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Abstract
Canopy coverage-based crop growth monitoring is highly dependent on the performance 
of crop segmentation algorithms. Under field conditions, crop segmentation for unmanned 
aerial vehicle (UAV) imagery should be sophisticated considering geometric distortion of 
images by wind and illumination variations. Under Korean cultivation conditions, a plastic 
mulch used to restrict weeds and prevent cold weather damage increases the complexity 
of the image background. In particular, on-site monitoring of onion and garlic growth has 
been limited by their morphology because they have long narrow leaves. The ultimate goal 
of this study was to quantify the growth parameters of onion and garlic at multiple growth 
stages using red, green, and blue (RGB) imagery obtained with UAVs. Canopy coverage 
and plant height were used as predictor variables to develop mathematical models to esti-
mate the fresh weights of onion and garlic. The use of a CIE L*a*b* color space and mean 
shift (MS) algorithm enhanced the extraction of the canopy coverage of onion and gar-
lic from complex backgrounds, including plastic mulch, soil, and shadows under varying 
illumination conditions. Multiple linear regression models consisting of the a* band-based 
vegetation fraction (VF) and structure from motion (SfM)-based plant height (PH) fitted 
the fresh weight data of onion and garlic well with high coefficients of determination (R2) 
ranging from 0.82 to 0.92. The validation results showed an almost 1:1 slope with highly 
linear relationships (R2 > 0.82) between the onion and garlic fresh weights obtained with 
the UAV RGB imagery and actual fresh weights, confirming that the UAV-RGB imagery 
based on the use of the a*band and PH can be used to quantify the spatial and temporal 
variability of onion and garlic growth parameters during the growing season.

Keywords  Unmanned aerial vehicle · Crop segmentation · CIE L*a*b* color space · Crop 
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Introduction

Field crop growth monitoring plays a crucial role in assessing overall crop health, deter-
mining irrigation timing, and estimating potential yields (Hunt et al., 2010). Periodic moni-
toring of biophysical parameters such as biomass, leaf area index (LAI), vegetation index 
(VI), and plant height (PH) can assist growers in successfully optimizing inputs like ferti-
lizers and pesticides, as well as properly forecasting final harvests (Borchard et al., 2015; 
Dammer et al., 2009; Thorp et al., 2012). Traditional crop monitoring studies have used 
field measurements or aerial/satellite data to cover large areas effectively. Field-based 
methods including in  situ sampling and laboratory analysis are often destructive, labor-
intensive, costly, and time-consuming, thereby limiting the number of samples required for 
an effective crop growth management setup (Chang et al., 2011).

Precision agriculture is a site-specific soil and crop management system that uses vari-
ous engineering technologies, such as the global navigation satellite system (GNSS), geo-
graphic information systems (GIS), and remote sensing (RS), to assess variability in soil 
properties (e.g., pH, organic matter, and soil nutrient levels), geographic condition (e.g., 
slope and elevation), and crop parameters (e.g., yield and biomass) (Kim et  al., 2018). 
Recently, unmanned aerial vehicles (UAVs) have become increasingly popular for low-
altitude and high-resolution remote sensing applications due to their benefits for precision 
agriculture, which include adaptability, lightweight, and low operating costs. UAV sys-
tems have become a cost-effective, novel remote sensing platform due to advancements 
in the precision, economic efficiency, and downsizing of numerous technologies such as 
global positioning system (GPS) receivers and computer processors (Holman et al., 2016). 
UAV imagery can be used to assess crop growth conditions including canopy greenness, 
leaf area, water stress estimation, and various geographical circumstances such as crop 
area, digital surface models (DSMs), and depth contour lines (Salamí et al., 2014; Zhang & 
Kovacs, 2012).

In UAV remote sensing-precision agriculture, detecting canopy coverage in crops is 
an essential step before addressing further objectives such as calculating the percentage 
of green cover and predicting yields (Hernández-Hernández et al., 2016; Torres-Sánchez 
et al., 2015). In particular, the canopy coverage commonly represents the growth status of 
crops and yields in the regions of interest in remote sensing. Canopy coverage is needed 
to estimate fresh weight (Kim et al., 2018), plant height (Fernández-Pacheco et al., 2014), 
and yield (Hernández-Hernández et  al., 2016; Torres-Sánchez et  al., 2015). In addition, 
for root crops such as onion, garlic, white radish, canopy coverage is related to root depth 
(Escarabajal-Henarejos et  al., 2015). Crop segmentation techniques for canopy cover-
age calculation have gained importance and have been developed for various purposes 
(Hernández-Hernández et al., 2016; Łuszczkiewicz-Piątek, 2014). Under field conditions, 
crop segmentation must be sophisticated, considering atmospheric interference, daily illu-
mination intensities, and complex backgrounds. Recently, many studies have been con-
ducted for precision agriculture to accurately separate crops using various image process-
ing algorithms based on UAV imagery (Liu et  al., 2022; Osco et  al., 2021; Shao et  al., 
2022). In addition, many studies have been conducted on plant detection and counting (Bai 
et al., 2022; Tu et al., 2020; Valente et al, 2020), and growth estimation (Costa et al., 2022; 
Fei et al., 2022; Xu et al., 2022) by applying image processing algorithms suitable for vari-
ous environments.

For crop segmentation, the color feature is one of the most widely used visual features 
in image retrieval because of its robustness, effectiveness, and computational simplicity 
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(Hong et  al., 2004; Sarkate et  al., 2013). Many studies on the VI, such as excess green 
(ExG) (Woebbecke et  al., 1995), excess red (ExR) (Meyer et  al., 1999), and normalized 
differential index (NDI) (Hunt et  al., 2005) have been conducted for crop segmentation. 
These indices are widely used to separate soil and plant pixels. ExG, which can separate 
vegetation in backgrounds with soil, straw, and stones in outdoor conditions, is the most 
commonly used VI in UAV-remote sensing and growth modeling studies. Furthermore, 
Otsu’s thresholding method, which is an automatic thresholding method, is simple and per-
forms well on images that can be divided into two classes (Otsu, 1979). Many researchers 
have used ExG-Otsu’s thresholding method for crop segmentation techniques. However, 
crop segmentation is difficult because crop color changes easily depending on the imaging 
sensor, crop morphology, and illumination conditions in the outdoor field. Moreover, shad-
ows and interreflection under field conditions also cause illumination complexities. In this 
regard, ExG-Otsu’s thresholding method for crop segmentation has not been verified under 
various illumination conditions.

Onion (Allium cepa) and garlic (Allium sativum) are vegetables that are commonly cul-
tivated and used in various dishes and seasonings and are also among the main ingredi-
ents of kimchi in Korea. Onion and garlic are root crops, unlike wheat, barley, and maize, 
and the health of the leaves at the early growth stage has a substantial influence on yield 
because nutrients from leaves at the early growth stage migrate to roots at the mid and late-
growth stages (Lopez‐Bellido et al., 2016). Therefore, for both onion and garlic, canopy 
coverage is a crucial factor for the evaluation of crop growth conditions and accurate meas-
urement of canopy coverage is needed for indirectly monitoring other growth factors such 
as fresh weight, root weight, plant height, and yield.

However, accurate measurement of canopy coverage for onion and garlic is difficult 
because they are crops with long narrow leaves. In crops with long narrow leaves, the 
boundary between the crops and background is long and complex compared to those with-
out such leaves. Therefore, it is difficult to recognize the boundary between the crops and 
background in the image, and the latter is greatly affected by shadows and light conditions. 
In addition, because the leaves are narrow, the number of pixels recognized as leaves is 
small, so the image resolution is greatly affected when separating the crops from the back-
ground. Under Korean cultivation conditions, plastic mulch is commonly used to restrict 
weeds and prevent cold weather damage to onion and garlic. This complicates image anal-
ysis since it is much more difficult to separate crops from plastic mulch than from soil 
because images of crops on plastic mulch are highly affected by shadows and light reflec-
tions. There have been a few studies on the segmentation of crops with long narrow leaves, 
and particularly, there is scarce research conducted on onion and garlic in Korean cultiva-
tion conditions. Thus, research on the separation of crops with long narrow leaves on plas-
tic mulch is challenging but necessary for applying precision agriculture in Korean cultiva-
tion conditions.

Furthermore, the atmosphere and sunlight affect the images acquired by UAVs more 
than those taken with ground vehicles. Even after radiometric calibration, which is applied 
in UAV remote sensing, illumination variation occurs within the whole field image, result-
ing in poor quality crop segmentation if soil and vegetation are separated by a single 
threshold value. Thus, the use of a VI-based method that is sensitive to light conditions, 
such as the ExG-Otsu’s thresholding method, may be limited for segmenting crops with 
long narrow leaves on plastic mulch, using UAV imagery.

To overcome the disadvantages of the ExG-Otsu method, some studies have attempted 
to perform segmentation using image processing in other color spaces. For example, when 
using the HSV (hue, saturation, and value) color space or the CIE L*a*b* (L*: lightness, 
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a*: green–red, b*: blue–yellow) color space, these color spaces have been proven to pre-
vent inaccurate segmentation caused by shading, overexposure, and underexposure (Riehle 
et al., 2020). The CIELAB color space, also referred to as L*a*b*, is a color space defined 
by the International Commission on Illumination (abbreviated CIE) in 1976. CIELAB was 
intended as a perceptually uniform space, where a given numerical change corresponds to 
a similar perceived change in color. In particular, the CIE L*a*b* color space is a color 
model that was proposed based on how colors are organized and conceptualized in human 
vision in terms of other color attributes such as lightness, hue, and the RGB color model. 
These color spaces have the advantage of representing the color of a pixel in channels sepa-
rated from the brightness. Some previous works (Bai et  al., 2014; Hamuda et  al., 2017) 
found that grayscale values converted from RGB values did not produce adequate segmen-
tation performance, thus motivating the use of the CIE L*a*b* color space in agriculture. 
These studies have shown that incorrect segmentation caused by shadows, overexposure, 
and underexposure can be reduced with these color spaces.

In our previous study (Kim et  al., 2018), the ExG-Otsu thresholding algorithm was 
applied to separate Chinese cabbage (Brassica rapa subsp. pekinensis) and white radish 
(Raphanus sativus) from the background to model and monitor the biophysical parameters 
of the crops. The ExG-Otsu algorithm showed segmentation performance of over 85% to 
be used for monitoring Chinese cabbage and white radish, but there was no report on the 
performance of crops with relatively long narrow leaves such as onion and garlic.

In this regard, the overall goal of this study was to investigate the potential of using 
UAV-based RGB imagery to effectively monitor temporal and spatial variability during the 
growth stage and quantify the growth parameters of onion and garlic cultivated in agricul-
tural fields. The first specific objective was to develop a robust crop segmentation algo-
rithm for onion and garlic with long narrow leaves under complex illumination and back-
ground conditions and compare the performance of the developed algorithm with that of 
the previous segmentation method (Kim et al., 2018). The performance of the algorithms 
was evaluated by comparison to that obtained using manual method. The second specific 
objective was to generate statistical models to quantify the growth parameters of onion and 
garlic based on the use of the newly developed crop segmentation algorithm, and inves-
tigate the applicability of the developed models using additional field experiment in the 
same field but re-cultivated in the following year.

Materials and methods

Test plot

A two-year field experiment was conducted during the 2017 and 2018 growing seasons, 
from March to April. UAV remote sensing for image acquisition was conducted in an onion 
and garlic field of the Bioenergy Crop Research Institute (35° 03′ N, 126° 22′ E, altitude 
12 m), located in 199 Muan-ro, Muan gun, Jeollanam-do, Republic of Korea (Fig. 1). Data 
obtained from the 2017 field experiment were used to develop statistical models that could 
quantify the growth parameters of onion and garlic. Testing was performed using data 
obtained from the 2018 experiment to validate the developed regression models. White 
plastic mulch films were used to suppress weed growth before planting in both years. 
Fifty-five-day-old onion (Allium cepa) seedlings were planted on 25 October 2016, and 5 



Precision Agriculture	

1 3

November 2017. Garlic (Allium sativum) seeds were planted on 25 September 2016, and 5 
October 2017.

UAV flight and image acquisition

A hexarotor airframe model (F550, DJI Innovations, Shenzhen, China) served as the aerial 
platform to acquire images. The UAV was set to automatically fly over the fields using 

Fig. 1   Test sites during the 2017 and 2018 onion and garlic growing seasons
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an automatic flight controller (Pixhawk, 3D Robotics, Berkeley, CA, USA). The Mission 
Planner program (ArduPilot Development Team and Community) was used to track way-
points according to the pre-programmed flight path generated. An RGB commercial cam-
era (S110, Canon, Tokyo, Japan) was attached to the UAV as the image sensor. The sensor 
resolution of the camera was set to 12 megapixels (4000 × 3000 pixels) to achieve a ground 
resolution of approximately 3.7 mm pixel–1 at a flight altitude of 10 m. The actual size of 
a frame on the ground was approximately 40 × 15 m. From a preliminary test to determine 
the appropriate camera parameters for decreasing image blur, the shutter speed and F-stop 
(aperture) were set at 1/2000s and 4.0, respectively, with the focus distance set at infinity. 
A summary of the flight missions is provided in Table 1.

In each mission, aerial images were captured at a scheduled flight altitude of 10 m with 
an intended overlap of 70% to ensure image redundancy. The Pix4Dmapper Pro 3.0.17 
software (Pix4D SA, Lausanne, Switzerland), which allows image mosaicking, was used 
to generate a complete crop map of the total study area. Similar to what was reported in a 
previous study (Turner et al., 2012), to improve the spatial accuracy of the aerial imagery 
obtained by the UAV, nine ground control points (GCPs) consisting of 0.3 × 0.3 m paper 
sheets were placed at the corners and center of the test plot. The GCP locations were meas-
ured using a Novatel OEM 615 virtual reference station (VRS)-based real-time kinematic 
(RTK)-GPS to provide positioning accuracy within 20 and 50 mm in the horizontal and 
vertical directions, respectively. All images containing GPS information were aligned and 
converted into an orthomosaic in Pix4Dmapper Pro 3.0.17. The growth stages of onion and 
garlic were determined according to the “Biologische Bundesanstalt, Bundessortenamt und 
CHemische Industrie” (BBCH) scale, which is used to identify the phenological develop-
ment stages of plants (Lancashire et al., 1991).

To perform statistical analysis of the UAV images and ground truth data for onion and 
garlic, 1.2 × 1.2 m regions of interest (ROIs) representing the area of each grid were used. 
Approximately 64 plants were included in each ROI because onion and garlic were grown 
at a plant spacing of 0.13 m. To obtain actual data on growth parameters (i.e., top weight 
and root weight) for each crop, 10 plants located in each ROI were randomly removed from 
the field and investigated after every UAV flight. The ten plant samples were collected 

Table 1   UAV imaging details and BBCH code of onion and garlic used in the 2017 and 2018 growing sea-
sons

Date BBCH code Flight 
altitude 
(m)

Ground resolu-
tion (mm pixel–1)

Flight time Illumination Wind
(m s–1)

Onion Garlic

24/03/2017 19 19 10 3.7 10–11 am Cloudy 2.0
04/04/2017 41 41 10 3.7 11 am–12 pm Clear sky 2.1
14/04/2017 43 43 10 3.7 10–11 am Cloudy 5.2
28/04/2017 47 47 10 3.7 11 am–12 pm Clear sky 3.1
14/03/2018 15 17 10 3.7 1–2 pm Cloudy 3.5
23/03/2018 19 19 10 3.7 12–1 pm Clear sky 2.6
30/03/2018 41 41 10 3.7 11 am–12 pm Clear sky 1.9
13/04/2018 43 43 10 3.7 11 am–12 pm Cloudy 3.5
20/04/2018 45 45 10 3.7 12–1 pm Clear sky 1.4
27/04/2018 47 47 10 3.7 11 am–12 pm Clear sky 1.9
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from each ROI and were weighed using an electronic scale in the laboratory. The ten val-
ues were averaged as a representative value.

Radiometric calibration

To reduce the effects of changing light and atmospheric conditions on the UAV images 
taken at different times, radiometric calibration was performed at each flight by placing 
1.2 × 1.2 m Group 8 Technology Type 822 ground calibration panels for airborne sensors 
with seven grayscales (3, 5, 11, 22, 33, 44, and 55%) at a location within the flight path of 
the UAV platform. Radiometric calibration with empirical lines (Wang and Soe, 2015) was 
conducted to remove atmospheric interference with standard calibration panels as shown in 
Eqs. 1 and 2:

where rx,k represents the calculated mean reflectance values of the calibration targets (air-
borne sensor ground calibration panels, Inc. Group Eight Technology, Provo, Ut, USA), 
Rx(�) is the standard reflectance spectrum of the calibration targets, Ck(�) is the spectral 
response of the RGB camera (S110, Canon, Tokyo, Japan), Ak , Bk are the coefficients of 
the exponential relationship, and DN represents the digital number of the image. The detail 
information of radiometric calibration was described in our previous study (Kim et  al., 
2018).

Crop segmentation methods

Two different segmentation methods, namely a combination of the ExG and Otsu’s auto-
matic threshold, and a combination of the a* band and region-based threshold, were used 
to identify a method suitable for separating the onion and garlic from the background. 
Since ExG could effectively assess canopy variation in green crop biomass based on RGB 
imagery (Kim et al., 2018; Torres-Sánchez et al., 2014), ExG was calculated based on the 
RGB reflectance values obtained with the UAV-RGB camera, using Eq.  3 (Woebbecke 
et al., 1995):

where r is R

R+G+B
 , g is G

R+G+B
 , b is B

R+G+B
 , and R, G, and B represent the reflectance values of 

the red, green, and blue bands in the radiometrically calibrated images, respectively.
In principle, since Otsu’s thresholding is used as an automatic threshold method that 

assumes that the image contains two classes of pixels, such as crops and other background 
objects, the optimum threshold can be determined based on minimizing the interclass vari-
ance and maximizing the intraclass variance (Otsu, 1979). Using Otsu’s threshold, the ExG 
images were then converted into binary images and classified into two different groups 
(i.e., vegetation or background).

The other segmentation method was to use the CIE L*a*b* color space based on how 
colors are structured and conceptualized in human vision in terms of other color-making 

(1)rx,k =
∫ 800
400

Rx(�)Ck(�)d�

∫ 800
400

Ck(�)d�

(2)rx,k = Akexp
(

Bk ∗ DN
)

(3)ExG = 2g − r − b
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qualities including lightness, hue, and the RGB color model (Riehle et al., 2020). Spe-
cifically, the a* band in the CIE L*a*b* color space was used to distinguish crops, soil, 
shadows, and plastic mulch because the negative a* band value is more green and its 
positive value is more red.

In conjunction with the use of the a* band index, a region-based mean-shift (MS) 
algorithm was used to solve the single peak problem of the a* band image. The MS is 
a nonparametric feature-space mathematical analysis technique for locating the maxima 
of a density function, a so-called mode-seeking algorithm (Cheng, 1995). In this study, 
the MS algorithm was used for thresholding a* band images by clustering the images. 
Clustering in the MS algorithm was performed according to the following principles: 
(a) Consider a set of points in a two-dimensional space, and (b) assume a circular win-
dow centered at C and having radius r as the kernel. MS is a hill-climbing algorithm 
that involves shifting this kernel iteratively to a higher density region until convergence 
is attained. Every shift is defined by a mean shift vector. The MS vector always points 
toward the direction of the maximum increase in density. At every iteration, the kernel 
is shifted to the centroid or the mean of the points within it. The method for calculating 
this mean depends on the choice of kernel. A flat kernel was selected in this study. At 
convergence, there will be no direction in which a shift can accommodate more points 
inside the kernel. In previous studies (Ammour et al., 2017; Yan et al., 2020), the MS 
algorithm has been used to conduct various image processing research such as object 
detection, segmentation, and tracking. In this study, the RGB image was classified into 
green and non-green vegetation with the a* band feature using the MS algorithm.

Histogram analysis of a garlic-field RGB image depending on the index used (i.e., 
ExG and a*-band indices) was performed to investigate how various objects in the gar-
lic field affect the histogram distribution. As shown in Fig. 2, by manually plotting each 
object corresponding to the crop, shadow, plastic mulch, and soil in ENVI 5.4 (Harris, 
Broomfield, CO, USA), the histogram distribution of each component was obtained for 
the ExG and a* band indices. There were both wet and dry parts of crop and soil in 
this sample (Fig. 2). The index values of the ExG and a* band image were normalized 
between 0 and 255.

Fig. 2   Selection of regions of 
interest (ROIs) of various objects 
(crop, shadow, plastic mulch, and 
soil) in a garlic field image used 
for histogram analysis
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Calculation of vegetation fraction and plant height

In accordance with the methods described by Kim et al. (2018), the vegetation fraction 
(VF) was used as an index to quantify the canopy coverage. The VF in each ROI was 
calculated as the ratio of the number of pixels segmented as a crop to the number of 
total pixels, using Eq. 4:

To evaluate the performance of the ExG with Otsu threshold algorithm and a*band 
with MS algorithm in terms of VF, 30 UAV RGB images from the early to late growth 
stages of garlic were used. The actual VF was determined by calculating the percentage 
of vegetation using the ENVI 5.4 program after manually delineating the vegetation in 
the raw image. The accuracy of the two different segmentation methods applied in the 
study was assessed by comparing them with manually identified actual VFs for all of the 
30 sample images.

In accordance with the methods described in our previous study (Kim et al., 2018), 
since plant height (PH) can be used as an index of vertical crop growth, the PH was 
defined as the shortest distance between the upper section of the onion and garlic plants 
and the ground. The plants and ground were represented using the DSM and digital 
terrain model (DTM), respectively. That is, the DTM was defined as a model of a field 
without crops, whereas the DSM was a model of a field with crops.

The 3D points of the DSM and DTM were created to calculate PH using Pix4Dmap-
per Pro 3.0.17. The DTM was acquired on the first UAV flight, carried out within 7 days 
after sowing, when the crops had not yet germinated, and the DSMs were acquired on 
each subsequent UAV flight date. As shown in Fig. 3, the PH, defined as a field feature 
model only, was then calculated by subtracting the DSM from the DTM (Eq. 5):

where DSM represents the model of the underlying topography with crops, and DTM rep-
resents the underlying topography of the field without crops.

(4)Vegetation Fraction (VF) =
Number of pixels determined as crop

Number of total pixels

(5)Plant Height = DSM − DTM

Fig. 3   Schematic of plant height 
(PH) calculation based on the 
subtraction of the digital terrain 
model (DTM) from the digital 
surface model (DSM)
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Fresh weight prediction modeling and validation

Following the methods used in our previous study (Kim et  al., 2018), multiple linear 
regression models were developed to quantify onion and garlic growth from UAV-based 
imagery. Predictor variables (X) were vegetation fraction (VF) and plant height (PH), and 
response variables (Y) were growth parameters. An interaction term of VF × PH was added 
to the predictor variables, as shown in the following equation (Eq. 6):

where Y represents the fresh weights of onion and garlic, XVF represents the VF variable, 
XPH represents the PH variable, and A, B, C, and D represent the estimates of each of the 
predictor variable terms.

SAS 9.4 software (SAS Institute, Cary, NC, USA) was used to determine the four esti-
mates for Eq. 6 (A–D) by fitting the image data acquired from the UAV in terms of VF 
and PH to the equation. Validation of the developed regression models was conducted by 
comparing the fresh weights estimated using the developed regression models with those 
measured with an electronic balance for both onion and garlic samples obtained in the fol-
lowing year (2018).

Results and discussion

Identification of crop segmentation method for onion and garlic

Figure 4 shows the histogram distributions and box plots for garlic and other objects in the 
field, corresponding to the ExG and a* band indices. As shown in Fig. 4a, since the ExG 
index of the crop was distributed between 84 and 255, whereas the index ranges of the 
shadow, plastic mulch, and soil were in the ranges of 24–255, 27–85, and 0–119, respec-
tively, the crop showed an overlap of 84 to 119 with other objects. The ExG image showed 
20% overlap between crops and other things. In addition, the shadow covered most of the 
index range of the ExG image from 20 to 255. Therefore, the ExG-based crop segmenta-
tion was greatly affected by shadows, implying that the use of ExG would be vulnerable to 
light and shadow conditions.

Figure 4b shows the histogram distribution of the a* band image. Since the index of the 
crop was distributed between 0 and 148 whereas the index ranges of the shadow, plastic 
mulch, and soil were 140–220, 103–195, and 149–255, respectively, the garlic crop was 
clearly distinguished from the background even though the crop and plastic were partially 
overlapped in the range of 103 to 148. The a* band had less overlap in vegetation and other 
parts of field. This result suggests that the a* band would be more applicable than ExG 
for the segmentation of crops with long narrow leaves, which are more vulnerable to the 
effects of light and shadow.

Figure 5 shows the effect of the Otsu’s threshold on automatic segmentation in two dif-
ferent band images (ExG and a*-band indices). When the ExG and a* band images were 
converted into binary images (i.e., 1 or 0) using Otsu’s method, the histogram distribution 
of the a* band was composed of a single peak (Fig. 5b), unlike the ExG, which showed two 
peaks (Fig. 5a). This result suggests that using the Otsu’s threshold would not be suitable 
for crop segmentation in the a* band.

(6)Y = A × XVF + B × XPH + C × XVF × XPH + D
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In this study, the MS algorithm was used to solve the single peak problem of the a* 
band image. Using the MS algorithm allows for a clearer conversion from the a* band 
image into a binary image by creating a clustered image with a clustered histogram. Fig-
ure 6 shows details of the newly developed a* band and MS-based crop segmentation algo-
rithm which allowed calculating the vegetation fraction. First, an RGB image (Fig. 6a) was 

Fig. 4   Histogram distributions and box plots of garlic and other objects in the field, corresponding to the a 
excess green (ExG) and b a* band images

Fig. 5   Histogram distribution and Otsu’s thresholding values of excess green (ExG) and a* band images for 
crop segmentation
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converted into an a* band image (Fig. 6b). Then, the a* band image (Fig. 6b) was grouped 
into the clustered image (Fig. 6d) using the MS clustering algorithm. The clustering result 
could also be confirmed by the change of the histogram. The single peak histogram of the 
original a* band image (Fig. 6c) was converted into a clustered histogram divided into five 
by the MS algorithm. Since the a* band index shows a greener color for lower values, the 
pixels with the lowest value among the five peaks were set as the crop. Finally, the ratio of 
the pixels set as the crop to the total pixels in the binary image was calculated as the veg-
etation fraction (Fig. 6f and g).

Figure  7 shows an example of garlic segmentation using an ExG image with Otsu’s 
thresholding and a* band image with the MS algorithm. An RGB image was converted 
into an ExG image (Fig. 7b) and a CIE a* band image (Fig. 7d). When the ExG image was 
converted into a binary image using Otsu’s thresholding, the ExG-based binary crop image 
was overestimated because the ExG might be greatly affected by light and shadow condi-
tions (Fig. 7c). On the other hand, when an a* band image was converted into a binary 
image after the MS algorithm was applied (Fig. 7e), it was observed that the garlic crop 
was more clearly segmented due to the lesser effect of shadows and light compared to that 
obtained with Otsu’s method (Fig. 7f).

Figure  8 shows a comparison of crop segmentation accuracy between the image 
manually segmented and that automatically segmented. The latter was obtained using 
a combination of ExG and Otsu’s thresholding and a combination of the a* band and 
MS algorithm. Figure 8a shows the time-series accuracy of the algorithms according 
to days after transplanting (DAT). In order to calculate the average and standard devia-
tion of accuracy (%), five randomly selected samples were used for each stage from the 
early and late growth stages. The ExG + Otsu’s thresholding method showed low accu-
racy in both early and late growth stages, while the a* band + MS algorithm showed an 
improvement in performance over time. In the late growth stage, there were limitations 
of the Otsu threshold due to the abundance of crops covering the field and reducing the 

Fig. 6   The newly developed a* band and mean-shift (MS)-based crop segmentation algorithm for calculat-
ing the vegetation fraction: a RGB image; b–e MS algorithm; f, g vegetation fraction calculation
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background. Thus, the ExG + Otsu’s thresholding method showed a high-level over-
estimation in the late growth stages. On the other hand, the developed a* band + MS 
algorithm showed high segmentation accuracy even in the late growth stage as there 
was less over-estimation.

As shown in Fig.  8b, when the total 30 sample images were evaluated using the 
accuracy index, the average segmentation performance of the a* band + MS algorithm 
was 84.6%, and that of the ExG + Otsu’s thresholding was 59.2%. The 15.4% error of 
the a* band + MS algorithm might be due to the overlap between the crop and plastic 
mulch in the a* band index shown in the histogram analysis (Fig. 4).

In summary, compared to ExG and Otsu’s thresholding, the use of the a* band + MS 
algorithm enhanced the extraction of the canopy coverage of onion and garlic from 
backgrounds including plastic mulch, soil, and shadows under varying illumination 
conditions.

Fig. 7   An example of crop segmentation using a, b, e excess green (ExG) + Otsu’s thresholding and a, c, d, 
f the a* band + mean-shift (MS) algorithm

Fig. 8   Performance comparison of crop segmentation methods (Excess green + Otsu’s thresholding method 
and a* band + mean-shift algorithm) using 30 sample images: a Box plots with accuracy evaluation; b time-
series accuracy evaluation according to the days after transplanting (DAT)
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Onion and garlic yield modeling and validation

Table 2 shows the results of the regression analysis for modeling the growth status of the 
two crops, using the a* band and MS algorithm. When using four predictor variables (VF, 
PH, VF × PH, and constant) and two different response variables (top weight and root 
weight), all of the multiple regression equations based on the developed method showed 
coefficients of determination (R2) between 0.82 and 0.92. In our previous study (Kim et al., 
2018), when predicting growth parameters such as leaf length and fresh weight of Chinese 
cabbage and white radish using the ExG + Otsu thresholding method, multiple regression 
equations showed R2 between 0.78 and 0.94. Therefore, it was expected that the use of 
the growth models based on the developed method (a* band + MS algorithm) would allow 
measuring the growth parameters of onion and garlic with a similar level of performance in 
the previous study. Thus, the developed growth models could be used as a method to pre-
dict the potential yields of the two crops before harvest.

In this study, the ground truth top and root weight of onion and garlic were compared 
from early to late growth stages. As a result, a high linear relationship was observed 
between the top and root weight of onion, showing R2 of 0.88 with a slope of 0.75. Moreo-
ver, the top and root weight of garlic showed a high linear relationship with R2 of 0.82 with 
a slope of 0.22. These results suggest that although onion and garlic are root crops, the top 
and root parts of the crops are highly correlated. Therefore, it was possible to estimate the 
root weight of the crops even by using the UAV image comprising only the above-ground 
data.

Validation of the developed growth estimation models for onion and garlic was per-
formed using a different dataset of UAV images with known growth data obtained from 
the second-year experiment (2018). A total of 56 and 66 ROIs of onion and garlic, respec-
tively, were used to quantify their growth parameters during the 2018 growing season.

In this study, a two-point normalization method was applied to improve the growth esti-
mation performance of onion and garlic. The two-point normalization method is an algo-
rithm that uses two known samples of distinct values to adjust for discrepancies in slope 
and offset between model estimates and actual values before analysis (Kim et al., 2013). 
To maximize the effect of two-point normalization employing a wide range of data, it is 
necessary to select two known samples with the biggest difference in growth parameters. 
The slope and offset were directly compensated by comparing the actual values obtained 
from destructive sampling and the estimated values obtained with UAV imagery on each 
flight. The performance of the two-point normalization method was already validated in 
our previous study for the growth modeling of Chinese cabbage and white radish (Kim 
et al., 2018).

Table 2   Results of multiple linear regression equations for estimating the growth parameters of onion and 
garlic based on the developed a* band + mean shift (MS) algorithm: Y = growth parameters; XVF = vegeta-
tion fraction value; XPH = plant height value; n = number of samples; R2 = coefficient of determination

Crop Growth parameter Multiple regression models n R2

Onion Top weight (g) Y = 68.4 × XVF − 0.8 × XPH + 139.7 × XVF × XPH + 4.4 42 0.92
Root weight (g) Y = –5.5 × XVF − 50.5 × XPH + 241.8 × XVF × XPH + 5.7 42 0.82

Garlic Top weight (g) Y = 68.5 × XVF − 19.7 × XPH + 54.7 × XVF × XPH + 13.3 39 0.84
Root weight (g) Y = 9.9 × XVF − 7.0 × XPH + 14.9 × XVF × XPH + 5.1 39 0.82
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For instance, when applying the developed regression models (Table 2) for estimating 
the top and root weights of onion and garlic grown in the following year (Fig. 9a and c), the 
developed models performed well in estimating the top and root weight of onion, exhib-
iting strong linear relationships with R2 > 0.85 and slopes of 1.06 and 0.87 between the 
developed regression models and standard methods. Similarly, as shown in Fig.  9b and 
d, the developed models for garlic showed strong linear relationships with R2 > 0.82 and 
slopes of 1.02 and 1.01. The obtained validation results for onion and garlic were compa-
rable to those obtained for Chinese cabbage and white radish. In our previous study (Kim 
et al., 2018), the developed models for Chinese cabbage and white radish showed linear 
relationships with R2 > 0.80 in the validation test. The use of the a* band and MS algorithm 
would be satisfactory for estimating the fresh top and root weights of onion and garlic.

Spatial mapping of potential yields of onion and garlic

The UAV RGB image (Fig. 10a) obtained on April 27, 2018, was converted into a top-
weight map (Fig. 10b) calculated with the developed regression models for investigating 
the feasibility of applying the UAV approach for mapping the onion and garlic yield 
potential during the growing season. Crop ROIs were made by sequentially locating 
each 1.2 × 1.2  m area along the planting rows in the UAV RGB image using ArcGIS 
10.1. As a result, 128 and 120 ROIs were created for onion and garlic, respectively, to 
calculate the VF and PH values, which were then used as predictor variables to esti-
mate the top weights of onion and garlic in each ROI. Finally, maps of each crop were 

Fig. 9   Scatter plots of crop growth parameters a, b top weight and c, d root weight for a, c onion and b, d 
garlic using the unmanned aerial vehicle (UAV)-based images and ground truth data obtained by standard 
methods during the second-year (2018) experiment
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generated to graphically show the spatial variability of the top fresh weights of each 
ROI, which ranged from 0 to 5000 g/m2 for onion and from 0 to 4000 g/m2 for garlic.

The vegetation proportion of both crops in the fields appeared to vary in the RGB 
image (Fig.  10a) meaning that various fresh weights could be expected depending 
on location. For example, crop sampling areas or areas with low crop growth were 
expressed in red, and areas where crops grew well were expressed in green to blue 
colors so that the degree of crop growth could be evaluated by location. Thus, using the 
yield map allowed for useful analyses, and the fresh weight maps created with the UAV 

Fig. 10   a Unmanned aerial vehicle red, green, and blue (UAV RGB) image collected on April 27, 2018, 
and b top fresh weight map generated using the developed regression models for onion and garlic
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RGB imagery, together with the developed growth models, could be used to assess the 
potential yields of the two crops based on their location before harvest.

Conclusions

In this study, a crop segmentation algorithm based on the a* band in the CIE L*a*b* 
color space and MS algorithm was developed to extract onion and garlic from com-
plex backgrounds including plastic mulch, soil, and shadows under Korean cultivation 
conditions. Consequently, compared to ExG and Otsu’s thresholding, the a* band + MS 
algorithm provided an improved ability to calculate the VF of onion and garlic, which 
are crops with narrow and long leaves. In addition, multiple linear regression models 
were developed to quantify the top and root fresh weights of onion and garlic, using 
the developed method (a* band + MS algorithm). The results revealed that the devel-
oped algorithm enabled a more accurate and robust crop segmentation and exhibited 
improved model performance for crops with long narrow leaves. The validation results 
confirmed that the UAV RGB images processed applying the developed algorithm can 
be used to quantify the spatial and temporal variability of onion and garlic growth 
parameters.

This research differs from previous studies in the following ways: (1) A CIE L*a*b* 
color space and region-based MS algorithm were employed to separate crops with long 
narrow leaves from a complex background common under Korean field conditions; (2) a 
two-year field experiment was conducted to investigate the applicability of the developed 
segmentation algorithm and regression models and (3) this UAV RGB system can evaluate 
the potential yield of the crops before harvest by generating a yield map for the compara-
tive analysis of the fresh weights of onion and garlic.

In terms of commercial setting, this study presented a series of image processing pro-
cedures including several image pre-processing techniques (i.e., image geo-referencing, 
radiometric calibration, and two-point normalization) to reduce errors when the developed 
algorithm is applied to a large area. The geo-referencing technique based on GCP ena-
bled accurate image orthomosaic and spatial mapping without positional errors in a large 
area. The radiometric calibration technique based on the calibration targets minimized the 
influence of the weather so that normalized reflectance images could be obtained on any 
day of the experiment. The two-point normalization improved the estimation accuracy by 
compensating the slope and offset of the validation result using the two actual values. In 
this study, the application possibility of spatial and temporal growth mapping of onion and 
garlic in a large commercial field was evaluated by applying the proposed image procedure 
to a two-year experiment. In addition, the developed algorithms can be applied to various 
crops with long narrow leaves, such as green onion as well as onion and garlic. If data for 
growth modeling can be obtained, growth mapping can be performed for various crops in a 
similar environment.
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