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ABSTRACT OF THE DISSERTATION

Business Cases for Microgrids: Modeling Interactions of Technology Choice, Reliability,
Cost, and Benefit

by

Ryan Hanna

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2017

Jan Kleissl, Chair

Distributed energy resources (DERs), and increasingly microgrids, are becoming

an integral part of modern distribution systems. Interest in microgrids—which are insular

and autonomous power networks embedded within the bulk grid—stems largely from the

vast array of flexibilities and benefits they can offer stakeholders. Managed well, they can

improve grid reliability and resiliency, increase end-use energy efficiency by coupling

electric and thermal loads, reduce transmission losses by generating power locally, and

may reduce system-wide emissions, among many others. Whether these public benefits

are realized, however, depends on whether private firms see a “business case”, or private

xiii



value, in investing. To this end, firms need models that evaluate costs, benefits, risks, and

assumptions that underlie decisions to invest.

The objectives of this dissertation are to assess the business case for microgrids

that provide what industry analysts forecast as two primary drivers of market growth—

that of providing energy services (similar to an electric utility) as well as reliability

service to customers within. Prototypical first adopters are modeled—using an existing

model to analyze energy services and a new model that couples that analysis with one

of reliability—to explore interactions between technology choice, reliability, costs, and

benefits.

The new model has a bi-level hierarchy; it uses heuristic optimization to select

and size DERs and analytical optimization to schedule them. It further embeds Monte

Carlo simulation to evaluate reliability as well as regression models for customer damage

functions to monetize reliability. It provides least-cost microgrid configurations for utility

customers who seek to reduce interruption and operating costs.

Lastly, the model is used to explore the impact of such adoption on system-

wide greenhouse gas emissions in California. Results indicate that there are, at present,

co-benefits for emissions reductions when customers adopt and operate microgrids for

private benefit, though future analysis is needed as the bulk grid continues to transition

toward a less carbon intensive system.
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Introduction

The electric power industry, and indeed the electric power grid, are in the midst of

transformation. Over the past half decade, adoption rates for utility-scale renewables have

increased dramatically. State governments have set ambitious renewable energy portfolio

standards of 30%−50% or more. Industry and interest groups believe much higher

numbers are achievable, that we lack only concerted political will. At the distributed

level, customer adoption rates for distributed energy resources have seen substantial

increase as well—notably solar photovoltaics and increasingly battery energy storage,

both stationary and in electric vehicles. Microgrids are finding their place in that picture.

With aid in the form of government subsidies, a strong and self-sustaining industry and

market for renewables and distributed energy technologies has taken hold in the United

States, and in California in particular. Government support is focused, and public support

for grid decarbonization is strong. Climate stabilization goals demand a long-term view,

yet with immediate action.

One area of intent government focus has been to address grid modernization—

especially in the wake of deadly and costly Atlantic superstorms (Sandy in 2012, Maria in

2017) that caused destruction throughout the U.S. and Caribbean. Microgrids have been

a focal point of that conversation. Indeed, many states have initiated proceedings that

aim to improve grid reliability and resiliency for critical public services via microgrids,

among other means. While policy support has spurred public-purpose systems, in the

private sector, technology, market, and social forces are enabling a nascent market for

1
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private microgrids. In some jurisdictions today, microgrids are becoming economically

viable for certain utility customers. Industry analysts see reliability as a primary driver.

The logic for support and interest lies in the many potential benefits microgrids

can provide—improving power quality, bulk grid resiliency, black-start capability, electric

service reliability; deferring costs of grid capacity expansion; reducing transmission

losses and possibly system-wide emissions. Whether those public benefits are realized,

however, depends on whether investors see private benefits from building microgrids.

Private firms will need to develop “business models” through which they can generate

revenue and/or reduce cost. To this end, firms need analytical tools that quantify revenue

streams and costs, make it possible to examine risks and robustness of assumptions, and,

ultimately, that inform investment decision-making.

Though the value streams available to microgrids—including improving reliability

and resiliency—are well-documented (Stadler et al., 2016), the evidentiary basis for

understanding when and where microgrids are cost-effective remains contested. Models

that quantify the business case by which investors will make real investment decisions

using realistic modeling and optimization techniques are essential.

Mathematical models for microgrid resources are the basis for such modeling.

That literature is well-established and includes, e.g., micro-turbines (Ismail et al., 2013),

combined heat and power systems (Gu et al., 2014), renewables (Sinha and Chandel,

2015), and energy storage (Ru et al., 2013; Nottrott et al., 2013). So too are methodologies

and optimization techniques for renewable systems and hybrid energy systems that couple

renewables with conventional thermal generators (Erdinc and Uzunoglu, 2012; Upadhyay

and Sharma, 2014; Iqbal et al., 2014; Fathima and Palanisamy, 2015). Microgrid models,

which are slightly broader in scope, use these optimization techniques to connect resource

models with other technical, economic and financial parameters to inform decision-

making in the design process. Decision-making typically consists of resource siting,
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selection and sizing, and/or scheduling (Gamarra and Guerrero, 2015) and is aligned to

support a potentially broad array of design objectives that span economic, environmental,

and/or reliability criteria (Khan et al., 2016). The literature for these models, too, is

well-established.

Ultimately, we are interested in a final type of microgrid model that connects

technologies, economics, risk, policy constraints (or enablers), and available revenue

streams to quantify, ultimately, the business case by which firms will make real investment

decisions. These models report the net present value or annual revenue and cost streams

of an optimal microgrid configuration as well as associated sensitivities, financial risks,

and uncertainties over the lifespan of the system. Some notable modeling tools with this

capability have been developed. For instance, state-of-the-art techno-economic tools

include two popular commercial models, DER-CAM (Distributed Energy Resources

Customer Adoption Model) from Lawrence Berkeley National Laboratory and HOMER

(Hybrid Optimization of Multiple Energy Sources) from HOMER Energy LLC. Both

are used widely in literature and practice to analyze a specific business model—namely,

the potential for customers to reduce energy costs by shifting from utility service to

a microgrid that is optimally configured to supply energy locally. While local energy

provision may be a driving force for microgrid adoption, other goals may prove more

important yet harder to assess quantitatively—in particular, improvements in reliability.

Existing commercial tools that are deterministic are not able to assess the question of

reliability realistically and systematically. Models that evaluate reliability specifically

must consider reliability and cost as a trade-off in the optimization process (Zhou et al.,

2016)—which is the basis for any sensible model built for business case analysis. Such

reliability-based modeling has been applied to rural off-grid systems (Siddaiah and Saini,

2016), but is relatively lacking for grid-connected systems in modern grids.

Putting reliability aside for the moment, we turn now to a brief categorical sur-
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vey of the modeling literature—narrowing it before returning full circle to reliability.

Those models broadest in scope simultaneously optimize resource selection and schedul-

ing. These “investment and dispatch” models evaluate microgrids by considering the

interactions within them that define business cases—for instance between technology

choice, cost, energy demand and supply, and emissions. They use various optimization

techniques to connect individual resource models with other technical, economic, and

financial parameters and constraints (Liang and Zhuang, 2014). Some include a wide

array of resources like fossil generators, solar PV, wind, and storage, as well as thermal

resources like boilers and thermal energy storage (Zachar et al., 2015; Zachar and Daou-

tidis, 2015), while others focus more narrowly and in greater detail on a single set of

technologies, e.g. combined heat and power systems (Zidan et al., 2015; Zhang et al.,

2015). Investment and dispatch models are often formulated as mathematical programs

to minimize the net present cost, or maximize the net present value (including, typically,

the capital cost of investment amortized over the lifetime of the system as well as the

annual operating cost), of a microgrid that produces energy locally for sale to customers

or the incumbent utility, or that avoids utility tariffs costs.

Slightly narrower in scope are models that optimize resource scheduling only,

given a fixed resource configuration. These “dispatch” models too may be applied broadly

to a diverse set of resources or narrowly to study specific technologies like battery storage

(Hittinger et al., 2015). They determine a resource operating schedule that minimizes the

annual operating cost, and may employ mathematical programming or heuristic methods.

Those models reported in literature, as with the investment and dispatch models, have

been designed to consider the core value streams associated with supplying energy locally.

Notably, they have not yet optimized for reliability.

Nevertheless, models of this sort may readily integrate reliability via a simple

extension—for instance as a constraint in the optimization. Such frameworks, while
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offering some control over reliability, do not necessarily optimize it. Typically, as in

Bahramirad et al. (2012), reliability constraints require that the resource configuration

meet a minimum level of reliability. Ceteris paribus, this is achieved by investing in

additional costly generating capacity.

By extending the model again, reliability can be monetized and formulated as

an objective. The model in Ding and Lee (2015), e.g., minimizes the operating cost of

a microgrid, comprised of a fuel cost and emissions cost, but includes also a reliability

penalty cost for unserved load (i.e., for that portion of microgrid load that exceeds

generating capacity) using a single value of lost load. Though simplistic in its use of a

single value, it offers an evaluation framework which can be used to explore the trade-off

between emissions and reliability, where, e.g., reliable fossil generators can incur an

emissions cost but equally reduce a reliability cost. Operation models such as these have

an important drawback—though they include reliability, they do not integrate it into the

design process where investment decision-making is made.

The business case of reliability can only be captured by considering the cost-

benefit trade-off between investing in costly generating capacity and the economic value

attributable to greater reliability, while considering also the operating cost of the resource

mix. Evaluation methods have been created to explore this trade-off and typically take

one of two forms. The first type mandates a minimum level of reliability, uses some

selection logic to determine the resource mix, and calculates the cost to supply energy

(Kanase-Patil et al., 2011; Lee et al., 2014). These can produce reliability-cost curves

for varying levels of reliability, and hence provide insight into that trade-off. The second

assumes a pre-determined resource configuration and calculates the investment cost and

reliability cost for unserved load (Georgilakis and Katsigiannis, 2009). That configuration

is varied until a minimum total cost is found. This is a brute-force approach that returns

the system cost-minimizing configuration. Other frameworks take the form of a resource
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dispatch logic, which first dispatches resources to meet load and then calculates system

cost and reliability (Lovelady et al., 2013). Though these evaluation methods present

clear frameworks for reliability evaluation, their weakness is clear—they do not have

optimization functionality and hence do not necessarily provide an optimal solution for

investment, dispatch, reliability, or the value of reliability.

Ultimately, to analyze the business case of reliability, models must consider the

economic value of reliability and optimize the cost-reliability trade-off. They must size

and schedule resources to minimize a total system cost that includes, at a minimum, in-

vestment, operation, and interruption costs. The interruption cost is the value attributable

to improved reliability and requires that reliability be monetized. The most comprehen-

sive attempts to optimize microgrid design while considering reliability, such as (Meiqin

et al., 2010; Khodayar et al., 2012), follow this framework. Notably, they fall short in the

simplistic manner in which they monetize reliability—namely, through use of a single

value of lost load. In reality, interruption costs depend on numerous factors—the duration

of an outage, its timing during the day, the day of the year, and whether or not the outage

was scheduled. These factors must be captured in so-called customer damage functions

and convolved with reliability metrics like outage frequency and outage duration.

In sum, there is a systematic lack of optimization models that couple state-of-the-

art methods for reliability evaluation with reliability worth. It is these that must underlie

any honest evaluation of the reliability business case. Though many models exist which

contain a subset of these elements, to the best of our knowledge, none exist that include

all. Rarely are they applied to business case modeling.

The objective of this dissertation, then, is to model the business case for micro-

grids that provide energy services, and that then couple that analysis with one of reliability

service. This has required building a new model that treats both revenue streams in a

single optimization framework. Chapter 1 presents an analysis of microgrids that supply
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only energy services. It uses an existing model, DER-CAM. Chapter 2-3 describes the

new optimization model we have built to add the reliability value stream. Chapter 2

describes specifically the new evaluation methodology developed to assess reliability;

Chapter 3 describes the new model in full. Chapter 4 then applies the new modeling

framework in a study of microgrid adoption impacts on greenhouse gas emissions from

the electric power sector. Lastly, concluding remarks are given in Chapter 5.

The text and data in Chapter 1, in full, is a reprint of the material as it appears

in “Evaluating business models for microgrids: Interactions of technology and policy”,

Hanna, Ryan; Ghonima, Mohamed, Kleissl, Jan, Tynan, George, David G., Victor, Energy

Policy, 103 (2017), 47-61. The dissertation author is the primary investigator and author

of this article. The supplementary information referred to in the text is available online at

doi:10.1016/j.enpol.2017.01.010.

The text and data in Chapter 2, in full, is submitted for publication of the material

with the title “Reliability evaluation for microgrids using cross-entropy Monte Carlo

simulation”. Hanna, Ryan; Disfani, Vahid R.; Kleissl, Jan. The dissertation author is the

primary investigator and author of this article.

Chapter 3, in part, is currently being prepared for submission for publication of

material. Hanna, Ryan; Disfani, Vahid R.; Kleissl, Jan; Victor, David G. The dissertation

author is the primary investigator and author of this article.

Chapter 4, in part, is currently being prepared for submission for publication

of material. Hanna, Ryan; Kleissl, Jan; Victor, David G. The dissertation author is the

primary investigator and author of this article.



Chapter 1

The Business Case for Provision of En-
ergy Services in Microgrids

1.1 Introduction

The electric power grid may be in the midst of a transformation. Following

decades of deregulatory efforts (Wilson, 2002), it may now be heading toward a more

decentralized system of supply and response. We focus on grid-connected microgrids,

which are widely thought to be one of the most attractive options for decentralized power

networks. Indeed, forecasted growth is substantial. When compared with 2014 levels of

investment, all major segments of the microgrid market are expected to grow by 2020,

for example small microgrids at commercial buildings (94%), medium sized microgrids

such as those in communities (199%) or in public institutions (228%) that have special

requirements for reliability, and large microgrids at military installations (142%) and

universities (115%). All told, one credible study forecasts the total US microgrid capacity

to reach 2,854 MW in 2020 (142% percent growth over the 2014 installed capacity of

1,181 MW) (Saadeh, 2015).

Three factors are primarily driving this shift from the traditional centralized

grid structure to one with perhaps a larger role for microgrids. Through technological

innovation, the cost of solar photovoltaics (PV) (Kann et al., 2016) and electric storage

8
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(Nykvist and Nilsson, 2015) have fallen precipitously. A second factor is rising rates

for grid-service electricity—for decades US retail rates have risen at near the general

rate of inflation, typically at 2-3% annually (US Energy Information Administration,

2016). Third, and perhaps most decisively, are concerted policy efforts to reduce global

greenhouse gas emissions while also promoting decentralization of the grid through more

autonomous production from distributed energy resources (DERs). These policy inter-

ventions have taken many forms, such as renewable energy mandates (some designed to

favor distributed renewables), deployment quotas for distributed generation (in California

nearly 2,000 MW of distributed solar through the California Solar Initiative program,

4,000 MW of combined heat and power (CHP) per AB-32, and 1,325 MW of storage

through AB-2514), and an array of subsidy schemes such as Californias Self-Generation

Incentive Program (SGIP). In addition, some jurisdictions have adopted whole visions for

a more decentralized and reliable electric power system—notably New Yorks Reforming

the Energy Vision (REV).

While there is support for microgrid deployment in some jurisdictions, in many

settings the situation is quite different. Large interconnection fees, lengthy wait times,

and outright bans on self-generated networks prevail in many places. Where the policy

environment is attractive, the logic for support points to the many potential public benefits

microgrids can provide, such as improved power quality through voltage and frequency

support, improved macro grid reliability, deferred costs for grid capacity expansions,

improved blackstart capability after macro grid failure, and possibly lower emissions

from the energy system overall. Whether those public benefits are realized, however, will

hinge on whether potential investors see private benefits from building microgrids—what

we call the “business model” or “business case” through which real investors can save

money by shifting from standard grid service to microgrids. Within industry and policy

circles there is intense discussion about business models but relatively little systematic
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quantification (Reitenbach, 2016). We aim to show ways to add quantitative methods to

that important commercial and policy debate.

In the real world, business models for microgrids depend on many factors, in-

cluding the potential for energy cost savings, improved reliability, and perhaps other

factors such as the amenity value of self-supply. Here we focus on economic costs and

benefits of self-supply as they lie at the core of any commercial proposition, and point

to subsequent work that can be done to add reliability to the analysis. We model the

business case for local energy provision—which we define as the case in which a utility

customer adopts a microgrid to self-generate (partially or fully) electricity and possibly

thermal energy (i.e., heating and cooling) loads. This business case, in our analysis, stems

solely from the ability to supply these loads with the microgrid at a total cost lower than

standard utility service. We adopt the definition of the US Department of Energy (DOE),

which defines a microgrid as “a group of interconnected loads and distributed energy

resources within clearly defined electrical boundaries that acts as a single controllable

entity with respect to the grid and that connects and disconnects from such grid to enable

it to operate in both grid-connected or ‘island’ mode.”

The present work makes two new contributions to the modeling literature. First,

we build internally consistent load data sets for three “iconic” types of microgrids based

on real world electric and thermal loads—large systems sized for campuses or military

bases; medium-sized systems for critical assets such as hospitals; and smaller systems

for commercial buildings such as box stores, hotels, and office buildings. We build these

three iconic microgrid types to align with forecasted market growth per (Saadeh, 2015)

and suggest that a consistent, reality-based set of iconic microgrids can help introduce

some consistency and comparability in published academic work in this field, as well as

promote more systematic microgrid analysis.

Second, we calibrate these systems using real market and policy conditions in
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southern California—one of the most promising locations for microgrids—and perform

several types of analysis to examine how the interplay between energy prices, technology

and policy affect investment decision-making for specific technology types in microgrids—

what we call the “investment case” underpinning microgrid adoption. Through sensitivity

analysis we identify four variables—the price of natural gas, cost of emitting carbon

dioxide (CO2), the cost of electricity and demand in the electric tariff, and the cost

of energy storage—that are most important for the future of microgrid deployment,

and quantify their impacts on investment and business cases. Analyses such as these

are crucial, as these systems may face highly volatile electricity, gas, and technology

prices. Other work on DERs has addressed this type of uncertainty directly; for example,

(Maribu and Fleten, 2008) and (Maurovich-Horvat et al., 2016) explore electricity and

gas prices while (Rocha et al., 2016) looks at energy and technology costs. While

we have configured our analysis for conditions in southern California, we publish our

parameters and assumptions (see the supplementary information to this work) to allow

ready modification for other jurisdictions. In addition to our focus on the business case for

investment, we give attention to important policy-relevant outcomes from that investment,

such as emissions of CO2 from small gas generators that may prove very difficult to

control as policy makers aim to achieve deep decarbonization of the whole energy system.

1.2 Methodology: building a tool for assessing business
models

We provide an overview of the DER-CAM model (Distributed Energy Resources

Customer Adoption Model) in section 1.2.1 and present the formulation for our configured

version of the model in section 1.2.2, with explicit modifications noted in section 1.2.2.

The basis for our formulation is the source code for DER-CAM version 4-4.1.1, which

we term the standard model formulation. We then present end-use load profiles for three
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iconic microgrids in section 1.2.3 and policy-relevant model calibrations for present-day

market settings in section 1.2.3.

1.2.1 The DER-CAM optimization model

DER-CAM is an investment support tool for DER and microgrid systems. It

computes DER investment and operation to supply load over the first year of operation,

and with operating and maintenance (O&M) costs and standard amortization of capital

costs allows for analysis of the net present cost and benefit of microgrid configurations.

DER-CAM can be configured to minimize either an economic (total cost) or environ-

mental (CO2 emissions) objective, or a weighted combination of these two (i.e. Pareto

optimization). For our purposes, the adaptability along with extensive published record1

and open-source2 nature of the source code are attractive features of the DER-CAM

platform for academic research.

DER-CAM selects, sizes, and schedules DERs via several decision variables.

Selection is binary (technologies are either selected or not), sizing decisions are made by

individual technology and may be discrete (available in select sizes only) or continuous

(available in all sizes) depending on the technology, and scheduling is determined for

dispatchable DERs and for purchases of electricity and natural gas from the utility. The

model outputs DER capacities and operating schedules for the first year of adoption,

1Development of DER-CAM by the Lawrence Berkeley National Laboratory (LBNL) is well doc-
umented. Publications include initial development in Marnay et al. (2000); Siddiqui et al. (2003) as
well as later enhancements, including the addition of a carbon tax (Siddiqui et al., 2005), heat recovery
(Siddiqui et al., 2007), electric and thermal storage (Marnay et al., 2008), power quality and reliability
considerations (Stadler et al., 2009a), CO2 emission minimization (Stadler et al., 2009b), zero-net-energy
building constraints (Stadler et al., 2011), electric vehicles (Stadler et al., 2013), and building retrofits
(Stadler et al., 2014). Other groups have used DER-CAM to systematically analyze model parameters that
affect microgrid economics, for example tariff structures (Firestone et al., 2006), energy storage (Stadler
et al., 2013), and climate zones (Maribu et al., 2007). More recently, it has been adapted to study electric
vehicle integration in microgrids (Momber et al., 2010), ancillary service provision using electric storage
in microgrids (Beer et al., 2012), and reactive power provision (von Appen et al., 2011).

2The source code is in certain cases made available by LBNL for non-commercial collaboration after
signing a collaboration license agreement.
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Figure 1.1. The microgrid network topology shows sources of energy demand and supply,
as well as points of energy conversion, in the model. Energy balances for electricity,
cooling, and heating are given by Eq. (1.2)−(1.4). The gas load is supplied trivially so
the gas balance equation is omitted.

capital and operating costs, energy flows from source to end-use, fuel consumption,

and CO2 emissions from purchased and self-generated electric and thermal energy. See

(Siddiqui et al., 2007) for a more detailed discussion of inputs and outputs.

For the purpose of policy oriented analysis later in this work, we classify four

sets of DER technologies in DER-CAM:

1. Fossil fuel generators. Micro turbines, gas turbines, reciprocating engines, fuel

cells—all units have discrete capacity, may or may not have heat recovery, and

combust natural gas in our models.

2. Renewable generators. Solar PV.

3. Thermal energy generators. Natural gas direct-fired chillers, absorption chillers,

electric central chiller, solar thermal heating, heat pumps—all units supply heating
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or cooling loads directly.

4. Flexible technologies. Electric energy storage, heat storage, cold storage, EVs,

demand response, schedulable load (i.e., load that must be met at some time during

each 24-hour period).

Databases in DER-CAM are highly detailed and thus can be unwieldy to configure,

but they are particularly useful in studies such as reported here because they can be

adjusted to many real world conditions that are often changing quickly.

Though DER-CAM does have a simplistic demand response module, we do not

consider it. It is unclear at present how to connect the real-world demand response

characteristics of buildings to the generic building data modeled in this work. While

including demand response may shift baseline results, we focus first on the core economic

logic for microgrids considering generation and storage assets, before looking at demand-

side flexibilities (which our team is planning for future work).

1.2.2 Problem formulation

Mathematically, DER-CAM is formulated as a mixed integer linear program and

is coded in GAMS. (Siddiqui et al., 2005) and (Stadler et al., 2009a) provide a complete

mathematical formulation. Though here we provide key highlights—decision variables,

objectives, constraints, inputs and outputs, and model databases—to provide context for

our modeling and analysis, and present only those elements (loads, DERs, costs, energy

flows, emissions) present in our models, we give sufficient information to formulate the

model and run our analyses.

Following the topology in Fig. 1.1, the microgrid is interconnected to the utility

distribution system, which we call the “macro grid”. In line with common regulatory

rules for electric utilities, the DERs that comprise the microgrid are installed behind
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a single billing meter at the point of common coupling, lie within the boundaries of a

single customer, and serve only the load of that customer.3

Standard model formulation and assumptions

The modeling approach is described by Eq. (1.1)−(1.4), with nomenclature

summarized in Table 1.1, which we adapt from (Ghatikar et al., 2016) and (Stadler

et al., 2009b). The annual modeling period is defined across three time periods: month

m ∈M, day-type t ∈ T and hour h ∈ H, where a chosen number Nm,t of two day-types

(week-days and weekend-days) define each month. Load, supply, costs, etc. are defined

or determined over these time periods. Tariff periods p ∈ P and demand types d ∈ D are

further defined across M, T , and H.

We configure DER-CAM to select, size, and schedule DERs to minimize the year-

one total cost of microgrid adoption. Selection and sizing is made for three technology

sets—gas generators i ∈ I, direct-fired gas chillers k ∈ K, and DERs q ∈ Q, in addition

to switchgear.4 DERs in I and K are discrete (i.e. they have a set nameplate capacity

that must be purchased), whereas those in Q are continuous (i.e. any capacity may

be purchased). To enable islanding, switchgear is always selected (with Binarys and

PurchCaps). Scheduling is determined by month m and hour h for electricity provision

πe,m,t,h, cooling provision ξc,m,t,h, and heating provision χg,m,t,h, where e ∈ E, c ∈C, and

g ∈ G are the sources of electricity, cooling, and heating provision, respectively.

DER-CAM computes the year-one total cost c, Eq. (1.1). The total cost includes

3While some regulators envision futures in which unrelated customers are interconnected, we focus
here on single customers because regulatory rules that constrain adoption to this framework are common
to many jurisdictions (Research and Authority, 2014), and in some settings the constraints on microgrids
are even more severe—for example, through public franchise laws that make it illegal for a developer to
lay wires that cross public roadways.

4Note that the technology sets I, K, and Q do not align with the four technology sets in section
1.2.1. The distinction between I, K, and Q is a mathematical one—discrete and continuous variables are
fundamentally different in the optimization formulation—while the distinction made previously is done to
facilitate discussion of policy implications.
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the full year-one operating cost, which includes electricity and natural gas purchases,

DER fuel and maintenance, and the cost of emissions, as well as the year-one annualized

capital cost for investment. Energy flows are subject to common constraints such as

supply-demand balance in Eq. (1.2)−(1.4), which we show here because they depend on

technology selection in our models, as well as energy storage balance, energy conversion

efficiencies, and heat recovery, which we do not show because they are unmodified from

the standard model formulation.

Table 1.1. Nomenclature.

Parameter Description

Sets and indices

m Month, M = {1,2, ...,12}

t Day-type, T = {week, weekend}

h Hour, H = {1,2, ...,24}

p Tariff period P = {on-peak, mid-peak, off-peak}

d Tariff demand type, D = {non-coincident, on-peak, mid-peak, off-peak}

u End-use load, U = {electricity ‘el’, cooling ‘cl’, space heating ‘sh’, water

heating ‘wh’, natural gas ‘ng’}

s Index for switchgear

i Generator, I = {ICE, MT, ICE-HX, MT-HX}a

k Direct-fired chiller, K = {DFChiller-HX}

q Continuous DER, Q = {solar PV ‘pv’, electric storage ‘es’, absorption

chiller ‘ac’, cold storage ‘cs’}b

v All microgrid technologies, V = {I,K,Q,switchgear}

e Source of electricity, E = {I, ‘pv’, ‘es’, distribution system ‘ds’}

c Source of cooling, C = {K, absorption chiller ‘ac’, electric chiller ‘ec’, cold

storage ‘cs’}

g Source of heat, G = {I,direct fuel ‘di’}

Customer load

Nm,t Number of days of day-type t in month m
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Table 1.1. Nomenclature, continued

Parameter Description

Lu,m,t,h Load profile for end-use load u, month m, day-type t and hour h, kW

Tariff parameters

ElecFee Fee for electric service, $/mo

VChgm,p Volumetric charge for month m and tariff period p, $/kWh

DChgm,d Demand charge for month m and demand type d, $/kW

SChg DER standby charge, $/kW/mo

NGFee Fee for natural gas service, $/mo

NGPricem Natural gas price in month m, $/kWh

DER data

Rv Nameplate capacity of technology v, kW

C f capv Fixed capital cost of technology v, $

Cvcapv Variable capital cost for technology v, $/kW or $/kWh

C f omv Fixed O&M cost for technology v, $/kW/yr for I, K and $/kW/mo, or

$/kWh/mo for Q

Cvomv Variable O&M cost for technology v, $/kWh

Av Annuity factor for technology v

CO2 parameters

EF Natural gas CO2 emission factor, tCO2/kWh

CTax Tax on CO2 emissions, $/tCO2

Selection and sizing decision variables

PurchNumi, PurchNumk Number of purchased gas generators i, direct-fired chillers k

Binaryq, Binarys Binary decision variable to invest in DER q, switchgear

PurchCapq, PurchCaps Capacity of installed DER q, switchgear, kW

Scheduling decision variables

πe,m,t,h Electricity provision from source e, kW

ξc,m,t,h Cooling provision from source c, kW

χg,m,t,h Heating provision from source g, kW

Secondary variablesc
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Table 1.1. Nomenclature, continued

Parameter Description

πe,m,t,h Electricity supplied by solar PV, kW

π’ec’,m,t,h Electricity input to the central electric chiller, kW

χ’ac’,m,t,h Heat consumed by the absorption chiller, kW

γm,t,h Total natural gas purchased, kW

γi,m,t,h, γk,m,t,h Natural gas purchased for gas generator i, direct-fired chiller k, kW

a Notation: ICE–internal combustion engine, MT–microturbine, -HX–with heat recovery.

b Q does not include the electric chiller (which consumes electricity to supply the cooling load)

because it is installed in every model run and hence does create differences between results.

c Subscript “m,t,h” denotes “in month m, day-type t, and hour h”.

min c := ctariff + cfuel + cder + ccarbon , (1.1)

subject to

L‘el’,m,t,d +π‘ec’,m,t,d = ∑
e∈E

πe,m,t,d , (1.2)

L‘cl’,m,t,d = ∑
c∈C

ξc,m,t,d , (1.3)

L‘sh’,m,t,d +L‘wh’,m,t,d +χ‘ac’,m,t,d = ∑
g∈G

χg,m,t,d ∀m, t,h. (1.4)

We decompose c into four components: tariff costs ctariff in Eq. (1.5) include a

volumetric, demand, service fee, and standby component; natural gas fuel costs cfuel in

Eq. (1.6) include a volumetric and service fee component; DER costs cder in Eq. (1.7)

include capital costs as well as fixed and variable operating and maintenance costs; and

carbon costs ccarbon in Eq. (1.8) are taxes on CO2 emissions from on-site natural gas

combustion.
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Ctariff := ∑
m∈M

∑
p∈P

∑
t∈T

∑
h∈H

π’ds’,m,t,h ·Nm,t ·VChgm,p

+ ∑
m∈M

∑
d∈D

DChgm,d · max
t∈T,h∈d

{π’ds’,m,t,h}+ ∑
m∈M

ElecFee

+ ∑
m∈M

[
∑
i∈I

PurchNumi ·Ri +PurchCap’pv’

]
·SChg , (1.5)

Cfuel := ∑
m∈M

NGFee+ ∑
m∈M

∑
t∈T

∑
h∈H

γm,t,h ·Nm,t ·NGPricem , (1.6)

Cder :=∑
i∈I

∑
m∈M

PurchNumi ·Ri ·
C f omi

12
+∑

i∈I
∑

m∈M
∑
t∈T

∑
h∈H

πi,m,t,h ·Nm,t ·Cvomi

+ ∑
k∈K

∑
m∈M

PurchNumk ·Rk ·
C f omk

12
+ ∑

k∈K
∑

m∈M
∑
t∈T

∑
h∈H

ξk,m,t,h ·Nm,t ·Cvomk

+ ∑
q∈Q

∑
m∈M

PurchCapq ·C f omq , (1.7)

Ccarbon := ∑
m∈M

∑
t∈T

∑
h∈H

(
∑
i∈I

γi,m,t,h + ∑
k∈K

γk,m,t,h

)
·Nm,t ·EF ·CTax. (1.8)

Two constraints in particular affect DER investment in our work. The first

limits the area available for solar PV installations, which we term the solar PV space

constraint. This constraint is often the factor that caps investment in solar PV. We

include it nevertheless, and for comparison quantify the effect of removing it in section

1.3. This is an important variable to consider for urban microgrids in compact areas,

such as office buildings and urban campuses and where other siting constraints (e.g.,

aesthetic considerations, shadows, or building codes) limit potential utilization of low

power density renewables options.

The second, which we term the resource adequacy constraint, concerns the supply-

demand balance of electric energy during islanded operation. This constraint requires that

the model invest in sufficient generator capacity to operate in islanded mode indefinitely

(assuming unaffected fuel supply), where “sufficient capacity” supplies at a minimum
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the maximum critical electric load, assuming one battery charge/discharge cycle per

day and an average annual solar irradiance received each day. This constraint does not

guarantee perfect adequacy, nor does it guarantee the ability to island during all hours

of the day or days of the year. Rather, it approximates the investment required to island

generally—an outcome designed to approximate the estimated microgrid configuration

with reasonable DER capacities but with full appreciation that further analysis and

modeling refinement would be needed when designing any particular system. Though

we require resource adequacy, we do not monetize improvement to reliability—such as

from reduced interruption costs.5

Our model runs are built on several notable assumptions. We explicitly neglect

other potential revenue streams by considering only the economic benefit derived from

local energy provision (i.e., avoided utility costs). We further neglect potentially important

demand-side flexibilities, such as demand response and load scheduling, which could

improve microgrid economics substantially. These limitations add conservatism to our

results that report the viability of business cases.

There are, conversely, two model features that likely overestimate the benefit of

microgrid adoption. One, the model is deterministic. All parameters (e.g., those that are

in reality stochastic such as load, solar irradiance, and DER availability) are prescribed

and known. In effect this implies that operating forecasts are perfectly accurate—an

advantage that likely lessens the need for and value of electric storage. Operation with

real forecasts—which are imperfect—would likely require more investment in storage

capacity to match results with perfect forecasts. Alternatively the same storage capacity

would likely achieve less savings through reduction in demand charges—charges paid by

5We report in the supplementary information baseline results with the resource adequacy constraint
removed. In short, for the critical asset, which has high demand for reliability, including the constraint
pushes investment toward gas generators and away from solar PV and electric storage, but does not change
the total cost. Results for the large commercial and campus microgrids are essentially affected because
they have less demand for reliability.
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most utility customers for their maximum power draw, which we explain in section 1.2.3.

Two, irradiance profiles, as is typical in planning models, are based on clear

weather days—that is, they do not include diminished and/or variable solar PV output.

The model captures seasonal variability across months but not day-to-day or hourly

variability due to clouds. The model has a 1 h timestep and thus cannot capture sub-

hourly variability either, which can be important as demand charges are based on 15

min intervals and some are calling for finer-resolution market-based tariffs. As with the

deterministic assumption, this lack of variability likely overestimates demand charge

savings or decreases the need for storage (depending on one’s perspective), and hence

the value of storage to the microgrid as well as investment cost.

We make these assumptions, which are standard in such modeling, highly trans-

parent to help aid interpretation of results and to identify areas where future work can

refine such models.

Modifications to the standard model formulation

We modify the standard model formulation in three ways to make it particularly

suited for evaluating business cases. One, we remove the carbon cost CTax associated

with electricity purchases π‘ds’,m,t,h—a $/tCO2 (metric ton carbon dioxide) measure

based on the marketplace generation CO2 emission factor. Instead, we imbed CTax

in volumetric rates VChgm,p—noting that, ceteris paribus, wholesale electricity rates

increase when the carbon cost increases. We also remove the carbon cost associated with

natural gas purchases γm,t,h and instead tax only the CO2 emitted by gas-fired DERs (the

sum of γi,m,t,h and γk,m, t,h).

Second, to enable a more robust policy analysis, we remove financial parameters

that cap the payback period for capital costs—as might exist, for example, for those with

difficulty accessing capital—which can restrict investment in capital intensive microgrids.
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Third, we neglect all revenue streams beyond those derived from local energy

provision. Other revenue could come from participation in electricity markets, utility

service agreements, improving reliability via islanding (i.e., reducing interruption costs),

and incentives (investment incentives such as tax credits, production credits such as net

energy metering and feed-in tariffs, and those with elements of both like the California

SGIP). Incentives are applicable to select settings and technologies; we neglect them to

build a more widely applicable analysis. Lastly, we neglect several modules within the

code (e.g., zero net energy constraints, building retrofits for energy efficiency, and electric

vehicles) that are not directly relevant to evaluating the business case and the particular

policy aspects of interest. Our interest in neglecting these other revenue streams is to

focus on one core business case for microgrids—beyond systems that might be built

under special conditions such as with large subsidy or other explicit policy support.

Solution algorithm

The optimization is solved using the IBM ILOG CPLEX Optimization Studio.

We vary the relative optimality gap (the gap between the best known solution and optimal

solution) depending on the iconic microgrid being modeled—from 0.01 (1%) for the

large commercial microgrid to 0.00001 (0.001%) for the campus microgrid. Model

runtimes vary depending on this criterion—baseline and greenfield sensitivity analyses

(sections 1.3.1, 1.3.4) require selection, sizing and scheduling and range from 10 minutes

to 10 hours, while simple sensitivity analyses (section 1.3.3) require only scheduling and

terminate in a few minutes. All model runs used a 3.40 GHz Intel Core i7-2600 processor

and 16 GB of installed RAM.
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1.2.3 Data

Load data for three iconic microgrids

We create data sets for three iconic microgrids—which we term the large commer-

cial, critical asset, and campus. We construct data sets to align with forecasted market

growth for the largest grid-tied microgrid segments (see section 1.1).6

In our view commercial systems supply a single building (or a small cluster of

perhaps 2-3), for example large box stores such as Walmart and Costco or office buildings.

Critical assets are those facilities with a particularly great need for reliability (a large

portion of the load is critical and must be maintained during outages) and may include

hospital complexes, community centers, critical public infrastructure, and data centers.

Lastly, campus systems may include military bases, university and government campuses,

and corporate parks. These are geographically large systems covering many buildings

(residential, commercial, and/or industrial) but within a single ownership boundary that

does not cross public rights of way.

We generate annual data sets at a 1-h timestep for five types of load—electricity

L‘el’, cooling L‘cl’, space heating L‘sh’, water heating L‘wh’, and natural gas L‘ng’—using

the US DOE data set of commercial reference buildings (Deru et al., 2011; Office of

Energy Efficiency and Renewable Energy, 2015)—a set of 1-h resolution annual profiles

for 16 building types representative of approximately 70% of all US commercial buildings,

such as offices, schools, restaurants, hotels, and a hospital, among others. Thermal loads

(L‘cl’, L‘sh’, and L‘wh’) are available for 16 climate zones. We use climate zone 3B-coast

for southern California. Fig. 1.2 shows representative daily profiles for a weekday

along with annual energy consumption; full profiles are reported in the supplementary
6(Saadeh, 2015) distinguishes between five microgrid segments: military, university, city/community,

public institution, and commercial. Each of those finer resolution categories falls into 1-2 of the three
main segments in the present study: in our view, our “large commercial” category covers the commercial
segment; “critical asset” includes city/community and public institution segments; and “campus” includes
the military and university segments.
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information. By combining the DOE data into three types of building clusters—each

served by a microgrid—we hope to promote more systematic microgrid analysis.7

Figure 1.2. (top) Load profiles presented for a February weekday are representative of
the load shape on weekdays throughout the year. (Weekend-days have a similar base load
but do not peak so significantly during the day.) (bottom) Annual energy consumption
for all end-use loads shows the disparity in size between the three. Note variable y-axis
scaling at top and constant y-axis scaling at bottom.

We model the three iconic microgrids as an office building, hospital complex

(a hospital with ancillary facilities) and university campus, and map them to the DOE

commercial reference buildings as follows: the large commercial as the medium office;

the critical asset as the sum of the hospital, quick-serve restaurant, and outpatient facility;

and the campus as the sum of the small office, medium office, two large offices, three

stand-alone retail centers, three supermarkets, four midrise apartments, two primary

schools, two secondary schools, one strip mall, and one quick- and one full-serve

restaurant.
7The Grid Integration Group at LBNL has used DER-CAM with the DOE reference building data set,

which has been available since 2011, to study varying tariff structures and climate conditions (Mendes
et al., 2013, 2014; DeForest et al., 2014). Systematic studies such as these are valuable because they
provide insight into adoption trends for specific DERs across a range of important parameters.
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Several features distinguish the three load profiles:

• Large commercial. Consists primarily of electric load, but also includes variable

demand for heating and cooling (i.e., it has a large ratio of maximum to minimum

thermal load), so CHP investments are not optimal. This class consumes the least

energy of the three.

• Critical asset. Distinct from the other microgrids, the heating and cooling loads

are relatively constant throughout the day. It has the highest electric load factor

(the ratio of average to maximum load), which, with thermal loads, favors CHP

investment. The peak critical electric load is large relative to the base electric load,

so higher capital costs for generators are needed to reliably supply peak critical

load.

• Campus. Of the three it has the largest demand and volumetric consumption, and

in particular has large thermal demand.

Important parameters for policy analysis

We provide in Table 1.2 our parameterizations relevant to policy and that most

affect investment outcomes, and leave full detail on the empirical calibration (i.e., the

larger set of model parameterizations) for the supplementary information.
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Table 1.2. Model calibrations important for policy analysis—costs of electricity, gas,
carbon, and DERs.

Parameters Value Units

Tariff Parameters

Volumetric charges $/kWh

Summer on-peak 0.12331

Summer mid-peak 0.11362

Summer off-peak 0.08287

Winter on-peak 0.11157

Winter mid-peak 0.09602

Winter off-peak 0.07460

Demand charges $/kW

Non-coincident 23.83

Summer on-peak 20.93

Winter on-peak 7.62

Standby charge 13.76 $/kW

Exogenous Parameters

Interest rate 7 %

Natural gas price 8 $/mmbtu

Carbon cost 12 $/tCO2

DER Parameters

Solar PV capital cost 2390 $/kWac

Electric storage capital cost 350 $/kWh

The business case for local energy provision rests on avoiding utility service costs.

To quantify those costs we consider the costs of interconnection to the San Diego Gas
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& Electric (SDG&E) distribution system. Applicable electric tariffs are from 2015 and

include the SDG&E commercial Schedule AL-TOU and Schedule S.8

Three other parameters (the discount rate, gas price, and carbon cost), as we will

show, are also of particular importance. We assume that the cost of capital is 7%—based

on the lower medium grade corporate bond rate—and use the same rate for discounting

calculations. The gas price varies by region and time of year, among other factors. We use

a single price of 8 $/mmbtu based on retail sales to commercial customers in California

(US Energy Information Administration, 2015). We use the California Carbon Allowance

futures carbon price of 12 $/tCO2e (metric ton carbon dioxide equivalent), which is

essentially the floor price in the carbon market (“California Carbon Dashboard”, 2015).

To explore the potential for future low-carbon microgrids based around solar PV and

electric storage we use current costs for non-residential rooftop PV systems (Kann et al.,

2016)(Kann et al., 2016) and a projected cost estimate for electric storage that aligns with

estimates of current and projected costs (Bronski et al., 2015; Christiansen et al., 2015;

Nykvist and Nilsson, 2015). This projected electric storage cost is the only calibration

based outside of the “present day.”

8Schedule AL-TOU imposes volumetric charges ($/kWh) and demand charges ($/kW) that vary by
season and tariff period—the former are based on energy consumption and the latter on monthly maximum
power draw. Schedule S codifies a standby charge, a $/kW charge on the installed generator capacity that
is designed to reflect the increased load the microgrid might draw from the utility if microgrid generators
were to fail. The charge can be substantial and has been debated (Darrow and Hampson, 2013) but, as we
will show, is not a driving parameter of optimal configurations. In addition to these two, another schedule,
Schedule E-DEPART, codifies a departing load charge—a charge on the portion of load no longer supplied
by utility service (and instead supplied via self-generation). Because it is very small (approximately
0.005-0.015 $/kWh) relative to other tariff charges, and moreover specific to the three investor-owned
utilities in California (Darrow and Hampson, 2013), we neglect it.
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1.3 Results and discussion

1.3.1 Definitions and scenarios

We term the optimal selection and sizing of DERs the optimal configuration and

year-one operation of DERs the optimal dispatch. Together they comprise the optimal

system. We model two types of customers for each iconic microgrid, as is typical with

DER-CAM—(1) a microgrid customer, who adopts a microgrid to supply load with some

combination of self-generated electric and thermal energy and/or purchased electricity

and natural gas; and (2) a macro grid customer, who supplies the same set of loads

by purchasing electricity and natural gas services from the utility. We term the cost

savings derived from microgrid adoption (i.e., the difference in total cost between the

two customers) the economic benefit (which can be negative).

We perform three sets of analyses for each iconic microgrid and customer type

(Fig. 1.3). First is a baseline analysis (section 1.3.2). Second is a simple sensitivity

analysis (section 1.3.3), in which we hold constant the optimal configuration from the

baseline analysis while varying individual parameters and then re-optimize the dispatch

of generation technologies. These analyses explore the robustness of business cases for

microgrids that might be “locked in” economically due to investment in a configuration of

technologies. They also help to identify areas where more in-depth (and computationally

difficult) sensitivity analysis would be needed. Third, for the four factors identified in the

simple sensitivity as most important we perform a greenfield sensitivity analysis (section

1.3.4), in which we vary individual parameters before re-optimizing configuration as well

as dispatch. This latter type of sensitivity analysis is most useful for unbuilt microgrid

systems that might be in the planning phase.
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Figure 1.3. We run two types of sensitivity analysis after the baseline analysis: simple
and greenfield sensitivities.

1.3.2 Baseline analysis

In the baseline optimal configurations (Table 1.3) we distinguish between invest-

ments in the four technology sets noted in section 1.2.1—conventional gas generators,

renewables, thermal energy generators, and flexible technologies. We further distin-

guish generators with CHP—which supply both power and thermal energy within the

microgrid—because they can greatly improve energy efficiency and thus can prove pivotal

to establishing the business case. Detailed investment by individual unit and technology

is provided in the supplementary information.
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Table 1.3. Optimal microgrid configurations for the baseline model runs.

Large Commercial Critical Asset Campus

Gas generators

without CHP 150 kW 750 kW 4250 kW

with CHP – 1650 kW 6250 kW

Renewable generators

Solar PV 200 kW 1240 kW 3100 kW

Thermal energy generators

Direct-fired chiller – 200 kW 200 kW

Absorption chiller – 340 kW 1420 kW

Flexible technologies

Electric storage 230 kWh 20 kWh 1479 kWh

Cold storage 220 kWh – 3340 kWh

Operationally, the DERs that comprise the microgrids supply peak and base

electric load (Fig. 1.4), and hence target reduction in both demand and volumetric

charges—the largest costs to the macro grid customer. The optimal configurations are

sized to supply peak electric load for three reasons: to facilitate islanding per the resource

adequacy constraint, to shave on-peak load (which has the highest demand charges),

and to supplant electricity and fuel purchases with less costly self-generated electricity.

Purchases do supply a small amount of base load in some configurations and months.
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Figure 1.4. The optimal dispatch for a representative weekday in winter (left) and
summer (right) for the large commercial (a, b), critical asset (c, d) and campus (e,
f) microgrids shows how the microgrid supplies electric load with a combination of
purchased and self-generated electricity. The microgrid electric load is denoted in solid
black; for reference, the electric load for utility service is shown in dashed black. The
two are different because some DERs consume electricity—see for example (a) and (b).
Electric storage is shown as energy provision when discharging (green) and added to the
load curve when charging. Dispatch for all 12 months of the year is in the supplementary
information.

The key difference across the optimal configurations for the three iconic micro-

grids is not DER capacity relative to peak load, but rather the combination of DER types
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(gas generators, gas generators with CHP, solar PV, and electric storage) that comprise

the configuration. Those combinations we observe—and especially the variation in them

when compared across sensitivity in policy variables—has the biggest implications for

policy, as we will discuss in sections 1.3.4 and 1.4.

While the details of each optimal system are complex, the broad patterns are as

follows:

• Large commercial. Gas generators supply base load and solar PV supplies peak

load. Electric storage complements solar PV by supplying peak load when solar

output is unavailable, as observed during winter evenings. Cold storage (i.e. chilled

water) is produced during off-peak hours. The thermal demand is relatively small

so the model foregoes CHP.

• Critical asset. Gas generators supply base load, two-thirds of which have CHP

to meet the relatively large thermal load. An absorption chiller further supplies

cooling. Solar PV supplies peak load and electric storage supplies an indistin-

guishable amount of shoulder load (i.e., load between the on- and off-peak periods,

1600-1700 LST in winter).

• Campus. Gas generators supply the base load, 60% of which have CHP to meet

thermal demand. An absorption chiller further supplies cooling and cold storage is

produced during off-peak hours. Solar PV supplies peak load and electric storage

again complements when solar output is small or unavailable.

The primary driver of these investment trends is the potential to utilize natural

gas to supply electricity and thermal loads at high efficiency and low cost. The models

largely supplant electricity purchases with self-generated electricity, using gas generators

to supply a huge fraction of the base load. The model is driven to this result because
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gas prices are low, the microgrid CO2 emission factor is comparable to that of the

wholesale marketplace, and California retail electricity rates are relatively expensive.

Further, the critical asset and campus integrate electric and thermal loads via CHP,

thereby increasing consumption efficiencies and obviating much of the electricity and

fuel purchases otherwise needed for direct heating and cooling.

All configurations include solar PV—driven in part by the coincidence of peak

load and peak solar irradiance, as well as the assumption of clear weather days. The

critical asset and campus invest in a maximum capacity of solar PV—that is, the solar PV

space constraint caps investment.9 The large commercial uses 33% of available space.

Such large installations are cost effective because of the large daily load peak and the

coincidence of peak load with peak solar.

The macro grid and microgrid customers are subject to competing costs (Fig.

1.5) per Eq. (1.1)−(1.8). The former pays only for utility electric and gas service per

applicable tariffs (“tariff costs” and “fuel costs”), while the latter pays the same tariff

charges in addition to “DER costs” and “carbon taxes”. The total cost is the sum of these

four per Eq. (1.1). We find that, for the baseline case, microgrid adoption reduces the

total cost relative to the macro grid customer—that is, the economic benefit is positive.

1.3.3 Simple sensitivity analysis

Now we turn to sensitivity analysis. In this section we vary all 13 of the significant

parameters in the model within ranges detailed in Table 1.4. For this “simple sensitivity”

we leave the configuration of installed DERs on each iconic microgrid unchanged from

the baseline. In the next section we look at a subset of the most important factors and

offer full blown re-optimizations around those variables to show the deeper implications

9When unconstrained by available space, the critical asset and campus see investment of an additional
40% (1,750 kW constrained, 1,250 kW baseline) and 177% (8,600 kW unconstrained, 3,100 kW baseline)
respectively. These results are detailed in the supplementary information.
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Figure 1.5. The disaggregation of the year-one total cost shows how microgrid adoption
shifts the source of cost from tariff-based to DER- and fuel-based. In doing so adoption
reduces the total cost—by 14, 17, and 21% for the large commercial, critical asset, and
campus, respectively. Costs are normalized to the macro grid customer’s total cost.

for investment decision-making.

The 13 sensitivities span the major clusters of factors that vary in ways that

affect the viability of microgrid investment: technological advance, which generally

lowers costs; utility tariff costs, which generally rise and vary widely with geography and

regulation; carbon costs, which vary jurisdictionally; and financing and fuel costs, which

reflect market conditions. We also vary the magnitude of electric and thermal loads to

reflect the uncertainties omnipresent in energy service that affect load—factors such as

climate zone, energy efficiency measures, and load growth.

Table 1.4. Variation of 13 parameters in the simple sensitivity analysis.

Parameter

Varied

-/+ variation

(nominal,

range)

Justification Reference

Interest rate -/+25% (7,

5.25−8.75%)

Reflects a typical discount rate for lower medium

grade (BBB- to BBB+) corporate bonds at the time

of this work; the sensitivity range further covers

high-yield and upper medium grade bonds.
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Table 1.4. Variation of 13 parameters in the simple sensitivity analysis, continued

Parameter

Varied

-/+ variation

(nominal,

range)

Justification Reference

Carbon cost -100/+1000%

(12, 0−132

$/tCO2)

Captures the 95th-percentile cost for the out-year

2020 (129 $/tCO2). At the time of this work the

price of California Carbon Allowance futures is

trading at 12−13 $/tCO2e.

(Interagency

Working Group

on Social Cost

of Carbon,

2013)

Natural gas

price

-50/+100% (8,

4−16 $/mmbtu)

Captures the full range of AEO2015 projected

Henry Hub spot pricesa while further allowing for

a range of retail prices which vary according to

local natural gas infrastructure spending.

(Conti et al.,

2015)

Volumetric

charge

-45/+15% (mul-

tiple, varies)

Captures the wide range of US average retail elec-

tricity rates for commercial customers.b

Conti et al.,

2015)

Demand

charge

-45/+15% (mul-

tiple, varies)

For simplicity, we vary the demand charge -

45/+15% to align with the variation in volumetric

charge.

Standby

charge

-45/+15%

(13.76,

7.57−15.82

$/kW)

As noted for the demand charge.

Gas gener-

ator capital

cost

-20/+10%

(varies, see SI)

Captures cost projections for 2010−2030 for small

(<1 MW) generators while allowing for emis-

sions treatment equipment costs for compliance

with potential future stringent emissions regula-

tions. Though both capital and emissions treat-

ment equipment costs vary by generator type and

capacity, for generality we apply the sensitivity

range across all generator types.

(Hedman et al.,

2012)
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Table 1.4. Variation of 13 parameters in the simple sensitivity analysis, continued

Parameter

Varied

-/+ variation

(nominal,

range)

Justification Reference

Gas gener-

ator O&M

cost

-20/+10%

(varies, see SI)

As noted for the gas generator capital cost.

Electric stor-

age capital

cost

-50/+300%

(350,

175−1050

$/kWh)

Captures existing and projected costs over the next

5-10 years.d

(Shah and

Booream-

Phelps, 2015)

Thermal

storage

capital cost

-/+20% (50,

40−60 $/kWh)

Considers potential technology advances or un-

foreseen policy changes affecting thermal storage.

Solar PV

capital cost

-/+50% (2390,

1195-3585

$/kW)

The sensitivity decrease nears the DOE SunShot

Initiative goal of 1 $/W installed cost; the increase

nears the cost of smaller rooftop solar PV sys-

tems (5−10 kW, 3,740 $/kW). The nominal cost

assumes large ( 200 kW) rooftop installations

(Kann et al.,

2016)

Electric load -/+20% (varies) Captures potential load growth and energy effi-

ciency measures implemented over the microgrid

lifetime. Growth assumes a 1% annual rate (per

EIA forecasts) and loss a -1% growth rate.

Thermal

loads

-/+50% (varies) Captures deviations from the nominal climate zone

3B-coast.e

a Annual Energy Outlook 2015 (AEO2015) forecasts for 2030 range from 4 $/mmbtu in the “High

Oil and Gas Resource” scenario to 8 $/mmbtu in the “High Oil Price” scenario.
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Table 1.4. Variation of 13 parameters in the simple sensitivity analysis, continued

Parameter

Varied

-/+ variation

(nominal,

range)

Justification Reference

b Captures the 5th- and 95th-percentile for the average retail electricity rate for commercial customers

across all 50 states and the District of Columbia over the period 2013-2033, assuming the 2013

average retail price for commercial customers in California as the baseline and an annual increase

of 0.6% per AEO2015 Reference case scenario. We project the price to 2033 to capture variation

over the 20-year plausible lifetime of the microgrid. See the supplementary information for detailed

treatment.

c The EIA frequently publishes data on monthly average retail electricity prices (through the AEO)

based on collected utility revenues and sales—a metric that amalgamates all utility charges—but does

not report demand charges or standby charges singly. Surveying the range of demand and standby

changes across utilities to generate a sensitivity range is not straightforward because those charges

are closely tied to volumetric charges in the ratemaking process, and, further, it is unclear how to

normalize utility charges against the volumetric charge.

d Today’s hardware cost for battery storage ranges widely across manufacturers (and chemistries)—

from 350 to >2000 $/kWh (lead-acid may be as low as 200 $/kWh while lithium-ion may be 500

$/kWh) but are forecasted to fall sharply over the next 5−10 years. For reference, as of 2015 Tesla

Motors sells its Powerwall stationary battery storage product for 350 $/kWh (the offering excludes

inverter and soft costs).

e The climate of coastal southern California is moderate and requires relatively little building heating

and cooling. Climate zones in the US range from 1A (hot and humid, e.g. Miami, Florida) to 8 (cold,

e.g. Fairbanks, Alaska).

Fig. 1.6 shows results for the simple sensitivity analysis. While results are

nuanced, several trends are common across the three microgrids:

• In general, sensitivity is greatest to four factors: gas price, carbon cost, DER costs,

and tariff costs.
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Figure 1.6. Change in total cost due to variation in the 13 simple sensitivities. The
red dashed line denotes the “parity point”—the cost increase that reaches the total cost
to the macro grid customer. For some market parameters (gas price, carbon cost) the
parity point shifts because variation affects electricity rates for the macro grid customer,
though such shifts are not noted. The models do not converge in two instances (marked
in purple); in these cases the magnitude of electric and thermal load for the critical asset
do not meet the resource adequacy constraint because the fixed configuration does not
have sufficient capacity to supply the increase in critical load.

• Sensitivities to volumetric and demand charges are small because the microgrids

primarily self-generate electricity. Put differently, once a customer invests in a

microgrid, the optimal configuration reduces the cost of grid service (demand

charges, volumetric charges) massively.

• Sensitivities to the carbon cost and gas price are high and exceed those to DER

costs. In other words, opex can impact the total cost to a greater degree than capex

(cf. the relative magnitude of DER and fuel costs in Fig. 1.5).

• The sensitivity to the electric load is large. The systems have reserve generation

(gas generators are sized to meet the peak critical load and do not run at 100%

output during non-peak hours). Hence the systems can supply the majority of load

growth without additional capex, thereby increasing the economic benefit.

Regarding the last bullet, the means to supply load growth is highly dependent
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on the volumetric charge and gas price—if volumetric charges are sufficiently low

and/or gas prices high, the models instead revert to purchasing electricity. Note that

variation (positive vs. negative) is reversed in Fig. 1.6 for the electrical and thermal load

sensitivities—once investment is fixed, less load decreases the economic benefit.

The range of cost deviations shows that the business case for all microgrids

is very robust—that is, only extraordinarily high values for the carbon cost and gas

price (approaching 100-120 $/tCO2 and 12-16 $/mmbtu) make microgrid adoption

uneconomical. Yet high carbon taxes and gas prices would likely increase retail electricity

rates commensurately and move the parity point to the right.

1.3.4 Strategically important variables: markets, technology,
policy

Four variables have a large strategic effect on the business case for microgrid

adoption: natural gas price, electric tariff charges, carbon cost, and electric storage

cost. Gas prices are inherently variable and important because of the dominance of gas

generators in the baseline optimal configurations. Carbon costs are expected to increase,

while storage costs are declining rapidly. Tariff charges ultimately make it economical (or

not) to invest in technologies that peak shave and/or supply base load in place of utility

service; it other words, investment decisions must balance avoided costs from volumetric

and demand charges while considering standby charges and fuel costs. Moreover, tariff

charges and structures vary widely by utility and region. Each is a policy variable and

possible pathway for policy intervention. Gas and carbon prices may push investment

toward gas or renewable generators, while the magnitude of tariff charges may impose a

“barrier to entry” if too low, and high storage costs may impose an analogous barrier for

low-carbon configurations.

Electric storage in particular is widely seen as an important tool for integrating
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renewables and facilitating deployment of low-carbon microgrids. Storage costs are

decreasing rapidly, though the point at which deployment becomes cost-effective varies

and is an open question, which others have investigated (Nottrott et al., 2013).

In what follows we run greenfield analyses for varying gas price, tariff charges,

carbon cost, and electric storage cost (with justification for parameter variation as in

section 1.3.3). For each variable, we re-determine the optimal system. We compare the

total cost for the two customer types and distinguish electricity provision by resource.

We present emission totals for the microgrid customer, which includes direct emissions

from on-site generation as well as indirect emissions—the result of purchased electricity

derived from generators in the wholesale market.

Natural gas price

We vary the gas price from 4−16 $/mmbtu (Fig. 1.7). Here we perform a “sce-

nario analysis”—so-called because we vary multiple parameters to capture feedback.10

The total cost for both microgrid and macro grid service increases with gas price because

both customer types must purchase gas to meet the gas load Ln,g. Across the full range of

prices microgrids incur a smaller total cost when compared with utility service—with

the largest differences occurring when prices are low (here the microgrids have the most

flexibility to reduce costs).

Low prices drive investment in gas generators; as prices increase those are

replaced with renewable sources as well as purchased electricity—a transition that

decreases the economic benefit. Beyond 9 $/mmbtu the large commercial system adopts

a low-carbon configuration, and thereby maintains a positive (and increasing) economic

benefit (i.e., it insulates itself from further gas price increases). The critical asset and

10We increase the volumetric charge with the gas price to account for a corresponding increase in natural
gas-generated wholesale electricity. Marginal generators are typically gas-fired in the California wholesale
market. We increase only the generation portion of the volumetric rate and scale the increase by the fraction
of wholesale electricity generated from natural gas plants in California (45% at the time of this work).
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campus systems, on the other hand, see a persistently diminishing economic benefit as

prices increase—they do not transition to low-carbon configurations, but rather revert to

purchasing electricity. Higher gas prices make it harder for these microgrids to utilize

one of the chief advantages of local production: the on-site use and storage of thermal

energy via CHP.

Across all three optimal systems there is a sharp transition in the source of

electricity provision from gas-fired self-generation to purchased electricity. The transition

points—at 7−9, 11−13, and 9−11 $/mmbtu for the large commercial, critical asset, and

campus systems—have significant implications for the optimal configuration, business

case, and policy decision-making if low-carbon systems are preferred. More research is

needed to investigate whether these knife-edge transitions—particularly prominent in

the smaller microgrids—reflect real-world conditions or are a standard discontinuity that

often arises with optimization models.

Electric tariff charges

Volumetric rates are varied fractionally from 0.4−1.4 in increments of 0.1 (Fig.

1.8), where unity is the rate in the baseline analysis. Rather than varying each element of

the tariff separately, which would yield a highly complex sensitivity analysis, we vary the

whole cluster of related volumetric charges so that potential investors and policy makers

can understand better the fundamental impact of such charges on microgrid configuration

and viability.

We find that volumetric rates greatly affect the total cost and optimal configuration.

As with the gas price, sharp transition points exist in which gas-based self-generation

and purchased electricity are substituted. When rates are low (<0.5), the microgrid total

cost exceeds that to the macro grid customer; that is, the economic benefit is negative.

Microgrids realize an economic benefit beginning with rates >0.5 that increases
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Figure 1.7. (a)−(c) The total cost and total CO2 emissions are normalized by the total
cost to and total emissions of the macro grid customer, respectively, for the nominal gas
price (8 $/mmbtu; bolded); and (d)−(f) the fraction of electricity supplied by microgrid
resource across variation in gas price. Each bar shows results from a single model run.
The uncolored portion above a bar represents purchased electricity. A dot in the solar PV
bar denotes that the solar PV space constraint has capped installations.

with rising rates. We observe scenarios with near 100% self-generation. Notably, these

occur under present-day electricity rates in southern California. Purchasing electricity is

the dominant mode of supply for rates near 0.6−0.9 (depending on the microgrid).

Optimal configurations fit broadly within two domains—low-carbon and gas-

based configurations—separated by a transition point. The large commercial system is

low-carbon for rates <0.9 and gas-based for rates ≥0.9, with gas dominant with increas-

ing rates. Similar transitions occur for the critical asset and campus microgrids—for

rates 0.6−0.8 and 0.7−0.9 respectively. For these two systems, however, gas generators

remain the dominant microgrid resource over the range of rates. They are the bedrock of

investment and business case for larger systems.

Demand charges are varied fractionally from 0.4−1.4 in increments of 0.1 (Fig.

1.9). As before, unity is the nominal demand charge in the baseline analysis. All demand
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Figure 1.8. (a)−(c) The total cost and total CO2 emissions are normalized by the total
cost to and total emissions of the macro grid customer, respectively, for the nominal
volumetric charge (unity; bolded); and (d)−(f) the fraction of electricity supplied by
microgrid resource across variation in volumetric charges. Each bar shows results from a
single model run. The uncolored portion above a bar represents purchased electricity. A
dot in the solar PV bar denotes that the solar PV space constraint has capped installations.

charges are varied concurrently. We observe that peak shaving is key to the business

case over the wide range of demand charges. For charges <0.6, the economic benefit is

negative, while for charges >0.6 the total cost increases slightly and soon plateaus. Here

the microgrids self-generate nearly 100% of electric load, and hence mitigate the demand

charge to zero (or close to zero).

For present day charges (unity), it is economical to peak shave and, further, to

self-generate nearly all electric load. The critical asset invests in gas generators to supply

its large fraction of critical load in the event of outages independent of the demand charge,

and hence sees a business case for peak shaving for demand charges 0.4−1.4. The large

commercial and campus have a smaller fraction of critical load—they revert to purchasing

electricity when demand charges are small. For these two microgrids, we observe a
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sharp transition (0.8−1.0 and 0.7−0.9 respectively) separating two modes of electricity

provision—purchased electricity when demand charges are small and gas generation

when large. Present-day demand charges thus lie near this inflection point that separates

two distinct investment cases—one based on renewables and partial self-generation, and

another on gas generators and near 100% self-generation.

Figure 1.9. (a)−(c) The total cost and total CO2 emissions are normalized by the total
cost to and total emissions of the macro grid customer, respectively, for the nominal de-
mand charge (unity; bolded); and (d)−(f) the fraction of electricity supplied by microgrid
resource across variation in demand charges. Each bar shows results from a single model
run. The uncolored portion above a bar represents purchased electricity. A dot in the
solar PV bar denotes that the solar PV space constraint has capped installations.

Carbon cost

We vary the carbon cost from 0 to 132 $/tCO2 (Fig. 1.10) and, as with the gas

price, run a scenario analysis.11 We find that increasing carbon cost can shift investment

11We increase the volumetric charge with the carbon cost to account for a corresponding increase in
generation costs from fossil fuel power plants and subsequently the clearing price in the CAISO wholesale
market and retail rates. We use AEO 2014 projections and compare the percent difference in economy-wide
electricity generation costs between the “Reference case” and “Greenhouse gas $10” scenarios. We apply
that difference as a percent increase to the generation portion of the volumetric charge (taken to be 7/16 in
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from gas generators to renewables and that the onset of that shift arises at lower carbon

costs for smaller microgrids (i.e. the large commercial). This is because such transitions

are constrained by available space for PV in the two larger microgrids. These two, as

well, make efficient use of gas with CHP—an efficiency advantage that is not offset until

higher carbon prices.

The large commercial system supplies nearly 80% of electric load with gas

generators at a carbon cost of 0 $/tCO2 and only 15% at 30 $/tCO2. For costs >36

$/tCO2, a low-carbon configuration with electricity purchases replaces gas generators.

The critical asset and campus systems also divest in gas generators with rising carbon

cost; however, they purchase additional electricity rather than transition to a low-carbon

configuration. This is due in part to the solar PV space constraint.12 This result suggests

that for such configurations, decarbonizing the electricity system may best be achieved

with centralized grids.

Electric storage cost

We use as the nominal turnkey electric storage cost a forecasted estimate (350

$/kWh) that aligns with estimates of current and projected costs over the next 5−10 years,

and vary the electric storage cost 0−1150 $/kWh (Fig. 1.11) in increments of 50 $/kWh.

The large commercial system adopts additional storage as costs fall. Two transi-

tions are salient. The first occurs when storage is first adopted, at 350 $/kWh, and the

second when the microgrid reaches a low-carbon configuration, at 200 $/kWh. With

these transitions the microgrid also purchases additional electricity, eventually supplying

over 30% of load. At costs <100 $/kWh, further storage does not provide a benefit (i.e.,

SDG&E’s service territory).
12We run the same greenfield analysis without the space constraint. Results show that high carbon costs

do cause a shift in investment—from gas generators to solar PV and electric storage—in the larger two
microgrids. Consequently, it seems a lack of space in which to install an optimal low-carbon configuration
may inhibit efforts to decarbonize the grid through single-owner, single-property microgrids.
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Figure 1.10. (a)−(c) The total cost and total CO2 emissions are normalized by the total
cost to and total emissions of the macro grid customer, respectively, for the nominal
carbon cost (12 $/tCO2; bolded); and (d)−(f) the fraction of electricity supplied by
microgrid resource across variation in the carbon cost. Each bar shows results from a
single model run. The uncolored portion above a bar represents purchased electricity. A
dot in the solar PV bar denotes that the solar PV space constraint has capped installations.

energy shifting is not needed) because the microgrid has already plateaued demand and

achieved perfect on-peak/off-peak energy arbitrage.

The critical asset and campus also purchase additional storage as costs fall, but

never adopt low-carbon configurations. Gas generators remain the dominant resource

throughout. Even at 0 $/kWh, storage is used only to facilitate peak shaving, as observed

in the baseline results. The solar PV space constraint caps installations, thereby restricting

potential low-carbon transitions, in which storage might store significant excess solar PV

generation for discharging at night.
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Figure 1.11. (a)−(c) The total cost and total CO2 emissions are normalized by the total
cost to and total emissions of the macro grid customer, respectively, for the nominal
electric storage cost (350 $/kWh; bolded); and (d)−(f) the fraction of electricity supplied
by microgrid resource across variation in the electric storage cost. Each bar shows
results from a single model run. The uncolored portion above a bar represents purchased
electricity. A dot in the solar PV bar denotes that the solar PV space constraint has
capped installations.

1.4 Conclusion and policy implications

Under the right conditions, the supply of electric and thermal services from a

microgrid can be cost-effective when compared with complete reliance upon macro grid

utility service. Some of those conditions reflect changes in technology and market condi-

tions; some are rooted in policy choices; and many reflect the interplay of technology,

policy and markets.

We have focused here on the business case for investing in microgrids by fo-

cusing on the total cost of energy service for three different types of likely microgrid

customers. Under prevailing conditions in southern California we find that the case for

cost-effective shifts from pure utility service to microgrids is robust, and especially so
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for large customers who can utilize the intrinsic advantage that local production offers in

managing electric and thermal loads in tandem. Centrally, the case for microgrids is a

case for natural gas fired locally that also generates significant thermal energy. Though

smaller microgrids by contrast rely relatively less on gas and more on renewables, across

all microgrids gas generators supply the majority of on-site electric and thermal energy.

While the work presented here looks only at the economics for energy provision, future

work—including that planned by our team—can enhance this analysis by adding value

streams derived from increasing reliability and resiliency. We are interested, as well, in

exploring these new value streams in different climate and regulatory environments, as

was done in Maribu et al. (2007).

Through analyses of uncertainty we find that business cases are robust across

a wide variation in parameters—costs of critical technologies, tariff rates, natural gas

prices, and the price charged for carbon emissions—over which policy makers have some

influence. Of particular importance for large microgrid systems is the price of natural gas,

which regulators can influence only indirectly. Renewables and utility service are more

attractive in a world with high gas prices, but gas remains an important player for larger

systems even at 16 $/mmbtu. Preference for gas generators holds when carbon prices

are independently high. In worlds where utility service costs are high and where DER

technologies improve rapidly—plausibly, a world that California and other jurisdictions

are now entering—the case for microgrids of all sizes is even more robust. This finding

aligns with results in Firestone et al. (2006), who similarly looked at the effect of tariff

charge sensitivities on DER adoption.

For policy makers, there are at least two major implications of this work. The

first concerns how policy makers might guide a nascent microgrid landscape by scaling

up deployment. It is one thing for a scattered number of customers to switch to grid-tied

microgrids for self-supply, but another for grid operations to be structured on a new
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topography of widespread distributed microgrids. Though more investigation is needed

to explore how adoption may become widespread, our results indicate that microgrid

deployment will likely resemble the former if left alone. Policy makers interested in

the latter have the opportunity to shape deployment to align with larger social goals like

reducing greenhouse gas emissions.

To this end policy makers have control over several important parameters—in

particular, interconnection tariffs (which respond to regulatory decisions) and the cost of

carbon (which is a policy choice). Policy makers also have the capacity to alter the cost

of DER technologies—either directly with subsidies or indirectly through procurement

mandates. We have been able to model some of these but the work presented here

suggests the need for modelers to develop more sophisticated methods that capture both

the full set of policy options available as well as of value streams policy makers might

invoke to shape widespread deployment—for example as is happening in the northeast

US states with resiliency-based systems. In jurisdictions such as California and New

York that are actively pushing adoption of DERs it is that full set of policy options that

will determine how markets could be developed.

The second implication for policy is perhaps more profound. Because the case

for gas-based microgrids is so robust, policy makers may find that adoption of DER-

friendly policy reforms leads to even more ubiquitous adoption of gas-based microgrids.

Emissions from those systems are smaller when compared with some grids (those

dominated by coal and gas generators) but they are not zero, and in many jurisdictions

policy makers are setting goals for cutting emissions that probably require zero or negative

emissions from electric power. California, for example, has a goal of 80% cuts in CO2

emissions below 1990 levels by 2050. Assuming some emissions will continue to be

needed from transportation, that economy-wide goal implies zero for the rest of the

energy system. Policy makers who push DER and microgrids without simultaneously
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adopting a carbon price (or regulatory substitute) may unwittingly encourage the creation

of a long-lived microgrid infrastructure that is incompatible with zero carbon.

The text and data in Chapter 1, in full, is a reprint of the material as it appears

in “Evaluating business models for microgrids: Interactions of technology and policy”,

Hanna, Ryan; Ghonima, Mohamed, Kleissl, Jan, Tynan, George, David G., Victor, Energy

Policy, 103 (2017), 47-61. The dissertation author is the primary investigator and author

of this article. The supplementary information referred to in the text is available online at

doi:10.1016/j.enpol.2017.01.010.



Chapter 2

Reliability Evaluation for Microgrids
Using Cross-Entropy Monte Carlo Sim-
ulation

2.1 Introduction

Over the past half decade there has been growing interest in microgrids—notably,

in the wake of superstorms, among grid operators and regulatory agencies seeking public

grid resiliency benefits. With an expanding number of successful projects (Wilson, 2017),

there is interest too among private entities (i.e., utility customers) seeking, conversely,

private benefits from better reliability (Asmus, 2016).

Microgrids are aggregations of electric load and distributed energy resources

(DERs) that can disconnect, or “island”, from the bulk grid and provide autonomous (and

potentially seamless) backup power to customers within.1 They can increase electric

service reliability beyond that provided by the local utility. When they do, customers

generate value by avoiding economic losses from grid outages that they would otherwise

incur as passive customers.

Analyzing reliability, as well as the economics underlying investment, requires

1Definition from the U.S. Department of Energy Microgrid Exchange Group. The definition we adopt
is rigorous and worth noting since microgrids are often loosely defined.

51
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reliability evaluation methods applied specifically to the case of microgrids. Sequential

MCS and the cross-entropy method provide a basis. Sequential simulation (cf. analytical

methods and non-sequential simulation) is widely used in studies of power system

reliability (Billinton and Li, 1994) and is considered state-of-the-art because it models

time dependencies in power systems and produces the broadest set of results among

methods (Billinton and Allan, 1996). Simulation works by mimicking the probabilistic

behavior of load, generators, climate-dependent resources, and other components of

interest in the system—capturing, e.g., fluctuating load or solar PV power as well

as component failures and repairs. State changes may be prescribed (such as with

time series load or solar PV power) or random (such as with unit failures and repairs).

The simulation repeats iterations—each with a different probabilistic outcome—until it

achieves statistical convergence.

MCS has been applied in particular to small isolated power systems (Billinton and

Karki, 2001; Karki and Billinton, 2001; Billinton and Bagen, 2006). These small systems

resemble microgrids because of their size and resource mix—typically they use fossil

fuel-fired generators, solar PV, and energy storage—but differ in their interconnection.

Isolated systems are themselves bulk grids, whereas microgrids are embedded within

a grid that is in many cases already highly reliable. That has huge implications for

simulation methods, which can face convergence issues when running very reliable

system configurations (defined as systems with loss of load probability (LOLP) < 10−5).

Most recently, “CE-MCS” methods, which combine the cross-entropy method

with MCS, have been developed and shown to greatly reduce computation times (da Silva

et al., 2010; Gonzalez-Fernandez and da Silva, 2011). Cross-entropy works by distorting

the unit failure rates such that failures (and hence loss of load events and convergence)

occur with fewer iterations. These methods have been demonstrated successfully on large

grids (e.g., tens of GW capacity) with resources including conventional generators, solar
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PV, wind, and hydro power. They have not been applied to microgrids, however, and

importantly have lacked a resource key to microgrids—energy storage. Storage requires

unique treatment from a modeling standpoint because it is dispatchable and has a time

history.

Methods therefore exist which can be tuned to analyze microgrid reliability. This

work is the fist to formulate them specifically for the case of microgrids. Herein, we

present a new method that combines the CE-MCS (with its fast convergence properties)

with the modeling framework used for analysis of small power systems. Specifically, it

extends the CE-MCS method in Gonzalez-Fernandez and da Silva (2011) by applying

it to the case of microgrids (itself a topic treated rarely in power system reliability

literature), by including a new energy resource (battery energy storage) that can dispatch

and charge during bulk grid outages, and by including flexibility (i.e., the ability to

change unit output), in addition to capacity, as a requirement in the reliability evaluation.

In the context of microgrid reliability evaluation, considering flexibility is essential (as

we will show). The new algorithm calculates the indices most relevant to analyzing

economics—LOLP, loss of load frequency (LOLF), and what we call the loss of load

cost (LOLC)—the economic loss incurred from microgrid outages, or interruptions.

2.2 Model and algorithm

The simulation algorithm has a period T = 8760 h with interval timestep ∆ = 1

h. T is represented by vectors of length s, where s = T/∆ = 8760. We denote s-

dimensional vectors of real numbers by Rs and use Rs
{N } to denote vectors with all

elements 1, ...,s ∈N .
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2.2.1 A model for grid-connected microgrids

We consider grid-connected microgrids at the distribution level, with all load and

DERs at a single bus on the load side of the distribution transformer (Fig. 2.1a). The

microgrid does not impact the reliability of loads outside it. Viewed from the point of

common coupling (PCC), the distribution system appears to the microgrid as a single

generator with sufficiently large capacity to supply peak load at all time.

Figure 2.1. (a) Distribution system and microgrid topology and (b) modeled microgrid
system topology. Adapted from (Wang et al., 2013).

Following Wang et al. (2013), the distribution system is modeled at the microgrid

bus as an “equivalent” generator (Fig. 2.1b) with capacity Pds � maxk{lk}, where

“ds” denotes distribution system and lk ∈ Rs
{≥0} is the microgrid load time series. The
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equivalent generator has failure rate λ ds and repair rate µds given by

λ
ds =

1
8760

·SAIFI ,

µ
ds =

SAIFI
SAIDI

.

(2.1)

where the utility metrics SAIFI (system average interruption frequency index) and

SAIDI (system average interruption duration index) have units of occurrences/year and

hours/year, respectively, and are reported by the utility.2

We include three resources that contribute to improving reliability: conventional

fossil generators, solar PV, and battery energy storage. DERs are modeled with failure

rate λ (·) and repair rate µ (·), which are known empirically, and defined by their operating

specifications: generators have nameplate capacity Pgen and maximum ramp rate Rgen;

battery storage has maximum and minimum capacity Ebs and Ebs, respectively, maximum

discharge and charge rating Pbs and Pbs, and discharge and charge efficiencies ηbs
dchg and

ηbs
chg. Any solar PV power time series can be input from an external source.

We consider generators as discrete units, all solar PV capacity as a single system,

and all battery storage capacity as a single system, since storage capacity is often

connected modularly in a single housing. We assume buses, cables and other grid devices

are 100% reliable—and thereby give focus to the DERs that increase reliability, but

which themselves are not 100% reliable.

2.2.2 Simulation algorithm

The algorithm is developed for microgrids specifically, and considers features

which distinguish microgrids from the larger bulk grids to which they are interconnected—

2Utility data on MAIFI (momentary average interruption frequency index), when available, can be
considered by setting the failure rate λ ds = 1

8760 · (SAIFI+MAIFI), where the availability sequence hds
k

is then created by considering down-times for both outage types. Momentary outages have duration <5
minutes and last one timestep in the algorithm.
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specifically, resource mix and islanding capability.

Microgrids can disconnect from the bulk grid and operate autonomously by

balancing load with power generated on-site—and may do so seamlessly depending

on resource mix. The ability to maintain service continuity during transitions can be

essential to load within. From the standpoint of reliability analysis, it is critical to model

this dynamic; we do so by adding a flexibility constraint—in addition to the analysis of

capacity that is standard in reliability evaluation.

Capacity requires that available microgrid generating capacity exceed load during

grid outages to avoid interruptions—without regard to operation. The flexibility com-

ponent, as an extension, further requires that resources be dispatched to meet changes

in load during outages, including at the moment of outage, and considers resources as

either slow ramping (generators) or fast ramping (battery storage).

In practice, generators like combustion engines and microturbines require several

minutes to reach peak output, whereas batteries require milliseconds. Because detection

and control equipment can recognize impending grid outages with sufficient lead-time

to island and supply load with fast ramping resources, we require that generators use

one simulation timestep to increase power, whereas battery storage can respond instan-

taneously.3 Thus, in a practical sense, storage is critical for maintaining continuous

power at the moment of outage, whereas generators are critical for supplying bulk load

during extended outages. Because the timestep ∆ = 1 h, which is standard in reliability

evaluation, the algorithm likely overestimates the need for storage kWh capacity (though

not kW rating).

Flexibility is an important addition to the standard formulation for reliability

evaluation. In other regards, the algorithm functions similarly to CE-MCS methods. As

3It may also be possible to model generators as fast ramping and instead apply post-processing
corrections to interruption sequences (to capture, e.g., a 15-minute interruption while generators turn on
and increase power).
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with such methods, it has two components—optimization and simulation (Fig. 2.2). Each

are discussed in turn.

Figure 2.2. The simulation algorithm consists of two parts: optimization (green box)
and simulation (red box). The optimization process finds the near-optimal distortion for
unit unavailabilities, which the simulation then uses to calculate reliability indices.
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2.2.3 Cross-entropy optimization

The goal of cross-entropy optimization generally is to find a set of new (near-

optimal) reference parameters that increase the likelihood of events of interest. In

reliability evaluation, these are the “distorted” unit unavailabilities v—found from the

original availabilities u = λ/(λ +µ)—that increase the probability of loss of load events

and hence speed simulation convergence. Explication of the cross-entropy method is out

of the scope of this paper; see Rubinstein and Kroese (2004) for detailed treatment.

In the algorithm, we distort the failure rate for the distribution system λ ds since

it is the primary source of reliability in the system, but leave generators, solar PV and

storage undistorted.4 Repair rates µ (·) are not distorted; as such, only the periods between

interruptions are compressed. Interruption sequences remain completely undistorted

(repair rates µ (·), and hence the mean times to repair MTTR(·) = 1/µ (·), are unchanged),

including the power supplied by generators and battery discharging and charging. Dis-

torted unavailabilities are given by v = λ ?/(λ ?+µ?), where “star” denotes the distorted

quantity and µ? = µ .

Because the use of distorted parameters affects the frequency and duration of

system states in the simulation, quantities (e.g., state duration and, ultimately, reliability

indices) must be compensated via a compensation factor W to avoid biased estimates.

Following Eq. 8 in Gonzalez-Fernandez and da Silva (2011), it is given by

W =
∏

nunits

j=1 (1−u j)
x j(u j)

1−x j

∏
nunits

j=1 (1− v j)x j(v j)1−x j
, (2.2)

where u j and v j are the original and distorted unavailabilities, respectively, x j is the

state (1–not failed, 0–failed) of unit j in system state i, and nunits is the total number of

distorted units.
4For very reliable configurations, generator failure rates λ

gen
j ∀ j = 1, ...,ngen could also be distorted.
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The principal steps in the cross-entropy optimization used here are standard

and identical to those in Gonzalez-Fernandez and da Silva (2011); see steps 1a-10a in

Gonzalez-Fernandez and da Silva (2011).

2.2.4 Cross-entropy Monte Carlo simulation

Cross-entropy simulation—the second stage of two in the CE-MCS—is a se-

quence of five steps (Fig. 2.2).

Step 1. First, unit states are initialized for the simulation period T by creating

sequences of up-times when a unit is operational and down-times when it is failed.

Sequences are created using

up-time =− 1
λ j

ln(r1) ,

down-time =− 1
µ j

ln(r2) .

(2.3)

where λ j and µ j are the failure rate and repair rate of unit j, respectively, and r1 and r2 are

uniformly distributed random numbers between 0 and 1. Series of up- and down-times are

drawn successively and independently for all units until they form availability sequences

hk ∈ Rs
{0,1}. As is standard, unit failure and repair rates are assumed exponentially

distributed (Billinton and Allan, 1996).

Step 2. Next, dispatchable units (generators, battery storage) are scheduled during

grid outages using Algorithm 1. In the context of reliability analysis, they act as reserve

units, attempting to maintain continuous electric service. The new constraint on flexibility

is considered here: at the moment of outage, generators cannot immediately change

output to supply load, but instead require one timestep to ramp up power output. Battery

storage, however, can ramp instantaneously to meet load imbalance at the moment of

outage.
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Step 3. Third, distribution system and DER output are combined to form two

time series vectors—the risk margin mk ∈ Rs and risk duration dk ∈ Rs
{0,1}—that define

interruption sequences (i.e., microgrid outages). The risk margin is the difference between

total generation, including from the distribution system, and microgrid load:

mk := pds
k +∑

j
pgen

j,k + ppv
k + pbs

k − lk , (2.4)

where pds
k = Pds ·hds

k is the power provided by the distribution system, pgen
j,k is the power

output of generator j, ppv
k is the solar PV output, and pbs

k is the battery storage output

(by convention >0 denotes discharging), ∀k = 1, ...,s. The risk duration then denotes

interruption sequences, or loss of load states:

dk :=


1, mk < 0

0, otherwise .
(2.5)

Step 4. Next, reliability indices for the simulation iteration are calculated via the

cross-entropy process, which is initialized with a maximum number of allowed iterations

NYmax, the simulation length s, and a convergence criteria βmax (typically 0.01− 0.1,

where the coefficient of variation β = σ [E(·)]/E(·) for each reliability index is the

ratio of the standard deviation of the sample mean to the sample mean). Also, NY is

set to 0. The process has several substeps. First, we create the explicit list of system

states Xi = [xds
i ,xgen

i,1 , ...,xgen
i,ngen ,di] for all states i, where states are the steady-state periods

between system transitions. Transitions are defined by any change in a unit availability

sequence h(·)
k and/or the risk duration dk. Each state is defined by a residence time ti and

a compensation factor Wi. The former is the duration the system resides in the state; the

latter is given by Eq. (2.2).
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Each state i is either in a loss of load state (i.e., di = 1, in which case the microgrid

is “failed”) or it is not. For failed states, a group compensation factor W̃q is calculated

following Eq. 17 in Gonzalez-Fernandez and da Silva (2011):

W̃q :=
P{X1} ·P{X2|X1}· · ·P{Xnq|Xnq−1}

P?{X1} ·P?{X2|X1}· · ·P?{Xnq|Xnq−1}
, (2.6)

where P? denotes probability using the distorted unavailabilities. The group compensation

factor accounts for the entire interruption sequence—which must be captured to quantify

the economic loss of interruption cq. The use of conditional probabilities, which give the

probability of the entire sequence, is therefore needed.

Next, two quantities, Tup and Tdown, are calculated for the set of system states Xi.

Tup is the compensated duration of non-failed states over the simulation period and Tdown

gives the same quantity for failed states:

Tup = ∑
i∈NF

tiWi ,

Tdown = ∑
i∈F

tiWi .

(2.7)

where NF is the set of non-failed microgrid states and F is the set of failed states.

Lastly in the cross-entropy process, a weight w and reliability indices for the

iteration NY are calculated:

wNY =
Tup +Tdown

s
(2.8)

LOLPNY =
Tdown

Tup +Tdown
·wNY (2.9)

LOLFNY = ∑
q

W̃q ·wNY (2.10)

LOLCNY = ∑
q

cqW̃q ·wNY , (2.11)
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where q indexes interruption sequences and cq is the cost, or economic loss, of interruption

q. A weighted approach using wNY is necessary because Tup and Tdown vary across

iterations.

Step 5. The fifth and final step in the CE-MCS is to check convergence, and if

converged (or if NY = NYmax) to calculate final indices for the simulation:

ˆLOLP =
∑

NY
y=1 LOLPy

∑
NY
y=1 wy

, (2.12)

where ˆLOLF and ˆLOLC can be similarly estimated. Further, the loss of load duration

ˆLOLD = ˆLOLP/ ˆLOLF. If not converged, the algorithm returns to the updating step and

advances to a next iteration. The final CE-MCS indices are the expected values for each,

respectively, given the probabilistic nature of the system.

Algorithm 1. Scheduling dispatchable units

for timestep k = 1, ...,nint
q in outage q do

calculate the load deficit: l̃k = lk− ppv
k

if k = 1 then
dispatch storage: pbs

k = ∆ ·min{ηbs
dchg ·P

bs, l̃k, ηbs
dchg · (Ebs

k −Ebs)}/ηbs
dchg

else
for generator j = 1, ...,ngen do

schedule generator j: pgen
j,k = min{pgen

j,k−1 +Rgen
j ·h j,k ·∆ , h j,k · pgen

j }
end for
re-calculate load deficit: l̃k = lk− ppv

k −∑ j pgen
j,k

if l̃k > 0 then
dispatch storage as for k = 1

else
charge storage: pbs

k = ∆ ·min{Pbs/ηbs
chg, -l̃k, (Ebs−Ebs

k )/∆/ηbs
chg} ·ηbs

chg
end if

end if
end for
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2.2.5 Example

To illustrate, Fig. 3.4 shows how generators and battery storage in a sample

system are dispatched in response to a grid outage. A 100 kWh/50 kW storage system

with 90% bi-directional efficiency discharges maximum power at the moment of outage,

k = 1, but cannot supply the entire load deficit. Three 60 kW generators turn on and ramp

up to meet load at k = 2, and further recharge the battery. They supply load deficit again

at k = 3 before shutting down at k = 4 when the grid is repaired. Because the battery is

undersized (relative to peak load), microgrid customers experiences loss of load at k = 1.

For outages during nighttime hours, the battery may prevent interruptions.

Figure 2.3. Generator and storage dispatch during a grid outage.
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2.3 Validation and discussion

We validate the algorithm on four microgrid configurations (Table 2.1). As in

Billinton and Bagen (2006), we use the hourly chronological load shape of the IEEE

Reliability Test System (IEEE Committee Report, 1979) with a peak load of 40 kW. Solar

irradiance time series data is from the TMY3 data set.5

Table 2.1. Microgrid system configurations run for validation.

System Resource No. Rating FOR Failure rate
(kW) (%) (occ/yr)

A Dist. system - - 0.0135 1.018
B Dist. system - - 0.0135 1.018

Generator 2 20 5 9.2
C Dist. system - - 0.0135 1.018

Generator 2 20 5 9.2
Solar PV 1 20 - -

D Dist. system - - 0.0135 1.018
Generator 2 20 5 9.2
Solar PV 1 20 - -
Battery 1 20 - -

The distribution system has a combined SAIFI and MAIFI of 1.018 occur-

rences/year and a SAIDI of 71 min/year. Its failure and repair rates are calculated

using Eq. (2.1). Generators have a 20 kW nameplate capacity and a forced outage rate

(FOR) of 5%. The storage system is rated at 40 kWh/20 kW with 100% round-trip

efficiency. Solar PV and battery storage are assumed failure-free—for simplicity and to

give focus to incremental differences from adding microgrid DERs. Lost load is valued

at 1000 $/kWh, though more realistic and accurate estimates are possible using customer

damage functions, e.g. in Sullivan et al. (2015).

We validate against the standard sequential MCS (i.e., without cross-entropy),
5See http://rredc.nrel.gov/solar/old data/nsrdb/1991-2005/tmy3/. We use global horizontal irradiance

(GHI) data for Chula Vista Brown Field NAAS in California (site number 722904) and the PV power
module in the microgrid model DER-CAM to compute power output.
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which is considered the most accurate sequential method. However, it can face slow

convergence times for very reliable systems. In all simulations, βmax = 0.05 for all

indices.

Two sets of validation are done. In the first (Section 2.3.1), we use the con-

ventional definition of resource adequacy in reliability evaluation, which includes only

capacity. In the second set (Section 2.3.2), we include in addition the flexibility constraint.

2.3.1 Conventional reliability evaluation

Reliability indices for the new algorithm—the CE-MCS—match those of the

MCS closely for all configurations, with a mismatch of 1.2−3.9% for LOLP, 1.7−3.4%

for LOLF and 0.4−5.6% for LOLC (Table 2.2). Those differences are comparable to

the 0−3.03% range in Gonzalez-Fernandez and da Silva (2011). The CE-MCS further

improves computational time by a factor of 5−10 over the MCS, with larger speed-ups

of 140 times for the most reliable configuration.

Across systems, there are two large improvements in reliability: adding generators

(A to B) reduces the LOLP by 93%, and adding storage (C to D) reduces LOLP another

92% (or a factor of 13). The addition of solar PV improves reliability, but to a lesser

degree (30% decrease in LOLP).

Table 2.2. Results and validation without considering flexibility.

System Method LOLP LOLF LOLC CPU Time
(-) (occ/yr) ($/yr) (s)

A MCS 2.59E-04 1.032 56160 1.9
CE-MCS 2.49E-04 0.999 53040 0.3

B MCS 1.78E-05 0.079 1179 91.3
CE-MCS 1.80E-05 0.077 1174 13.3

C MCS 1.28E-05 0.058 713 173.7
CE-MCS 1.25E-05 0.056 681 16.5

D MCS 9.62E-07 0.0038 77 18795.2
CE-MCS 9.43E-07 0.0037 74 134.0
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2.3.2 Adding flexibility

Adding the flexibility constraint for slow ramping resources (i.e., requiring that

load immediately following a grid outage be supplied only by fast ramping resources,

and that unit output adjust to meet fluctuating load during outages) to resource adequacy

decreases the reliability of microgrid systems. In other words, the same system configu-

ration will (falsely) appear more reliable when this requirement is not in the simulation.

Nevertheless, including flexibility is essential to accurately capture system dynamics.

As results show (Table 2.3), including flexibility changes results considerably.

Systems are less reliable, with increases of a factor of 7-63 for LOLP, 13-139 for LOLF,

and 21-39 for LOLC. Such large changes stem only from defining generators as slow

ramping resources unable to meet the instantaneous load increase at the moment the bulk

grid fails.

Table 2.3. Results and validation, with flexibility included as a resource adequacy
constraint.

System Method LOLP LOLF LOLC CPU Time
(-) (occ/yr) ($/yr) (s)

B MCS 1.26E-04 1.026 25550 5.7
CE-MCS 1.26E-04 0.989 24990 2.5

C MCS 1.23E-04 1.015 21050 5.7
CE-MCS 1.22E-04 1.001 20720 2.5

D MCS 6.19E-05 0.534 3036 2592.9
CE-MCS 5.98E-05 0.507 2907 222.8

In this scenario, reliability indices calculated by the CE-MCS again match those

from the MCS—to within 6% (0-3.4% for LOLP, 1.4-5.1% for LOLF and 1.6-4.2%

for LOLC). As before, the algorithm produces speedups of 6-19 times, with speedups

increasing with configuration reliability.

Adding storage (C to D) decreases LOLP by 50%; however, this is considerably

less than when ignoring flexibility. Such is the importance of giving explicit treatment to
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ramping in reliability evaluation. In practice, generators provide a redundant source of

dispatchable power when the bulk grid fails, but cannot respond instantaneously. Battery

storage is fast ramping and provides this latter capability. The two resources, when

properly sized, together comprise a very reliable configuration—indeed, the exact purpose

of building such systems—that renders standard sequential MCS methods impractical for

many analytical purposes.

The primary advantage of using cross-entropy, then, is clear: as the redundancy

of configurations increases (sequentially, A through D), the time to reach convergence

similarly increases (and is especially so for sequential MCS). Though the CE-MCS sees

that time increase as well, it produce typical speed-ups of up to 19-fold over the MCS.

2.4 Conclusion

This work presented and validated a new simulation algorithm—based on the

cross-entropy method and sequential MCS—that calculates reliability indices for time-

dependent load served within a grid-connected microgrid. The algorithm, which builds

on previous work on cross-entropy MCS and small isolated power systems, extends and

tailors those methods specifically for analysis of microgrids. It does so by including the

distributed resources that provide power and reliability in microgrids (generators, solar

PV, energy storage) as well as unit flexibility as a resource adequacy constraint in the

MCS. The result is a new reliability method that produces reliability indices in close

agreement with standard sequential MCS and that, furthermore, is computationally fast.

Because it calculates the loss of load cost (i.e., the economic loss of interruptions), the

method can be used in larger microgrid analyses that evaluate, e.g., economics and the

business case for investing in such systems.

The text and data in Chapter 2, in full, is submitted for publication of the material

with the title “Reliability evaluation for microgrids using cross-entropy Monte Carlo



68

simulation”. Hanna, Ryan; Disfani, Vahid R.; Kleissl, Jan. The dissertation author is the

primary investigator and author of this article.



Chapter 3

The Economic Value of Reliability for
Microgrids: Modeling Reliability Costs
and Value

3.1 Introduction

3.1.1 Background

Microgrids are highly touted for the benefits they can confer to both public and

private stakeholders. Publicly, many see microgrids as key to enhancing grid resiliency.

Indeed, policy makers have turned to grid modernization, often via microgrids, in re-

sponse to recent severe weather that caused longstanding power outages in major urban

centers and exposed structural vulnerabilities in our system of power supply and transmis-

sion. Their efforts aim to reduce the impact and severity of outages, as well as maintain

critical services.

Microgrids enhance resiliency because they are insular power networks embedded

within the bulk grid. They are sited coincident with load and can use various distributed

energy resources (DERs), such as fossil fuel generators, solar photovoltaics (PV), and

energy storage, all coordinated by a network of smart controllers. Though small relative

to the large centralized power plants that dominate the grid today, they offer several

69
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advantages. Perhaps most importantly, they can disconnect, or “island”, from the bulk

grid during outages (potentially seamlessly) and operate independent of it—thereby

keeping lights on for critical services when neighborhoods or entire cities go dark.

In addition to public resiliency benefits, technology and market forces are in-

teracting in ways that make private microgrids an attractive option for an increasing

number of electric utility customers. In contrast to public systems, which are often run

by utilities and funded via extra-market sources (e.g., rate basing, government programs),

private microgrids are designed to compete with traditional utility service—by providing

low-cost power or perhaps through services it can offer customers, like reliability.

Interest among utility customers is rooted in both an empirical dimension, with

an ever-growing list of operational systems (Wilson, 2017), as well as a theoretical one

based on the diverse benefits microgrids can provide. Many of these are tied to clear

revenue streams (Stadler et al., 2016). Perhaps the two largest—and our focus—are from

energy services, in which microgrids provide electric service similar to a central utility

(along with, perhaps, heating and cooling), and from reliability, in which microgrids

improve electric service reliability for customers within beyond that provided by the

utility.

Though microgrids can provide numerous other services, associated revenue

streams are location or jurisdiction dependent (e.g., selling power to the local utility

through a power purchase agreement or feed-in tariff or otherwise participating in an

electricity market by selling energy or ancillary services) or do not exist (e.g., improving

local power quality, providing bulk grid resiliency services like black-start, deferring

infrastructure capacity upgrades, reducing transmission losses, and reducing greenhouse

gas and criteria pollutant emissions).1

1For broad treatment of microgrids—such as on technical, financial, and regulatory aspects, among
others—see the extensive reviews by Basu et al. (2011); Soshinskaya et al. (2014); Parhizi et al. (2015).
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The focus of this work is private investment—on microgrids funded and devel-

oped by individual utility customers2 for private benefit. These systems, in contrast

to their publicly-funded counterpart, require monetizable benefits to generate revenue

and profit; in other words, they must establish a “business case” for economic viability.

Though benefits are well-known and documented in theory, an evidentiary basis for

cost-effective commercial and industrial (C&I) microgrids is lacking. Our interest lies in

understanding where and how private enterprises will actually invest in these systems;

many see reliability as a key driver (Asmus, 2016).

Though far-reaching visions of future distributed grids typically include some

structure of interconnected microgrids (Arefifar and Mohamed, 2014) or embedded

distributed generation (Borges and Falcao, 2006; Banerjee and Islam, 2011) that each

contribute to system-wide reliability (Costa and Matos, 2005, 2009; Bie et al., 2012),

we set aside those systems here. Our focus lies in understanding the empirical basis for

adoption today, and revenue streams for future visions are unclear. Further, the business

case for public microgrids built for public resiliency benefits is neither jurisdiction

agnostic nor driven by market forces. It is the C&I market—driven by technology

advances, innovation, and new business models—that will likely unlock replicable use

cases, and in so doing facilitate pathways to widespread adoption. Indeed, industry

forecasts suggest that private C&I customers will lead growth in the nascent microgrid

market—to the tune of $18 billion by 2026, or 35% of the market total (Asmus, 2017).

This work adopts the U.S. Department of Energy (DOE) definition of a microgrid—

“a group of interconnected loads and distributed energy resources within clearly defined

electrical boundaries that acts as a single controllable entity with respect to the grid...

[and that] can connect and disconnect from the grid to enable it to operate in both

2Due to rules governing U.S. electric utilities in most jurisdictions, microgrids are prohibited from
serving multiple adjacent customers whose properties span public spaces, such as roads. As such, private
investment assumes a “single-property, single-owner” business model.
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grid-connected or island mode”3—as the foundation for analysis herein. The islanding

component in particular is essential. Microgrids are distinct power systems with redun-

dant generating capacity that, from the standpoint of load, operate in parallel to the bulk

grid.

3.1.2 The current state of reliability in microgrid modeling

Evaluating business cases, such as would be needed by private investors, requires a

cost-based modeling approach. This “techno-economic” approach assesses the economics

of different microgrid configurations by monetizing benefits, comparing those with costs,

and examining risks, sensitivities, uncertainties, and robustness of assumptions. They

gather data and account for interactions between technology choice, cost, energy demand

and supply, and emissions. Ultimately, they inform decision-making in the planning and

design process, where decision-making can comprise resource siting, selection, sizing,

and/or scheduling (Gamarra and Guerrero, 2015) and be aligned to support a potentially

broad array of design objectives that span economic, environmental, and/or reliability

criteria (Khan et al., 2016).

Much of this information is now available. Mathematical models for energy

resources are well-developed—e.g., for micro-turbines (Ismail et al., 2013), CHP systems

(Gu et al., 2014), renewables (Sinha and Chandel, 2015), and energy storage (Ru et al.,

2013; Nottrott et al., 2013). So too are optimization techniques for renewable and hybrid

energy systems that couple these (Erdinc and Uzunoglu, 2012; Upadhyay and Sharma,

2014; Iqbal et al., 2014; Fathima and Palanisamy, 2015). What are still needed, however,

are the techno-economic models that evaluate how these factors combine in ways that

affect the business case for investing. These are largest in scope and use optimization

techniques that connect resource models with other technical, economic, and financial

3From the U.S. DOE Microgrid Exchange Group, an ad hoc group working on deployment and research.
The definition is important and worth noting since microgrids are often loosely defined.
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parameters and constraints that enable or inhibit investment.

Our particular interest lies with models that treat reliability explicitly in ways

needed for “business case analysis”—in which reliability is an explicit value stream and

optimized by considering the trade-off between reliability and cost (Zhou et al., 2016).

Such modeling has been applied to off-grid systems (Siddaiah and Saini, 2016), but is

lacking for grid-connected applications.

In the latter case, models typically treat reliability either as a constraint or objec-

tive (or sometimes both) in an optimization framework. Typically, as in Bahramirad et al.

(2012) and Meiqin et al. (2010), reliability constraints require that the resource configu-

ration meet a minimum level of resource adequacy. Ceteris paribus, this is achieved by

investing in costly generating capacity. The widely-used DER-CAM model (Distributed

Energy Resource Customer Adoption Model)4 is one such example. Though offering

some control over reliability, such frameworks do not necessarily optimize it. Doing

so requires treating reliability as an objective. Bernal-Agustı́n and Dufo-López (2009),

e.g., does this via a multi-objective framework without placing a value on reliability, thus

requiring the system designer to select a desired configuration from a Pareto optimal

set. Monetizing reliability can obviate this step, e.g. as in Khodayar et al. (2012) and

Moradi et al. (2014), which convolve unmet load with a value of lost load to calculate an

interruption cost.

Consideration to reliability might also be given via a penalty factor or indirectly.

Ding and Lee (2015), e.g., minimizes the operating cost of a microgrid, comprised of

fuel and emissions costs, but includes also a reliability penalty cost for unserved load

(i.e., for the portion of load that exceeds generating capacity) using a single value of

lost load. And Cardoso et al. (2013) treats reliability indirectly—calculating increases in

investment and operating costs due to fuel cell failures in the microgrid.

4See https://building-microgrid.lbl.gov/projects/der-cam.
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Yet another lens is that of survivability, the metric of interest for which is the

duration a system can sustain power once an outage occurs. The National Renewable

Energy Laboratory (NREL) has adopted this framework with its REopt tool (Cutler et al.,

2017). Anderson et al. (2017), e.g., calculates this time measure for a configuration

optimized for a life-cycle cost that excludes reliability. Simpkins et al. (2016) further

integrates outage costs in the objective function—via a pre-processing step that attributes

survivability to various solar PV and battery capacities using regression analysis—and

performs analysis on a configuration limited to solar PV and battery storage.

Though all these frameworks for including reliability are, in their own ways,

effective, none include all components needed for business case analysis. Some serve

only to schedule DERs (and hence do not integrate reliability into investment decision-

making), others do not monetize reliability, while others make simplifications to access

reliability costs (e.g., by using a single point estimate for the value of lost load). Though

they offer frameworks that allow one to explore the effects of adding reliability to an

analysis, they fall short in different ways. The business case of reliability can only be

captured by considering the cost-benefit trade-off between investing in costly generating

capacity and the economic value attributable to greater reliability, while considering also

system operating costs.

Existing frameworks that consider that trade-off are simple “evaluation” methods,

which do not have optimization functionality. They typically take one of two forms.

The first type mandates a minimum level of reliability, uses some selection logic to

determine the resource mix, and calculates the cost to supply energy (Kanase-Patil

et al., 2011; Lee et al., 2014). These can produce reliability-cost curves for varying

levels of reliability, and hence provide some insight into that trade-off. The second

prescribes a resource configuration and then calculates operating cost and reliability

indices (Daneshi and Khorashadi-Zadeh, 2012; Lovelady et al., 2013) or investment
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cost and reliability cost for unserved load (Yokoyama et al., 2008; Georgilakis and

Katsigiannis, 2009). In Georgilakis and Katsigiannis (2009), that configuration is varied

via a brute-force approach until a system cost-minimizing configuration is found. Though

these evaluation methods offer clear frameworks for reliability evaluation, they too have

clear shortcomings if applied to business case analysis. Some are built for off-grid

settings only, some include only investment costs, while others include only operating

costs. None have optimization functionality.

Ultimately, to analyze the business case of reliability, models must consider the

economic value of reliability and optimize the cost-reliability trade-off. They must size

and schedule resources to minimize a total system cost that includes, at a minimum, in-

vestment, operating, and interruption costs. The interruption cost is the value attributable

to improved reliability and requires that reliability be monetized.

This work offers a new optimization model that does so, and further integrates

the two core revenue streams for private adoption—that of providing energy services

and reliability. Though numerous models in literature assess the former, few couple that

analysis with one of reliability. Those that do treat it do so simplistically and without

the heterogeneity in interruption costs that customers report. We have built our model

specifically to address this gap. We are also motivated, as investors would be, to analyze

revenue “stacking” (e.g., in Hanna et al. (2017b)). As we will show, combining revenue

streams changes outcomes significantly—for investment decision-making as well as the

cost-benefit outlook.

The new model is bi-level and built on heuristic optimization. Its core contribution

is its explicit treatment of reliability in the objective function, alongside the investment

and operating costs that are standard features of mathematical programming approaches.

The upper level uses a heuristic method—particle swarm optimization (PSO)—to select

and size the DERs that contribute to reliability, while the lower level integrates the widely-
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used DER-CAM model to schedule them, along with sequential Monte Carlo simulation

(MCS) to evaluate reliability. A heuristic approach is needed for the reliability-based

sizing/scheduling problem because the reliability cost is non-linear and, further, the most

accurate reliability evaluation methods are simulation-based.

3.2 Model formulation: Building a new model to inte-
grate value streams

3.2.1 Modeling framework

We consider grid-connected microgrids at the distribution level, with all load and

resources in the microgrid located at a single bus on the load side of the distribution

transformer (Fig. 3.1a). The microgrid does not impact the reliability of loads outside

it and, at the point of common coupling (PCC), sees the distribution system as a single

generator with sufficiently large capacity to supply peak microgrid load (Wang et al.,

2013). As such, the distribution system is modeled at the microgrid bus as an “equivalent”

generator (Fig. 3.1b) with a nameplate capacity much larger than peak load and failure

rate and repair rate based on the utility metrics SAIFI (system average interruption

frequency index) and SAIDI (system average interruption duration index). Utility data

on MAIFI (momentary average interruption frequency index), when available, can be

considered as well.

Within the microgrid, technologies available for investment fall broadly into four

categories:

1. Natural gas-fired generators: internal combustion engines and microturbines with

fixed capacity and that, optionally, can include heat recovery.

2. Renewables: solar PV.

3. Flexible resources: stationary battery energy storage.
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Figure 3.1. (a) Distribution system topology with a microgrid, and (b) the modeled
microgrid topology. Microgrid resources comprise the four categories shown.

4. Thermal resources: absorption chillers that affix CHP systems, direct gas-fired

chillers, electric chillers, heat storage, cold storage.

Technologies are modeled considering technical specifications (capacity, dispatch, ramp-

ing, and efficiency ratings) as well as those for cost (fixed and variable costs, lifetime)

and reliability (availability, failure rate).

Fig. 3.1b shows directional power flow, which does not include back-flow to the

utility grid. Though some revenue streams are derived from energy sales (e.g., utility

contracts, market participation), we do not consider them in this work and prohibit

back-flow.

3.2.2 Model overview

The central motivation for building a new model is to integrate the value stream

for energy services, which is well-studied, with one for reliability. To that end, the model

connects the DERs that enable microgrids and quantifies reliability, matches energy

supply with demand, and calculates costs and emissions over the first year of operation at



78

a 1 h timestep.

The model is bi-level (i.e., it has two objective functions with distinct decision

variables) with heuristic optimization in the upper level (PSO) and analytical optimization

in the lower (DER-CAM). The four modules that comprise the model (Fig. 3.2) each

serve a distinct purpose:

1. PSO: selects and sizes generators, solar PV, and battery storage, which it passes to

DER-CAM and the MCS.

2. DER-CAM: sizes thermal resources, solves the scheduling problem, which it passes

to the MCS, and calculates the investment cost and operating cost.

3. MCS: simulates microgrid and distribution system operation to determine the

expected set of interruptions (timing, duration) over the year, considering the

stochastic nature of the system—which it passes to the regression model.

4. Regression model: calculates the economic loss from interruptions.

DER-CAM returns the complete DER fleet, total investment cost, and total

operating cost. The MCS iterates until it converges to a mean (i.e., expected) total

interruption cost, which it then returns to the PSO. The PSO controls the total cost.

At the highest level, we use the PSO framework and give it the selection/sizing

task specifically because PSO has flexibility to embed within it other methods (like

mathematical programming and simulation). This is essential because simulation methods

such as MCS provide the most accurate and robust estimates for reliability. Models built

on mathematical programming (such as DER-CAM) are more restricted and cannot.5

5DER-CAM treats reliability via a constraint on investment—what we called the “resource adequacy
constraint” in our previous work (Hanna et al., 2017d). Specifically, it requires that the sum of investment
in generator capacity, average solar PV output, and capacity of one discharge cycle from electric storage
exceed critical (i.e., non-deferrable) load. As we noted in Hanna et al. (2017d), “this constraint does not
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Figure 3.2. Modules comprising the bi-level model, and their functionality. The PSO
solves the sizing problem; DER-CAM solves the scheduling problem; MCS evaluates
reliability; and the regression model calculates the cost of interruptions. Shading shows
where modules are embedded within one another. The outer gray box represents the PSO.

The modeling approach is described by Eq. (3.1)−(3.16), with nomenclature in

Table 3.1.

guarantee...the ability to island during all hours of the day or days of the year. Rather, it approximates the
investment required to island generally—an outcome designed to approximate the estimated microgrid
configuration...but with full appreciation that further analysis and modeling refinement would be needed
when designing any particular system.” In one sense, then, this work extends the DER-CAM model, which
has similar functionality, by adding reliability via MCS along with the PSO layer. Though newer versions
of DER-CAM can assess reliability costs by prescribing grid outage scenarios, that is fundamentally
different than solving the reliability-based sizing/scheduling problem.
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Table 3.1. Nomenclature.

Parameter Description

Sets and indices

m Month, M = {1,2, ...,12}

t Day-type, T = {week, weekend}

h Hour, H = {1,2, ...,24}

p Tariff period P = {on-peak, mid-peak, off-peak}

d Tariff demand type, D = {non-coincident, on-peak, mid-peak, off-peak}

u End-use load, U = {electricity ‘el’, cooling ‘cl’, space heating ‘sh’, water

heating ‘wh’, natural gas ‘ng’}

s Index for switchgear

i Generator, I = {ICE, MT, ICE-HX, MT-HX}a

k Direct-fired chiller, K = {DFChiller-HX}

q Continuous DER, Q = {solar PV ‘pv’, electric storage ‘es’, absorption

chiller ‘ac’, heat storage ‘hs’, cold storage ‘cs’}b

v All microgrid technologies, V = {I, K, Q, switchgear}

e Source of electricity, E = {I, ‘pv’, ‘es’, distribution system ‘ds’}

c Source of cooling, C = {K, absorption chiller ‘ac’, electric chiller ‘ec’, cold

storage ‘cs’}

g Source of heat, G = {I,direct fuel ‘di’}

Customer load

Nm,t Number of days of day-type t in month m

Lu,m,t,h Load profile for end-use load u, month m, day-type t and hour h, kW

Tariff parameters

ElecFee Fee for electric service, $/mo

VChgm,p Volumetric charge for month m and tariff period p, $/kWh

DChgm,d Demand charge for month m and demand type d, $/kW

SChg DER standby charge, $/kW/mo

NGFee Fee for natural gas service, $/mo

NGPricem Natural gas price in month m, $/kWh
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Table 3.1. Nomenclature, continued

Parameter Description

DER data

Rv Nameplate capacity of technology v, kW

C f capv Fixed capital cost of technology v, $

Cvcapv Variable capital cost for technology v, $/kW or $/kWh

C f omv Fixed O&M cost for technology v, $/kW/yr for I, K and $/kW/mo, or

$/kWh/mo for Q

Cvomv Variable O&M cost for technology v, $/kWh

Av Annuity factor for technology v

CO2 parameters

EF Natural gas CO2 emission factor, tCO2/kWh

CTax Tax on CO2 emissions, $/tCO2

Selection and sizing decision variables

PurchNumi, PurchNumk Number of purchased gas generators i, direct-fired chillers k

Binq, Bins Binary decision variable to invest in DER q, switchgear

PurchCapq, PurchCaps Capacity of installed DER q, switchgear, kW

Scheduling variablesc,d

πe,m,t,h Electricity provision from source e, kW

ξc,m,t,h Cooling provision from source c, kW

γm,t,h Total natural gas purchased, kW

γi,m,t,h, γk,m,t,h Natural gas purchased for gas generator i, direct-fired chiller k, kW

a Notation: ICE–internal combustion engine, MT–microturbine, -HX–with heat recovery.

b Q does not include the electric chiller (which consumes electricity to supply the cooling load)

because it is installed in every model run and hence does create differences between results.

c Subscript “m,t,h” denotes “in month m, day-type t, and hour h”.
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3.2.3 Objectives and constraints

The model seeks the least-cost configuration and operation of DERs in a microgrid.

Least-cost implies least total cost, which has three components: an investment cost

(annualized and amortized for year one); operating cost (full year-one operating costs);

and interruption cost from electric service disruptions (the expected cost for an average

year, given the random nature of grid outages and DER failures).

The bi-level framework is hierarchical. The upper level is the sizing problem and

seeks to minimize the total cost:

min Ctotal :=Cinvestment +Coperating +E[Cinterruption] , (3.1)

where the investment cost Cinvestment is a function of the configuration (i.e., of chosen

DERs), the operating cost Coperating is a function of DER operation convolved with a host

of operating parameters, and where the interruption cost Cinterruption depends on both and

is an expected value calculated via simulation.

Upper-level decision variables size those resources that contribute to reliability:

generators, solar PV, and battery storage. Sizing for thermal resources, which do not

contribute, is left to the lower level. Upper-level constraints offer much flexibility in

defining particular problems and may include, e.g., minimum and maximum bounds

on DER capacities, a minimum level of reliability, and caps on investment capital and

operating expenditure.

The lower level sizes thermal resources and solves the scheduling problem, which

seeks a minimum operating cost for the full configuration:

min Coperating , (3.2)
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which is then returned to the upper level in Eq. (3.1). The scheduling problem consists of

scheduling all units, as well as purchasing electricity and natural gas from the local utility.

Lower-level constraints enforce hourly energy balances for electricity, heating, cooling,

and natural gas loads, as well as other physical constraints standard in DER-CAM (e.g.,

energy conversion, energy efficiencies). See Siddiqui et al. (2005) for detailed exposition

of the DER-CAM model.

3.2.4 Investment and operating costs

The investment cost returned by DER-CAM is the amortized capital cost of

investing in switching equipment (‘switch’), which facilitates islanding, as well as all

DERs (generators ‘gen’, solar PV ‘pv’, battery storage ‘es’, and thermal resources

‘thermal’):

Cinvestment :=Cswitch +Cgen +Cpv +Ces +Cthermal . (3.3)

The generator investment cost is the sum of individual generator costs; investment costs

for solar PV and battery storage are costs of single systems (sized in any continuous

capacity); and the thermal resource investment cost is the sum of investment costs for

direct-fired chillers, absorption chillers, heat storage, and cold storage:

Cswitch := Binarys · (C f caps +Cvcaps ·PurchCaps) ·As (3.4)

Cgens := ∑
i∈I

PurchNumi ·Ri ·Cvcapi ·Ai (3.5)

Cpv := Binarypv ·C f cappv +PurchCappv ·Cvcappv) ·Apv (3.6)

Ces := Binaryes ·C f capes +PurchCapes ·Cvcapes) ·Aes (3.7)

Cthermal := ∑
k∈K

PurchNumk ·Rk ·Cvcapk ·Ak

+ ∑
q∈Q

(Binaryq ·C f capq +PurchCapq ·Cvcapq) ·Aq , (3.8)
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where q in this case indexes absorption chillers ‘ac’, heat storage ‘hs’, and cold storage

‘cs’. The annuity factor for technology v is given by

Av =
IntRate

1− 1
(1+IntRate)Li f etimev

. (3.9)

The operating cost covers all other costs incurred from system operation—from elec-

tricity purchases Ctariff, natural gas purchases Cfuel, resource maintenance Cder, and from

emitting carbon dioxide Ccarbon:

Coperating :=Ctariff +Cfuel +Cder +Ccarbon . (3.10)

where,

Ctariff := ∑
m∈M

∑
p∈P

∑
t∈T

∑
h∈H

π’ds’,m,t,h ·Nm,t ·VChgm,p (3.11)

+ ∑
m∈M

∑
d∈D

DChgm,d · max
t∈T,h∈d

{π’ds’,m,t,h}+ ∑
m∈M

ElecFee

+ ∑
m∈M

[
∑
i∈I

PurchNumi ·Ri +PurchCap’pv’

]
·SChg (3.12)

Cfuel := ∑
m∈M

NGFee+ ∑
m∈M

∑
t∈T

∑
h∈H

γm,t,h ·Nm,t ·NGPricem (3.13)

Cder := ∑
i∈I

∑
m∈M

PurchNumi ·Ri ·
C f omi

12
+∑

i∈I
∑

m∈M
∑
t∈T

∑
h∈H

πi,m,t,h ·Nm,t ·Cvomi

+ ∑
k∈K

∑
m∈M

PurchNumk ·Rk ·
C f omk

12
+ ∑

k∈K
∑

m∈M
∑
t∈T

∑
h∈H

ξk,m,t,h ·Nm,t ·Cvomk

+ ∑
q∈Q

∑
m∈M

PurchCapq ·C f omq (3.14)

Ccarbon := ∑
m∈M

∑
t∈T

∑
h∈H

(
∑
i∈I

γi,m,t,h + ∑
k∈K

γk,m,t,h

)
·Nm,t ·EF ·CTax . (3.15)
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The investment and operating cost calculations internal to DER-CAM are consistent

with our previous work in Hanna et al. (2017d), though here they are re-categorized

slightly. Previously, all DER costs (investment and operating) were combined because

the total DER cost was of interest; here, they are separated since we are now interested in

trade-offs between investment and reliability.

3.2.5 Reliability and the cost of interruptions

The trade-off in any power system—between providing electricity that is at once

economical and reliable—can be optimized by considering two measures: the probability

that the system can sustain load without interruption, given random factors like grid and

generator failures, fluctuating load, and intermittent renewable output; and the monetary

value attributable to uninterrupted electric service. Assessments of the first, referred to

as reliability evaluation, quantify the amount of reliability using metrics for expected

outage frequency and duration. Assessments of the second are the purview of reliability

worth and quantify the value of reliability by reporting interruption costs in dollars per

interruption. The two assessments are complements and together produce the economic

value of reliability, given as a total interruption cost in dollars per year. Together, they

are the basis for quantifying and valuing reliability in any power system, including

microgrids.

In this context, we model customer interruption costs as the means to assess the

value of reliability. Microgrids generate value by islanding and avoiding economic losses

that passive customers otherwise incur from power outages. This interruption cost, over

the one-year modeling period, is given by

E[Cinterruption] := ∑
i

di · ck(di) , (3.16)
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where di is the duration of interruption i and ck(di) is the cost function for interruptions

for customer type k. In the bi-level model, the MCS determines the set of interruptions

and passes it to the regression model, which calculates the associated cost of interruptions.

We have reported the full formulation for the MCS reliability evaluation module,

along with validation, in our previous work in Hanna et al. (2017a) and direct the reader

there. Reliability evaluation methods are well-developed and validated; our MCS method

in Hanna et al. (2017a) extends those to the case of grid-connected microgrids.

Estimates of reliability worth, by contrast, undergo constant revision. Of the

approaches to assess worth, customer surveys most directly assess interruption costs

and historically have been the favored approach.6 With surveys, customers estimate

their own losses by reporting direct and indirect costs for different outage scenarios that

might vary in duration, time of day, and season. Though surveys have some downsides

(e.g., unknown human elements, survey bias, inaccurate predictions), they are widely

considered an appropriate approach.

The most comprehensive set of work on the topic, from LBNL from 2001-

2017 (Sullivan et al., 2009, 2010, 2015), has standardized numerous survey results

spanning several U.S. utilities and decades. These were used to build new statistical

and econometric models to estimate regression functions, known as customer damage

functions (CDFs), that estimate interruption costs as a function of interruption type

and customer type; hence, CDFs capture variation in costs across the variables that are

important for analyzing business cases. It is these regression functions, in Sullivan et al.

(2015), that are used in the bi-level model.
6Utilities and other groups have completed dozens of comprehensive interruption cost surveys over

the past three decades; see Tollefson et al. (1991); Woo and Pupp (1992); Kufeoglu and Lehtonen (2016),
which list studies, as well as Tollefson et al. (1994) for detailed discussion on an early survey.
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3.2.6 Implementation of the particle swarm optimization

The upper level is built on PSO, a metaheuristic optimization method that is

population-based, iterative, and stochastic (Eberhart and Yuhui Shi, 2001). The popu-

lation consists of individual particles i ∈ {1, ...,nparticles}, each defined by a position xid

and velocity vid , that move through the solution space, solve the problem for a location

in the space (a candidate solution), and store and share the solution value, or “fitness” fi.

By interacting, particles exploit areas around better solutions, where “better” solutions

are those that minimize the objective—here, the total cost of investing in and operating a

microgrid.

The solution space is comprised of ndim dimensions, where each dimension

d ∈ {1, ...,ndim} defines a single decision variable. In their search, particles thus move

through an ndim-dimensional solution space, with xid and vid updated on a dimension-

by-dimension basis. In the bi-level model, the dimensionality includes numbers of

discrete generators and battery storage systems, and solar PV capacity. The upper and

lower bounds for each dimension encompass the solution space. Though the exact set

of dimensions and bounds may vary depending on the customer analyzed (e.g., larger

customers in principle have more space in which to install DERs), it always includes

those resources. The maximum velocity is set as the dimension range to allow particles

to traverse the entire solution space in a single iteration. When velocities carry particles

outside the solution space, we apply the absorption boundary method, which returns

escaped particles to the position from which they exited.

As with any metaheuristic, PSO is advantageous because it requires few or no

assumptions about the problem (e.g., about continuity and differentiability) and little

parameter tuning, but disadvantageous because it requires some configuration and cannot

guarantee global optimality. It allows one to define a tractable problem, but with the
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caveat that a global best solution cannot be guaranteed. We choose the PSO over other

metaheuristics because it finds application primarily in non-linear continuous-discrete

optimization problems (Clerc, 2006), of which the reliability-based selection/sizing

problem is one.

Mathematically, the PSO is implemented via two steps. The first updates particle

velocity and the second updates position based on the new velocity. For each dimension

d,

v(t+1)
id = wv(t)id + c1R1(pid− x(t)id )+ c2R2(pgd− x(t)id ) ,

x(t+1)
id = x(t)id + v(t+1)

id ,

(3.17)

where i, d, and t denote particle, dimension, and iteration, respectively, v is velocity, x is

position, pid is the best position found by particle i, and pgd is the best position found

by the entire population. R1 and R2 are uniformly distributed random numbers in the

interval [0,1].

The three weighting coefficients w, c1, and c2 define the update process. The

inertia weight w balances local and global search (Shi and Eberhart, 1998)—where

higher values (e.g., 0.9) maintain particle motion and facilitate global exploration and

lower values (e.g., 0.4) cause exploitation of local optima found so far (Poli et al., 2007).

The terms c1 and c2—what are sometimes called the cognitive and social attraction

parameters, respectively—pull particle trajectories toward local and global best positions,

respectively. As is typical, we tune and select coefficient values based on experience with

the problem to provide an acceptable balance between global and local exploration. To

this end, we set the swarm size to four particles, inertia w to 0.8, and attraction parameters

c1,c2 to the standard value 2.9922.

We use a global best particle topology, in which particles communicate the global
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Figure 3.3. PSO implementation consists of steps for initialization/updating, fitness
evaluation, and termination.

best position pgd . The algorithm for this topology consists of three main steps (Fig. 3.3).

The first is initialization, or updating for later iterations. The algorithm is stochastic, so

initialization and updating are partly random (hence, particle motion is guided in part by

randomness). After checking position feasibility and applying corrections if necessary

(via boundary absorption), the PSO evaluates particle fitness f (t)i —the measure of the

solution quality and analogous to an objective function—in the second step. Each particle

maintains a record of its best solution found so far, pbesti, as well as of the best solution

found by the population, gbest, both of which guide particle trajectories. The final step is

a check on termination criteria. The PSO completes either when it reaches a maximum

number of iterations or when it fails to improve the best solution for a succession of

iterations, both of which are prescribed.
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3.2.7 Example

Fig. 3.4 illustrates characteristic behavior of the PSO on a sample customer who

has the option to invest in six types of DERs: large and small generators (250 kW and

60 kW) with and without CHP, solar PV, and battery storage (units of 100 kWh/50 kW).

Fitnesses converge as individual particles track to the best solution gbest over iterations

(Fig. 3.4a)—the result of the PSO finding better combinations of DER capacities (Fig.

3.4b).

As is typical, swarm movement throughout the solution space fits two distinct

epochs: one defined by exploration (approx. iterations 1-19), where particles search the

solution space widely, and a second defined by exploitation (approx. iterations 20-35),

where particles attempt to improve the best solutions found during exploration. In this

example, the PSO terminates after eight consecutive iterations without improvement to

gbest.

The PSO finds (nearly) the best solution relatively quickly—in this example, after

three iterations. Improvements to the gbest fitness thereafter are marginal by comparison.

Such behavior is common in our analyses, and is likely a function of a very discontinuous,

and steep, solution space. Under-investment in DERs begets very high interruption costs,

whereas over-investment adds to the total cost without benefit. This suggests simple

rules of thumb for total unit sizing (especially for generators) may be mostly successful,

though optimization does add value by determining the precise combinations of units,

including less-obvious capacities for ancillary DERs like thermal resources, along with

clear operating costs. Here, for example, the optimal configuration includes a single

250-kW generator without heat recovery. Because the bi-level model includes operating

costs, the PSO finds that energy efficiency gains via a CHP generator do not offset the

extra cost.



91

Figure 3.4. (a) Comparing the fitness returned by all solutions (light gray), as well as
the best solution found by each particle pbest (dark gray) and the swarm gbest (red),
shows how the PSO converges over iterations. (b) Sizing for DERs that underlie fitness
values. All particle positions are shown in light gray, with pbest positions in dark gray.
As individual particles converge in the solution space around pgd (red), so to do fitness
values.
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3.3 Validation and discussion

3.3.1 Validation against DER-CAM without reliability

The goal of the validation is to calculate the relative match between solutions

found by the bi-level model and by DER-CAM. Classical validation would require data

on actual system adoption, with known solution and annual costs. Because we know of no

such existing data, we compare solutions to those made by DER-CAM. We are interested

in the PSO fitness gbest, and the solution underlying it pgd , relative to the objective and

solution found by DER-CAM. Because the two are inherently different models in their

full form—due to their treatment of reliability—validation must neglect it. As such, we

remove all reliability aspects from DER-CAM (the resource adequacy constraint) and

from the bi-level model (interruption cost, MCS, regression model). What remains are

models with identical objective functions (investment plus operating cost), though with

different engines that size DERs. The goal, then, is to compare sizing decisions made by

the PSO to those made by DER-CAM.

We perform validation on three customers that vary in size and load shape—

a hospital (large C&I customer with 1414 kW peak electric load, 9.3 GWh annual

consumption), medium-sized office building (small C&I with 174 kW, 0.6 GWh), and

secondary school (medium C&I with 927 kW, 3.1 GWh)—and consider adoption in

southern California (specifically, the TMY3 location for Camp Pendleton MCAS, site

number 722926). Load data is from the DOE commercial reference building stock7 and

includes electric, cooling, heating, and natural gas loads. Climate data is from the TMY3

data set for the same location.8 Each setup with DER-CAM is run six times, with an

increasingly restrictive solution tolerance.9 Each setup with the bi-level model is repeated

7See http://energy.gov/eere/buildings/commercial-reference-buildings
8See http://rredc.nrel.gov/solar/old data/nsrdb/1991-2005/tmy3/
9I.e., the GAMS parameter OPTCR, which is the gap between the best integer solution and the best

estimate for the optimal solution and an indicator of integer solution quality.
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six times because the particle search is stochastic.

Fig. 3.5a compares costs and configurations. Total cost values are remarkably

precise, with average differences of 0.1%, 10.3% (1.7% when excluding the outlier), and

3.9% for the hospital, office, and school, respectively. Configurations match closely as

well (Fig. 3.5b), though sizing decisions with the bi-level model show wider variation,

most saliently for solar PV for the hospital. Nevertheless, variable sizing produces similar

fitnesses; hence, bi-level model results indicate that the optimal solution to the least-cost

sizing/scheduling problem is non-unique. Indeed, the use of heuristic optimization in

this problem provides a rich set of solutions that offer varying microgrid configurations

with very similar total cost.

Figure 3.5. Bi-level model validation against DER-CAM with reliability removed. (a)
The fitness returned by the PSO (right boxplot in each pair) closely matches the minimum
total cost found by DER-CAM (left boxplot). (b) The average configuration for generators
(‘gen’), solar PV (‘pv’), and battery energy storage (‘es’) aligns as well, though with
greater variance; nevertheless, the gbest fitnesses remain precise.

Results confirm that this lean version of the bi-level model—without reliability—

is consistent with a reputable model that does not treat reliability directly. We therefore

claim that the lean version provides a proper basis for adding the reliability value stream.

In the following section, we add reliability and report changes to investment and the

cost-benefit outlook.
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3.3.2 Comparison against DER-CAM considering reliability

It is intuitive that adding a reliability cost to the objective function in this

optimization-based analysis should change outcomes. Our purpose here is to show

those changes with the bi-level model, and further explore why differences emerge be-

tween the two models. We expect differences because the two models treat reliability

differently; hence, this is a comparison and not validation. For runs with DER-CAM, we

add back the resource adequacy constraint; for those with the bi-level model, we add

back the interruption cost to Eq. (3.1), the MCS, and interruption cost regression model.

Herein, we use the more general tabular estimates from the regression model

(Table 3.2), which averages data across customer classes, because we are still considering

the question of how to classify customers in the context of a future systematic study on

customer demand for reliability.

Table 3.2. Customer damage functions in $/avg-kW.

Interruption duration Customer type

Medium/large C&I Small C&I

Momentary 15.9 187.9

30 min 18.7 237.0

1 h 21.8 295.0

4 h 48.4 857.1

8 h 103.2 2138.1

16 h 203.0 4128.3

As is typical with cost-benefit analyses of this type, which requires comparison

against a baseline, we model a utility customer and microgrid customer. The two are

identical in all regards except investment in DERs. The utility customer represents the
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pre-investment case and supplies load by purchasing electricity and natural gas from the

local utility. The microgrid customer represents the post-investment case. We define

the economic benefit of investing as the difference in total cost between the two. To

demonstrate, we choose the hospital building type from the validation and again run the

setup six times with each model.

Distribution system reliability metrics are taken for the north coast district in

the San Diego Gas & Electric territory, which has SAIFI of 0.461 occurrences per year

(occ/yr), MAIFI of 0.239 occ/yr, and SAIDI of 50 min/yr (Kurtovich and Zafar, 2016).

We assume the hospital customer is an early adopter with a particular need for reliable

service and increase the average interruption costs in Table 3.2 by a factor of twenty. This

is not an unreasonable assumption given the LBNL meta-database reports variation in

costs across several orders of magnitude. We linearly interpolate tabular data for outage

durations not explicitly given and cap costs at the 8 h duration (i.e., costs for outages >8

h equal the 8 h datum) because LBNL cautions against using them.

Fig. 3.6 compares results for the two models. As in the validation, the individual

costs that comprise the solutions, from both models, are very precise. We expect that

from DER-CAM since it is a mixed integer linear program and we apply a small relative

gap. For the PSO, the small variation in the gbest fitness underlines its success and utility

on discrete selection problems such as this.

In DER-CAM there is no interruption cost. For the utility customer, then, the

operating cost is the total cost. The trade-off in DER-CAM, as the model seeks the

least-cost configuration of DERs, is one between investment cost and operating cost.

In other words, DER-CAM seeks configurations that produce power, heat, and cooling

services on-site to reduce the electricity and fuel costs of the utility customer.

With the bi-level model, reliability is considered directly in the objective function.

Its inclusion markedly changes the cost-benefit analysis (made relative to the bi-level
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Figure 3.6. We show the effect of adding reliability to the analysis by comparing the
cost breakdown (total ‘tot’, investment ‘inv’, operating ‘ope’, and interruption cost ‘int’)
for the utility customer and microgrid customer for both models. Without an interruption
cost (i), DER-CAM reports a lower total cost for both customer types. In the bi-level
model, by contrast, the utility customer has an interruption cost; if sufficiently large,
the PSO finds solutions that reduce it (ii), at the expense of a higher investment cost
relative to DER-CAM (iii). The cost-benefit analysis from the bi-level model thus reports
a greater total microgrid cost, but also a greater economic benefit from investing (iv).

model utility customer). Here, the utility customer has an interruption cost that is about

1/3 of the operating cost, and hence a larger total cost than its equivalent in DER-CAM.

The trade-off sought by the bi-level model, as it sizes DERs, now includes an interruption

cost. As such, relative to the DER-CAM solution, it finds a least-cost configuration that

has a larger investment cost, nearly equal operating cost, and larger total cost—yet the

economic benefit of investing is greater. Such is the effect of adding—and optimizing

against—the reliability value stream.

Although their cost-benefit analyses differ, the underlying least-cost configuration

found by the two models is similar, albeit with one critical difference: investment in

battery storage is 220% greater in the bi-level model solution (Fig. 3.7). This difference

is a product of integrating sequential MCS—the most accurate reliability evaluation
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method—in the bi-level model. The MCS assesses reliability directly by checking

resource adequacy and ramping flexibility on an hourly basis. As explained in Hanna

et al. (2017a), battery storage is required to island seamlessly and maintain service

continuity at the moment outages occur on the bulk grid; hence it is often sized to (nearly)

match peak load. Generators, by contrast, are considered a slow-ramping resource and

cannot adjust output to meet instantaneous changes in net load at the moment of outage.

Figure 3.7. The range of investment in the optimal solution found by DER-CAM and
the bi-level model. Though each treats reliability in a different manner, configurations
match closely, with the exception of battery storage. The addition of the reliability value
stream, along with a proper reliability evaluation method, leads to greater investment
in battery storage—which is necessary and sufficient for the microgrid to ride through
power outages on the bulk grid.

3.3.3 Consistency amongst PSO solutions

The success of the bi-level model depends in part on its ability to consistently

find the best solution independent of initial conditions and search randomness. Fig.

3.8 shows that the model finds a consistent minimum total cost, though it does so by

arriving at slightly different solutions (most saliently for solar PV for the school), which

again indicates the solution is non-unique. In this regard, the bi-level model has added

utility relative to mathematical programming approaches because it can return a wealth

of solutions with similar total cost. Though the mathematical implications of this are
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clear, the physical meaning is perhaps more profound given current discourse on the role

microgrids may play in decarbonizing the electric grid.

Figure 3.8. Consistency check between initial particle position and final gbest position
in the PSO for the three building types. Boxplots show the range of investment from
initial positions p(1)id ∀i, while individual dots show investment for the gbest solution
pgd . Results indicate that the PSO is successful in finding precise solutions despite wide
variation in initial position.

3.4 Conclusion

This work has presented and validated a new optimization model, built on the

widely-used DER-CAM platform, that quantifies the economics of microgrids by sizing

and scheduling DERs in a microgrid. It extends that platform, as well as the modeling

literature generally, by including an explicit value stream for reliability, in addition to
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the value stream for energy services that is central to DER-CAM. Units are sized and

scheduled via PSO and DER-CAM, respectively, while reliability is quantified using a

state-of-the-art method based on sequential MCS.

By including the value of reliability (through a cost on electric service interrup-

tions) directly in the objective function, the new model offers a strategic advantage over

existing models that treat reliability indirectly or crudely. The model can be used to study,

e.g., how customer demand for reliability drives investment in combinations of DERs,

and vice versa. Because it uses heuristic optimization, it returns numerous competing

solutions that, when compared, can show how incremental modification to a system

configuration improves reliability and system cost. Ultimately, the model works as a

robust and flexible analytical tool that can be used to study the business case for investing

in microgrids that procure energy services and improve reliability for customers within.

A final note concerns risk. The bi-level model provides a core economic analysis

based on energy costs and mean interruption costs, given the random nature of the grid.

In reality, investors may be wary of various elements of risk inherent in analysis of

grid outages, and, further, may consider factors outside of an energy analysis (e.g., risk,

financing, insurance) when deciding to invest. Though herein we have not considered

variation in assessments of risk, which may be subjective or perhaps part of the standard

investment protocol of a firm, the model can integrate this information if known. Because

it is based in simulation, the bi-level model can equally use the tails of outage distributions

(e.g., outcomes with low probability but high cost) in place of mean values. But this

requires specific insight into the ways investors think about risk. Indeed, a large future

contribution to literature may lie in systematizing real-world investor appetite for risk in

such reliability-based business cases.

Chapter 3, in part, is currently being prepared for submission for publication of

material. Hanna, Ryan; Disfani, Vahid R.; Kleissl, Jan; Victor, David G. The dissertation
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author is the primary investigator and author of this article.



Chapter 4

The Impact of Microgrid Adoption on
Greenhouse Gas Emissions From the
Electric Power Sector

4.1 Introduction

Technology, policy and market forces are interacting in ways that make insular

power networks an attractive option for an increasing number of electric utility customers.

Such “microgrids”1—which are customer-sited and use small-scale distributed energy

resources (DERs), in contrast to the large centralized power plants that dominate grids

today—may play a large role in shaping the future structure of the electric power industry.

Some industry observers think these resources at the “edge of the grid” will come to

dominate and perhaps even replace standard grid service. Already, grid operators in

some jurisdictions are accommodating these new distributed resources—in particular

solar photovoltaics (PV) and battery energy storage. There is policy support as well for

small fossil fuel generators that function as combined heat and power (CHP) systems,

capturing waste heat to increase end-use energy efficiency.

Interest in microgrids stems in part from the flexibility they provide. Managed

1See Basu et al. (2011), Soshinskaya et al. (2014), and Parhizi et al. (2015) for broad treatment of
microgrids—such as on technical, financial and regulatory aspects, among others.
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well, they can increase reliability and reduce energy costs for customers within them, as

well as provide a host of other benefits to the local utility to which they are interconnected

(Bahramirad et al., 2015). Though benefits are well-known and documented in theory,

the evidentiary basis for understanding when and where microgrids are cost-effective

is lacking. One of the central missing elements is a robust understanding of where and

how private enterprises will actually invest in these systems. Models that quantify such

“business cases” using state-of-the-art methods are essential.

There are numerous revenue streams available to developers that can underpin

business cases (Stadler et al., 2016). The two largest are perhaps from energy services,

in which the microgrid provides electric service similar to a central utility (along with,

perhaps, heating and cooling services), and from reliability, in which the microgrid

improves electric service reliability for customers within beyond that provided by the

local utility. Industry observers believe early adopters in the nascent market will be

customers that can realize multiple benefits and that can implement systems under the

auspices of current regulatory rules2—such as private businesses, hospitals and public

infrastructure like schools.

This work adopts the U.S. Department of Energy (DOE) definition of a microgrid—

“a group of interconnected loads and distributed energy resources within clearly defined

electrical boundaries that acts as a single controllable entity with respect to the grid...[and

that] can connect and disconnect from the grid to enable it to operate in both grid-

connected or island mode”3—as the foundation for analysis herein. The islanding

component in particular is essential. Microgrids are distinct power systems with redun-

dant generating capacity and, with respect to supplying load, operate in parallel to the

2Rules governing U.S. electric utilities in most jurisdictions would, e.g., prohibit microgrids from
serving multiple customers whose properties span public spaces, such as roads. As such, market growth
typically assumes a “single-property, single-owner” business model.

3From the U.S. DOE Microgrid Exchange Group, an ad hoc group working on deployment and research.
The definition is important and worth noting since microgrids are often loosely defined.
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bulk grid. Though in many cases utilities provide customers with highly reliable power,

microgrids can improve reliability still further by islanding seamlessly when grid outages

occur upstream. Such capabilities underlie a core business case for those with high

demand for reliable power.

In addition to a lack of systematic analysis on business cases (e.g., on potential

customer types, on jurisdictions where adoption is likely to occur, and on enabling

technologies), there is little analysis too on impacts—notably on how microgrids affect

the local balance of energy supply and demand and hence system-wide emissions. This

is, in part, because so few of these systems are in operation today. Nevertheless, many

proponents of a future grid built on ubiquitous microgrids often assume complementary

emissions reductions; the evidence for this is lacking, however. In reality the impact on

emissions is unknown and depends on numerous connected parameters—e.g., commodity

prices for electricity and natural gas, technology innovation, and policy prescriptions.

It is therefore important and worthwhile to attempt to track these impacts, especially

to marginal greenhouse gas emissions and in the larger context of climate stabilization

goals. This work is the first study to do so, and has required building a new model

that connects investment and operation decision-making in microgrids to value streams

(notably reliability), costs, energy flows and emissions.

4.2 Study setup and data

4.2.1 Model

Models that evaluate microgrid economics along with technical aspects are the

basis for microgrid planning studies as well as microgrid analysis generally. One type in

particular—what might be called “investment and dispatch” models—evaluate microgrids

by considering the interactions within them that define business cases, for instance



104

between technology choice, cost, energy demand and supply, and, ultimately, emissions.

These models use various optimization techniques to connect individual resource models

(e.g., for fossil fuel-fired generators, thermal energy resources, solar PV, battery energy

storage, etc.) with other technical, economic, and financial parameters and constraints

(Liang and Zhuang, 2014). Ultimately, they inform decision-making in the design

process to support a potentially broad array of design objectives that span economic,

environmental, and/or reliability criteria (Ahmad Khan et al., 2016).

Many such models have been built—e.g., the well-known DER-CAM (Distributed

Energy Resources Customer Adoption Model) and HOMER (Hybrid Optimization Model

for Multiple Energy Resources) models. These evaluate the economics of local energy

provision, in which the microgrid functions similarly to a utility, providing electric and

perhaps thermal energy services to customers within it. Critically, few models couple that

analysis with one of reliability, which industry forecasts consider a primary market driver

for the commercial and industrial segment. Our primary motivation is to understand

how an emerging market for microgrids—adopted by private firms and operated for

private benefit—might impact emissions from the electric power sector. We are therefore

interested in capturing investment trends which stem from reliability. As such, we use

the new bi-level optimization model developed in Hanna et al. (2017a) and Hanna et al.

(2017c). That model connects the DERs that are key enablers of microgrids—such as gas

generators, CHP, solar PV, energy storage, and thermal resources—to quantify least-cost

investment, reliability, cost, energy demand/supply, and emissions for microgrid systems.

The model does not treat emissions reductions as a goal. The emissions impact of systems

are a by-product of firms’ pursuit of private benefits.
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4.2.2 Setup

With technology, policy, and market forces interacting to make microgrids eco-

nomically attractive for utility customers, and as industry forecasts point to significant

future growth, it is important to understand how greenhouse emissions from these systems

compare with standard utility service. The goal of the study, then, is to systematically

quantify carbon emissions from microgrids for likely first adopters who would seek

private benefits like greater reliability and lower utility bills.

This has two main parts. First, to qualify the prevailing conditions (which

might be rooted in technology, markets, or policy—or some combination) under which

microgrid adoption is economically viable, and second to quantify microgrid emissions

for comparison against marginal emissions from wholesale market generators. The logic

is that modeled shifts in emissions (if any) from microgrid adoption are irrelevant if

systems are uneconomical.

Figure 4.1. Locations modeled throughout California for microgrid adoption.
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To this end, customers and locations were selected across the state of California

(Fig. 4.1) to capture variation across the key parameters that drive outcomes. Locational

parameters—such as climate, irradiance, and utility of interconnection—affect solar

PV output, building thermal demand, and electricity rates, as well as define bulk grid

reliability. Customer-specific parameters define the size of the microgrid (physical

property size, total energy demand, peak demand) as well as the value attributable to

reliability. The latter stems from customer function (i.e., what the building is built to do

or provide).

In total, adoption at 43 locations across California was modeled. While numerous

model parameters vary by location, electricity prices and rate structures, which vary by

utility, are perhaps most important. The 43 locations cover the three large investor-owned

utilities (IOUs) in California and hence capture that variation, as well as differences in

utility reliability, climate, and solar irradiance. Rate structures are available on utility

webpages4; the retail natural gas price is set to 8 $/mmbtu; utility reliability data is

published by the California Public Utilities Commission (Kurtovich and Zafar, 2016);

and meteorological and irradiance data is from the National Solar Radiation Database

from the National Renewable Energy Laboratory5. Climate data serves as input to an

external modeling tool that produces time series load data.

In addition, three microgrid adopters (or building types)—an office building,

school and hospital—are modeled at each location. These adopters are electric utility

customers and defined by annual load profiles for electricity, heating, cooling and natural

gas. Load profile data is from the U.S. DOE6 and produced using the building simulation

4See https://www.pge.com/tariffs/index.page for Pacific Gas & Electric;
https://www.sce.com/wps/portal/home/regulatory/tariff-books/rates-pricing-choices for Southern
California Edison; and https://www.sdge.com/rates-regulations/current-and-effective-tariffs/current-and-
effective-tariffs for San Diego Gas & Electric.

5The National Solar Radiation Database is maintained at http://rredc.nrel.gov/solar/old data/nsrdb/1991-
2005/tmy3/.

6Data sets for building load are maintained at https://energy.gov/eere/buildings/commercial-reference-
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model EnergyPlus. It is location specific to the 43 locations modeled.

A last key set of inputs is bulk grid emission factors, which give the emission

intensity (tCO2/MWh) of the bulk grid. Data is available for all eight regions of the North

American Electric Reliability Corporation (Siler-Evans et al., 2012).

4.3 Results

This study sought to answer three core questions: whether microgrid adoption

is economical under present conditions; how microgrids configure to achieve minimum

total cost; and how emissions from those systems compare against emissions from the

wholesale electricity market. Ultimately, answers to these can highlight to policy makers

whether microgrid adoption provides a co-benefit for emissions reductions or whether

some intervention might be needed to achieve that.

To this end, several modeling sets were run. The first, a baseline set (section

4.3.1), answers the above questions for microgrids under conditions today and with no

(artificial) restrictions. The second cluster then explores how groups of technologies,

notably thermal resources, drive reductions (section 4.3.2).

Adopters are modeled before and after investment. A utility customer represents

the pre-investment case. This customer supplies load by purchasing all electricity and

natural gas from the utility. The post-investment case is the microgrid customer, who

invests in a microgrid to generate electric and thermal energy on-site. The option to

purchase utility power and natural gas remains. The cost savings derived from microgrid

adoption (i.e., the difference in total cost between the two customers) is the economic

benefit, which can be negative if adoption is uneconomical.

A similar comparison is made for CO2 emissions. Emissions attributable to

the utility customer are indirect. They result from power produced by the marginal

buildings.
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generator in the wholesale market (i.e., the last generator dispatched in the market

clearing process)—which is known through regression analysis of hourly market data.

Microgrid emissions, which are both indirect and direct—the latter the result of on-site gas

combustion in gas generators—are compared to the indirect total of the utility customer.

The logic is that microgrid adoption is a market intervention, albeit indirect. Power

produced at the distribution level by microgrids replaces power that would otherwise be

produced by the marginal generator.

4.3.1 Baseline results

Results show, under present conditions and for all building types and locations,

that microgrids are economical—i.e., microgrid adoption reduces the total cost of supply-

ing electricity and gas services to the utility customer (Fig. 4.2). Further, the transition to

microgrid service reduces CO2 emissions relative to marginal generators in the wholesale

market. For the case in which customers pursue private benefits to lower costs, there is a

co-benefit for system-wide CO2 emissions reductions from the electric power sector.

Two types of variation in the results are notable. First, utility customers for the

hospital produce similar emissions totals but a wide range in total cost. The narrow spread

on emissions is expected—these buildings consume, more or less, the same quantity of

energy. They deviate only due to small variation in load driven by climate (e.g., buildings

have different heating and cooling needs if located in the desert compared to the coast).

The range is total cost is wide, however, and due to differences in the reliability of the

distribution system to which the microgrid is interconnected. Reliability metrics range

from 0.39−3.97 occurrences/year for SAIFI and 19−311 min/occurrence for CAIDI—an

order of magnitude difference. The same building with nearly the same demand can incur

vastly different interruption costs depending on the reliability of the local grid. Utility

customers for the school and office building have a more equal spread between emissions
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and cost. For these building types, which respond more reactively to climate, climate has

a greater effect on energy consumption (total and peak consumption) and hence on cost

and emissions.

Figure 4.2. Total cost versus total emissions for all macro grid and microgrid customers.

The second type of variation is among microgrid customers, who show a wide

spread in total emissions but, by contrast, a very small spread in total cost. This is

the result of the modeling framework, which is built on least-cost optimization. Each

microgrid seeks a configuration of energy resources that minimizes total cost, irrespective

of resulting emissions—so cost totals are consistent across building types, but emissions

totals need not be. This means optimal solutions are likely non-unique: there are various

configuration pathways (i.e., combinations of gas generators, solar PV, energy storage,

and thermal resources) to least cost, and each differs in emissions, as Fig. 4.3 shows

(each result therein corresponds to a cost/emission total in Fig. 4.2). To some extent,

then, regulators have room to enact policy measures that further reduce emissions without

burdening customers by driving up their costs.

Interestingly, total cost results converge for microgrids adopted throughout the

three utility territories. This means least-cost solutions are indifferent to differences

across utilities, which are electricity rates and grid reliability. In other words, the starting
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point (utility-wise) matters little because the microgrid configuration (built on technology

costs and fuel costs) is cost-effective independent of outside electricity prices.

Figure 4.3. Range of microgrid configurations (i.e., technology deployment).

Results show, comprehensively, that microgrids are economical. In many cases,

notably for the larger hospital microgrids, they reduce both interruption costs and energy

costs (Fig. 4.4; where energy costs are the sum of investment and operating costs for

DERs). In other words, investment in generating infrastructure to reduce interruption

costs does not require a trade-off of increasing energy costs (which includes the cost of

repaying capital). This is notable because a business case (i.e., an economic justification

for investment) can then be made by pursuing either value stream (improving reliability

or reducing energy costs) independently, though of course developers would pursue both.

In these cases, the business case is highly robust.

By contrast, for smaller systems (the office building microgrid), there is at times

a trade-off between interruption and energy costs. Size is a factor: larger microgrids

(i.e., with greater electric and thermal load) are able to take advantage of CHP systems

(i.e., generators that capture and re-use heat) that simultaneously improve reliability and

energy efficiency (and hence cost) in the microgrid. In a sense, their electrical generation
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provides free heating and cooling services that would otherwise be supplied by other

means, like purchasing natural gas for chillers and furnaces. Smaller microgrids have

smaller demand and therefore do not deploy the largest CHP units with the highest

efficiencies; instead, they procure a greater share of energy from solar PV and battery

storage and by purchasing it from the utility (Fig. 4.3).

Figure 4.4. Cost shift from microgrid adoption, with interruption cost on the y-axis and
all other costs (investment plus operating costs, or “energy costs”) on the x-axis.

4.3.2 Technology drivers

Baseline results show that microgrids deploy a diverse set of resources to min-

imize cost. While each resource has a role, their contribution to meeting private goals

like increasing reliability and reducing energy costs, and to meeting social goals like

reducing emissions, are not necessarily equal. Those in the power industry who support

grid decentralization7 often tout associated environmental benefits, such as integrating

carbon-free resources like solar PV. But the degree to which solar PV actually contributes

to emissions reductions, let alone cost reductions in an industry driven by cost, is unclear.

To explore the role of technologies, a second set of models was run on top of the

7Grid decentralization, i.e. transitioning the grid from its current centralized paradigm of electrical
generation to one built on small-scale local resources.
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baseline set. In this new set, microgrid customers were re-modeled and, successively and

independently, restricted from investing in solar PV and then in thermal technologies

(CHP units, thermal generators, thermal storage). The subsequent shifts in cost and

emissions relative to the utility customer and baseline microgrid customer show the

contributions of each technology set (Fig. 4.5).

Several takeaways are clear. For larger buildings (the hospital), it is thermal re-

sources (and not solar PV) that are the primary technology driver of emissions reductions.

In some cases, hospital microgrids without thermal resources increase emissions relative

to the utility customer. Solar PV does contribute to reducing emissions (emissions in-

crease by approximately 12% on average when solar PV is restricted), but reductions are

small relative to that from thermal resources (emissions increase approximately 40% on

average when thermal resources are restricted). Restricting either set impacts cost little.

In no case does are microgrids uneconomical when these technologies are unavailable.

For smaller microgrids (the office building and school), where CHP is less

advantageous, the opposite trend is true: primary emissions reductions stem from solar

PV and not thermal resources. Again, neither set of resources is independently critical to

reducing cost. This is due to the fact that least-cost solutions are not unique. Restricting

one technology set does not necessarily restrict all pathways to least cost, as results for

the school and office building microgrids demonstrate.

4.4 Conclusion and policy implications

Supply of reliability, electricity and thermal energy services via a microgrid can

be cost-effective compared to provision by a utility. There are various reasons for this.

Some have to do with technology choice, others are the result of market conditions, and

still others are connected to policy decisions. Those complexities aside, microgrids in

California are economical and, under conditions today, produce co-benefits for system-
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Figure 4.5. Total cost versus total emissions for selected technology sets (yellow shows
the case in which solar PV is restricted; orange shows the case in which thermal resources
are restricted) for the office building (left), school (middle), and hospital (right).

wide emissions reductions.

In the context of long-term climate goals, however, several points are worth

nothing. Though microgrids reduce emissions now as a co-benefit, they are systems

built, in part, to improve reliability—which in California means systems built on natural

gas generators. Though backup operation would occur only rarely, generators could

operate when grid-connected to reduce customer energy costs when sensible. California

has set a goal to reduce CO2 emissions 80% below 1990 levels by 2050. Given that the

transportation sector will likely produce some emissions, such an aggressive economy-

wide goal implies little carbon emissions from the rest of the energy system. Ubiquitous

microgrids built on gas generators are fundamentally at odds with long-term climate

goals.

Policy makers have some control over important parameters. For example, carbon

taxes on direct emissions would likely shift investment to solar PV and further reduce

emissions without increasing total cost (see earlier discussion regarding cost and emis-

sions spreads in Fig. 4.2). Further modeling is needed but could show how far a carbon

tax could drive down emissions before it begins simply burdening customers.

In addition, policy makers can address electric tariffs. Specific electric tariffs

designed for microgrids—which are highly flexible systems that can in theory respond to
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real-time pricing—could better align actual system costs, including the cost of emitting

in the wholesale market, with electricity rates. Such tariffs could incentive microgrids to

self-consume local renewable power when the bulk grid is carbon intensive and electricity

prices are high, as well as to store renewable power when the bulk grid is producing

mostly green power. It is unclear at present what those special tariffs might look like.

A final comment concerns location. The modeling in this work was set in Cal-

ifornia, with emissions comparisons made against the California Independent System

Operator (CAISO) wholesale market. CAISO is a relatively green grid by compari-

son to others throughout the U.S. The potential for microgrids to reduce emissions is

highly dependent on the bulk grid of interconnection. That microgrids reduce emissions

in California therefore likely bodes well for locations across the U.S. A megawatt of

microgrid-generated power in the Midwest might be worth substantially more, in the

context of emissions reductions, than the same megawatt generated in California. Further

modeling is needed to explore jurisdictional differences, however, as electricity rates and

tariff structures also vary across the U.S. Such modeling would show both to potential in-

vestors where business cases are best, as well as to regulators where associated emissions

reductions are greatest.

Chapter 4, in part, is currently being prepared for submission for publication

of material. Hanna, Ryan; Kleissl, Jan; Victor, David G. The dissertation author is the

primary investigator and author of this article.



Chapter 5

Concluding Remarks

This dissertation has taken place in the midst of a time of transformation in

the electric power industry, and indeed to its physical embodiment the electric power

grid. The adoption rate of utility-scale renewables has increased dramatically. Many

state governments are calling for 30% or 50% renewable energy portfolio standards;

industry and interest groups believe much higher numbers are achievable. At the customer

scale, adoption rates for distributed energy resources too have seen substantial increase—

notably solar PV and increasingly battery energy storage, both stationary and in electric

vehicles. Over the course of this dissertation, with aid in the form of government

subsidies, a strong and self-sustaining industry and market for renewables and distributed

energy technologies has formed in the U.S., and in California in particular. Government

support is focused, and public support for decarbonization is strong.

One area of intent government focus has been to address grid modernization—

especially in the wake of multiple deadly Atlantic superstorms (notably Sandy in 2012 and

Maria in 2017) that caused billions of dollars in damage throughout the Caribbean islands

and northeast U.S. Microgrids have been a focal point of that conversation. Indeed, many

states have initiated proceedings that aim to improve grid reliability and resiliency via

microgrids, among other means. Policy support has spurred utility microgrids, while in

the private sector technology, market, and policy forces are combining to make microgrids

115
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economically viable for some utility customers.

It is in the broader context of such development that this dissertation is set.

Herein, we have analyzed the business case for microgrids that provide energy services

to customers within (Chapter 1). A broad review of the literature then showed that,

though the number of microgrid models capable of such analysis is numerous, few

touch reliability aspects at all, and those that do do so crudely or simplistically. At the

same time, industry analysts maintain that reliability will be a primary driver of future

investment and market growth. And so we set out to create a new model that combines

the utility of existing models with new functionality that addresses reliability.

Another review of literature showed new reliability evaluation methods would be

required. In Chapter 2 we present that method—cross-entropy Monte Carlo simulation

applied to the case of microgrids. We have built it specifically to integrate with our larger

optimization model that evaluates microgrid economics while considering reliability. In

Chapter 3 we present that model. Its novelty lies in its treatment of reliability; it extends

the modeling literature as the first framework that solves the sizing/scheduling problem

in microgrids while treating reliability costs realistically and explicitly as an objective.

The new algorithms in Chapter 2 and Chapter 3 are the core methodological contributions

of this dissertation.

Lastly, in Chapter 4, we applied the new models in a systematic study of microgrid

emissions throughout California. During this dissertation, many industry observers

have called for widespread adoption of DERs and microgrids. Their reasoning, often

predictably, includes the standard claim that adoption will reduce carbon system-wide

emissions. Little empirical evidence exists on the topic, however. Our study, the first to

provide these data systematically for early adopters throughout California, showed, at

present, that there are indeed co-benefits for carbon emissions reductions derived from

private investment in microgrids. Those reductions are not guaranteed, however, and
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future analyses will be needed, especially as the bulk grid becomes less carbon intensive

over time.

Over the course of this work, we have demonstrated how microgrids can provide

benefits to customers by reducing costs and improving electric service reliability, as

well as society at large, insofar as microgrids integrate renewables and reduce marginal

greenhouse gas emissions. We have also discussed where, in the context of microgrids

and decarbonization, future research is needed and how the tools we have built in

this dissertation can contribute. It is our hope that the assessments presented in this

dissertation would assist regulators and policy makers in their efforts to decarbonize and

modernize the electric grid.
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