substrates of OCTN2 include drugs ipratropium, mildronate, amisulpride, 

sulpiride, etoposide, ethambutol, cephaloridine, quinidine, and verapamil (Table 1.1). In vitro, 

many approved drugs act as inhibitors of OCTN2. Transport of L-FDUQLWLQH�LV�LQKLELWHG�E\�ȕ-

lactam antibiotics including cefepime, cefoselis, cephaloridine, cefuroxime, cephalexin, and 

cefazolin with varying IC50 values, likely attributed to the presence of a quaternary amine 

functional group similar to carnitine. Other strong inhibitors span many drug classes, including 

cardiac drugs including verapamil, quinidine, and amiodarone, proton-pump inhibitors such as 

omeprazole, and anticancer agents including tamoxifen, gefitinib, and cedirinib, among others.  

In vivo, OCTN2 has not been reported as a target for drug±drug interactions to date. However, 

multiple drugs have been observed to cause carnitine deficiency through various mechanisms. 

Administration of the anticonvulsant valproic acid and the antibiotic pivalic acid causes reduced 

plasma carnitine levels and, in some cases, clinically relevant carnitine deficiency. Multiple 

mechanisms have been proposed. One possibility is that the valproate and pivalate directly 

inhibit the binding pocket for carnitine in OCTN2. Other studies have suggested that rather than 

inhibit OCTN2 directly, these drugs form carnitine conjugates and are likely effluxed out of the 

kidney with poor reabsorption, resulting in carnitine wasting and depletion. Alternatively, the 
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valproyl- and pivaloyl-carnitine esters could block reabsorption of free carnitine at OCTN2. 

Regardless of mechanism, these cases of drug-induced carnitine deficiency have been fatal in 

patients with carnitine transporter deficiency who already have reduced systemic carnitine levels.  

In recent years, OCTN2 has become a target of drug delivery optimization strategies. Multiple 

properties make it an attractive drug target. First, it is theorized to increase oral bioavailability of 

targeted drugs due to high expression in the small intestine. Second, it has the potential to 

increase blood±brain barrier (BBB) permeability of substrates due to expression at the BBB. 

Third, it allows for the targeting of drugs to the kidney. And fourth, it has been hypothesized to 

increase delivery of asthma therapeutics to the lung (34). Multiple carnitine-conjugated prodrugs 

have been developed, including butyrate used in treatment for gut inflammation, nepotic acid 

used to treat seizures, and the chemotherapeutic drug, gemcitabine. Carnitine-conjugated 

gemcitabine exhibits 5-fold bioavailability over gemcitabine alone. In addition, nanoparticles are 

being explored for targeted delivery via OCTN2 for other cancer drugs like paclitaxel.  

1.5.2 Regulation  

Transcriptional regulation of OCTN2 is mediated in part by the peroxisome proliferator-

activated receptor Į (PPARĮ). PPARĮ plays an important role in the regulation of genes 

involved in lipid metabolism and energy homeo- stasis and is highly expressed in tissues that use 

fatty acid oxidation as a primary energy source, including heart muscle, skeletal muscle, and 

kidney (35). Notably, OCTN2 is expressed highly in these tissues as well. Tentative PPAR 

response elements (PPREs) are found in the promoter and intronic regions of SLC22A5 in several 

species. In rats, treatment with the PPARĮ agonist clofibrate leads to increased transcription of 

OCTN2 in the liver and small intestine, but not the kidney or muscle tissue. Aligned with the 

upregulation of OCTN2 in rat liver, hepatic concentrations of carnitine are also increased by 
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PPARĮ activation. These findings are supported by the downregulation of OCTN2 and overall 

reduction in systemic carnitine levels in PPARĮ -null mice. Upregulation of OCTN2 by PPARĮ 

has also been demonstrated in pigs. In addition to fibrates, PPARĮ -mediated regulation of 

OCTN2 is affected by cisplatin. Cisplatin is hypothesized to inhibit DNA binding to the 

PPARĮ/RXR complex, resulting in an overall down- regulation of OTN2 and an increase in 

urinary carnitine wasting in mice (36). The PPARJ/RXRĮ complex also modulates OCTN2 

expression in the large intestine. Human colonocytes and mouse colon exhibit altered expression 

of OCTN2 in response to PPARJ, but not PPARĮ (37). In a mouse model of IBD, 

proinflammatory cytokines interact with the PPARJ/RXRĮ complex to reduce OCTN2 

expression, contributing to disease pathology. Treatment with the PPARJ agonist luteolin to 

rescue OCTN2 expression results in the reduction of colonic inflammation (38).  

OCTN2 is upregulated by the estrogen receptor (ER) in breast cancer cells and tumor tissue, an 

effect attributed to the identification of a novel estrogen-responsive element (ERE) in an intronic 

region of SLC22A5 (16).  

OCTN2 is further regulated by PDZ domain-containing proteins (39). PDZK1 colocalizes with 

OCTN2 at the apical membrane of renal tubule cells. PDZK1 stimulates carnitine uptake via 

OCTN2 by increasing the Vmax of the transporter, although cell-surface expression of OCTN2 is 

unchanged suggesting PDZK1 stimulates translocation of carnitine. The four terminal amino 

acids at the carboxyl end of OCTN2 serve as a PDZ binding motif, and deletion or substitution of 

these residues eliminates PDZK1 stimulation of OCTN2. PDZK2 also increases the transport 

capacity of OCTN2, but through a different mechanism, increasing localization of OCTN2 to the 

plasma membrane (39).  
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Lastly, OCTN2 expression is regulated by heat shock transcription factor 1 (HSF1) (16). The 

SURPRWHU�YDULDQW�í���*!&�GLVUXSWV�D�FRQVHQVXV�VHTXHQFH�IRU�DQ�+6)�ELQGLQJ�HOHPHQW��&HOOV�

ZLWK�WKH�í���*�ZLOG-type promoter containing the intact HSF1 binding site have higher 

expression of OCTN2 after heat-shock compared to cells with WKH�í���&�YDULDQW��ZKLFK�UHVXOWV�

in disrupted HSF1 binding.  

1.5.3 Animal Models  

Octn2í�í�knockout mice have been characterized as a model of carnitine deficiency, resulting 

from a point mutation that causes a change from the amino acid leucine to arginine at residue 

352. This substitution causes complete OCTN2 loss-of-function in vitro and in vivo. The mice, 

deemed juvenile visceral steatosis (jvs) mice, present with growth retardation and enlarged 

abdomen due to hepatic steatosis, as well as hyperammonia and hypoglycemia (40). 

Pharmacokinetics in jvs mice reveal drastically altered carnitine parameters, including reduced 

bioavailability, decreased volume of distribution, decreased tissue-to-plasma concentration 

ratios, and increased clearance of carnitine compared with wild-type mice (41). Furthermore, jvs 

mice display spontaneous intestinal apoptotic phenotypes including ulceration and gut 

perforation, and an immune response involving macrophage and lymphocyte infiltration (42). 

Inflammation and intestinal apoptosis are reduced when mice are treated with carnitine 

supplementation.  

1.5.4 Human Genetic Studies  

Biallelic loss-of-function mutations in OCTN2 result in a Mendelian disease known as carnitine 

transporter deficiency (CTD, also referred to as primary carnitine deficiency, systemic carnitine 

deficiency, or carnitine uptake defect; OMIM #212140 (43)). Almost 200 OCTN2 mutations 

have been identified among patients, the majority of which are missense, followed in frequency 
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by nonsense, frameshift, and noncoding mutations that affect splice sites or regulatory regions 

(44). Systemically, patients display extremely low plasma carnitine levels caused by reduced 

dietary carnitine absorption and excessive carnitine wasting in the urine due to loss of 

reabsorption by OCTN2 (45). The disorder varies in time to onset and disease severity and/or 

presentation, with common symptoms including cardiomyopathy, cardiac arrhythmias, hepatic 

encephalopathy, and hypoglycemia. Missed diagnosis can be fatal in infants, thus many 

developed countries screen infants for CTD, among other disorders, at birth. Diagnosis in 

individuals with less severe disease can be delayed well into adulthood, exemplified by the 

identification of maternal carnitine deficiency from low carnitine levels in the newborn during 

screening. CTD is treated with supplemental carnitine at high doses, up to 200 mg/kg multiple 

times per day, with decent outcomes. Lack of adherence to treatment has resulted in sudden 

death in at least one report. Incidence of CTD varies globally, affecting 1:120,000 individuals in 

Australia, 1:75,000 in the United States, 1:40,000 in Japan, 1:27,000 in China, and up to 1:300 

individuals in the Faroe Islands (45). In at least one case, CTD has manifested as intellectual 

disability and autism spectrum disorder (46).  

Extensive functional genomic studies have been conducted for OCTN2. The common promoter 

YDULDQW�í���*!&�LV�ZHOO�FKDUDFWHUL]HG��NQRZQ�WR�GHFUHDVH�WUDQVFULSWLRQ�RI�2&71��GXH�WR�

GLVUXSWLRQ�RI�+6)��WUDQVFULSWLRQ�IDFWRU�ELQGLQJ��$QRWKHU�YDULDQW�LQ�WKH��ƍ-UTR of the gene 

�í���*!$��FUHDWHV�DQ�HDUO\�$7*�WUDQVODWLRQ�VWDUW�VLWH��UHGXFLQJ�WKH�WUDQVODWLRQ�RI�ZLOG-type 

OCTN2 and decreasing carnitine transport (47). This variant has been found repeatedly in CTD 

patients for whom no or only one known deleterious variant is detected. Many studies have 

functionally characterized OCTN2 variants associated with CTD. Loss-of-function results from 
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multiple mechanisms, including altered kinetic parameters decreasing carnitine affinity or 

capacity for transport, decreased affinity for sodium, and reduced plasma membrane localization.  

In GWAS, genetic polymorphisms in the OCTN2 locus have strong associations with blood 

metabolite levels (carnitine, acetylcarnitine, LDL cholesterol, and fatty acids), fat-free mass, and 

DXWRLPPXQH�GLVHDVH��H�J���&URKQ¶V�GLVHDVH���)RUPLQJ�D�KDSORW\SH�ZLWK�2&71��DW�WKH�,%'��

ORFXV��2&71��LV�DVVRFLDWHG�ZLWK�7\SH���GLDEHWHV�DQG�&URKQ¶s disease (16).  

1.6 Conclusion 

To understand physiologic and pharmacologic systems, it is critical to identify all of the 

components or proteins involved in those systems. The last few decades have ushered in a new 

understanding of the physiologic and pharmacologic roles of important zwitterions and organic 

cations, as the transporters involved in their absorption and disposition have been identified. It is 

now clear that transporters in the SLC22 family, along with a few other transporters, play key 

roles as determinants of systemic and tissue levels of cationic and zwitterionic drugs. At all 

levels from molecular to physiologic and pathophysiologic, there are major gaps in our 

knowledge. First and foremost, transporters for organic cations and zwitterions need to be 

discovered. Many transporters in the SLC superfamily, and in particular within the SLC22 

family, remain orphans and need to be deorphaned. Further, no transporter in the SLC22 family 

has been crystallized; therefore, the precise molecular transport mechanism is not known. 

Moreover, though many associations have been reproducibly observed between genetic variants 

in organic cation and zwitterion transporters and various clinical phenotypes, the mechanisms by 

which the transporter contributes to the phenotypes remain poorly understood. Rare variants in 

the transporters such as in SLC22A5 (OCTN2) are associated with fatal diseases, yet the function 
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of these variants remain unknown, and therapies remain poor at best. Finally, the physiologic, 

pharmacologic, and pathophysiologic systems that include these transporters need to be fully 

understood in order to obtain a full understanding of human biology and pharmacology.  
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1.7 Figures 

 
Figure 1.1. Tissue distribution and membrane localization of organic cation and zwitterion 
transporters. Created with BioRender.com. 
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Figure 1.2. Transport of substrates by organic cation and zwitterion transporters. (A) 
Alternating-access transport model for translocation of substrates. (B) Types of transport 
mechanisms and transporters demonstrated to function by each mechanism. Created with 
BioRender.com.  
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Figure 1.3. Predicted secondary structure of OCT1 with most common missense variants 
highlighted. Common defined as Global Allele Frequency (GAF) > 0.02. The group with the 
highest allele frequency for each variant is shown. Created with TOPO2.  
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1.8 Tables 

Table 1.1. Selected substrates and inhibitors of the major organic cation and zwitterion 
transporters, OCT1-3 and OCTN1-2. 

Transporter Model Substrates Substrates Model Inhibitors Inhibitors 
OCT1 MPP+, TEA, 

ASP+,  
metformin 

Endogenous: 
serotonin,  
acylcarnitines, choline, 
acetylcholine, 
creatinine, agmatine 
Exogenous:  
acyclovir, quinidine, 
quinine, thiamine, 
sumatriptain, 
ondansetron, morphine 

Quinidine, 
verpamil 

Exogenous: 
Atropine, abacavir, 
zidovudine, tenofovir, 
spironolactone, ondansetron, 
quinine, midazolam 
 

OCT2 TEA, MPP+, 
ASP+, NBD-
MTMA, 
metformin 
 

Endogenous: 
creatinine, choline, 
serotonin, dopamine, 
histamine 
Exogenous: 
amphetamine, cisplatin, 
cimetidine, phenformin 

quinidine, 
cimetidine 

Endogenous: 
testosterone  
 
Exogenous: 
doxepin, zolpidem, ritonavir, 
imipramine, tramadol, 
tacrine, olanzapine 
 

OCT3 MPP+, ASP+, 
metformin 

Endogenous: 
Creatinine, agmatine, 
dopamine, progesterone, 
testosterone 
Exogenous: 
atropine, prazosin, 
cimetidine, verapamil, 
nicotine 
 

corticosterone Endogenous: 
progesterone, B-estradiol, 
corticosterone 
 
Exogenous: 
verapamil, carvedilol, 
imipramine, cimetidine, 
metformin 
 

OCTN1 L-ergothioneine, 
TEA 

Endogenous: 
L-ergothioneine, L-
carnitine, acetylcholine 
 
Exogenous: 
cytarabine, amisulpride, 
ethambutol, 
ipratropium, gapapentin 

TEA Endogenous: 
L-carnitine, acetylcarnitine, 
choline, acetylcholine, 
gamma-butyrobetaine 
Exogenous: 
carvedilol, flecainide, 
lidocaine, verapamil, 
mitoxantrone, dipyridamole, 
doxorubicin 
 

OCTN2 L-carnitine  Endogenous: 
L-carnitine, acetyl-L-
carnitine, choline 
Exogenous: 
D-carnitine, mildronate, 
ipratropium, etoposide, 
amisulpride 
 

TEA, verapamil Endogenous: 
L-carnitine, acetylcarnitine 
Exogenous: 
clozapine, emetine, 
vinblastine, omeprazole, 
verapamil, ȕ-lactam 
antibiotics 

Abbreviations: 
MPP+: N-methyl-4-phenylpyridinium. 
TEA: tetraethylammonium. 
ASP+: 4-(4-(diethylamino)styryl)-N-methylpyridinium. 
NBD-MTMA: N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][l,2,5]oxadiazol-4-yl)amino]ethanaminium.  
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Chapter 2: Opportunities and challenges for the computational 

interpretation of rare variation in clinically important genes 
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2.1 Abstract 

Genome sequencing is enabling precision medicine²tailoring treatment to the unique 

FRQVWHOODWLRQ�RI�YDULDQWV�LQ�DQ�LQGLYLGXDO¶V�JHQome. The impact of recurrent pathogenic variants 

is often understood, however there is a long tail of rare genetic variants that are uncharacterized. 

The problem of uncharacterized rare variation is especially acute when it occurs in genes of 

known clinical importance with functionally consequential variants and associated mechanisms. 

Variants of uncertain significance (VUSs) in these genes are discovered at a rate that outpaces 

current ability to classify them with databases of previous cases, experimental evaluation, and 

computational predictors. Clinicians are thus left without guidance about the significance of 

variants that may have actionable consequences. Computational prediction of the impact of rare 

genetic variation is increasingly becoming an important capability. In this paper, we review the 

technical and ethical challenges of interpreting the function of rare variants in two settings: 

inborn errors of metabolism in newborns and pharmacogenomics. We propose a framework for a 

genomic learning healthcare system with an initial focus on early-onset treatable disease in 

newborns and actionable pharmacogenomics. We argue that (1) a genomic learning healthcare 

system must allow for continuous collection and assessment of rare variants, (2) emerging 

machine learning methods will enable algorithms to predict the clinical impact of rare variants on 

protein function, and (3) ethical considerations must inform the construction and deployment of 

all rare-variation triage strategies, particularly with respect to health disparities arising from 

unbalanced ancestry representation.  
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2.2 Introduction 

We are approaching an era in which genome sequencing at birth may become a widespread 

practice with the potential to revolutionize healthcare. Interpretation of the genetic 

variants identified by sequencing, however, remains a significant challenge and limits the use 

of DNA sequencing as a primary diagnostic screen (1). Current algorithms used to interpret the 

significance of genetic mutations are not reliable enough to be used without additional clinical 

data (2). Yet, accumulating biomedical data enables machine learning algorithms to predict the 

consequence of genetic variants with increasing accuracy. The pairing of modern algorithms and 

widespread genome sequencing is beginning to deliver precision medicine in limited settings 

(3) but the broad interpretation of rare genetic variation requires both algorithmic advances and 

improved access to data. The identification of rare variation responsible for unusual clinical 

phenotypes is a particularly difficult challenge because both the responsible gene and the 

associated variation must be identified. A slightly more tractable problem is the identification of 

clinically important variants in genes that are already known to be clinically significant and have 

known mechanisms for influencing phenotype. 

This paper focuses on two clinical domains that have known clinically important genes and in 

the near term should benefit greatly from improved rare variant interpretation: 

pharmacogenomics (PGx) and inborn errors of metabolism (IEMs). IEMs and PGx are examples 

of genetic practice characterized by monogenic phenotypes for which therapeutic action can be 

taken in response to clinically important variants in known genes. Both fields have been 

revolutionized by low-cost sequencing and the curation of large databases cataloging the effects 

of specific genetic variants. Furthermore, both fields struggle with interpretation of the 

phenotypic effects of rare variants that have not been clinically evaluated. 
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As an interdisciplinary team supported by the Chan Zuckerberg Biohub, we approach these two 

challenges by addressing both computational and ethical issues in order to develop a framework 

for genome-informed medical care that benefits all. Here, we review the current practices and 

limitations of variant interpretation in PGx and IEMs and highlight recent computational 

advances that will allow researchers to improve precision medicine. Ethical considerations 

include health disparities because existing genetic and genomic databases are not inclusive of 

individuals of diverse ancestries. As the recent strategic vision from the US National Human 

Genomic Research Institute (NHGRI) attests, there are significant societal implications of a 

genomic learning healthcare system that we cannot afford to oversimplify (4). Our focus on 

genes of known consequence should generalize ultimately to the more difficult cases where the 

gene, function, and mechanism are not well understood. 

2.3 PGx and IEMs in current clinical practice 

For both PGx and IEMs, our detailed understanding of the biological processes at play (the genes 

that are critical and how they interact) has reached a point at which routine genetic screens can 

inform clinical decision-making. In the United States, PGx testing is mandated by the Food and 

Drug Administration for a number of drugs because of safety concerns and is recommended for 

many others. Testing for IEMs is routine practice for nearly all newborns in the United States, 

but the role of genetic testing is largely limited to second-tier screens and carrier testing. These 

two clinical domains are linked in more ways than it may superficially appear. The clinical 

implications for most known PGx- and IEM-driven phenotypes are often caused by variants in a 

single gene. As monogenic traits, there is not only a critical importance in understanding the 

impact of variants in the underlying genes but also in narrowing the problem space for a tractable 
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solution. Additionally, the mechanisms of disease and treatment response are generally 

understood. 

3*[�GHVFULEHV�KRZ�DQ�LQGLYLGXDO¶V�UHVSRQVH�WR�PHGLFDWLRQ�LV influenced by genetic variation in 

pharmacogenes: genes encoding proteins involved in the pharmacokinetics and 

pharmacodynamics of a drug (5). Many pharmacogenes have common genetic variants with 

known clinical significance. These variants can affect the metabolism, transport, and action of 

drugs throughout the body and may influence efficacy or lead to adverse events. Studies have 

shown as many as 99.8% of individuals carry at least one genetic variant that could lead to 

adverse outcomes for at least one drug (6-8). In the past, clinical practice overlooked the 

influence of genetics on drug response and²except for several extreme case (9)²used a 

standardized dose of any particular drug for most patients, with some trial-and-adjustment to 

determine the ideal drug and dosage. This error-prone process can lead to decreased efficacy and 

increased incidence of adverse events that could be otherwise avoided (10). Clinical practice may 

be moving toward genetic testing prior to drug dosing, although at present, current practice is 

still limited to physician-guided treatment: genotyping or sequencing is ordered by a physician 

and carried out clinically (Fig. 2.1A). To date, there are 60 drugs with clinical dosing guidelines 

published by the Clinical Pharmacogenomics Implementation Consortium (CPIC) and 94 drugs 

with guidelines from the Dutch Pharmacogenomics Working Group (DPWG) (10). As the 

inexpensive interrogation of genetic information gains a foothold in clinical medicine, 

pharmacogenetic information will increasingly become standard care. Importantly, when genetic 

information is used to guide dosing, the current focus is on common polymorphisms in 

individuals of European ancestry. Common polymorphisms in other ancestral groups and rare 

variants are generally not included in current clinical dosing guidelines. This can lead to health 
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GLVSDULWLHV�EDVHG�RQ�D�SDWLHQW¶V�DQFHVWU\�DQG�LV�SUREOHPDWLF�IRU�DOO�LQGLYLGXDOV�EHFDXVH�UDUH�

variants are estimated to contribute to as much as 50% of interindividual variation in drug 

response (11).  

IEMs encompass more than 1,000 genetic disorders, including organic acidemias, urea cycle 

defects, lysosomal storage disorders, and disorders of amino acid metabolism (12). IEMs are 

characterized by monogenic mutations that can affect protein function and result in altered 

metabolite levels. The majority are autosomal recessive disorders. Many IEMs are severe, early-

onset conditions amenable to therapeutic intervention, and early treatment can lead to 

significantly improved clinical outcomes. Because the consequences of unrecognized IEMs in 

pre-symptomatic newborns can be catastrophic, detection before symptom manifestation is 

essential. Newborn screening (NBS), a near-universal public health practice, detects over 40 of 

the most common, treatable IEMs via biochemical tests performed in blood samples taken 

shortly after birth. IEMs occur in 1 in 2,000 births worldwide and are present in all ancestral 

groups (13). Comparing incidence across ancestry is difficult because of differences in screening 

between countries and the fact that ancestry is not consistently categorized within countries 

(14). One study of ancestrally diverse California newborns suggested that newborns with Middle 

Eastern ancestry had the highest incidence of IEMs (>1 in 1,000) and newborns with Japanese or 

Pacific Island ancestry had the lowest incidence of IEMs (<1 in 5,000) (15).  

Presently, NBS detects IEMs by identifying elevated metabolites in blood, which is performed 

with tandem mass spectrometry (MS/MS), an inexpensive and rapid test. However, disorders 

may be missed, some analytes are non-specific, and follow-up testing may be time consuming 

and complex (1, 16). DNA sequencing has the potential to more accurately identify disorders for 
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which MS/MS detection is not optimal and also identify disorders for which there is no 

appropriate metabolite screen. 

Carrier testing provides an opportunity to detect rare variants in IEMs and other disease-

associated genes (17) before conception. However, interpretation of genetic screening results still 

faces significant challenges (18), especially in cases identifying variants of uncertain significance 

(VUSs) where risk for inherited disease cannot be definitively assessed and actionability is 

questionable. The falling cost of next-generation sequencing will continue to expand the 

identification of genomic variants that may cause IEMs or alter drug response. Although many 

genetic variants have established associations with disease phenotypes or drug response, the 

majority are of unknown clinical consequence. Generating experimental data to validate the 

pathogenicity of individual variants is tedious and expensive, although recent advances have 

facilitated more large-scale generation of data (19). Several databases attempt to catalog variants 

in disease-causing genes, but there is no central catalog for associated functional data. Thus, 

alternative methods for determining or predicting functional effects of genetic variants are 

urgently needed. 

At present, validation of genetic variants as causal for IEMs or important for PGx is complex, 

involving consideration of layers of information at the genetic, phenotypic, clinical, and familial 

levels (20). Variants in genes underlying IEMs frequently require functional characterization to 

be validated as causal. Functional validation can be carried out with a myriad of model systems, 

including patient-derived cells or blood, immortalized cell lines, and animal models (21). Robust 

functional assays suitable for the validation of variants as causal are not always available because 

they require a biological or biochemical measurement directly related to the function of the gene 

of interest. Common experimental methods to validate pathogenicity include overexpression 
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models to assess function of the variant allele, genetic rescue whereby introduction of the wild-

type allele rescues phenotype, and transgenic expression for phenotyping in model organisms 

such as E. coli, yeast, Drosophila, C. elegans, zebrafish, and mice (21). CRISPR-Cas9 

technology allows for high-throughput functional characterization in many systems. Assays 

investigating mRNA and protein expression (i.e., RNA sequencing [RNA-seq] and immunoblot) 

can reveal variant consequences on splicing and allele expression or differential protein 

expression, respectively (21). The validation of clinically important variants relating to PGx is 

also complex. Targeted functional assays evaluating variant effects on gene function can be 

carried out in vitro when feasible via similar methods and models as for IEMs. Examples include 

enzyme activity assays (22) and transporter uptake assays (23). Pharmacogenetic variation can 

further be validated as clinically important in pharmacokinetic/pharmacodynamic studies, 

whereby individuals with a particular genotype exhibit significantly different drug response 

compared with individuals with a different genotype for the variant in question. 

2.4 Ethical considerations in rare variant interpretation 

Genome-informed precision medicine must include analysis of ethical, legal, and social 

implications (ELSIs) in order to improve upon rather than exacerbate existing health disparities 

(4). We have identified six chief concerns with enhancing computational predictors for the 

phenotypic effects of rare variation at the scale proposed here. First, the uncertainty of results 

and, second, the return of clinical results can either improve or compromise clinical care. 

Although enhanced computational predictors for IEMs and PGx can minimize harm from the 

trial and error of current clinical practices, consistency in clinical education and approaches to 

ambiguous and incidental findings will be critical to determining societal benefit. Third, research 

and clinical stakeholder perspectives in approaching the classifications of VUSs can differ. 
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Fourth, the underrepresentation of minority groups in current datasets and the underlying 

research that informs them needs particular attention in order to create a larger and more diverse 

reference genome so that biases can be reduced. Fifth, an effective genomic learning healthcare 

system must account for data security and privacy risks. Sixth, there needs to be transparent data 

sharing expectations across all levels of participation in the learning system. Building on 

previous ethical frameworks (24, 25) and the need for a nuanced approach (26), we suggest that 

trade-offs between ensuring individual control over data and the social obligations of individuals 

have yet to be resolved at the level of ethical governance provisions. Discussion of these 

concerns is guided by three central ethical questions, summarized in Table 2.1 and elaborated 

within the ethics spotlight sections. 

2.4.1 Ethics spotlight 1: Can genome sequencing improve the uncertainty of results and return 

of clinical results? 

For the use of predictive algorithms as the primary methods of analysis for IEMs and PGx to be 

ethically justified, these methods must provide equal or greater certainty than current methods. 

Improving screening and predictive analysis for IEMs and PGx at the testing level is contingent 

upon the accuracy of results, the provisions around returning results, and the impact on clinical 

care. Even pathogenic results can have variable penetrance and/or VUSs and, given the 

possibility of reclassification over time, can cause significant consternation on both the part of 

the clinician and patient (27). Perhaps most thoroughly documented in cancer genetics (28), the 

clinical return of genetic results is rarely straightforward. The prohibition against the return of 

uncertain results, outlined by the American College of Medical Genetics and Genomics 

(ACMG), is such that even if there is a suspicion that an uncertain variant is pathogenic, it 
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should conservatively be classified as a VUS because this information is used in medical 

decisions (2).  

The follow-up of uncertain results is complicated by clinician/researcher and patient expectations 

and understandings of actionability. Genomic literacy across different healthcare professional 

roles is limited (14, 29). The disclosing of sequencing results should be contingent upon what 

has been previously explained to the patient/parent about incidental findings and potential 

treatments (30). As healthcare delivery is already biased with regard to decisions about referrals 

or withdrawals of care, including decisions made through racial discrimination, it will be 

challenging for algorithms to correct for existing biases in the handling of results (31). Uncertain 

and incidental (or secondary) results in clinical care should be considered in the context of 

existing slippages of fiduciary obligations²such as clinician biases and/or patient mistrust²that 

emerging tests may or may not be able to compensate for (32). The NHGRI has called for greater 

diversity among the genomic scientist workforce (4).  

In order to contain immediate risks around uncertainty of results and focus resources, is there a 

case for tiered approaches? For example, beginning with targeted sequencing and, upon accuracy 

improvements, expanding programs to include non-targeted sequencing, or at the individual 

level, only sequencing specific genes as a second-tier option if a positive test result arises in 

genome sequencing? Certainly, implementing genome sequencing at the routine screening level 

requires greater computational accuracy, accessibility, and more nuanced ethical safeguards (4, 

26). In the US healthcare context, it is difficult to resolve the issue of healthcare insurance 

coverage. Can financial disparity in the follow-up of results be partially alleviated with 

temporary coverage through risk-sharing agreements between payers and manufacturers of tests 

(33)? Can ethical priorities of the clinician and patient transaction be made compatible with the 
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needs of the genomic learning healthcare system²which must maximize scarce resources²such 

that genomic sequencing improves healthcare across all of society? 

2.5 Evaluating variants of uncertain significance 

Variants in functionally important genes are often suspected to lead to clinical consequences. 

For IEMs and PGx, there are hundreds of genes in which nonsense and missense variants are 

associated with clinical outcomes. Although additional genetic, epigenetic, and environmental 

factors alter disease risk and drug response, the gene sequence is the primary determinant of 

phenotype for these genes. Thousands of pathogenic rare variants in these genes have been 

characterized with clinical consequences often well understood and cataloged. Yet exome and 

genome sequencing continue to identify novel variants in these genes at a rapid pace. The 

ACMG has developed guidelines to interpret these variants, but by design, conclusive evidence 

is required to assert a variant is pathogenic, even in known disease genes (2). For example, 

defects in PAH (OMIM: 612349) cause phenylketonuria (PKU [OMIM: 261600]), an IEM that 

can lead to severe intellectual disability and seizures when untreated. In gnomAD (34), a 

population database of variants seen in more than 100,000 individuals, 57% of observed protein-

altering variants in PAH have unknown pathogenicity. Individuals who are homozygous for 

these variants at birth will have an unknown risk of developing PKU, and carriers of these 

variants cannot be advised of their risk of having a child with PKU. Thus, predicting the 

functional consequence of rare variants in IEMs and PGx is an important challenge. 

To begin to address this issue, numerous publicly available databases actively catalog genetic 

variants and associated disease and drug response phenotypes. These databases are typically 

human curated and bring together information that would otherwise be dispersed across the 
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literature, allowing researchers and clinicians to quickly access existing knowledge. Several 

databases focus on the pathogenicity of variants genome wide, including thousands of variants in 

IEM and PGx genes. These include ClinVar, ClinGen, the Human Gene Mutation Database 

(HGMD), and Online Mendelian Inheritance in Man (OMIM) (35-37). Such platforms have a 

shared goal of linking genes with disease, although they take different approaches. ClinVar 

allows submissions from clinical laboratories, research groups, and specialized databases, 

presenting all submitted data through an online interface. Most submissions are not manually 

vetted and are presented as submitted. ClinGen and OMIM attempt to provide authoritative 

curation of known variants and their relationship to disease. Curators review literature and 

experimental data to determine pathogenicity of genetic variants. ClinVar and ClinGen share and 

collaboratively curate data. In addition to being used for standardizing the set of variants with 

known consequences, these databases are also used by researchers and clinicians to evaluate the 

evidence that an uncatalogued VUS causes disease based on its similarity to cataloged variants 

(e.g., if a VUS results in the same amino acid change as a cataloged pathogenic variant, this VUS 

now has strong evidence for being pathogenic) (2). Similarly, efforts have been made to catalog 

the relationship between genetic variation and drug response, exemplified by databases including 

PharmVar and PharmGKB (38-40). Like ClinVar, PharmVar relies on user submissions of 

discovered haplotypes in genes related to pharmacogenomics. 

These variant databases encapsulate the combined expertise of thousands of clinical researchers 

across the world but also reveal a large amount of uncertainty. The majority of possible missense 

variants in IEM and PGx genes are classified as VUSs or are altogether missing from databases. 

ClinVar alone contains more than 6,000 variants classified as VUSs in IEM genes and more than 

10,000 VUSs in PGx genes (Fig. 2.2A-B). Variants in ClinVar change classification as 
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researchers submit new evidence, but very few VUSs are resolved as fully pathogenic or benign 

(Fig. 2.2C-D). Instead, many variants are subject to conflicting classifications. Indeed, 41% of 

IEM and PGx variants in ClinVar are of uncertain significance or have conflicting interpretations 

of clinical importance. For novel variants, it is often challenging to establish pathogenic certainty 

until they are observed by multiple clinicians who submit consistent classifications to a variant 

database. For VUSs without further clinical or experimental evidence, computational methods 

offer a possible resolution. 

Most computational approaches predict the functional impact of single-nucleotide 

polymorphisms (SNPs) and small insertions and deletions (INDELs) by using predictive 

machine learning models. The popular tool CADD uses a logistic regression model and more 

than 60 genomic features to learn the features that distinguish randomly generated variants from 

recently fixed variants in humans (41). The resulting predictor has been used to predict the 

pathogenicity of clinical variants and is currently used in clinical analysis pipelines 

(42). REVEL, a meta-predictor, uses the ensemble of scores from several prediction algorithms 

like CADD, each with different strengths and weaknesses, and is trained to differentiate rare 

unlabeled variants from HGMD pathogenic variants (43). Both CADD and REVEL are capable 

of predicting the effects of variants in any gene, which is typical of predictors used in clinical 

research. However, predictors that are gene-, gene family-, or locus-specific generally perform 

better for both IEMs and PGx in comparison to predictors that rely on data from the entire 

genome (44-51). Despite their promise, such bespoke methods are constrained by the limited 

data available for most genes, such as the number of known pathogenic variants and associated 

functional data. Because these methods are designed to predict the functional impact of a variant, 

their predictions can be some layers removed from the clinical consequence. Additionally, 
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pharmacogenes are not under the same evolutionary constraint as genes involved in disease, 

limiting the effectiveness of most predictive algorithms (46, 52).  

To combine the best features of variant databases and computational predictors, automated 

systems that use both in tandem are already being tested to predict the pathogenicity of rare 

variants. Consider one recent study evaluating IEM detection by sequencing dried blood 

spots (DBSs) obtained from newborns (1). This study compared the performance of MS/MS to 

exome sequencing as a primary screen for IEMs on a set of 805 newborns with confirmed IEMs. 

Variants identified by sequencing were automatically assessed on rarity, protein consequence, 

and predicted pathogenicity (including CADD) and matched with cataloged pathogenic variants 

in ClinVar and HGMD to predict disease status. Overall, this combination was neither 

sufficiently sensitive nor specific compared to MS/MS, and exome sequencing notably missed a 

number of cases in which a pair of rare, protein-altering variants were absent from the causal 

gene. However, performance varied among IEMs and, in some cases, provided more specific 

diagnoses than conventional MS/MS analyte testing. 32% of pathogenic variants were absent 

from HGMD and ClinVar. Critically, sequencing led to several false positives in which an 

individual harbored a pair of rare, protein-altering variants in an IEM gene but did not have the 

associated disorder. These false positives significantly limit the ability to use DNA 

sequencing for screening and could be mitigated by more accurate computational methods that 

distinguish pathogenic from benign protein-altering variants. 

2.5.1 Ethics spotlight 2: Can we view the classification of VUSs as a social justice 

opportunity? 

Whether the classification of VUSs and IEMs can offer a fairer distribution of the benefits of 

sequencing technologies across all population groups is a significant question. Most large 
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datasets in the US contain homogeneous ancestry that is unrepresentative of the whole 

population (53, 54). In addition to the need to improve predictive methods for IEMs, screened 

individuals need to be considered as part of a social group in relationship to a wider and unequal 

social system. The moral obligations embedded within the ethics of clinical research and practice 

need to be better integrated (24). For individuals seeking healthcare, polygenic risk scores are 

more accurate for patients of European ancestry because the data from which algorithms are 

trained are derived largely from individuals of European ancestry (55, 56). Similarly, variant 

impact predictors tend to be derived from cataloged variants in databases, which are not 

representative of all ancestries. For example, ClinVar was recently found to be missing a large 

number of hearing impairment variants that primarily affect individuals of African ancestry 

(57), most likely indicative of a broader pattern. For variant predictors, this bias will lead to 

greater reliance on European ancestry variants and European genetic context, producing less 

accurate classification of IEM and PGx variants in other ancestral populations (e.g., African), 

which would only compound existing injustice in healthcare access for underrepresented 

populations (58, 59). Disparity in ancestry representation is especially stark in data sources for 

genome-wide association studies, where European ancestry disproportionately represents 81% of 

the dataset population (53). 

Can we alleviate healthcare disparity by closing current ancestry gaps in genetics research? 

Given evidence that polygenic risk scores can be improved upon by incorporating datasets from 

a broader range of genetic ancestries (60), it is imperative that the genetics field strives for fairer 

training data. As the field matures to consider the role of genetic modifiers (61), as well as social 

and environmental interactions (62), genotypes of diverse individuals are needed to consider the 

effects of genetic modifiers and the environment on variants. Newborn screening programs, with 
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their mandatory collection and the near universal application of testing, provide a diverse and 

truly representative set of individuals (15). That said, racial discrimination in healthcare and 

healthcare research is not simply resolvable through technical fixes. Redressing data 

underrepresentation and health equity in machine learning precision medicine must be viewed in 

WKH�FRQWH[W�RI�JRYHUQDQFH�DQG�EURDGHU�VRFLDO�FKDQJH��ZKLFK�ZH�GLVFXVV�LQ�³Ethics SSRWOLJKW���´�

regarding questions of social obligation. 

2.6 Opportunities in rare variant evaluation 

In predicting the effect of a variant on gene function, we can predict its effects on the system, 

such as a metabolic pathway, and then on the physiology and/or pathophysiology. Cataloging 

observed likely clinically impactful variants in databases such as ClinVar and PharmVar (37) can 

be effective for determining the pathogenicity of more frequent rare variants (allele frequency 

between 0.01% and 1%). These variants are common enough that they have been identified in 

multiple individuals, and therefore, the effect on phenotype can be verified. However, ultra-rare 

variants, defined as having an allele frequency less than 0.01%, are responsible for a large 

portion of rare genetic disorders. Publicly available databases of PKU patients indicate that 60% 

of cases involve at least one ultra-rare SNV, and in 28% of cases, the affected individual carries 

an ultra-rare variant on both copies of PAH. Some of these ultra-rare variants may be de 

novo mutations, and the individual may be the only person known to harbor that exact variant 

(63). The vast majority of ultra-rare variants are absent from clinical databases, indicating that 

the current approach of cataloguing observed genetic variants fails when allele frequencies are 

especially low. For PAH, which is one of the most studied metabolic genes, only 9% of possible 

SNVs have functional impact classified in ClinVar. 
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Emerging computational algorithms may serve as a means for evaluating the impact of rare 

variants in IEM and PGx genes. As noted above, existing algorithms have limited ability to 

accurately predict the impact of variants in these genes, especially among rare variants. Methods 

have been developed to specifically evaluate variants in pharmacogenes, but these are largely 

based on existing methods and may have some of the same inherent biases (46). Machine 

learning has revolutionized computer vision and natural language processing by effectively 

analyzing spatial and sequential data (64-66). Machine learning is a type of artificial intelligence 

LQ�ZKLFK�DOJRULWKPV�DUH�WDXJKW��RU�³WUDLQHG�´�WR�PDNH�SUHGLFWLRQV�EDVHG�RQ�H[LVWLQJ�GDWD��0DFKLQH�

learning forms the basis of existing variant effect prediction algorithms, where an algorithm is 

trained to predict whether a genetic variant will be deleterious or not on the basis of a training 

dataset of known deleterious and benign genetic variants. In recent years as computational power 

and the amount of available data has increased, a type of machine learning that uses deep neural 

networks, known as deep learning, has become widespread. With the rapid growth in the 

availability of biological data, deep learning has also been extensively used in bioinformatics 

(67-74), including transcription factor binding site prediction (75), genome functional annotation 

(76), and assessment of variant function (77, 78). Several methods have been developed 

specifically for the evaluation of alleles in pharmacogenes, namely CYP2D6 (MIM: 124030) (79, 

80). These purpose-built models outperform existing methods and are capable of assessing the 

impact of any combination of variants observed in a haplotype rather than single variants. One 

major drawback of deep learning is that it requires an immense amount of data in order to 

estimate the large number of parameters required for good performance (81, 82). 

Transfer learning offers an opportunity to leverage the power of deep learning in situations 

where data are limited. It is difficult to obtain sufficient data to develop phenotype prediction 
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algorithms from genomic data via deep learning, especially when we only have tens or hundreds 

of individuals with both genome sequencing data and well-characterized clinical or molecular 

phenotypes. Transfer learning is an emerging approach for overcoming the challenge of limited 

data. The idea is to build models that perform a task (X) that is similar to the goal task (Y) but 

for which there are large amounts of relevant real or simulated data. Once the model for solving 

task X is performing well, it can be refined with data relevant to task Y. In the case of predicting 

variants, we might build a model using data from a well-studied gene (X) and then refine the 

model with data from a poorly studied gene (Y). The resulting model may perform very well on 

<�EHFDXVH�WKH�³OHVVRQV´�OHDUQHG�LQ�PRGHOLQJ�;�WUDQVIHU�ZHOO�WR�< (83-88). There are several 

flavors of transfer learning that have been applied to applications in genetics and proteomics. 

Convolutional neural network (CNN)-based approaches pre-train weights of convolutional layers 

on large datasets that can be finetuned on smaller datasets (79). Transformer-based approaches, 

frequently used in natural language processing, have been applied to functional predictions of 

variants in proteins (89, 90). Graph-CNNs have been used to make drug-binding predictions with 

protein structure data after being pre-trained with an unsupervised learning step (91). These 

transfer learning methods could in theory be used to create structure-based predictions of the 

effect of amino acid changes on drug binding. These methods combined with in 

silico representations of drug molecules could be used to create substrate-specific predictions of 

drug-protein interactions and how genetic variants may influence that behavior. 

The underlying homology between gene orthologs and paralogs may allow for an increased 

ability to perform transfer learning. We may be able to use knowledge learned in some domains 

to inform others. Not surprisingly, some rare diseases have received more attention than others, 

often because of the incidence of the disease, serendipitous factors, and scientific opportunities. 
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These well-studied diseases typically have significantly more variant impact data available than 

others. PKU has an incidence of 1 in 10,000 newborns, and there are hundreds of disease-

associated cataloged variants. In comparison, tyrosine hydroxylase deficiency (THD 

[MIM: 605407]) affects fewer than 1 in 100,000 newborns and has been associated with fewer 

than 20 variants in TH (MIM: 191290). Sequencing benefits individuals with THD less simply 

because the disease is rarer and few known pathogenic variants exist. The chemical similarity 

of phenylalanine and tyrosine leads to a high degree of homology between PAH and TH, which 

presents an opportunity to transfer knowledge about PKU variants to better understand THD²

for example, in understanding which parts of the protein may be more or less tolerant of non-

synonymous mutations. However, although transfer learning may offer some advantages in the 

assessment of rare variation, this approach relies on the existence of genes that are similar 

enough to the gene of interest with sufficient data. Transfer learning may be valuable for some 

domains, but there is still a need to generate large amounts of high-quality data. Ideally, for 

knowledge to be truly transferable, data collection would be ongoing and from whole-population 

datasets rather than being limited to existing datasets. 

Ultimately, the goal of any variant interpretation method is to improve clinical care. Integration 

of genetics into the clinic is already quite challenging, and integration of computational methods 

for predicting variant function is rife with further challenges. Learning health systems have long 

been proposed as models for improving healthcare (92-94), but integration of genetic data into 

such a system would allow for the accumulation of data to train more sophisticated predictive 

models as well as an opportunity to iteratively improve upon such algorithms. 

A genomic learning healthcare system would allow for rapid collection and phenotyping of rare 

variants. Learning health systems have been proposed in healthcare since 2007, but few have 
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fully integrated genetics to inform patient treatment (94). In existing systems, the algorithms are 

constantly improving on the basis of a feedback loop of data that are collected over the course of 

patient treatment. A genomic learning healthcare system (GLHS) would operate in much the 

same way, but with the addition that clinical decision support is provided on the basis of genetic 

data as well as clinical data (33). In this proposed system, collection, sequencing, and analysis of 

patient data would be required as a first step and would need to be available as part of the 

SDWLHQW¶V�FOLQLFDO�UHFRUG�LQ�WKH�HOHFWURQLF�KHDOWK�V\VWHP��7KLV�ZRXOG�HQDEOH�FOLQLFDO�GHFLVLRQ�

support for IEM- and PGx-related conditions, providing doctors with diagnosis and treatment 

guidance. The algorithms underlying the clinical decision support can be evaluated regularly and 

updated on the basis of newly available patient data. In addition to evaluating the algorithms, 

sequencing and analyzing important genes for every individual treated will allow for more rapid 

collection and phenotyping of ultra-rare variants²if ancestrally diverse datasets are available. 

The ultimate goal of a GLHS is to improve treatment for all patients by leveraging their genetic 

data. This includes determining the pathogenicity of rare variants that may be previously unseen 

in patients and potentially making clinical decisions based on their predicted impact. As a 

conservative first step, a genomic learning healthcare system could implement existing clinical 

guidance models for IEMs and PGx, such as the pharmacogenomics dosing recommendations 

from CPIC. Once genetic data are collected for each patient, predictive models for rare variants 

can be developed and implemented in clinical practice at such a time when there is sufficient 

confidence in the predictions of the model. Careful analysis will be needed in selecting and 

evaluating predictive models for both IEMs and PGx, and it is likely that gene-specific models 

will be needed. The specific clinical action based on a predicted phenotype will then depend on 

the application area and the onset and severity of the condition. Severe IEMs may require 
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immediate intervention (such as PKU), whereas for others, a preventative approach is deployed. 

Some IEMs respond to pharmaceutical interventions, and genotype may predict likelihood of 

response to a specific medication (95, 96). For late-onset IEMs, genotype may predict age of 

onset, which can inform appropriate patient monitoring (97). Similarly for PGx, if the potential 

consequences of prescribing a drug are life threatening, the clinician may select an alternate 

therapy. Likewise, if the consequences are mild, they may proceed with caution. We illustrate 

this framework in Figure 2.3 before turning to the ethical questions to be taken into account (2). 

2.6.1 Ethics spotlight 3: How can genomic learning healthcare systems ensure adequate 

genomic input and data governance? 

Data governance and consent for secondary data use will significantly shape whether or not 

genomic learning healthcare systems can improve accuracy and reduce biases. Learning health 

care systems present unique ethical challenges that traditional clinical and research ethics²

focusing on individual harms and a sharp research/clinical care divide²will find difficult to 

address (24). Data collection and input (step 1 and step 2 of Fig. 2.3) differs between clinical and 

public health repositories in terms of provisions around secondary use. One option to improve 

data privacy and security is through the use of federated learning. This approach involves a 

centrally pooled dataset with non-co-located data only; data are not shared directly, and model 

parameters could be protected by research collaboration agreements, advances in data 

encryption, and a trusted third-party to oversee data access (98). 

The use of artificial intelligence in healthcare systems is also complicated by issues arising from 

the possible encoding and routinization of human bias, even with the use of seemingly neutral 

data sources (54). Artificial intelligence has EHHQ�GHVFULEHG�DV�³WKH�FROOHFWLYH�PHGLFDO�PLQG´ 

(31). More than simply doing no harm, a GLHS should actively support greater health equity (4, 
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99). Of central importance is whether clinical data, or model parameters if deploying a federated 

learning approach, could be viewed and secured as a public good insofar as all stakeholders, both 

healthcare and private industry, hold a moral obligation to use and share clinical data in ways 

that benefit society over and above individual or commercial interests (25). If viewing clinical 

data as a public good, determining how to deal with computational predictors and healthcare 

outcomes that accurately capture differences not so much resulting from human input biases but 

rather serving unfair social conditions would be of greatest difficulty. 

For public health data use, it is important to identify and address social and political 

inconsistencies in the ethical oversight from institutional review boards and government bodies, 

particularly in regard to informed consent and anonymization of data (100). This requires careful 

consideration for how questions of beneficence regarding collections and distribution of quality 

care across populations can vary and ultimately widen health disparities (101). Taking the case 

of newborn DBSs, the current justification for the mandatory nature of newborn screening rests 

on the potential harms to the child were they not screened for these treatable conditions (see (26) 

for a full historical justification). Safeguards are needed to protect the storage and research use of 

genetic data, which could become more identifiable (102). With such protections, could the 

practice of informed consent with individuals be seen as less important than another process to 

ensure respect for autonomy at a group level in order to meet social obligations to contribute to 

both greater knowledge and efforts to reduce social inequity in health? (24) Because biobanks of 

newborn DBSs provide a rich and unique dataset for research and improving newborn screening 

(and other genetic testing)²with enormous potential for contribution to a GLHS²the loss of 

such potential, if secondary use of newborn DBSs is only permissible on an individual consent 

basis, needs to be carefully weighed up against ethical concerns about respect for individual 
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control. How do we ensure respect for individuals in a GLHS that relies on the collective 

contributions of entire populations in order for everyone to potentially benefit? Those 

implementing machine learning research in a GLHS must engage these questions directly. 

2.7 Conclusion 

The defining problem of the genomic age is the interpretation of human genetic variation. In 

reviewing computational advancements and ethical concerns, we look to develop gene-specific 

variant interpretation algorithms with a genomic learning healthcare system that builds from a 

focus on early-onset treatable disease in newborns and actionable pharmacogenomics 

recommendations. We seek diagnosis of IEMs and treatment for PGx that is tailored to each 

individual and treatment outcomes that are shared to improve treatment for future patients across 

all of society. The existing system is the first step toward this goal, as evidenced by confirmatory 

sequencing of patients and variant cataloging in databases such as ClinVar. Yet the existing 

system falls short because it is reactive rather than predictive and accurate treatment depends on 

whether the variant has been previously seen and cataloged. Importantly, it remains to be 

determined whether computational methods can alleviate health inequity that is reinforced by 

these limited variant databases. Pervasive sequencing may indeed present a social justice 

opportunity: to actively promote a more fair and consistent distribution of treatment across all 

population groups. Yet, there are many barriers blocking the way, including unrepresentative 

sequencing databases, secondary data use permissions, barriers to healthcare access, and existing 

biases at the human interface of research and caregiving. 

There are technical challenges, including accurate variant classification, data limitations, and 

growing numbers of variants of uncertain significance. A combination of a GLHS and transfer 
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learning can overcome existing data limitations in order to improve the computational prediction 

RI�YDULDQWV��$Q�LQFUHDVHG�XQGHUVWDQGLQJ�RI�HDFK�SDWLHQW¶V�YDULDQWV�ZLOO�HQDEOH�PRUH�SUHFLVH�

diagnosis and treatment. Most importantly, as more patients provide information into the system, 

lessons learned from one patient may inform the care of all patients. A dynamic and fair genomic 

learning healthcare system will create the greatest patient benefit from the captured genomic and 

phenotypic information, but this will fundamentally depend on careful consideration of societal 

implications. 
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2.9 Figures 

 

Figure 2.1. Diagram of current treatment workflow and proposed workflow that integrates 
genomics. Simplified overview of the identification and treatment of patients with IEMs or PGx. 
We contrast the current approach with our proposed framework, which incorporates early 
sequencing and analysis of rare variants with machine learning and ethical considerations. (A) 
Current practice for IEMs and PGx begins with an observable phenotype. In IEMs, this may be 
an altered metabolite detected by newborn screening; in PGx, perhaps an adverse event. 
Phenotype can also include physical examination, medical history, family history, and relevant 
labs or studies. Genetic sequencing is then performed, which could include targeted single-gene 
sequencing with copy number variant detection, gene panel, whole-exome sequencing, or in 
some cases, family trio sequencing to assess phasing and identify de novo variants. If annotated 
pathogenic variants are identified in the target gene, a patient may be diagnosed with a disease 
and offered preventative services (as is the case with IEMs) or given a different drug or dose 
adjustment (as with PGx). Identification of VUSs may result in a diagnosis, depending on the 
other variants identified. In this simplified figure, VUS refers to a variant in the targeted gene of 
interest as opposed to an incidental finding not relevant to diagnosis. Patient diagnosis can occur 
without DNA sequencing, as is the case with some IEMs. (B) Hypothetical future approach to 
patient care in the fields of PGx and IEMs. All individuals undergo whole-genome sequencing 
at birth. Machine learning models use detected variants to predict phenotype (disease risk or 
differential drug response). Ethical considerations are addressed, and clinical action is taken 
accordingly. 
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Figure 2.2. ClinVar variants of uncertain significance in genes related to IEMs and PGx. 
The number of VUSs in ClinVar between 2015 and 2020 in (A) IEM and (B) PGx genes, 
respectively. All ClinVar variants in (C) IEM and (D) PGx genes that were reclassified between 
February 2018 and February 2019. Height of bars is proportional to number of variants 
reclassified. A total of 293 variant reclassifications is shown in (C) and 434 variant 
reclassifications are shown in (D).  
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Figure 2.3 Proposed workflow for a genomic learning healthcare system. 3DWLHQWV¶�'1$�
samples are collected and sequenced with genomic data input to computational models. The 
model outputs a predicted phenotype for the patient; results are reviewed by clinicians and 
applied to the patient. Outcomes are evaluated and the model continues to learn from a feedback 
loop to improve outcomes for future patients. Icons are from The Noun Project (103-106).  
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2.10 Tables  

Table 2.1. Ethical considerations for the adoption of novel genomic technologies into 
learning health system practice. 

Areas of IEMs and PGx and ethical issues Key question 

Whole-genome sequencing for newborns: (1) 
uncertainty of results and (2) return of clinical 
results, including results from late-onset disorders  

Can genome sequencing improve the 
uncertainty of results and return of 
clinical results?  

Interpreting VUSs: (3) research and clinical divide 
and (4) social/ racial inequity  

Can we view the classification of VUSs 
as a social justice opportunity to close 
social and genetic ancestry gaps?  

Genomic learning healthcare systems: (5) privacy 
risks and (6) data sharing  

How can genomic learning healthcare 
systems ensure adequate genomic input 
and data governance?  

VUSs, variants of uncertain significance. 
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for Carnitine Transporter Deficiency 
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3.1 Abstract 

Genetic variants in SLC22A5, encoding the membrane carnitine transporter OCTN2, cause the 

rare metabolic disorder Carnitine Transporter Deficiency (CTD). CTD is potentially lethal but 

actionable if detected early, with confirmatory diagnosis involving sequencing of SLC22A5. 

Interpretation of missense variants of uncertain significance (VUS) is a major challenge. In this 

study, we sought to characterize the largest set to date (n=150) of OCTN2 variants identified in 

diverse ancestral populations, with the goals of furthering our understanding of the mechanisms 

leading to OCTN2 loss-of-function (LOF) and creating a protein-specific variant effect 

prediction model for OCTN2 function. Uptake assays with 14C-carnitine revealed that 105 (70%) 

of variants significantly reduced transport of carnitine compared to wild-type OCTN2, and 37 

variants (25%) severely reduced function to less than 20%. All ancestral populations harbored 

LOF variants. 62% of GFP-tagged variants impaired OCTN2 localization to the plasma 

membrane of HEK293T cells and subcellular localization significantly associated with function, 

revealing a major LOF mechanism of interest for CTD. With these data, we trained a model to 

classify variants as functional (> 20% function) or LOF (< 20% function). Our model 

outperformed existing state-of-the-art methods as evaluated by multiple performance metrics, 

with mean area under the receiver operating characteristic curve (AUC) of 0.895±0.025. In 

summary, in this study we generated a rich dataset of OCTN2 variant function and localization, 

revealed important disease-causing mechanisms, and improved upon machine-learning based 

prediction of OCTN2 variant function to aid in variant interpretation in the diagnosis and 

treatment of CTD.  
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3.2 Introduction 

Loss-of-function (LOF) variants in transporters in the Solute Carrier Superfamily (SLC) are 

responsible for over 100 rare genetic diseases (1, 2). Carnitine transporter deficiency (CTD; 

OMIM #212140 (3); also known as primary carnitine deficiency or carnitine uptake defect) is a 

rare metabolic disorder caused by biallelic LOF variants in SLC22A5, the gene that encodes the 

plasma membrane carnitine transporter OCTN2. Without timely detection, CTD can be fatal (4-

6), but clinical outcomes are relatively successful when diagnosed early and treated with 

supplemental L-carnitine (7), highlighting the need for sensitive diagnostic practices (8). 

As an actionable monogenic disorder, CTD is included in newborn screening (NBS) programs 

throughout the US. Tandem mass spectrometry (MS/MS) using samples from newborn dried 

blood spots is the primary screen to flag newborns with abnormally low plasma carnitine levels 

for further testing. However, use of biochemical assays in NBS for CTD encounters several 

limitations, and confirmatory diagnosis can be arduous. Biochemical assays in newborn dried 

blood spots result in many false positive cases, in part because newborn carnitine levels are 

influenced by maternal carnitine levels, which can be low due to undiagnosed maternal carnitine 

deficiency or pregnancy-associated reduction in total carnitine (9). Furthermore, the plasma 

carnitine cutoff value for prompting further workup is not standardized: thresholds that are too 

high burden NBS programs with many false positives, whereas thresholds that are too low result 

in false negatives with potentially fatal consequences (9). The poor performance of biochemical-

based NBS for CTD in New Zealand resulted in the discontinuation of CTD screening (10), a 

consideration also underway in Germany where many cases are reportedly missed by NBS (11). 

Confirmatory testing for CTD following abnormal biochemical results includes sequencing of 



 76 

the SLC22A5 gene. Transporter functional assay may also be performed, though this is 

burdensome and not timely as it requires fibroblasts cultured from a skin biopsy.  

Although DNA sequencing may result in early and definitive diagnosis through the identification 

of variants with already known disease association, the identification of variants of uncertain 

significance (VUS) and rare or novel variants with unknown clinical consequence can make 

diagnosis via sequencing difficult. For example, the ClinVar database (12) cataloging clinical 

significance of genetic variants has entries for 252 unique missense OCTN2 variants. Less than a 

quarter of these variants have clinical interpretations (7 variants assigned benign or likely benign, 

50 variants assigned pathogenic or likely pathogenic), with the remaining 77.4% of variants 

classified as either conflicting interpretation (n=30) or VUS (n=165).   

The interpretation of variation in clinically important genes represents a key challenge in 

genomic medicine (13). While computational predictions are an important tool that can be used 

to aid in variant interpretation, there are several barriers to accuracy. Because the majority of 

prediction models are trained on large datasets of cataloged variants derived from individuals 

with European ancestry (14-16), an unfair bias is incorporated into the prediction methods with 

decreased accuracy for variants in individuals of non-European ancestries (17). Further, highly 

cited gene-agnostic prediction models perform worse for membrane proteins (like OCTN2) 

compared to soluble proteins (18). Recently, a number of protein-specific variant effect 

predictors (VEPs) have been successful in outperforming gene-agnostic models (19-23), though 

none have yet to resolve issues of genomic inclusion.   
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Training computational models to perform variant effect prediction requires a large amount of 

data that represents the population served. Thus, the most obvious candidate proteins for such 

models are those that are linked to highly penetrant monogenic diseases and easily assayable. In 

this study, we sought to characterize the function and localization of 150 genetic variants in 

OCTN2 from ancestrally diverse populations, with the ultimate goals of (1) informing inclusive 

diagnostics and therapeutic strategies for LOF CTD variants and (2) using machine learning to 

build a protein-specific model to predict functional impact of novel OCTN2 genetic variants. 

3.3 Methods 

3.3.1 Variant selection and annotation 

Variants included in this study were carefully selected to ensure equal representation from 

diverse ancestral SRSXODWLRQV�DYDLODEOH�LQ�WKH�%URDG�,QVWLWXWH¶V�*HQRPH�$JJUHJDWLRQ�'DWDEDVH�

(gnomAD) (24). 150 SLC22A5 missense variants were selected for characterization (for 

simplicity referred to as OCTN2 variants to signify the change at the protein level). Detailed 

workflow for the selection of OCTN2 variants characterized in this study can be found in 

Supplementary Figure 3.1. Predicted membrane topology of OCTN2 was modeled from 

UniProtKB (#O76082). Clinical association of all variants was annotated based on literature and 

database review and identification of that variant in an individual clinically diagnosed with CTD 

or suspected of possible CTD due to low carnitine levels and presence of at least one variant in 

2&71���6HDUFK�WHUPV�IRU�OLWHUDWXUH�UHYLHZ�LQFOXGHG�³6/&��$��PXWDWLRQ´��³2&71��PXWDWLRQ´��

³SULPDU\�FDUQLWLQH�GHILFLHQF\�FDVH�VWXG\´��DQG�³SULPDU\�FDUQLWLQH�GHILFLHQF\�QHZERUQ�

VFUHHQLQJ´� We compiled a list of previously characterized variants published in the literature to 

use as an additional dataset for performance evaluation of our machine learning models. Variants 

included in the dataset met the following criteria: (1) the variant was expressed and assayed in a 
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mammalian system, and (2) the experiment measured the carnitine transport of a single missense 

2&71��YDULDQW��7KH�GDWDVHW�LV�UHIHUUHG�WR�DV�³/LWHUDWXUH�9DULDQWV´��Supplementary Dataset 3.1). 

3.3.2 Cell culture 

+(.���7�FHOOV�ZHUH�FXOWXUHG�LQ�'XEHFFR¶V�PRGLILHG�(DJOH�PHGLXP��'0(0���Life 

Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum (GE Healthcare Life 

Sciences, South Logan, UT) and penicillin/streptomycin (100 U/mL) (Life Technologies, 

Carlsbad, CA) and grown in a humidified incubator at 37°C with 5.0% CO2. 

3.3.3 Construct generation 

A custom wild-type OCTN2 plasmid was generated by golden gate cloning as previously 

described (25). Full length SLC22A5 cDNA (NM_003060.4) was synthesized (Twist Bioscience, 

San Francisco, CA) with the start codon removed and adapter sequences synthesized on either 

end to facilitate golden gate cloning reactions. The linear SLC22A5 cDNA was domesticated into 

the MTK0_027 entry vector by golden gate cloning with BsmBI. A second golden gate cloning 

reaction was performed with BsaI to assemble the transcription unit (TU) plasmid, which 

included parts MTK1_001, MTK2_023, MTK3a_030, the MTK0_027-SLC22A5 as part 3b, 

MTK4a_015, MTK4b_001, MTK5_006, and MTK678_001. Description of parts is provided in 

Supplementary Table 3.1. A third golden gate cloning reaction was performed with BsmBI to 

insert the SLC22A5 TU into the MTK0_017 destination vector. MTK plasmids detailed in the 

Construct Generation section below were a generous gift from the Hana El-Samad Lab (UCSF, 

San Francisco, CA). Assembled constructs were sequenced (MCLAB, South San Francisco, CA) 

to validate successful cloning and ensure absence of mutations. All OCTN2 variants selected for 
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functional characterization were synthesized by site-directed mutagenesis (Genscript, 

Piscataway, NJ) from the final assembled SLC22A5 construct. 

3.3.4 Transient transfection of plasmids containing OCTN2 variants 

Human embryonic kidney cells (HEK293T) containing a landing pad at the hAAVS1 locus were 

used to create transient or stable cell lines. Transient transfection of constructs encoding the 

wild-type OCTN2 and OCTN2 variants was achieved by reverse transfection using 

Lipofectamine LTX transfection reagent (Thermo Fisher Scientific) accordiQJ�WR�PDQXIDFWXUHU¶V�

protocol. The MTK0_017 destination vector construct was used as the empty vector. Constructs 

were mixed with Lipofectamine LTX in OptiMEM media (Life Technologies, Carlsbad, CA), 

vortexed for 10 seconds, allowed to stand at room temperature for 15 mins, then added to poly-

D-lysine coated 96-well plates. Each well received 100 ng of DNA and 0.2 µL Lipofectamine 

LTX. HEK293T cells were counted and seeded into wells at a density of 35,000 cells/well. After 

transient transfection, cells were cultured for an additional 48 hours before subsequent 

experiments were performed (uptake assays or confocal imaging). 

3.3.5 In vitro uptake assays 

48 hours after reverse transient transfection of OCTN2 variants in poly-D-lysine coated 96-well 

plates (Fisher Scientific #356461), culture medium was removed and cells were washed three 

WLPHV�ZLWK�+DQN¶V�EXIIHUHG�VDOW�VROXWLRQ��+%66���Life Technologies, Carlsbad, CA) at 37°C and 

pre-incubated with the third wash of HBSS for 10 min at 37°C. 80 µL of 1 µM 14C-L-carnitine 

hydrochloride (Moravek Biochemicals #MC1147, Brea, CA) in HBSS (reaction mix) was added 

to each well and incubated at 37°C for 10 min, a time point within the linear uptake phase of 

OCTN2 (26). After 10 min, the reaction mix was aspirated and the cells were washed 3x with 
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ice-cold HBSS. 280 µL lysis buffer (0.1N NaOH, 0.1% v/v SDS) was added to each well and 

cells were lysed on an orbital shaker for 1 hour. Then, 230 µL cell lysate was removed from each 

well and added to liquid scintillation tubes with 2.5 mL Ecolite Liquid Scintillation Cocktail (MP 

Biomedicals #0188247501, Santa Ana, CA). Tubes were vortexed and the radioactivity in each 

sample was measured on a Beckman LS6500 liquid scintillation counter (Beckman Coulter, 

Brea, CA). 25 µL lysate from each well was reserved for protein concentration determination by 

Pierce BCA Assay. Function of each variant was normalized to wild-type (WT) OCTN2 and 

expressed as a percentage after background carnitine uptake measured in the empty vector (EV) 

was subtracted from both, calculated as follows: (Variant ± EV)/(WT ± EV)*100. Each variant 

was assayed in triplicate on a 96-well plate and measured in three biological replicates. 

3.3.6 Confocal imaging and localization classification 

Plasmids encoding OCTN2 variants with a C-terminal monomeric superfolder green fluorescent 

protein (msfGFP) tag were transiently transfected into HEK293T cells seeded at 20,000 

cells/well in black wall poly-D-lysine coated 96 well plates (Greiner Bio-One #655946) as 

detailed above. One variant was transfected per well. After 48 hours, the plasma membrane was 

stained for 5 min with Wheat Germ Agglutinin Alexa Fluor 647 Conjugate (Thermo Fisher 

Scientific) diluted 1:500 in HBSS and cells fixed with 3.7% formaldehyde in HBSS for 20 min. 

Nuclei were stained with 10 µM Hoechst 33342 dye in HBSS (Thermo Scientific #62249) for 20 

min at room temperature. Plates were imaged with the IN Cell Analyzer 6500 confocal high-

content imaging system (General Electric Life Sciences/Cytiva, Marlborough, MA), using a 488 

nm excitation laser. Nine images were taken per well with all samples imaged on the same day 

using the same image acquisition settings, and results were then replicated on two independent 

days. Three independent researchers reviewed images for localization and qualitatively classified 
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variants into either membrane, intracellular, or mixed categories. Reviewers were given 

representative images for each of the localization categories to inform their baseline 

understanding of categorization. All images were displayed using the same brightness and 

contrast values before given to the reviewers to ensure assessment consistency. Researchers were 

blinded to variant name or function. Concordance between classification by image reviewer is 

strong (Supplementary Figure 3.2). 

3.3.7 Machine learning 

Methods for generation of features used in machine learning are described in the Supplementary 

Text in Section 3.8. Classification models were trained to predict severe LOF variants with 

function less than 20% of wild-type OCTN2 function with respect to carnitine transport. For the 

classification model, three types of models and four feature sets were evaluated. The three types 

of machine learning models were LASSO penalized logistic regression, random forest, and 

gradient boosting machines. Four sets of features were generated: 1) sequence-based features 

describing the resulting amino acid change and position in OCTN2 protein sequence, 2) 

structure-based features extracted from the AlphaFold-2 structural model (default model 

download from the AlphaFold Protein Structure Database (27, 28), 3) prediction-based features 

derived from unsupervised variant effect prediction models, including variational autoencoders 

(29), Potts models (30), and protein language models (31), and 4) all features combined. Features 

in each set are provided in Supplementary Table 3.2. A final classification model was trained 

using a subset of features that were available for every possible amino acid change. Every 

combination of model type and feature sets was evaluated by training through 100 iterations of 

random subsampling of the 150 characterized OCTN2 variants using an 80/20 train/test split. In 

addition to the test set, we evaluated the predictive performance of each model on a set of 82 
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characterized OCTN2 variants derived from literature that were not characterized in our study 

(Supplementary Dataset 3.1). 

We trained and evaluated the OCTN2 function classifier by training a LASSO penalized logistic 

regression model using repeated random sampling using all features. We used random splits of 

the characterized variants with 105 variants used for training and the remaining 45 used for 

testing in each fold. The models were trained in R using the package Caret with repeated cross 

validation for hyperparameter tuning. We defined a binarizing cutoff for our model output by 

maximizing the sum of the sensitivity and specificity over all possible cutoffs. We then used this 

cutoff to calculate other metrics (e.g., accuracy) in the test set as well as the literature derived 

variants. The trained model was then used to predict the function of all possible missense 

variants in OCTN2, including the variants in the test set and those in the literature derived set. 

We evaluated the relative importance of the input features using coefficients output by the 

LASSO model. 

We additionally trained a regression model to quantitatively predict the measured function of 

OCTN2 variants, with model selection performed in the same way described in the classification 

section, however instead of models tuned for classification we trained models for regression. The 

final model was trained with 110 variants and tested with the remaining 40. LASSO coefficients 

were again used to evaluate feature importance. 

3.3.8 Data analysis 

Statistical analysis was performed in R version 3.6.3. (R Core Team, 2020). Plots were generated 

using R package ggplot2 version 3.3.5. Additional figures were generated with Biorender. 



 83 

For carnitine uptake assays, data are expressed as mean ± standard error of the mean (SEM) with 

significance deteUPLQHG�E\�6WXGHQW¶V�W-test. A Bonferroni correction was used to adjust the 

significance level to Į = 0.05/150 = 3.3*10-4. ANOVA was used to determine significance of 

difference in mean function by variant group. Despite a significant p-value of 0.0234 in the 

$129$��7XNH\¶V�SRVW-hoc test revealed there was no significant difference between any of the 

groups (lowest p-value was 0.059 between Shared and Clinical groups). Difference in mean 

IXQFWLRQ�E\�VXEFHOOXODU�ORFDOL]DWLRQ�ZDV�GHWHUPLQHG�E\�:HOFK¶V�$129$�ZLth Games-Howell 

post-hoc test (rstatix package in R) due to significant differences in variance.  

Multiple metrics were calculated to evaluate the performance of our classification models as well 

as other published models, including sensitivity or true positive rate (TPR), specificity or true 

negative rate (TNR), precision or positive predictive value (PPV), negative predictive value 

�139���DFFXUDF\��DUHD�XQGHU�WKH�UHFHLYHU�RSHUDWLQJ�FKDUDFWHULVWLF�FXUYH��$8&���DQG�0DWWKHZ¶V�

correlation coefficient (MCC), all of which have been defined previously (19, 22).  

3.3.9 Data availability 

Functional data were submitted to ARUP OCTN2 mutation database (32) and ClinVar, and are 

available in Supplementary Dataset 3.2. 

3.4 Results 

3.4.1 Carnitine uptake studies reveal a continuous spectrum of function of OCTN2 variants 

We selected a total of 150 missense variants in OCTN2 for multi-parametric characterization in 

this study. OCTN2 contains 12 transmembrane domains, 6 extracellular loops, 5 intracellular 

loops, and intracellular N- and C- termini for a total of 25 domains (Fig. 3.1). To ensure variants 

selected for characterization had good coverage of the entire protein, we assessed the position of 
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each variant in the membrane topology of OCTN2. Selected variants spanned the entire predicted 

secondary structure of the transporter and were present in each intracellular, extracellular, and 

transmembrane domain of the protein with the exceptions of extracellular loops 2 and 5, which 

contain 4 and 3 residues, respectively (Fig. 3.1A). The density of variants characterized per 

transporter domain, calculated as the number of variants assayed in each domain divided by the 

total number of residues in that domain, ranged from 0.00-0.60, in comparison with the overall 

variant characterization density of 0.27 (Fig. 3.1B). We characterized variants both associated 

and unassociated with CTD. Variants associated with CTD were present in most transporter 

domains (Fig. 3.1B) and accounted for 25.3% of assayed variants (38/150, Supplementary 

Dataset 3.2). 

As the first level of characterization, we performed uptake studies with radiolabeled 14C-

carnitine to determine the effect of each variant on OCTN2 function. Interestingly, we observed 

a continuous functional spectrum, with variant function ranging from -0.25 to 116% of the 

carnitine transport of the wild-type OCTN2 (Fig. 3.1C). Forty-three OCTN2 variants had no 

significant impact on transporter function compared to the reference OCTN2, while 107 variants 

had a statistically significant reduction in carnitine transport (Supplementary Dataset 3.2). 

Importantly, nearly one quarter of variants assayed (37 variants) exhibited carnitine transport 

reduced to less than 20% of wild-type function, a threshold previously demonstrated to indicate 

susceptibility for CTD in patient fibroblasts (33). The majority (26/37) of LOF variants are 

located in transmembrane domains (Fig. 3.1A). 
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3.4.2 All ancestral groups harbor variants that exhibit a range of function 

OCTN2 variants characterized in this study were carefully selected to ensure equal 

representation from diverse ancestral populations (Supplementary Figure 3.1). We included 

YDULDQWV�VKDUHG�E\�WZR�RU�PRUH�DQFHVWUDO�SRSXODWLRQV��³6KDUHG´���YDULDQWV�H[FOXVLYHO\�IRXQG�LQ�

individuals with African, East Asian, European, Latino, and South Asian ancestries, variants 

selected from gnomAD at random (blinded to ancestry), and variants with known clinical 

DVVRFLDWLRQV�WR�&7'��³&OLQLFDO´���2I�QRWH��HDFK�JURXS�KDUERUHG�YDULDQWV�VSDQQLQJ�D�FRPSOHWH�

range of function (Fig. 3.2A). Median function of OCTN2 variants in the Shared, Random, 

African, Latino, European, East Asian, South Asian, and Clinical groups was 73.6, 64.7, 62.7, 

57.0, 45.5, 44.4, 37.9, and 14.1% of wild-type function, respectively (Fig. 3.2B). Mean function 

of variants between each group was insignificant (p ��������� We next examined the number of 

low-functioning variants per group, defined as variants with function less than 20% wild-type 

function. Interestingly, all groups harbored LOF variants, and Clinical variants had the largest 

fraction of low-functioning variants (7/10), more than double the fraction of low-functioning 

variants in any other group (Fig 3.2C-D), as expected. 

3.4.3 Confocal imaging reveals variant membrane localization significantly associates with 

function 

To better understand the mechanisms contributing to OCTN2 loss-of-function, we determined 

the subcellular localization of all 150 OCTN2 variants conjugated to monomeric superfolder 

green fluorescent protein (msfGFP) in HEK293T cells (34). Confocal imaging revealed that 

subcellular localization could be classified into three major localization patterns (Fig. 3.3A, 

Supplementary Dataset 3.2); membrane localization notes the OCTN2 variant localizes primarily 

to the plasma membrane of the cell similar to the wild-type transporter, intracellular localization 
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indicates the variant is largely retained in the cytoplasm with minimal or no presence on the 

plasma membrane, and mixed localization indicates the variant displays a combination of the 

former patterns, with partial membrane localization in combination with increased intracellular 

GFP intensity compared to wild-type (Fig. 3.3A; inset showing representative cell for each 

phenotype). Fifty-seven variants displayed membrane localization, 36 variants exhibited 

intracellular retention, and 57 variants had mixed localization (Fig. 3.3B). Subcellular 

localization was associated with degree of function: variants on the membrane had the highest 

median function (72.4% of wild-type OCTN2 function), variants with mixed subcellular 

localization had a median function of 54.5%, whereas variants retained intracellularly had the 

lowest median function at 19.0% (Fig. 3.3C). A subset of variants (p.V216L, p.V235G, p.Y243S, 

p.S470F, and p.R471C) exhibited complete loss-of-function despite proper membrane 

localization, suggesting that additional mechanisms for loss-of-function may occur. 

3.4.4 OCTN2-specific variant effect prediction models outperform existing methods 

Most OCTN2 variants identified in CTD patients exhibit severe LOF, with the least functional 

variants associating with more severe disease presentation (35). Thus, we built a classification 

model to predict whether OCTN2 missense variants would be LOF, defined as 20% or less than 

that of wildtype, a clinically meaningful cutoff (33). During model selection we evaluated every 

combination of three types of machine learning models and four feature sets for each of the 150 

OCTN2 variants (see Machine Learning Methods section). We find that a LASSO penalized 

logistic regression classifier achieves the best performance on the test data and literature derived 

variants with mean area under the curve (AUC) beneath the receiver operating characteristic 

(ROC) curve of 0.90 and 0.94 for test data and literature data, respectively (Supplementary 

Dataset 3.1). We compared the performance of our model to ten other variant prediction models: 
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REVEL (36), primateAI (37), PolyPhen-2 (38), Rhapsody (39), CADD (40), Dynamut2 (41), 

ESM-1v (31), MSA Transformer (42), Deep Sequence (29), and EVE (43). We find that our 

model achieves the best AUC among models tested, indicating that it outperforms existing 

models in differentiating between functional and LOF OCTN2 variants (Fig. 3.4A, Table 3.1). 

Additionally, our model achieves an AUC of 0.95 on the functionally characterized OCTN2 

variants curated from literature. We evaluated the relative importance of the input features using 

coefficients from the LASSO model. We find that the most important features for functional 

prediction were from recent state-of-the-art protein language models (e.g., EVE, ESM-1v, Deep 

Sequence) in addition to OCTN2-specific descriptors (e.g., intracellular loop, residue number) 

(Fig. 3.4B).  

In addition to the classification model that predicted binary function of variants, we trained a 

regression model to quantitatively predict the function of OCTN2 variants. We first performed 

model selection in the same way described in the classification section, finding that the LASSO 

penalized linear regression model performed best (Supplementary Figure 3.3). We evaluate 

regression model performance with an R2 metric, defined as the proportion of variance in 

measured function that is explained by predicted function. Our model has an R2 of 0.55 

(Supplementary Figure 3.4), considerably higher than any of the other models evaluated in this 

study. For comparison, the next best performing model is ESM-1v with an R2 of 0.45.  

We used our classification model to generate predictions for the function of all possible missense 

variants in OCTN2 (n=10,583, Fig. 3.5). We found that 2,097 variants are predicted to cause 

severe LOF (<20% function), representing 19.8% of all possible variants. From these functional 

prediction models, we find that charged residue substitutions in transmembrane domains are 



 88 

predicted to be very damaging to function, whereas hydrophobic substitutions in the TMDs are 

predicted to have minimal impact on function. Extracellular loop 1, intracellular loop 3 and the 

intracellular C-terminus are predicted to be most tolerable to substitutions. 

3.4.5 Machine learning enables prediction of variant localization 

In addition to predicting function, we trained a model to predict the effect of protein variants on 

subcellular localization. Informed by the subcellular localization data for all 150 OCTN2 

variants obtained from confocal imaging, we aimed to predict whether proteins would be 

properly localized to the membrane or retained intracellularly. We trained two models: one to 

predict full membrane localization and a second to predict full intracellular retention. This was 

GRQH�EHFDXVH�PDQ\�YDULDQWV�SUHVHQWHG�ZLWK�³PL[HG�ORFDOL]DWLRQ´��L�H���SDUWLDO�EXW�LQFRPSOHWH�

localization to the membrane. These models attempt to predict whether a protein will have 

complete localization to the membrane or complete retention within the cell. A logistic 

regression model is able to differentiate missense variants that make it to the membrane from 

those that are retained intracellular or have mixed localization with good performance (AUC: 

0.74, Accuracy: 0.70, Supplementary Figure 3.5). Similarly, our model is able to differentiate 

variants that cause intracellular retention from those that have membrane or mixed localization 

(AUC: 0.74, Accuracy: 0.78).  

3.5 Discussion 

Interpretation of novel genetic variants in a clinical setting for diagnosis and treatment of genetic 

disorders or pharmacogenomics remains a major challenge. In this study, we functionally 

characterized and determined the subcellular localization of 150 missense variants in the plasma 

membrane carnitine transporter, OCTN2. Our work has important implications toward improving 
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the diagnosis and treatment of CTD. With this study of 150 missense variants, we substantially 

increased the number of characterized OCTN2 variants in the literature, expanding our 

knowledge of low-functioning at-risk variants. Importantly, we identified mislocalization as a 

common cause of loss-of-function. As variant-specific treatment options become increasingly 

available for genetic disorders involving membrane proteins (e.g., the Cystic Fibrosis 

Transmembrane Conductance Regulator (CFTR)), this information has the potential to be 

leveraged in future therapy for individuals harboring particular variants. Finally, this wealth of 

data was used to build machine learning models to predict function and localization of all 

possible missense variants in OCTN2. The models greatly improved upon performance of 

current prediction algorithms for OCTN2 and provided robust predictions for all potential 

variants in the transporter. Below we describe our major findings in the context of the literature. 

Functional assays provide powerful tools for interpretation of genetic variants identified 

clinically. For example, recent studies demonstrate that in vitro functional characterization could 

aid in the reclassification of the majority of missense VUS (44). Interestingly, our functional 

characterization of OCTN2 missense variants from the gnomAD database revealed there to be a 

continuous distribution of OCTN2 function (Fig. 3.1C). This is consistent with previous 

findings; carnitine transport assayed in fibroblasts from 358 individuals investigated for potential 

CTD revealed a similar functional spectrum (33). About 25% of the gnomAD variants that we 

screened were LOF and reduced carnitine transport to 20% or less than control, and in theory 

have the potential to cause CTD in either individuals homozygous for the variants or in 

compound heterozygotes. These variants are ultra-rare and have not been observed in 

homozygous individuals, though we cannot exclude their presence in compound heterozygotes.  
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To continue to expand the number of characterized OCTN2 variants with known clinical 

association, we enriched the variants selected for this study with 10 additional variants found in 

confirmed or suspected cases of CTD (Fig. 3.2A, Supplementary Dataset 3.4). Seven of the 

clinically associated variants, including all four from confirmed cases were LOF, retaining less 

than 20% wild-type carnitine transport. Three variants classified by ARUP (32) as VUS were 

LOF, and three variants retained partial or complete function: p.N91S, p.L202P, and p.D139N 

functioned at 42.3, 55.9, and 115.5% of wild-type, respectively, suggesting an uncertain role as 

determinants of low plasma carnitine levels.  

Our effort to make an ethical selection of variants for study with equal representation from major 

ancestral groups in the gnomAD database allowed us to analyze trends in OCTN2 function 

across diverse populations. We found that loss-of-function OCTN2 variants are identified in all 

major ancestral populations from gnomAD (Fig. 3.2A). While CTD is rare, prevalence varies 

globally with estimated incidences of 1:300 in the Faroe Islands (45), as high as 1:8,200 in some 

regions of China (46), 1:40,000 in Japan (45, 47), and up to 1:75,000 in California (9). We found 

no significant difference in mean variant function between groups (Fig. 3.2B). Indeed, regions 

with higher incidence of CTD tend to have common founder variants affecting many individuals 

(e.g., p.N32S in the Faroe Islands (5) and p.R254X in China (8)), rather than increased number 

of unique pathogenic variants. Reported incidence rates of diagnosed CTD are substantially 

lower than expected based on the population-specific allele frequencies of pathogenic variants, 

suggesting that NBS misses cases at an alarming rate (9-11, 33). Incidence rates of CTD have not 

been reported in countries with primarily African, Latino, or South Asian ancestries to our 

knowledge.  
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In tissue, OCTN2 localizes to the apical membrane of enterocytes in the gut and renal proximal 

tubular cells in the kidney, where its major function is to absorb and reabsorb carnitine into 

systemic circulation, respectively. Here for the first time to our knowledge, we identify 

mislocalization of the carnitine transporter (Fig. 3.3A) to be a common loss-of-function 

mechanism (Fig. 3.3C), with 62% of variants in our study exhibiting partial or complete 

intracellular retention (Fig. 3.3B). This new knowledge has the potential to be leveraged in novel 

therapeutic approaches for CTD, where we suggest that a pharmacochaperone designed to 

stabilize OCTN2 protein folding could rescue membrane localization and restore a degree of 

function to missense transporter variants. Even minimal increases in membrane localization and 

function could be sufficient to maintain systemic carnitine levels (48). Such therapeutic 

approaches have been successful for CFTR in cystic fibrosis (49), clinically tested for enzyme 

deficiencies (50), and explored for norepinephrine, dopamine, and serotonin transporters 

NET/SLC6A2, DAT/SLC6A3, and SERT/SLC6A4 (51). In the event that a pharmacochaperone is 

developed for OCTN2, we envision subcellular localization data to be informative in 

personalized medicine to identify patients harboring mislocalized variants that may benefit from 

such treatment.  

In addition to variants for which mislocalization appears to be the primary cause of LOF, we 

identified a population of variants that localized properly to the plasma membrane of the cell yet 

had greatly impaired function (Fig. 3.3C). Though not directly investigated in our study, we 

hypothesize that LOF in variants localizing to the plasma membrane is due to an alternative 

mechanism, such as disrupted transporter kinetics. Carnitine is a zwitterion, and OCTN2 is 

thought to have distinct carnitine and cation binding sites (52). Variants affecting these binding 

sites as well as those that create steric hindrance in the binding pocket or alter sodium 
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recognition in this sodium-dependent transporter could reduce or fully prevent the binding or 

translocation of carnitine, increasing the Km of carnitine. Notably, 5/6 variants (p.V216L, 

p.V235G, p.Y243S, p.S470F, and p.R471C, but not p.N367D) that have less than 20% function 

and proper membrane localization project into the translocation pore of OCTN2, based on the 

AlphaFold2 predicted structure. Such variants present on the membrane yet nonfunctional could 

in theory benefit from rescue by allosteric modulators. 

Here we present protein-specific variant effect prediction models trained with ethically selected 

variants from diverse ancestral populations. Using classification models for both function (Fig. 

3.4-5) and localization (Supplementary Figure 3.5), we can predict whether any possible variant 

in OCTN2 will be functional or have impaired membrane localization. Despite limited 

experimental capacity to characterize just under 1.5% of all possible missense variants in 

OCTN2, our models outperform existing methods (Fig. 3.4A). Additionally, our models were 

trained with data equally representing diverse ancestral groups, aiming to reduce model bias and 

ensure comparable accuracy in prediction of variants identified across ancestries. We identified 

2,097 missense variants predicted to cause severe LOF, and 578 variants predicted to be retained 

intracellularly, with potential to have function rescued by pharmacochaperone-based therapies. 

We additionally identified 1,697 variants predicted as LOF despite proper membrane 

localization. It should be noted that localization and function are highly correlated, as protein that 

does not localize to the membrane is not functional. However, we do see some differences 

between function and localization predictions across all 10,583 missense variants (Fig. 3.5, 

Supplementary Figure 3.5). Investigation of features most important in predicting variant 

function revealed that protein language models trained on millions of protein sequences were 

most useful to the model (Fig. 3.4B). The importance of these features suggests that evolutionary 
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conservation is predictive of OCTN2 function. We make these predictions for all possible 

missense variants available (Supplementary Dataset 3.3) for use by interested individuals, 

researchers, or clinicians.  

The major limitation of this study is the size of the dataset, in which we functionally and 

spatially characterized 150 OCTN2 missense variants. While we have greatly increased the 

number of variants published in the literature with functional characterization, the size of the 

dataset limits the power to train the machine learning predictive models. Our determination of 

OCTN2 variant function by radioligand uptake assays allowed for sensitive detection of carnitine 

transport, a readout directly relevant to CTD etiology. However, the use of radioactivity is 

currently incompatible with deep mutational scanning (DMS) platforms that have recently 

increased the scale at which variants can be functionally characterized. Many DMS studies rely 

on assays that are scalable yet lack direct relevance to a disease phenotype. For example, the use 

of fluorescence-activated cell sorting (FACS) to detect changes in abundance of OATP1B1-GFP 

failed to identify variants that are expressed in the cell yet nonfunctional (53). With functional 

assays that directly measure carnitine transport function, we were able to identify a larger 

proportion of nonfunctional variants than through fluorescence-based assays alone. An additional 

limitation is found in the imaging of OCTN2-tagged variants, where we were unable to quantify 

colocalization between GFP (OCTN2) and the cell membrane stain due to software limitations, 

and thus provide a qualitative classification of cellular membrane localization.  

Clinical interpretation of functional genomic studies can be limited by complex genotype-

phenotype relationships. For CTD, the function of a single missense variant assayed in vitro must 

be considered cautiously in a disease context. Conflicting reports have been published on the 
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absence (54-56)) or presence (35, 57) of a genotype-phenotype correlation. Early reports 

indicated that patients, and in some instances siblings, with the same OCTN2 variants had 

variability in symptoms, severity, and age of onset (54-56). In contrast, another study found that 

symptomatic patients had more nonfunctional variants, namely nonsense and frameshift (35). 

Finally, a study in patients from the Faroe Islands revealed a significant correlation between 

residual OCTN2 transporter function and plasma carnitine levels (57). Thus, interpretation an 

LQGLYLGXDO¶V�VHW�RI�YDULDQWV�LQ�D�FOLQLFDO�VHWWLQJ�PXVW�FDXWLRXVO\�EH�PDGH�E\�KHDOWKFDUH�

professionals in accordance with guidelines by the American College of Medical Genetics 

(ACMG) (13). 

At a patient and community utility level, we recognize the importance of meaningful and 

respectful translation of sequencing results. For families navigating CTD in young children, there 

may be divergent views about return of results, result actionability, informed consent and the 

sufficiency of parental assent for deposition and research use of variant information (58-61). It is 

desirable to establish patient stakeholder support in the management of and democratization of 

data sharing (62, 63). Nonetheless, the community benefits of characterizing variants from 

publicly shared databases, as this study reveals, arguably outweigh risks of not being able to 

achieve full informed consent for (deidentified) data use.  

Ultimately, the purpose of OCTN2-specific variant effect prediction models is to inform clinical 

diagnostics and decision making, including therapeutic decisions. OCTN2 serves as a unique link 

between two major fields for which computational interpretation of genetic variants is 

increasingly needed: inborn errors of metabolism (IEM) and pharmacogenomics (PGx). The 

solute carrier (SLC) superfamily consists of over 400 transporters, more than 100 of which are 
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linked to IEM and other Mendelian disorders (1, 2). Encoded by SLC22A5, OCTN2 also shares 

homology with several pharmacogenes in the SLC22 family, namely SLC22A1 (OCT1), 

SLC22A2 (OCT2), SLC22A6 (OAT1), and SLC22A8 (OAT3). Functional data is limited for most 

of these transporters, impeding the interpretation of genetic variation in IEM and PGx. Transfer 

learning offers a solution whereby algorithms optimized with substantial data from one protein 

(e.g., OCTN2) could be refined with minimal data for related proteins implicated in IEM or PGx, 

producing better variant interpretation predictions than would be possible alone (16). 

In conclusion, here we present the first comprehensive functional annotation of the largest set 

known to date (n = 150) of missense variants in OCTN2 from the gnomAD database. For the 

first time to our knowledge, we show that loss-of-function for many OCTN2 variants can be 

attributed to failure to traffic to the plasma membrane, revealing a disease-causing mechanism 

with the potential to be leveraged in therapeutic strategies for the treatment of CTD. Further 

studies are ongoing to determine the mechanisms for improper sorting of variants to the plasma 

membrane, which may be leveraged for future therapies. The results of our protein-specific 

variant effect prediction model for OCTN2, with which we predict the function and localization 

of OCTN2 variant, substantially outperforms existing methods. We provide these functional and 

spatial predictions for all possible missense variants in OCTN2 (N=10,583), which may be 

useful in clinical interpretation of novel variants of uncertain significance in accordance with 

ACMG guidelines.   
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3.6 Figures 

 
Figure 3.1. Functionally characterized OCTN2 variants. (A) Two-dimensional location of 
variants selected for characterization along the predicted secondary structure of OCTN2. 
Variants are colored by functional status, variants in orange are functional (>20% wild-type 
OCTN2 carnitine transport) and variants in purple are non-functional (<20% transport). (B) 
Density of variants characterized in each domain of OCTN2. Variants that have been clinically 
associated with CTD are shown in orange and variants that have no known clinical association 
are shown in purple. The dotted line represents the average density of assayed variants across all 

A

extracellular

intracellular
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domains. N-term=N-terminus, TM=transmembrane domain, EL=extracellular loop, 
IL=intracellular loop, C-term=C-terminus. (C) Functional characterization of 150 OCTN2 
variants with respect to C-14 carnitine uptake in OCTN2-expressing HEK293T cells. Each bar 
represents the function of an individual OCTN2 variant represented as percentage of wild-type 
OCTN2 carnitine transport. Data represent mean ± SEM of three individual biological replicates 
all performed in triplicate. 
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Figure 3.2. Functional distribution of variants by ancestral group. (A) Function of individual 
OCTN2 variants in each ancestral group. Height of bars (radial y-axis) represents variant 
function (%WT OCTN2 carnitine transport). (B) Violin plots summarize the function of variants 
in each group. Each embedded boxplot summarizes median, interquartile range, and whiskers in 
the style of Tukey. ns = not significant as determined by ANOVA with Tukey post-hoc test. (C) 
Histogram of the distribution of variants from each group into functional bins. Vertical red 
dotted line illustrates the cutoff of 20% function, below which variants have increased risk for 
CTD. (D) Fraction of low functioning variants (<20% WT) assayed in each variant group.   
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Figure 3.3. Subcellular localization of OCTN2 variants. (A) Representative images of 
OCTN2 variants conjugated to msfGFP in HEK293T cells. Three distinct patterns are observed: 
membrane localization (left panel), intracellular localization (middle pane), and mixed 
localization (right panel). Scale bar in lower right panel represents 50 µm and is consistent for all 
images. One inset is shown for each localization pattern with original area outlined in green and 
3x zoom in upper right corner outlined in red. (B) Distribution of variants with each subcellular 
localization pattern. (C) Box plot embedded violin plots show distribution of variant function 
with respect to carnitine transport based on variant subcellular localization. * indicates p-value < 
0.05, **** indicates p-YDOXH�����������:HOFK¶V�$129$�EHWZHHQ�PHDQV�ZLWK�*DPHV-Howell 
post-hoc test.  
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Figure 3.4. Performance of OCTN2 functional classification model. (A) Receiver operator 
characteristics (ROC) curve for our model compared to other variant effect prediction models. 
(B) Importance of features in performance of our model. Features are described in detail in 
Section 3.8 Supplementary Text. 
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Figure 3.5. Predicted function of all possible missense variants in OCTN2. (A) Normalized 
functional score for all possible substitutions at every residue. Functional scores greater than 0.5 
indicate function greater than 20% of wild-type OCTN2 function, with scores closer to 1 
indicating increased confidence in prediction; functional scores less than 0.5 indicate function 
less than 20% of wild-type OCTN2, with scores closer to 0 indicating increased confidence in 
prediction. Reference residues are colored in white. Cartoon of OCTN2 secondary structure is 
aligned above heatmap, TMD = transmembrane domain. (B) Mean functional score for each 
residue position. Dots and bars represent mean and standard deviation of functional score for all 
residues at that position, respectively.  
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Supplementary Figure 3.1. Workflow for selection of OCTN2 variants characterized in this 
study. First, gnomAD variants were stratified by ancestral population in which they were 
identified/classified. The top 20 population-specific variants by allele frequency were selected 
from each of the African, Latino, East Asian, European, and South Asian populations and were 
exclusive to that ancestral population (i.e., not found in any other population). Twenty additional 
variants were selected IURP�WKH�³6KDUHG´�JURXS��GHILQHG�DV�IRXQG�LQ�DW�OHDVW�WZR�JQRP$'�
populations listed above. In addition, 20 variants were selected at random from the remaining 
gnomAD OCTN2 missense variants, irrespective of ancestry. Finally, 10 uncharacterized 
variants clinically associated with diagnosed or suspected CTD were included for study. 
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Supplementary Figure 3.2. Concordance of subcellular localization of GFP-tagged OCTN2 
variants classified by three independent image reviewers blinded to the variant name or 
function.   
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Supplementary Figure 3.3. Performance of classification machine learning models to 
predict OCTN2 function evaluated during model selection. Model selection was made by 
comparing the performance of LASSO penalized logistic regression (glmnet) and random forest 
(rf) models on four different feature sets: prediction derived features, sequence derived features, 
structure derived features, a feature set of all features combined. Every combination of model 
type and feature sets was evaluated by training predictive models through 100 iterations of 
random subsampling of the 150 characterized OCTN2 variants using 80% of the variants for 
training and 20% for test in each subsample. In addition, model performance was evaluated on 
variants from the literature. Model performance is evaluated by AUC under the ROC curve.   
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Supplementary Figure 3.4. Performance of regression machine learning models to predict 
OCTN2 function. (A) Model selection was made by comparing the performance of LASSO 
penalized logistic regression (glmnet) and random forest (rf) models on four different feature 
sets: prediction derived features, sequence derived features, structure derived features, a feature 
set of all features combined. Every combination of model type and feature sets was evaluated by 
training predictive models through 100 iterations of random subsampling of the 150 
characterized OCTN2 variants using 80% of the variants for training and 20% for test in each 
subsample. Model performance is evaluated by the R-squared metric. (B) Performance of the 
final regression model (random forest with prediction derived features) trained on 110 variants 
and tested with the remaining 40 variants. Experimentally measured function is compared to 
model predicted function.   
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Supplementary Figure 3.5. Performance of machine learning models to predict OCTN2 
localization. (A) Receiver operator characteristics (ROC) curve for our models. Intracellular 
classification notes variants predicted to have intracellular localization vs membrane or mixed 
localization; membrane classification notes variants predicted to have membrane localization vs 
intracellular or mixed localization. (B) Importance of features in performance of the intracellular 
(top panel) and membrane (bottom panel) classification models. (C) Normalized localization 
score for all possible substitutions at every residue. Localization scores greater than 0.5 indicate 
predicted membrane localization, with scores closer to 1 indicating increased confidence in 
prediction; functional scores less than 0.5 indicate predicted intracellular localization, with 
scores closer to 0 indicating increased confidence in prediction. Reference residues are colored in 
white.  
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Supplementary Figure 3.6. )XQFWLRQ�RI�WKH�³FOLQLFDO´�YDULDQWV�DGGHG�WR�WKH�VWXG\�LQ�
addition to the 140 variants selected from gnomAD. Variants identified in true confirmed 
cases of CTD are in orange, and variants in suspected cases in the ARUP database currently 
classified as variants of unknown significance (VUS) are in purple.  
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3.7 Tables 

Table 3.1. Performance of the models in classification of OCTN2 variants as loss-of-
function (<20%) or functional (>20%). Highest score for each metric is highlighted in bold 
font. 

 

 
  

Predictor AUC Accuracy Sensitivity Specificity PPV NPV MCC
Ours 0.895 (ц0.025) 0.856 (ц0.034) 0.890 (ц0.053) 0.845 (ц0.052) 0.653 (ц0.079) 0.964 (ц0.017) 0.673 (ц0.061)
ESM-1v 0.879 0.805 0.796 0.833 0.938 0.566 0.563
MSA Transformer 0.854 0.772 0.761 0.806 0.925 0.518 0.501
Deep Sequence 0.854 0.799 0.814 0.750 0.911 0.563 0.517
EVE 0.845 0.758 0.833 0.735 0.50 0.933 0.496
REVEL 0.797 0.745 0.722 0.752 0.481 0.895 0.422
primateAI 0.774 0.732 0.750 0.726 0.466 0.901 0.418
Polyphen 0.753 0.779 0.556 0.850 0.541 0.857 0.401
Rhapsody 0.734 0.624 0.889 0.540 0.381 0.938 0.370
CADD 0.702 0.604 0.861 0.522 0.365 0.922 0.331
Dynamut2 0.563 0.450 0.336 0.806 0.844 0.279 0.132
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Supplementary Table 3.1. Constructs from the Mammalian Toolkit used in the generation 
of SLC22A5 constructs in this study (25). 

MTK part type Description DNA topology Resistance 

MTK1_001 Encodes ConS connector Circular Chloramphenicol 

MTK2_023 Encodes pCMV-H promoter Circular Chloramphenicol 

MTK3a_030 Encodes start codon and 6xHIS 3xFLAG Circular Chloramphenicol 

MTK0_027-
SLC22A5 (part 3b) 

Encodes SLC22A5 Circular Chloramphenicol 

MTK4a_015 Encodes msfGFP Circular Chloramphenicol 

MTK4b_001 Encodes BghPA Circular Chloramphenicol 

MTK5_006 Encodes ConRE connector Circular Chloramphenicol 

MTK678_001 Encodes ColE1-AmpR backbone vector Circular Ampicillin 

MTK0_017 Encodes BxB1 attB KanR destination 
vector 

Circular Kanamycin 

MTK0_027 Encodes Part Entry Vector Circular Chloramphenicol 

JPF0335 Encodes BxB1 recombinase 
(pCAG_NLS_HA_Bxb1_Addgene51271) 

Circular Ampicillin 

SLC22A5 
transcriptional unit 

SLC22A5 CDS with adaptor sequences 
for Golden Gate Cloning  

Linear NA 
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Supplementary Table 3.2. Machine learning features. 

Feature set Feature 

Sequence-based 

Change in polarity 
Change in charge 
Change in mass 
Change in hydrophobicity 
Buried accessible surface area 
Van del Waals forces 
Helix potential 
Residue position 
2D-structural domain (intracellular loop, extracellular loop, 
transmembrane domain) 

Structure-based 

Solvent access area 
Solvent access relative score 
Network centrality degree 
Network centrality cluster coefficient 
Network centrality closeness 
Network centrality betweenness 
Network centrality eigenvector centrality 
Network centrality average neighbor degree 
AlphaHelix/turn/coil 

Prediction-based 

Triad ddG 
AF2 confidence 
ESM-1v 
MSA Transformer 
DeepSequence 
EVE 
Triad DDG 
AF2 confidence 
REVEL 
CADD 
Rhapsody score 
DynaMut2 score 
Potts_EVE 
Potts_hhblits 
Potts_100vertebrates 
Potts_deepsequence 
Potts_30mammals 
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3.8 Supplementary Text 

Methods 

Feature Generation 

Allele frequency was calculated from gnomAD (24). Pathogenicity scores for all assayed 

OCTN2 variants were obtained from PolyPhen-2 (38), CADD (40), REVEL (36), PrimateAI 

(37). As no crystal structure has been solved for OCTN2, we used the AlphaFold2 predicted 

structure (Entry O76082) (27) for generation of structural features. Predicted stability change 

�ǻǻ*stability) was generated with DynaMut2 (41). Solvent accessibility was generated using 

GETAREA (64). Prediction of variant effect on protein dynamics was generated using Rhapsody 

(39). Network centrality analysis (centrality degree, centrality cluster coefficient, centrality 

closeness, centrality betweenness, eigenvector centrality, average neighbor degree) was 

generated with Network Analysis of Protein Structure (NAPS) (65). Generation of other features 

is described below.  

pLDDT and triad_ddG scores 

The AlphaFold 2 predicted structure of human SLC22A5 was obtained from the AlphaFold (27) 

protein structure database. pLDDT scores that represent model confidence for each position in 

the structure were extracted as a set of features. pLDDT is continuously valued between 0 and 

100, and is a prediction of the lDDT-Ca score (66) that is used to compare two models by 

reporting on distances between their Ca atoms at equivalent positions. The plDDT score reported 

by AlphaFold is a learned prediction that was calibrated using distance from the ground-truth 

structure during model training. 
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The AlphaFold 2-predicted model was then directly used as input for ddG calculations using 

Triad Protabit design software (https://triad.protabit.com). The structure was first standardized 

using the Standardize Structure App within Triad, and then single mutant stability scores (ddG) 

were calculated with default parameters (float distance = 7Å and backbone only scoring = off) 

using the Rosetta scoring function. These parameters ensure that local interactions around the 

mutation site are repacked using rosetta prior to delta G calculation. 

Modeling variant effects with models of evolutionary data 

In order to predict the effects of mutations, we utilized conservation information derived from 

evolutionary homologs of the transporter SLC22A5. The state-of-the-art unsupervised variant 

effect predictors (that is, predictors that have not been trained with any variant screening data) fit 

a statistical model on a set of related, functional sequences. These models can take the form of 

protein language models (31), variational autoencoders (VAEs) (29) and Potts models (30). The 

likelihood of a sequence under the derived statistical models has been shown to correlate well 

with the probability that the sequence is functional.  

The features of our ensemble model include previously published methods for variant effect 

prediction and additional features, some of which we designed ourselves.  The pre-existing 

methods for variant effect prediction that we used are DeepSequence (29), EVE (43), ESM-1v 

(31), and MSA Transformer (42). DeepSequence, EVE, and MSA Transformer require an MSA 

to make predictions, while ESM-1v requires only a sequence. DeepSequence and MSA 

7UDQVIRUPHU�IHDWXUHV�ZHUH�FRQVWUXFWHG�XVLQJ�WKH�³'HHS6HTXHQFH´�IURP�³&RQVWUXFWLQJ�

Alignments.´�(9(�IHDWXres use EVE alignments. 

 

https://triad.protabit.com/
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Constructing alignments 

To combine the advantages of alignments that represent different evolutionary timescales, we 

used 5 different alignments for downstream training. We combined deep, diverged alignments 

(Alignments 1, 2, 3), which we hypothesized would include coarse-grained fold information, 

with more alignments that sample more closely-related organisms (Alignments 4, 5). 

1. HHblits: To produce this alignment, we reimplemented the alignment generation 

procedure described in (67). Our implementation can be run using the `mogwai-align` 

command in https://github.com/nickbhat/mogwai. We used UniprotKB O76082 as the 

query sequence. HHblits performed 1 iteration searching against Uniclust30 with an e-

value 1e-80 to produce an alignment of 7201 sequences.  

2. EVE: The EVE alignment was downloaded directly from 

https://evemodel.org/download/protein/S22A5_HUMAN.  

3. Deepsequence: We follow the approach in (30, 31) to form a deep alignment. The query 

sequence was searched against the UniRef100 database using the profile HMM 

homology search tool jackhmmer (68). Non-redundant sequences were kept with a 0.8 

sequence similarity threshold. This resulted in an alignment with 7205 sequences. The 

alignment script can be found at 

https://github.com/rmrao/DeepSequence/blob/master/align.py 

4. 100 vertebrates: FASTA alignments for coding regions of the UCSC Known Genes 

corresponding to the human reference genome (hg38/GRCh38, Feb. 2009) aligned to 100 

vertebrate genome assemblies as described in 

http://genomewiki.ucsc.edu/index.php/Hg38_100-way_conservation_alignment were 

downloaded from 

https://github.com/nickbhat/mogwai
https://evemodel.org/download/protein/S22A5_HUMAN
https://github.com/rmrao/DeepSequence/blob/master/align.py
http://genomewiki.ucsc.edu/index.php/Hg38_100-way_conservation_alignment
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http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/alignments/knownCanon

ical.multiz100way.protAA.fa.gz and subset to those fasta records with the header prefix 

FRUUHVSRQGLQJ�WR�WKH�(16(0%/�WUDQVFULSW�QDPH�IRU�6/&��$���³(167������������´ 

5. 30 mammals: FASTA alignments for coding regions of the UCSC Known Genes 

corresponding to the human reference genome (hg38/GRCh38, Feb. 2009) aligned to 30 

mammalian genome assemblies as described in 

http://genomewiki.ucsc.edu/index.php/Hg38_30-way_conservation_alignment were 

downloaded 

from http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz30way/alignments/knownC

anonical.multiz30way.protAA.fa.gz and subset to those fasta records with the header 

prefix corresponding to the ENSEMBL transcript name for SLC22A5, 

³(167������������´ 

All of these alignments can be found at https://github.com/songlab-cal/slc22a5.  

Modeling variant effects with Potts models 

A Potts model is an undirected Markov Random Field model which has been shown to capture 

information about protein structure (69, 70) as well as protein function (30, 71). Adding the 

unsupervised likelihood as a feature has been shown to improve the performance of regression 

models used to predict protein function (72, 73).  

In the Potts model, which models marginal effects and pairwise interactions, the likelihood of a 

sequence x is given by: 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/alignments/knownCanonical.multiz100way.protAA.fa.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/alignments/knownCanonical.multiz100way.protAA.fa.gz
http://genomewiki.ucsc.edu/index.php/Hg38_30-way_conservation_alignment
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz30way/alignments/knownCanonical.multiz30way.protAA.fa.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz30way/alignments/knownCanonical.multiz30way.protAA.fa.gz
https://github.com/songlab-cal/slc22a5
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Where Z is the partition function. 

To use a Potts model to predict variant effects, we compute the energy difference between the 

variant and the wildtype reference sequence, in this case the human reference gene SLC22A5.  

 

Note that this variant effect can be computed without computing the partition function Z. 

6HSDUDWH�3RWWV�PRGHOV�ZHUH�ILW�RQ�HDFK�RI�WKH���DOLJQPHQWV�GHVFULEHG�LQ�³&RQVWUXFWLQJ�

$OLJQPHQWV�´�(DFK�PRGHO�ZDV�XVHG�VHSDUDWHO\�WR�SUHGLFW�YDULDQW�effects by computing the energy 

difference between the variant and the wildtype reference sequence. 

Fitting the Potts model 

Due to the combinatorial complexity of computing the partition function Z, we cannot maximize 

the true likelihood of the sequences. Instead, we estimate the coupling parameters J and the 

marginal effects h to maximize the pseudolikelihood, which follows the established approach in 

(30, 71, 74). For the optimization, we use a modified version of Adam (75) which ties together 

all squared updates. The Potts model implementation we used can be found in our open source 

MRF library https://github.com/nickbhat/mogwai. All Potts models were trained on a single 

NVIDIA RTX 2080 Ti GPU for 5000 gradient update steps, with a batch size of 4096 sequences 

and a learning rate of 0.5. 

  

https://github.com/nickbhat/mogwai
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3.9 Supplementary Files 

Four additional datasets are available in a separate file.  

Supplementary Dataset 3.1 (separate file). OCTN2 variants with function reported in the 

literature not assayed in our study. These literature variants were used in evaluation of machine 

learning models as an additional test/validation set. 82 unique variants had reported function. 12 

variants had multiple measurements reported by different publications, for a total of 94 entries. 

Function was averaged for variants with multiple measurements.  

Supplementary Dataset 3.2 (separate file). OCTN2 variants characterized in the study, including 

function, localization, statistical significance, associated features. 

Supplementary Dataset 3.3 (separate file). Functional predictions for all 10,583 missense 

YDULDQWV�LQ�2&71���³PHDQBSUHG´�LV�D�VFRUH�WKDW�UHSUHVHQWV�WKH�SUREDELOLW\�WKDW�WKH�YDULDQW�LV�

IXQFWLRQDO��!����:7�2&71��FDUQLWLQH�WUDQVSRUW���7KH�³GHOHWHULRXV´�FROXPQ�ELQDUL]HV�WKH�

mean_pred score based on a cutoff that maximizes specificity and sensitivity. A deleterious score 

of 0 indicates variant is functional; a score of 1 indicates the variant is prediction to be loss-of-

function (<20% WT OCTN2 carnitine transport).  

Supplementary Dataset 3.4 (separate file). Clinical variants assayed in this study identified in 

individuals with confirmed or suspected CTD. 
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Chapter 4: Development of a functional screening platform for  

deep mutational scanning of the Organic Cation Transporter 1 

(OCT1, SLC22A1) 
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4.1 Abstract 

The organic cation transporter 1 (OCT1), encoded by SLC22A1, is a poly-specific membrane 

transporter with important pharmacogenetic implications. Current biological understanding of 

the mechanisms of OCT1 transport, poly-specificity, expression, and localization is limited, in 

part due to the lack of a crystal structure for OCT1 or any substantially homologous proteins. 

Polymorphisms in OCT1 can have substrate-specific effects and are known to influence 

exposure, efficacy, and adverse events for many FDA-approved drugs from diverse classes. 

Functional data is lacking, especially for less-common variants, though rare variation is sure to 

contribute to interindividual differences in pharmacokinetics and pharmacodynamics of drugs 

that are substrates of OCT1. Deep mutational scanning (DMS) is an emerging approach that 

utilizes next-generation sequencing (NGS) techniques to match thousands of variants to their 

respective function as determined by a number of functional assays. In this study, we established 

a screening platform for DMS of OCT1 and generated a library of 11,572 OCT1 variants 

comprising all possible missense variants and single amino acid deletions. We validated the 

function of our HEK293T landing-pad based system expressing wild-type OCT1 and variants 

p.R61C, p.P117L, and p.G401S and demonstrated sensitivity to detect significant differences in 

uptake of fluorescent (ASP+) and radiolabeled (MPP+ and metformin) substrates in cells 

expressing reduced-function variants. We established a cytotoxicity-based assay using the OCT1 

substrate and anti-cancer platinum analog SM85 that can be used to select for loss-of-function 

variants identifiable by NGS. We propose that DMS of OCT1 will be critical in gaining 

understanding of OCT1 transporter biology and identifying variants significantly affecting the 

function of OCT1 that have the potential to be clinically actionable in the implementation of 

pharmacogenetic data in dosing of drugs that are OCT1 substrates. 
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4.2 Introduction 

Genetic variants in more than 20 genes are known to influence exposure and/or response to over 

80 medications (1). Gene-drug relationships are relevant in three major arms of the 

pharmaceutical world: 1) in drug target discovery whereby variation in genes/proteins associates 

with a disease phenotype and suggests potential drug targets for disease treatment, 2) in clinical 

pharmacogenetic studies conducted by the drug development sector to evaluate investigational 

new drug safety and efficacy in individuals with different genotypes, and 3) in the post-market 

stage whereby pharmacogenetic data can be used to inform dosing of approved drugs in clinical 

practice. In the first example, recent studies suggest that drugs designed for genetically-validated 

targets are more successful in Phase II and Phase III clinical trials (2). In the second instance, the 

FDA and other regulatory agencies provide guidance documents (3) for the pharmaceutical 

industry for the conduct and evaluation of clinical pharmacogenomics studies. In the third case, 

the Clinical Pharmacogenetics Implementation Consortium (CPIC) provides guidelines to 

interpret genetic variation in pharmacogenes and translate this information into actionable 

prescribing recommendations for relevant drugs (4).  

Pharmacogenes encode proteins, typically enzymes and transporters, which, in general, influence 

the metabolism or disposition of drugs. Numerous transporters in the ATP-binding cassette 

(ABC) and Solute Carrier (SLC) transporter superfamilies are encoded by pharmacogenes. 

Clinical pharmacogenetic studies are recommended to investigate drug-variant interactions for 

new drugs that are substrates of transporters with well-established polymorphisms, such as 

OATP1B1 (SLCO1B1)(5). Additionally, nine transporters are known to be mediators of 

clinically-relevant drug-drug-interactions (DDIs): P-glycoprotein (P-gp, ABCB1), breast cancer 

resistance protein (BCRP, ABCG2), organic anion transporting polypeptide 1B1 and 1B3 
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(OATP1B3, SLCO1B3), organic anion transporters 1 (OAT1/SLC22A6) and 3 

(OAT3/SLC22A8), multidrug and toxin exclusion proteins (MATE1/SLC47A1 and 

MATE2K/SLC47A2), and organic cation transporter 2 (OCT2/SLC22A2) (6). Emerging evidence 

suggests additional transporters with DDI and pharmacogenetic relevance, including OCT1 (7). 

SLC22A1, encoding the organic cation transporter 1 (OCT1), is a pharmacogene with 

polymorphisms known to associate with exposure, response, and/or side effects for a number of 

drugs with varied structures across diverse classes (7, 8) (Fig 4.1). Reduced function OCT1 

variants have been reported to have conflicting effects on hepatic exposure and 

pharmacodynamics of the antidiabetic drug metformin (7), increase systemic exposure of the 

antimigraine drug sumatriptan (9), increase maximal plasma concentration (Cmax) and efficacy of 

antiemetic drugs ondansetron and tropisetron (10), decrease clearance (11) and increase side 

effects of the analgesic drug morphine (12), increase surrogate markers of efficacy of the 

analgesic drug tramadol (13) and increase Cmax of its active metabolite O-desmethyltramadol 

(14), and increase exposure and side effects of the anti-asthmatic fenoterol (15).  

To date, at least 16 major OCT1 alleles have been identified in more than 1,000 individuals from 

53 diverse populations. Extreme global variability exists amongst the percentage of diverse 

populations with functional OCT1 alleles: individuals carrying homozygous or compound 

heterozygous loss-of-function alleles make up 80% of some South American populations and 9% 

of Caucasian populations, yet just less than 2% of East Asian and Oceanic populations (16). 

While some variants in pharmacogenes are common (i.e., polymorphisms) and thus able to be 

statistically associated with phenotype (e.g., drug exposure or response), interpretation of rare 

variants that are novel or sparsely observed is a major challenge. Comprehensive functional 
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characterization of variants in OCT1 has the potential to aid in pharmacogenetic variant 

interpretation and precision medicine/dosing. 

To understand the function of genetic variants in all genes, including pharmacogenes, it is 

essential to conduct experimental studies (17). Functional genomic studies of SLC transporters 

are most commonly conducted in vitro in mammalian cell-based expression systems. Site-

directed mutagenesis can be used to introduce single nucleotide variants or small insertions and 

deletions into a DNA construct. After transient or stable overexpression of the encoded 

transporter variant of interest, function can be measured by substrate uptake assays involving 

radioligands, fluorescent substrates, genetically encoded biosensors, or unlabeled substrates 

detected by mass spectrometry (18). In addition, transporters that are electrogenic can be 

functionally assessed through electrophysiology experiments (18). These methods, although the 

gold-standard in the field, are relatively low throughput, making the functional characterization 

of many genetic variants time consuming and costly.  

Advancing technologies have greatly increased the scale at which functional studies are possible. 

Deep mutational scanning (DMS) is an emerging approach used to functionally characterize 

thousands of protein variants in parallel (19). Identification and development of a relevant assay 

for generating high-quality large-scale functional data can be challenging. Here, we present an 

experimental platform compatible with DMS of 11,572 variants in the pharmacogene OCT1, 

including all possible single missense variants, synonymous variants, and single amino acid 

deletions. We validate the integration and function of OCT1 and representative OCT1 variants in 

landing pad-based stable cell lines with fluorescent uptake assays with the substrate ASP+ and 

radioligand uptake assays with substrates MPP+ and metformin, and demonstrate detectable 
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differences in OCT1-mediated cytotoxicity upon exposure to platinum compounds SM73 and 

SM85 (Fig. 4.1).  

4.3 Methods:  

4.3.1 OCT1 wild-type construct assembly 

The reference SLC22A1 coding sequence (NM_003057.3) was cloned into the hAAVS1 landing 

pad vector by Gibson assembly (20). Briefly, template and backbone vector were PCR amplified 

with custom Gibson primers using PrimeSTAR® Max DNA Polymerase (Takara Bio, Kusatsu, 

Shiga, Japan). PCR products were run on a 1% agarose gel and extracted with the Zymo DNA 

Clean & Concentrator-5 kit (Zymo #11-302C, Zymo Research, Irvine, CA). Gibson assembly 

was performed with NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, 

Ipswich, MA) with a 2:1 mass ratio of backbone vector to insert for 60 min at 20°C. Then, 

assembled construct was transformed into NEB® 5-alpha competent cells (New England 

Biolabs, Ipswich, MA) and plated on LB-Ampicillin plates which were incubated at 37°C 

overnight. Colonies were picked and grown in 5 mL LB-Ampicillin broth for 16 hr at 37°C in a 

shaker/incubDWRU��'1$�ZDV�LVRODWHG�ZLWK�WKH�=\SS\��3ODVPLG�0LQLSUHS�.LW��=\PR�5HVHDUFK��

Irvine, CA). Sequencing was performed to ensure correct assembly and absence of PCR errors 

(MCLAB, South San Francisco, CA).  

4.3.2 Site-directed mutagenesis 

Site-directed mutagenesis (SDM) was used to generate three OCT1 missense variants for 

experimental optimization and platform development. OCT1 variants p.R61C, p.P117L, and 

p.G401S were introduced into the OCT1 construct generated by Gibson assembly (section 4.3.1 

above) with Q5® Site-Directed Mutagenesis Kit (New England Biolabs, Ipswich, MA) 
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IROORZLQJ�PDQXIDFWXUHU¶V�SURWRFRO��6HTXHQFLQJ�ZDV�SHUIRUPHG�WR�HQVXUH�FRUUHFW�DVVHPEO\�DQG�

absence of PCR errors (MCLAB, South San Francisco, CA). 

4.3.3 Cell culture 

Cells ZHUH�FXOWXUHG�LQ�'XEHFFR¶V�PRGLILHG�(DJOH�PHGLXP��'0(0���/LIH�7HFKQRORJLHV��

Carlsbad, CA) supplemented with 10% fetal bovine serum (GE Healthcare Life Sciences, South 

Logan, UT) and penicillin/streptomycin (100 U/mL) (Life Technologies, Carlsbad, CA) and 

grown in a humidified incubator at 37°C with 5.0% CO2. 

4.3.4 Stable cell line generation 

Stable cell lines expressing OCT1 wild-type, p.R61C, p.P117L, and p.G401S were created by 

transfection into TetBxB1BFP-iCasp-Blast Clone 12 HEK293T cells harboring a landing pad for 

single-site specific integration (PMID: 31612958, referred to herein as HEK293T-landing pad 

cells). Cells were seeded at a density of 6.5x105 cells/well in a 6-well plate. One day after 

seeding, cells were co-transfected with either OCT1 reference or variant destination vectors and 

the BxB1 expression vector (pCAG-NLS-BxB1) at a 1:1 mass ratio with Lipofectamine LTX 

WUDQVIHFWLRQ�UHDJHQW��7KHUPR�)LVKHU�6FLHQWLILF��DFFRUGLQJ�WR�PDQXIDFWXUHU¶V�SURWRFRO��7ZR�GD\V�

after transfection, cells were split into T25 flasks and doxycycline (2 µg/mL, Sigma-Aldrich) 

was added to induce OCT1 expression. One day after doxycycline was added, AP1903 (10 nM, 

MedChemExpress) was added for negative selection of cells with unsuccessful recombination. 

After one week selection with AP1903, expression of OCT1 was verified with in vitro uptake 

assays as described in sections 4.3.5 and 4.3.6 before further experiments were performed. 
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4.3.5 In vitro ASP+ uptake assays 

The activity of each OCT1 variant was measured by uptake of 4-Di-1-ASP (4-(4-

(Dimethylamino)styryl)-N-Methylpyridinium Iodide (ASP+) (21) in stable cell lines described 

above. Briefly, cells were seeded at 50,000 cells/well in poly-D-lysine coated black, clear bottom 

96-well plates (Greiner Bio-One, Monroe, NC). One day later when cells were at approximately 

95% confluency, the culture media was removed and replaced with 100 µL of 1 µM ASP+ 

(,QYLWURJHQ� #D288) in HBSS warmed to 37°C in the absence or presence of OCT1 inhibitors 

carvedilol or ketoconazole at 20, 50, or 100 µM (reaction mixture). After 10 min uptake, the 

reaction mixture was removed and cells were washed three times with ice-cold HBSS. The final 

wash was removed and ASP+ fluorescence was measured with the GloMax® Explorer 

microplate reader (Promega, Madison, WI) with excitation and emission filters tuned to 475 nm 

and 580-640 nm wavelengths, respectively.  

4.3.6 In vitro radioligand uptake assays 

One day after seeding of OCT1 wild-type and variant stable cell lines in poly-D-lysine coated 

96-well white bottom plates (Perkin Elmer #6005070) culture medium was removed and cells 

ZHUH�ZDVKHG�WKUHH�WLPHV�ZLWK�+DQN¶V�EXIIHUHG�VDOW�VROXWLRQ��+%66���Life Technologies, 

Carlsbad, CA) at 37°C and pre-incubated with the third wash of HBSS for 10 min at 37°C. 0.5 

µM metformin [biguanido-14C] hydrochloride (#ARC1738, American Radiolabeled Chemicals, 

Inc., St. Louis, MO) or 6.25 nM 3H-methyl-4-SKHQ\OS\ULGLQLXP�DFHWDWH��³MPP+´��#ART0849, 

American Radiolabeled Chemicals, Inc., St. Louis, MO) in HBSS (reaction mix) was added to 

the cells and incubated at 37°C for 5 min, a time point within the linear uptake phase of OCT1 

(22). After 5 min, the reaction mix was aspirated and the cells were washed three times with ice-

cold HBSS. 200 µL MicroScint-20 (Perkin Elmer) was added to each well and cells were lysed 
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on an orbital shaker for 1 hr before plates were sealed with an adhesive plastic cover and read in 

a MicroBeta2® Microplate Counter (Perkin Elmer, Waltham, MA). Function of each variant was 

normalized to wild-type (WT) OCT1 and expressed as a percentage after background uptake 

measured in the empty vector (EV) was subtracted from both, calculated as follows: (Variant ± 

EV)/(WT ± EV)*100. Each cell line was assayed in triplicate on a 24-well plate and measured in 

three biological replicates. 

4.3.7 Cytotoxicity assays with platinum compounds 

The cytotoxicity of the platinum compounds was measured with the CellTiter-Glo® assay in 96-

well plates. Briefly, stable cell lines were seeded in clear poly-D-lysine coated 96 well plates in 

culture medium with doxycycline (2 µg/mL) for 24, 48, or 72 hr treatment with platin 

compounds. Cells were seeded at a density of 25,000 cells/well for 24 hr treatment, 10,000 

cells/well for 48 hr treatment, and 4,000 cells/well for 72 hr. 24 hr after seeding, culture medium 

was replaced with fresh medium containing doxycycline (2 µg/mL) and serial dilutions were 

performed to treat cells with SM73 or SM85 (US Patent No. 9217007B2 (23)) in concentrations 

ranging from 0-200 µM. After the treatment duration (24, 48, or 72 hr) had elapsed, media was 

replaced with 45 µL DMEM + 10% FBS per well. 45 µL CellTiter-Glo® reagent was added to 

each well and plates were placed on a shaker/incubator for 10 minutes. Then, cell viability was 

measured with a GloMax® Explorer microplate reader (Promega, Madison, WI). Cell viability at 

each concentration and time point was calculated as a percentage of maximum cell viability for 

each cell line. The maximum cell viability was the CellTiter-Glo® readout in the wells not 

treated with platin compounds for each cell line.  
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4.3.8 OCT1 DMS library generation 

At the end of the SLC22A1 sequence the stop codon was removed and replaced with a 3x Gly-

Ser linker followed by mNeonGreen_11 and a downstream expression marker miRFP670 co-

expressed via a self-cleaving P2A sequence. The DMS library was designed with SPINE (24) 

and library construction has been described previously (25). Briefly, oligos were designed and 

synthesized (Agilent Technologies, Inc., Santa Clara, CA) to contain each possible amino acid 

substitution at every position. Due to high error rates in oligo synthesis that limit maximal oligo 

length to 230 base pairs, the SLC22A1 coding region sequence (NM_003057.3) was divided into 

11 blocks for oligo synthesis (Supplementary Table 4.1). Corresponding to each SLC22A1 

block, 11 primer sets were designed by SPINE to amplify each oligo block and the respective 

section of the SLC22A1 backbone vector into which the oligo block is cloned for the generation 

of seamless circular constructs containing each variant in the complete gene. The 11 backbones 

were amplified by 25 PCR cycles with PrimeSTAR GXL Polymerase (Takara Bio, Kusatsu, 

Shiga, Japan) and 1 ng backbone DNA was used as template. The oligo library was amplified in 

11 separate PCR reactions with respective primers for the amplification of each oligo block by 

25 PCR cycles with PrimeSTAR GXL Polymerase and 1 µL of the oligo library (resuspended in 

1mL TE buffer) used as template. After PCR, amplified backbones and inserts were run on a 1% 

agarose gel and extracted with the Zymo DNA Clean & Concentrator-5 kit (Zymo #11-302C, 

Zymo Research, Irvine, CA). To assemble the backbones with respective inserts, BsaI Golden 

Gate cloning reactions were set up in 20 µL reactions containing 100 ng of amplified backbone 

DNA, 20 ng of amplified oligo DNA, 0.2 BsaI-HFv2 (New England Biolabs, Ipswich, MA), 0.4 

µL T4 DNA ligase (New England Biolabs, Ipswich, MA), 2 µL T4 DNA ligase buffer, and 2 µL 

10mg/mL BSA. The Golden Gate cloning reactions were placed in a thermocycler overnight 
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with the following protocol: (5 min at 42°C, 10 min at 16°C)*40 cycles, then 20 min at 42°C, 

then 10 min at 80°C, then 4°C hold. The 11 reactions containing assembled constructs were 

cleaned with the Zymo DNA Clean & Concentrator-5 kit at eluted in 6 µL elution buffer. The 

constructs were then transformed into E. Cloni 10G electrocompetent cells (Lucigen Corp., 

0LGGOHWRQ��:,��E\�HOHFWURSRUDWLRQ�DFFRUGLQJ�WR�PDQXIDFWXUHU¶V�LQVWUXFWLRQV��$IWHU�

transformation, cells were grown at 30°C for 6-10 hr in 30 mL LB broth with kanamycin (40 

µg/mL) until optimal optical density (OD600) was achieved. A small amount of transformed 

cells was plated at multiple dilutions to evaluate transformation efficiency and validate 

successful assembly and presence of single missense mutations by sequencing (MCLAB, South 

San Francisco, CA) and from the remainder of transformed cells DNA was purified with 

=\SS\��3ODVPLG�0LQLSUHS�.LW��(DFK�RI�WKH����VXEOLEUDULHV�ZDV�FRPELQHG�DW�HTXLPRODU�UDWLR�WR�

make the complete mutational library. Finally, the complete library was cloned into a destination 

vector plasmid with BxB1-compatible attB recombination sites for stable integration into the 

HEK293T-landing pad cells. Briefly, existing constructs were amplified by inverse PCR with 

primers that add complementary BsmBI cut sites, then Golden Gate cloning was performed using 

BsmBI and T4 ligase (New England Biolabs, Ipswich, MA) with the same protocol as described 

above for BsaI to generate the final deep mutational scanning library of attB-SLC22A1-

mNeonGreen-P2A-puromycinR constructs. 

4.3.9 Data analysis 

Statistical analysis for uptake assays was performed in R version 3.6.3 (R Core Team, 2020) and 

plots were generated using R package ggplot2 version 3.3.5. 6WXGHQW¶V�W-test was used to 

determine significance between groups, with p<0.05 used as the significance threshold. For IC50 

curves from cytotoxicity assays, statistical analysis, curve fitting, and figures were generated 
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with GraphPad Prism version 8 software (La Jolla, CA). Additional figures were generated with 

Biorender and chemical structures were drawn with Marvin Sketch 19.9. 

4.4 Results 

4.4.1 OCT1 expression and function in landing pad cell lines 

The expression and function of human OCT1 and selected variants p.R61C, p.P117L, and 

p.G401S after stable integration into the HEK293T landing pad cells were confirmed by 

measuring the uptake of OCT1 substrates ASP+, MPP+, and metformin as described below.  

4.4.2 Effect of OCT1 variants on uptake of fluorescent substrate ASP+ 

Here we validated the function of HEK239T-OCT1 stable cells by assessing uptake of the 

fluorescent substrate ASP+ and sought to establish optimal inhibition conditions. We selected 

some of the most potent inhibitors of OCT1 identified previously (26) and tested them at 

multiple concentrations. Despite low IC50 values reported previously, (2.6 µM for ketoconazole 

and 1.6 µM for carvedilol), we found that 20 µM of either inhibitor reduced ASP+ uptake by just 

67-73% (p-YDOXH��������6WXGHQW¶V�W-test, Fig. 4.2A). At 100 µM, ketoconazole resulted in near-

complete inhibition of ASP+ uptake, and carvedilol completely abolished ASP+ uptake (p-

value<0.001). We then tested the effect of OCT1 variants on the uptake of ASP+, proceeding 

with carvedilol as an inhibitor and evaluating inhibitability at 20, 50, and 100 µM. Stable cell 

lines expressing OCT1 p.R61C and p.P117L did not exhibit any significant change in ASP+ 

uptake from OCT1 WT, yet uptake was significantly reduced in cells expressing the reduced 

function OCT1 p.G401S variant (p-value<0.001), which had a lower baseline uptake of ASP+ 

than the other OCT1 variants (Fig. 4.2B). OCT1 p.R61C was more inhibitable than the WT or 

p.P117L variant, with greatest reduction in uptake of ASP+ at all three concentrations of 

carvedilol tested.  
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4.4.3 Effect of OCT1 variants on uptake of radiolabeled substrates MPP+ and metformin 

Uptake of the prototypical cation MPP+ and metformin was determined by radioligand uptake 

assays. The uptake of MPP+ and metformin was significantly higher in landing pad cells stably 

transfected with OCT1 constructs compared to untransfected landing pad cells (p < 0.001, Fig. 

4.3A-B). The uptake of MPP+ and metformin was significantly reduced by the OCT1 inhibitor 

carvedilol at 100 µM (p < 0.001). 3H-MPP+ uptake in stable cell lines expressing OCT1 variants 

was assessed and was found to be significantly increased in p.R61C, unchanged in p.P117L, and 

significantly decreased in p.G401S compared to OCT1 WT. 14C-metformin uptake was 

significantly decreased in p.R61C and p.G401S and unchanged in p.P117L.  Carvedilol (100 

µM) completely inhibited uptake of 14C-metformin and almost completely inhibited uptake of 

3H-MPP+ by OCT1 WT and all variants tested.   

4.4.4 Time and concentration dependence of OCT1-mediated cytotoxicity by platinum 

compounds oxaliplatin, SM73, and SM85 

OCT1 has previously been shown to mediate the influx of the platinum-based anticancer drug 

oxaliplatin in human colon cancer cell lines (27). In HEK293T cells stably expressing hOCT1, 

we measured cytotoxicity of oxaliplatin up to concentrations of 200 µM. Even with 72 hr 

exposure to 200 µM oxaliplatin, only partial cytotoxicity was observed in OCT1 expressing cells 

(Supp. Fig. 4.1). Therefore, we sought to evaluate the cytotoxicity of two synthesized platinum 

compounds, SM73 and SM85. HEK293T-landing pad and HEK293T-OCT1 WT cells were 

treated with SM73 and SM85 at 12 concentrations ranging from 0-50 µM (2-fold dilutions) for 

24, 48, and 72 hr before cell viability was measured. OCT1 expressing cells exhibited robust 

platinum-mediated cytotoxicity compared to landing pad cells (Fig 4.5). Cell viability was 

completely (48 hr and 72 hr time points) or near completely (24 hr time point) abolished in both 



 140 

cell lines after treatment with 50 µM SM73 or SM85, and cell viability was unaffected by 

concentrations as low as 50 nM at all time points. IC50 values for SM73 and SM85 were 

calculated for both cell lines at all three time points (Table 4.1). Resistance factors, defined as 

the IC50 in the HEK293T-landing pad cells divided by the IC50 in the HEK293T-OCT1 cells, 

ranged from 40.3 to 167.4 µM for SM73 and 86.2 to 2934.1 µM for SM85 (Table 4.1), 

indicating that cells overexpressing OCT1 are much more sensitive to platinum-induced 

cytotoxicity than cells without OCT1 overexpression. Resistance factors were highest at the 48 

hr time point for both SM73 and SM85. IC50 values decreased as treatment time increased for 

both platinum compounds, indicating sensitivity increases with increased drug exposure. 

4.4.5 Effect of OCT1 variants on the cytotoxicity of platinum compound SM85 

SM85 was found to be more potent and have greater resistance factors than SM73 in platinum-

induced cytotoxicity assays (see section 4.3.4 above), thus we moved forward with SM85 in 

assessing viability of cells expressing OCT1 variants. We assessed cell viability after exposure to 

12 concentrations of SM85 (0-50 µM, 2-fold dilutions, Fig. 4.5) for 48 hr, the time point that 

resulted in the greatest resistance factor in previous experiments. We found that cells expressing 

OCT1 p.P117L were most sensitive to SM85-induced cytotoxicity (RF = 11.0, Table 4.2), 

consistent with a mild gain-of-function phenotype observed for this variant with other substrates. 

Cells expressing OCT1 p.R61C were slightly less sensitive (RF = 7.2) to SM85 than those 

expressing OCT1 WT (RF = 11.0), and p.G401S exhibited strong resistance to SM85-induced 

cytotoxicity (RF = 0.4, Table 4.2).  

4.4.6 Substrate specificity of common OCT1 variants 

Here we summarize the substrate specificity of OCT1 variants. We directly measured uptake of 

MPP+, metformin, and ASP+. We found that OCT1 p.P117L in general functions very similar to 
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OCT1, with minimal [significant or insignificant] reductions in transport of MPP+ and 

metformin. OCT1 p.G401S is largely a reduced function variant, with severe reduction in uptake 

for both metformin and ASP+ yet moderate function for MPP+ uptake. In contrast, OCT1 p.R61C 

is a variant with variable degree of function based on substrate. p.R61C is gain-of-function for 

MPP+ uptake, loss-of-function for metformin uptake, and normal function for ASP+ uptake. 

These results are summarized in Figure 4.6.   

4.4.7 Generation of OCT1 deep mutational scanning variant library 

The OCT1 variant library for deep mutational scanning was constructed as described in Methods 

section 4.2.8. The library contains up to 11,572 total sequences. The human OCT1 protein 

contains 554 amino acids. The library contains sequences encoding all 19 possible single 

missense variants as well as synonymous variants and single amino acid deletions at every 

residue position in OCT1 with the exception of methionine at position 1. Thus, the library 

contains 19 missense variants * 553 residues =10,507 variants, 1 synonymous variant * 522 

residues = 522 synonymous variants (no synonymous variants exist for Met or Trp residues, of 

which OCT1 contains 19 and 13, respectively), and 1 deletion * 543 amino acids = 11,572 total 

OCT1 variants present in the DMS library. The constructs encode OCT1 with the split 

fluorescent protein fragment mNeonGreen211 attached to the C-terminus by a 3x Gly-Ser linker, 

followed by miRFP670 co-expressed via a P2A self-cleaving peptide. mNeonGreen211 is a 16-

amino acid peptide fragment of the mNeonGreen2 fluorescent protein that is non-fluorescent by 

itself but can be co-expressed with the mNeonGreen21-10 fragment to self-complement into a 

fluorescent protein. mNeonGreen21-10/11 has multiple benefits: 1) the small size of the 

mNeonGreen211 fragment compared to a complete fluorescent protein is less likely to interfere 

with the folding, stability, or function of OCT1, and 2) it exhibits increased brightness upon self-
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complementation and reduced background fluorescence of non-complemented fragments 

compared to the split fluorescent protein GFP1-10/11. Inclusion of miRFP670 is used to control for 

OCT1 expression.   

4.5 Discussion  

Here we present a screening platform for the high-throughput assessment of functional impact of 

11,572 variants in the pharmacogene SLC22A1, encoding the organic cation transporter 1, 

OCT1. The platform utilized a landing-pad based stable cell system, which was experimentally 

validated to function and exhibit sensitivity to detect changes in OCT1 function caused by 

missense variants or single amino acid deletions. We demonstrate expression of OCT1 by 

measuring significant increase in uptake of the radiolabeled OCT1 substrates MPP+ and 

metformin that is reduced in the presence of the OCT1 inhibitor carvedilol. We establish two 

diverse assays that can be used to determine the effect of missense variants on the function of 

OCT1: (1) a fluorescence-based assay that measures uptake of the OCT1 substrate, ASP+ into 

cells and (2) a cytotoxicity-based assay that selects for loss-of-function or reduced function 

variants, identifiable by next-generation sequencing. Our studies confirm previous findings that 

missense variants of OCT1 exhibit different effects on transport function depending on the 

substrate. Finally, we describe the generation of an OCT1 deep mutational scanning library 

containing 11,572 OCT1 variants that can both be functionally characterized with the 

aforementioned assays as well as spatially characterized to determine subcellular localization 

utilizing a conjugated fragment of the split fluorescent protein mNeonGreen21-10/11. 

We compared our results to existing reports in the literature and identified a number of 

interesting differences. With ASP+ uptake assays in HEK293T-landing pad cells expressing 



 143 

OCT1, we assessed inhibition by two drugs reported to be potent inhibitors of OCT1: 

ketoconazole and carvedilol. Reported IC50 values were 2.6 µM for ketoconazole and 1.6 µM for 

carvedilol. Here, we found that 20 µM of either inhibitor only partially reduced uptake of ASP+. 

IC50 values can be influenced by many factors, including concentrations of substrates and 

inhibitors used and incubation time. Compared to the previous study, we used a lower 

concentration ASP+ (1 µM vs 2 µM) and had a longer assay duration (10 min vs 2 min), factors 

that might be contributing to differences observed here. Another interesting finding was that 

ASP+ uptake was not statistically different in cells expressing OCT1 p.R61C or p.P117L 

compared to wild-type OCT1, yet uptake was significantly reduced by p.G401S. Interestingly, 

despite similar ASP+ uptake to wild-type OCT1 and p.P117L, p.R61C exhibited a greater degree 

of inhibition with all three concentrations of carvedilol tested. Though speculative, it is possible 

that p.R61C does not affect affinity for or capacity to transport ASP+, but has increased affinity 

for carvedilol.  

The pooled OCT1 DMS library will be transfected and stably integrated into the HEK293T-

landing pad cells as described in the methods section, with library diversity verified by next-

generation sequencing (NGS). In the fluorescence-based ASP+ uptake assay, OCT1 variant 

function can be determined by fluorescence-activated cell sorting (FACS). After incubation with 

ASP+ in suspension, cells can be sorted into bins of fluorescent intensity indicative of variant 

function. We hypothesize that loss-of-function variants will not uptake ASP+ and thus have low 

fluorescence intensity, whereas functional variants will have high fluorescence intensity, with 

moderately functioning variants in between. After sorting into bins, cells can be lysed and 

genomic DNA harvested for sequencing by NGS to determine the identity of variants in each 

bin. Because OCT1 genetic variants exhibit distinct effects on different substrates, follow-up 



 144 

studies will be needed to understand the substrate specificity of individual OCT1 variants. In the 

cytotoxicity assay, cells stably expressing OCT1 variants will be exposed to platinum compound 

SM85 to determine sensitivity. We hypothesize that functional OCT1 variants will uptake SM85 

resulting in toxicity and cell death, whereas LOF variants will be resistant to SM85-mediated 

cytotoxicity similar to the HEK293T-landing pad cells. There may be a reduction in abundance 

in cells expressing variants with moderate function compared to resistant cells as exposure time 

to SM85 increases. After treatment with SM85, cells will be washed to remove dead cells and 

then lysed and genomic DNA harvested and sequenced by NGS to determine abundance of 

OCT1 variants. Variants enriched in sequencing reads primarily from live cells are resistant to 

SM85-induced cytotoxicity and hypothesized to be LOF.  

The presence of split fluorescent protein fragment mNeonGreen211 at the C-terminus of OCT1 

allows for detection upon co-expression and complementation with mNeonGreen21-10. This can 

be used to quantify protein expression by FACS and identify variants that may have reduced 

expression due to thermodynamic instability and/or increased protein degradation (28). In 

addition, membrane localization of OCT1 variants can be quantified by FACS upon binding to 

anti-OCT1 antibody and a fluorescent secondary antibody. Previous studies revealed that 38% 

(6/16) of major OCT1 alleles display improper subcellular localization leading to loss-of-

function for all substrates (16). Upon comparison with functional data from uptake and 

cytotoxicity assays, we hypothesize that OCT1 variants absent from the plasma membrane or 

with extreme reduction in overall expression will be LOF, thus enriched in sequencing reads 

after SM85 treatment and falling into low fluorescence bins after ASP+ uptake.  

Deep mutational scanning of OCT1 has the potential to reveal important binding and 

translocation sites within OCT1, as well as continue to inform our understanding of the 
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mechanisms by which OCT1 transports its substrates. OCT1 is a polyspecific transporter, with 

more than 150 substrates identified (29). Multiple binding sites have been proposed within 

OCT1, some of which are perhaps overlapping, and multiple proposed pharmacophore models 

have substantial differences. No crystal structures exist for OCT1 or any related proteins in the 

SLC22 family, and homology models built to fill the gap are based on solved structures sharing 

less than 20% amino acid identity with OCT1 (30). DMS has previously been used to determine 

protein structure (31) and is sure to enrich our understanding of structure-function relationships 

within OCT1.  

One limitation of the proposed deep mutational scan of OCT1 is the substrate-specific functional 

heterogeneity caused by genetic variation. For example, the most common variant p.M420del 

greatly reduces transport of some substrates (e.g., metformin) but has no or minimal effect on the 

uptake of other substrates (e.g., morphine) (9, 29). This greatly limits the generalizability of an 

activity score determined for one substrate. However, strong pairwise correlations exist for 

functional effects between some substrates. The effect of OCT1 polymorphisms on the transport 

of MPP+ was highly correlated with the effect on transport of O-desmethyltramadol, ASP+ was 

highly correlated with morphine, and metformin was highly correlated with sumatriptan 

(correlation coefficients of 0.869, 0.838, and 0.776, respectively) (29). This limitation motivates 

our drive to carry out deep mutational scanning with multiple diverse assays using more than one 

OCT1 substrate, as well as to perform detailed follow-up studies to understand the specificity of 

individual variants of OCT1. Specificity differences among OCT1 missense variants suggest 

different binding sites and translocation pathways that may be utilized by different substrates. 

Such differences are also consistent with a protein that tolerates a diverse array of substrates. 
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The rich layers of data revealed by DMS can be used to train machine learning models to predict 

impact of a variant on expression, function, and localization of OCT1 and related transporters. A 

model built with mutagenesis data from OCT1 can be fine-tuned to predict these parameters for 

related transporters with far less data available in a process known as transfer learning (32). 

OCT1 is a member of the SLC22 family which contains multiple transporters with clinical 

pharmaceutical interest (OCT2/SLC22A2, OAT1/SLC22A6, OAT3/SLC22A8), and genetic 

disease implications (OCTN2/SLC22A5, URAT/SLC22A12). Protein-specific models for 

interpreting functional impact of variants in these transporters could have great clinical relevance 

in precision dosing of certain medications that are substrates of these transporters and in 

diagnostics of associated diseases, though ethical and technical challenges need attention before 

this vision becomes a reality (32). 

In summary, here we describe a deep mutational scanning platform for the multi-parametric 

characterization of all possible single amino acid variants in OCT1. We establish and validate 

several functional assays as well as comment on a split fluorescence protein fragment that can be 

used to quantify protein expression levels of OCT1 variants. DMS of OCT1 can ultimately be 

used to broadly enhance our biological understanding of the mechanisms of OCT1 transport, 

polyspecificity, expression, and localization. Variants significantly affecting the function of 

OCT1 have the potential to be clinically actionable in the implementation of pharmacogenetic 

data in dosing of drugs that are OCT1 substrates. Finally, as the first SLC transporter to be fully 

characterized by DMS to our knowledge, lessons learned from OCT1 can be insightful for 

related transporters with known clinical importance. 
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4.6 Figures 

 

Figure 4.1. OCT1 substrates. (A) Substrates used in the validation of the DMS screening 
platform and (B) selected substrates with documented clinical evidence of differential exposure, 
efficacy, and/or side effects in individuals with reduced function OCT1 variants.  
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Figure 4.2. Effect of OCT1 and OCT1 variants on uptake and inhibition of ASP+. (A) 
Uptake of ASP+ in HEK293T-landing pad and HEK293T-OCT1 expressing cells in absence or 
presence of OCT1 inhibitors ketoconazole and carvedilol at 20 µM or 100 µM. (B) Effect of 
OCT1 variants R61C, P117L, and G401S on ASP+ uptake and inhibition by carvedilol (20, 50, 
or 100 µM). Data are expressed as mean ± SEM from two biological replicates (n = 4 per 
condition for each replicate). *** indicates significant difference (p<0.001) from uptake in OCT1 
WT cells with no inhibitor, ### indicates significant difference (p<0.001) from uptake in 
respective variant cell line with no inhibitor, ns = not significant from OCT1 WT. 
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Figure 4.3. Effect of OCT1 variants on uptake and inhibition of radiolabeled substrates. 
Function of stable cell lines HEK293T-landing pad, and HEK293T-landing pad cells expressing 
OCT1 WT, OCT1 R61S, OCT1 P117L, and OCT1 G401S with respect to uptake of (A) 3H-
MPP+ and (B) 14C-metformin. Uptake of substrates was determined in the absence or presence of 
100 µM carvedilol to inhibit OCT1. Data are expressed as mean ± SEM from three biological 
replicates (n = 4 per condition for each replicate). *** indicates significant difference (p<0.001) 
from uptake in OCT1 WT cells with no inhibitor, ### indicates significant difference (p<0.001) 
from uptake in respective variant cell line with no inhibitor, ns = not significant from OCT1 WT.  
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Figure 4.4. Time- and concentration-dependent cytotoxicity of platinum compounds SM73 
and SM85 in cells expressing OCT1 WT and HEK293T-landing pad control cells. 
HEK293T-landing pad control cells and HEK293T-landing pad cells expressing OCT1 were 
exposed to SM73 or SM85 at concentrations ranging from 0-50 µM for (A) 24 hr, (B) 48 hr, or 
(C) 72 hr. Data are expressed as mean ± SEM and are representative of two biological replicates 
(n = 3 per condition for each replicate). 
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Figure 4.5. Effect of OCT1 variants on cytotoxicity of platinum compound SM85 in stable 
cell lines. HEK293T-landing pad cells and HEK293T-landing pad cells expressing OCT1 WT 
and missense variants of OCT1 were exposed to concentrations of SM85 ranging from 0-50 µM 
for 48 hr. Data are expressed as mean ± SEM for each concentration (n = 3 per condition for each 
replicate). 
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Figure 4.6. Summary of the effect of OCT1 variants on uptake function of MPP+, 
metformin, and ASP+. Data are expressed as mean ± SEM. For MPP+ and metformin, data from 
three replicate experiments are shown (n =  4 for each variant per replicate). For ASP+, data from 
two replicate experiments are shown (n =  4 for each variant per replicate).  
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Supplementary Figure 4.1. Cytotoxicity of oxaliplatin in cells expressing OCT1 WT. 
HEK293T-landing pad cells and OCT1 cells were exposed to concentrations ranging from 0-200 
µM for 72 hr. Data are expressed as mean ± SEM and are representative of three biological 
replicates (n = 4 per condition for each replicate).  
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4.7 Table 

Table 4.1. Drug sensitivity of oxaliplatin and platinum compounds SM73 and SM85 in 
HEK293T-landing pad and HEK293T-OCT1 cell lines. IC50s were determined by cell 
viability as measured by the CellTiterGlo assay as described in Methods. Data are expressed as 
mean of one to two experiments with each done in triplicate. The resistance factor was defined as 
the ratio of the mean IC50 values in HEK293T-landing pad over HEK293T-OCT1 cells. ND: not 
determined. 

  IC50 (µM)  

Compound 
Exposure  

(hr) 
HEK293T-  

landing pad 
HEK293T- 

OCT1 
Resistance Factor 

(RF) 
Oxaliplatin 72 ND 32.55 ND 

SM73 24 584 6.03 96.8 

SM73 48 159 0.95 167.4 

SM73 72 19.4 0.481 40.3 

SM85 24 187 2.17 86.2 

SM85 48 2227 0.759 2934.1 

SM85 72 79.1 0.423 187.0 
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Table 4.2. Drug sensitivity of SM85 platinum analogue in OCT1-transfected cells. Data are 
expressed as mean of triplicate. The resistance factor was defined as the ratio of the mean IC50 

values in HEK293T-landing pad over HEK293T-OCT1 WT or variant expressing cells. 

  

Cell Line IC50 (µM) Resistance Factor (RF) 

HEK293T landing pad 79.9 1.0 

HEK293T-OCT1 WT 8.3 9.7 

HEK293T-OCT1 R61C 11.0 7.2 

HEK293T-OCT1 P117L 7.2 11.0 

HEK293T-OCT1 G401S 187.8 0.4 
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Supplementary Table 4.1. OCT1 oligo block design. OCT1 oligo blocks synthesized for 
assembly by golden gate cloning in the construction of the DMS variant library. 

OCT1 oligo block Residues encoded 

1 1-50 

2 51-102 

3 103-153 

4 154-204 

5 205-254 

6 255-304 

7 305-354 

8 355-404 

9 405-454 

10 455-504 

11 505-554 
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Supplementary Table 4.2. Simplified overview of the protocol for assembly of the OCT1 
deep mutational scanning library. 

Step Description 

Step 1 Variant library with SPINE (24) 

Step 2 OCT1 oligo block synthesis (11 blocks) 

Step 3 PCR to amplify each block and complementary backbone 

Step 4 Gel purification of PCR products 

Step 5 Golden gate cloning with BsaI to assemble constructs 

Step 6 DNA purification of assembled constructs 

Step 7 Transformation into E. coli by electroporation 

Step 8 Growth of bacteria in LB broth 

Step 9 Miniprep of DNA constructs 

Step 10 Pooling of 11 sublibraries into single complete variant library 

Step 11 PCR to add BsmBI cut sites 

Step 12 Golden gate cloning with BsmBI to assemble OCT1 variants into destination vector 

Step 13 DNA purification of assembled constructs 

Step 14 Transfection into HEK293T landing pad cells 

Step 15 Selection of stably integrated cells 
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In this dissertation, we sought to address the challenge of translating genetic data into clinically 

actionable information by increasing understanding of phenotypic consequences and improving 

experimental and computational approaches to interpreting coding region variants in clinically 

important genes. We performed functional genomic studies of Solute Carrier (SLC) transporters, 

namely OCTN2 and OCT1, to identify genetic variants with significant effects on function, 

relevant in the pathology of rare disease and interindividual differences in drug response, 

respectively. We outlined how these data can be used to inform machine learning models to 

improve upon the computational interpretation of variants of uncertain significance (VUS), both 

within these transporters and the other members of the SLC22 family, particularly to inform 

diagnostics and selection/dosing of therapeutics.  

Chapter 1 provided foundational information on the biology and clinical relevance of organic 

cation (OCT1) and zwitterion (OCTN2) transporters in the SLC22 family from pharmacologic, 

physiologic, and pathophysiologic perspectives. Though many substrates and inhibitors are 

known to interact with these transporters, specific information on structure-function 

relationships, transport mechanisms, and functional genomics remains to be discovered. In the 

absence of crystal structures for any transporters in the SLC22 family or closely related families, 

our understanding of the precise mechanisms by which these transporters function remains poor 

at best. Much more work needs to be done on SLC transporters, including the elucidation of 

crystal structures, to expand our understanding of their impactful role in human biology and 

physiology.  

Chapter 2 addressed approaches and challenges to interpreting genetic variation in clinically 

important genes. In the era of advanced genome sequencing, we can envision a future in which 

the genome of every individual is sequenced at birth. That genomic data has the power to 
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revolutionize healthcare practices from diagnostic to therapeutics ± once we know what to do 

with it. At present, accurate interpretation of the effects of genetic variants is far behind 

identification of said variants. With each individual harboring millions of variants compared to a 

reference genome, detailed review of every variant for each individual is outside the scope of 

human capability. Advances in machine learning and artificial intelligence will be likely to 

bridge the gap, with much improvement in performance needing to be made first. Emerging 

experimental techniques, including deep mutational scanning, are increasing the scale at which 

we understand the functional or phenotypic effects of variants. With more data, we can build 

better models to interpret genetic variation, eventually enabling the possibility of a genomic 

learning healthcare system to process genomic data at birth into clinically actionable 

recommendations for lifelong improvement of healthcare. 

Chapter 3 presented the characterization of a large set of OCTN2 variants and the development 

of protein-specific machine learning models for predicting variant effect on function with 

relevance for the rare disease Carnitine Transporter Deficiency (CTD). While a few hundred 

OCTN2 variants have been identified in patients with CTD, the disease-causing potential of the 

WKRXVDQGV�RI�WKXV�XQGHWHFWHG�YDULDQWV�LV�XQNQRZQ��.QRZOHGJH�RI�WKH�IXQFWLRQ�RI�DQ�LQGLYLGXDO¶V�

set of OCTN2 variants can be informative in clinical decision making. Here, we were limited by 

experimental methodologies with a radioactive substrate in the number of variants we were able 

to characterize. Regardless, we identified mechanistic trends amongst loss-of-function variants 

and built a protein-specific variant effect model that outperforms existing models in predicting 

variant function. We can only imagine the power that larger datasets would supply to machine 

learning for even more substantial improvements to variant interpretation. In addition, we 

emphasize the importance of designing functional genomic studies to include variants from 
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diverse ancestries, and the benefit that inclusive machine learning models will have for health 

equity. The identification of improper membrane localization as a major loss-of-function 

mechanism opens the door to innovative therapeutic approaches for CTD, with future efforts 

needed to improve treatment options and clinical outcomes for those affected by CTD.  

Next, we aimed to address the limited throughput of transporter variant phenotyping faced in 

Chapter 3. In Chapter 4, we described the development of a deep mutational scanning (DMS) 

platform to scale up functional characterization of the pharmacogene OCT1. Comprehensive 

DMS of all possible variants has not been done for any SLC transporters to our knowledge. 

OCT1 is known to transport more than 150 cationic drugs and endogenous molecules, and is 

highly polymorphic with variants having documented substrate-specific functional effects. We 

propose that DMS of OCT1 will be groundbreaking at both the molecular and physiologic level. 

Experimental approaches characterizing multiple diverse phenotypes will aid in the identification 

of variants with significant functional and substrate-specific effects. Data from DMS can even be 

used to resolve protein structures, which would be revolutionary for the SLC22 transporter 

family. Notably, these data will be important in clinical implementation of pharmacogenetic 

dosing for OCT1 substrates, whereby an individual may need to be prescribed another dose or a 

different medication altogether to best tailor treatment to their genetic code. Additionally, rich 

layers of data from DMS of OCT1 may be beneficial for improving the interpretation of genetic 

variation in other related transporters in the SLC22 family and beyond with the help of artificial 

intelligence.  

In conclusion, this dissertation aims to address and tackle challenges with translating genetic data 

into the clinic. With this work, we demonstrate the impact of understanding phenotypic 

consequences of variants in genes and proteins with clinical relevance, both at the molecular and 
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physiologic levels. Though much work remains to be done, we show that through the bridging of 

experimental and computational approaches, significant improvements to variant interpretation 

are possible and will one day enable better translation of genomic information in healthcare.  
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