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Abstract 

 

This paper explores the effects of lake evaporation and precipitation, reliability 

levels, and streamflow probability distribution on reservoir capacity and average 

release. A series of reservoir-analysis deterministic and stochastic models of 

increasing complexity are employed to examine these effects, which are illustrated 

using a mid-sized reservoir in Santa Barbara County, California. The deterministic 

reservoir models show evaporation dominating reservoir water balance, and, for the 

most part determining optimal reservoir capacity and annual releases, whereby 

comparatively larger reservoirs are required to compensate for the water lost to 

evaporation. The more complex stochastic models use chance constraints and 

bootstrapped reservoir inflow probability distributions, and suggest that optimal 

capacity and annual releases are dominated by reliability levels, with very large 

optimal reservoir capacities and annual releases required when the reliability levels 

approach one.  

 

Introduction 

 

The determination of reservoir storage capacity, with its desired yield and 

associated performance reliability, is an issue of longstanding interest in water 

resources management. Deterministic (black-box) and stochastic (statistical) 

approaches to the reservoir design and operation problem have been studied in detail 

[Loáiciga, 1988; Loáiciga 2002]. Stochastic inflow is a key consideration in reservoir 

modeling, and the recognition and use of gamma-distributed inflows (of particular 

interest in this article) is well explored [Loáiciga, 2005]. Many studies utilize Monte 

Carlo or similar simulations to create the stochastic inflow dataset. This work 

expands on previous reservoir-design research, especially on the papers by Loáiciga 

mailto:michaelr@geog.ucsb.edu
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[2002, 2005], and introduces an innovative use of reservoir-inflow bootstrapping to 

obtain the closed-form deterministic equivalents of chance constraints. 

Two primary reservoir functions are flow regulation (e.g. flood control) and water 

supply The former necessitates ample storage to receive and hold floodwaters, 

whereas the latter calls for large available storage to deliver a reliable supply of water 

for agricultural and/or municipal use. The desire to satisfy both objectives (and other 

plausible ones) simultaneously creates an optimization problem whose solution seeks 

an acceptable fulfillment of diverse functions. Loáiciga [1988] explored the 

relationships between mathematically feasible solutions, physically feasible solutions, 

and preferable solutions, which do not necessarily provide the same results, as 

discussed in Hashimoto et al. [1982].Evaporation plays a significant role in the water 

cycle throughout the semiarid western United States, where annual potential 

evaporation exceeds smaller and more highly variable annual rainfall and streamflow 

[see, for example, Loáiciga and Renehan, 1997]. In this region, lake hydrology 

(precipitation onto and evaporation from a lake’s surface) has been shown to exert 

substantial influence on optimal reservoir capacity and average annual water release 

[Loáiciga, 2002, although limited to deterministic treatment of reservoir design]. In 

addition, the large variability intrinsic to annual precipitation and streamflow 

(compounded by sustained periods of drought to El-Niño related flooding) 

complicates the water-balance analysis of reservoirs for the purpose of constructing 

reservoir-operation models, as we shall see.  

In synthesis, the objective of this research is to develop and implement a series of 

deterministic and stochastic reservoir-design models in which lake evaporation and 

precipitation are accounted for, and in which chance constraints (in the stochastic 

cases) are converted into  closed-form deterministic equivalents using the 

bootstrapping of cumulative reservoir inflow. The novel application of the 

bootstrapping technique in resolving chance constraints analytically yields the 

probability distribution and quantiles of the cumulative distribution of streamflow, 

which are essential in the implementation of the stochastic reservoir models 

considered in this paper. Lastly, this paper contains an example of the methodology 

herein presented to demonstrate its practicality. 

 

Methodology 

 

Expanding research by Loáiciga [2002, 2005], four reservoir optimization models 

are entertained in this work. Models I and II treat reservoir inflows deterministically. 

Models III and IV treat inflows stochastically. Models I and III do not consider lake 

evaporation and precipitation in the reservoir water-balance equation, whereas 

models II and IV do. The combination of scenarios encompassed in models I-IV 

provides the basis to compare the effects of stochasticity and lake hydrology on 

reservoir size and average release. The four reservoir models are described 

mathematically in this section, leading to their respective linear programming 

formulations. In this article we consider a single reservoir and an annual time step i (i 

= 1, 2, …, n). 
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The water-balance equation and the objective function. The basic water balance 

equation without lake evaporation and precipitation, for either deterministic or 

stochastic inflows is: 

iiiii wDrSS  1  (1) 

The basic water balance equation with lake evaporation and precipitation, for either 

deterministic or stochastic inflows is: 

iiiiiii EPwDrSS  1  (2) 

in which Si = reservoir storage (10
6
 m

3
); ri = reservoir inflow (10

6
 m

3
); Di = water 

diversions from the reservoir (10
6
 m

3
); wi = water releases (10

6
 m

3
); Pi = precipitation 

(rainfall) onto the reservoir surface area, expressed as a volume (10
6
 m

3
); Ei = 

evaporation from the reservoir, expressed as a volume (10
6
 m

3
). 

The objective function in all of the four models’ formulations is to minimize the 

cost of building the optimal reservoir capacity minus the present value of water 

releases (i.e. revenue gained from these water releases) with respect to reservoir 

capacity (C, 10
6
 m

3
) and annual releases (wi): 

Minimize       















n

i

iii
wH

s
CK

1 )1(

1
 (3) 

w.r.t. C, wi 

subject to the constraints: 

CSS i min  (deterministic constraint on reservoir storage, models I, II) (4) 

   CSSP imin  (stochastic constraint on reservoir storage, models III, IV) (5) 

rkwF i   (constraints on annual releases) (6) 

0, iwC  (non-negativity constraints) (7) 

where k = multiple of average annual reservoir inflow (k = 4 herein); K = unit cost of 

reservoir capacity ($ 10
6
/10

6
 m

3
); r  = average annual reservoir inflow (10

6
 m

3
); s = 

discount rate; Smin = dead storage at reservoir site (10
6
 m

3
); Hi = unit value of release 

($ 10
6
/10

6
 m

3
); F = downstream fisheries requirement (10

6
 m

3
); α = reliability level 

assigned to a chance constraint (a probability, typically between 0.75 and 1). 

The effect of lake evaporation and precipitation on reservoir storage. The 

models (II and IV) that take into account lake hydrology incorporate the effect of lake 

area (A, in 10
6
 m

2
), in this case average annual lake area, on precipitation (P) and 

evaporation (E). Define: 








 
 

2

1 ii

ii

AA
pP  (8) 








 
 

2

1 ii

ii

AA
eE  (9) 

in which: 

pi = measured precipitation (in rain gage near the reservoir, in m) 

ei = measured evaporation (adjusted pan evaporation at the reservoir, in m) 

Aj = a + b ∙ Sj, for j = i, i-1 (10) 

a, b regression coefficients relating lake area to storage. 
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Equation (10) is used in equations (8) and (9), which, in turn, are substituted into 

equation (2). The modified equation (2) becomes: 

iiiiiiiiii GwTDTrTSKS  1          (11) 

in which the constants Gi, Ki, and Ti are: 

 

 ii

ii

i

ep
b

epa
G






2
1

 (11a) 

 

 



















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ii

ii

i

ep
b

ep
b

K

2
1

2
1

 (11b) 

 ii

i

ep
b

T





2
1

1
 (11c) 

The modified equation (11) is used in constraints (4) and (5) to produce the 

deterministic and stochastic constraints on storage associated with models II and IV, 

respectively. 

Chance constraints. A key contribution of this research is the development of a 

methodology to cope with stochastic reservoir inflows (model III, which does not 

include lake evaporation and precipitation, and model IV, which does). The primary 

challenge lies in converting the probabilistic storage constraints into their 

deterministic equivalents. Model III minimum and maximum storage constraints can 

be written as follows (see Appendix A for a derivation): 

  min

)(

1

min 1 SBQwCgqSSP i

i

q

i

j

ji  


 (12) 

    i

i

p

i

j

ji BQwgCpCSP  


)(

1

1  (13) 

in which g = fraction of reservoir capacity defining initial storage, CgS 0 . 

Likewise, Model IV minimum and maximum storage constraints can be written as 

follows (see Appendix B for a derivation): 

  min

**)(

1

min 1 SGDRTwCgqSSP ii

i

q

i

k

kkkii  


  (14) 

    **)(

1

1 ii

i

p

i

k

kkkii GDRTwgCpCSP  


  (15) 

Constraint equations (12) – (15) contain the decision variables (C, wi) on their left-

hand sides. The constants kk
*
i

*
ii ,,G,D,B   that appear in equations (12)–(15) are 

defined in Appendices A and B, and depend on the geometry of the reservoir and on 

lake evaporation and precipitation in an involved fashion. In chance constraints (12) 

and (13) 
)(i

qQ  and 
)(i

pQ  are the q-th and p-th quantiles, respectively, of the probability 

distribution function of the sum of reservoir inflows (Qi), where: 
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



i

j

ji rQ
1

 (16) 

Likewise, in equations (14) and (15), )(i

qR  and )(i

pR  are the q-th and p-th quantiles, 

respectively, of the probability distribution function of the sum of weighted reservoir 

inflows (Ri), where: 





i

k

kkki TrR
1

  (17) 

The determination of the quantiles of Qi and Ri is explained next.  

Bootstrapping of linear combinations of reservoir inflows. Consider, for the 

sake of argument, the sum of weighed reservoir inflows Ri expressed in equation (17). 

The probability distribution 

function (pdf) of Ri is complex, especially because of inter-annual correlation among 

reservoir inflows. Classical statistical methods to develop such pdfs (see e.g., 

Loáiciga and Leipnik, 1999) are mathematically unwieldy when more than two 

random variables are added. The bootstrapping method has been successfully used in 

hydrology to approximate drought probabilities [Loáiciga et al, 1993]. In the context 

of this research – and keeping the random variable Ri in mind – the bootstrapping 

method is implemented as follows: (1) draw at random (with replacement) i values 

from the sample of n (n = 84 in this study) annual reservoir inflows and construct the 

bootstrapped weighted sum )(k

iR  (see equation (17)) in which k = 1; (2) repeat step 

(1) for k = 2, 3, …, N, in which N is the sample size of bootstrapped sums )(k

iR  (N = 

200 in this study); (3) the sample of bootstrapped sums, )1(

iR , )2(

iR , …, )(N

iR  is fitted 

with a theoretical pdf and evaluated with the χ
2
 goodness-of-fit test; (4) steps (1) – (3) 

are implemented for i = 1, 2, …, n, thus producing the bootstrapped pdfs of the Ris. 

The same method is used to approximate the pdfs of the sums Qi (see equation (16)), 

or for that matter, of any other function of random variables whose mathematical 

complexity defies standard methods.  

Summary of reservoir optimization models. In all four models the objective 

function is given by equation (3), in which the nonnegative decision variables are 

reservoir capacity (C) and annual water releases (wi). The maximum release 

constraint (given by equation (6)) applies in all cases. The constraint sets associated 

with the four alternative reservoir optimization models are: 

Model I – Deterministic reservoir inflows without lake evaporation and 

precipitation, where the minimum constraint is given by 

CwDrSSS iiiii  1min  (18) 

and the maximum constraint is given by equation (6). 

Model II – Deterministic reservoir inflows with lake evaporation and 

precipitation, where the minimum and maximum constraints are given by 

CGwTDTrTSKSS iiiiiiiiii  1min  (19) 

and in which the constants Gi, Ki, and Ti are defined by equations (A2), (A3), and 

(A4), respectively, in Appendix A. 
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Model III – Stochastic reservoir inflows without lake evaporation and 

precipitation, where the minimum and maximum constraints are given by equations 

(12) and (13), respectively. 

Model IV – Stochastic reservoir inflows with lake evaporation and precipitation, 

where the minimum and maximum constraints are given by equations (14) and (15), 

respectively. 

The four reservoir-optimization models constitute linear programming problems 

whose solutions were obtained with the Solver software included with Microsoft 

Excel. Data and site description of the case study are presented next. 

 

Site description 

 

The current research focuses on Lake Cachuma (see Figure 1), located in the 

Santa Ynez watershed (Santa Barbara County, California, U.S.A.), which supplies 

most of the urban and agricultural water for approximately 250,000 people in cities 

and towns within its reach and along the adjacent coast [Loáiciga, 2002].  

Storage. The minimum storage, or dead storage, for Cachuma Reservoir is Smin = 

20,000 AF (acre-feet) ≈ 25 x 10
6
 m

3
. To prevent overtopping, the maximum storage 

for each model scenario is set less than or equal to the optimal capacity as determined 

by the optimization process. The a and b coefficients in the lake area vs. storage 

equation (10) are 1.3007 and 0.05054, respectively [Loáiciga, 2002]. 

Releases 

Diversions (Di = D = 39.825 x 10
6
 m

3
 yr

-1
 [Loáiciga, 2002]), included in the 

annual water balance, remove water for municipal and agricultural uses. Fisheries and 

other ecological requirements determine the minimum annual release in all models. 

These are currently estimated at F = 2.932 x 10
6
 m

3
 [Loáiciga, 2002]. Maximum 

release is estimated to be four times the average reservoir inflow (for the 84 years of 

data). Therefore, k = 4 in the release constraint (6). This value supplies the models a 

reasonable range within which to find a solution yet prevents excessive releases 

which could produce extremely detrimental effects on downstream development, 

including agricultural and residential areas. 

 Hydrologic data. Figure 2 depicts annual reservoir inflow at Lake Cachuma for 

water years 1917-1918 through 2000-2001 (data available from author). High stream 

flow variability and frequent periods of below average stream flow are readily 

apparent in this figure. While there are a number of sharp spikes indicating large 

stream flows they are solitary and dispersed. Periods of two to four years of below 

average reservoir inflow are the more common observation. Figure 3 depicts annual 

rainfall and evaporation for water years 1917-1918 through 2000-2001 (data available 

from author). It is important to note that annual evaporation consistently and 

significantly exceeds annual rainfall. Annual evaporation also exhibits far less 

fluctuation than annual rainfall. To further exacerbate matters, periods of low rainfall 

(drought) tend to be associated with periods of high evaporation (and therefore 

increased water demand) and periods of high rainfall tend to be associated with 

periods of lower evaporation (which is therefore not present to remove the excess 

water), resulting in added strain on water resource management. 
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Figure 1. Lake Cachuma, Santa Barbara County, California. 

Results and discussion 

In each of the four alternative reservoir optimization models the initial storage, S0, 

is a fraction, g (0.5   g   1), of the optimal reservoir capacity. The four reservoir 

optimization models were formulated in Microsoft Excel spreadsheets and solved 

using Solver, Excel’s built-in mathematical programming package. Each formulation 

of the reservoir optimization model necessitated the solution of a linear programming 

problem for the range of initial storages (g = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). The 

stochastic components also include a range of reliability levels (p = 1 – q = 0.75, 

0.80, 0.85, 0.90, 0.95, 0.99) for each range of initial storages. 

Bootstrapping results. Bootstrapping was used to model reservoir inflow for 

Models III and IV, the stochastic cases. The distribution of each i-th sample is fit to a 

theoretical distribution and the 2 goodness-of-fit test is run on each distribution (in 

which the null-hypothesis statistic at a 5% significance level is, 2

4 (0.05) = 9.488). A 

gamma distribution was used in most cases, though a lognormal distribution was used 

in cases where the gamma distribution did not produce a good fit. In total, 80 of the 

84 distributions (approximately 95%) fit within acceptable limits, with a general trend 

of closer approximation to gamma distribution exhibited by larger i values. 

Reliability levels (quantiles) ranging from 0.75 (below which reliability is assumed 

unacceptable for management purposes) to 0.99 (above which solution is assumed 

impractical for management purposes) are determined from these bootstrapped 

distributions and used in the probabilistic models. 



Proceedings of the Operations and Management Conference “Operating Reservoirs in 

Changing Conditions”, August 14-16, 2006, Sacramento, California. ASCE Press.  

86 

 

 
Figure 2. Annual stream flow from Santa Ynez River and Santa Cruz Creek into the 

Cachuma reservoir, 1917-1918 through 2000-2001. (Source: United States 

Geological Survey; Loáiciga, 2002.).  

 
Figure 3. Annual Lake Cachuma rainfall and evaporation data, 1917-1918 through 

2000-2001. (Source: United States Bureau of Reclamation [evaporation], 2002; Santa 

Barbara County Water Resources [rainfall], 2002.) 

 

Optimal Capacity. Optimal capacity varies greatly between the models (see 

Figures 4 and 5). Model II optimal capacity (303 x 10
6
 m

3
) remains above model I 

optimal capacity (239 x 10
6
 m

3
) regardless of the value of initial storage. The larger 

optimal capacity of model II is most likely required to compensate for the 

comparatively large amount of water lost to evaporation. Models III and IV initially 
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exhibit a similar relationship, though with much larger optimal capacities. In the latter 

two models, optimal capacity is viewed in terms of reliability.  It is interesting to note 

that in model III optimal capacity is constant for initial storages only to around 95% 

of capacity. After this the optimal capacity increases rapidly, producing infeasible 

solutions when initial storage equals 100% of capacity. A look at annual average 

releases helps explain this finding. As the fraction of initial storage approaches 100% 

capacity the average annual releases approach their maximum, four times the average 

reservoir inflow for the 84 years of data. It appears that when initial storage equals 

100% capacity the reservoir is required to release more than the model constraints 

allow and, thus, is not able to release enough water to produce a feasible solution. In 

this case, evaporation is not present to remove the water necessary to produce a 

feasible solution. This situation does not occur in model IV, presumably due to the 

effect of evaporation. In both cases optimal capacity increases first gradually then 

rapidly as larger reliability values are approached. At lower reliability values model 

IV requires larger optimal capacities than model III, again most likely due to the loss 

of water to evaporation. However, as reliability increases the two models approach 

similar optimal capacities, with model III slightly surpassing model IV at very high 

reliability values (99%). This seems to indicate that at very high reliabilities 

(associated with very large capacities) the effects of lake hydrology diminish relative 

to the reliability level. 

 

 
Figure 4. Comparison of optimal capacity for models I and II. 

 

Annual Average Releases. Optimal annual average releases were determined by 

each of the models (see Figures 6 and 7).  Model I produces larger annual average 

releases than model II. This can most likely be attributed to the need for model I to 

release the water that model II loses through evaporation. Models III and IV exhibit 
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the opposite pattern. Model IV produces larger annual average releases than model 

III, though they appear to approach each other with increasing reliability. This change 

may be due to the very large optimal capacities required in model IV. These large 

capacities may generate correspondingly large annual releases. This may best be 

explained by understanding the reliability constraints. Very low reliabilities produce 

very small or essentially nonexistent reservoirs. One does not need a reservoir if 

water storage is not an issue. On the other hand, very high reliabilities lead to very 

large reservoirs. A large reservoir is needed if one does not ever want to run out of 

water on the one hand (in case of prolonged drought) or risk overtopping on the other 

(in case of substantial precipitation and reservoir inflow). Given these scenarios, low 

reliability and relatively smaller reservoirs requires releasing much of the potentially 

large reservoir inflow and precipitation. High reliability requires maintaining large 

capacity and retaining as much water as possible to preserve the largest feasible water 

supply. One must keep in mind, however, that a reservoir with very large capacity is 

associated with a high probability of performance rather than with a guarantee of 

desired water supply.  

Figure 5. Comparison of optimal capacity for models III and IV. 

 
Conclusion 

 

The strong effect of chance constraints on reservoir storage, and the highly 

variable lake hydrology and reservoir inflow render the determination of optimal 

reservoir capacity a challenging problem. Loáiciga [2002], using deterministic 

modeling, concluded that lake hydrology plays a substantial role on optimal reservoir 

capacity and average annual water release in semiarid river basins. The current 

research confirms this conclusion and shows that the role is complex and significantly 

influenced by the reliability level of chance constraints imposed on reservoir storage. 

While lake evaporation seems to play a more dominant role on storage in the simpler 
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(deterministic) models, the pronounced streamflow variability has a large impact on 

storage in the more complex (stochastic) reservoir models. In addition, optimal 

reservoir capacity was found to be very sensitive to the chance-constraint reliability 

level in the stochastic reservoir models. The most complex reservoir model, dealing 

with lake hydrology and stochastic inflows, calls for a very large and costly optimal 

capacity. At the same time, this model’s output also requires large annual average 

release, which produces substantial revenue.  

 
Figure 6. Comparison of optimal annual average releases for models I and II. 

 
Figure 7. Comparison of optimal annual average releases for models III and IV. 
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Lastly, previous research has suggested that the gamma distribution is a good 

choice for modeling stochastic reservoir inflows. The bootstrapping method 

employed in this research supports this proposal, with approximately 95% of the 84 

years of reservoir inflow data fitting the gamma distribution within acceptable limits. 

 

Appendix A. Derivation of chance constraints not considering lake evaporation and 

precipitation (model III, stochastic reservoir inflow). 

Constraint on minimum capacity: 

  qSSP i  1min ,  (e.g., 1 – q = 0.95) (A1) 

Let: 





i

j

ji rQ
1

 (A2) 





i

j

ji DB
1

 (A3) 





i

j

ji wC
1

 (A4) 

with initial storage CgS 0 . Expressing storage in terms of the initial condition S0 

yields: 

iiii CBQSS  0  (A5) 

The constraint (B1) is rewritten as follows: 

  qSCBSQP iii  10min  (A6) 

The cumulative inflow Qi is random, and the deterministic equivalent of equation 

(A6) is: 
)(

0min

i

qii QSCBS   (A7) 

in which 
)(i

qQ  is such that: 

  qQQP i

qi  1)(
 (A8) 

Notice that Qi equals the sum of i reservoir inflows. Therefore, the determination of 

the quantile 
)(i

qQ  necessitates the probability distribution function (pdf) of Qi. The 

determination of this pdf is nontrivial, a task accomplished in this work through the 

use of the bootstrapping method explained in the main text of this article. Equation 

(A7) yields: 

min

)(

1

SBQwCg i

i

q

i

j

j  


 (A9) 

[see equation (12)]. 

Constraint on maximum capacity: 

  pCSP i  ,  (e.g., p = 0.95) (A10) 

using equation (A5) in (A10) produces: 

  pSCBCQP iii  0  (A11) 

which yields the deterministic equivalent: 
)(

0

i

pii QSCBC   (A12) 
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in which the quantile 
)(i

pQ  is such that: 

  pQQP i

pi  )(
 (A13) 

The determination of the quantile 
)(i

pQ  is approached with the bootstrapping method 

described in the main text. Equation (A12) yields: 

  i

i

p

i

j

j BQwgC  


)(

1

1  (A14) 

[see equation (13)]. 

 

Appendix B. Derivation of chance constraints considering lake evaporation and 

precipitation (model IV, stochastic reservoir inflow). 

Constraint on minimum capacity: 

  qSSP i  1min ,  (e.g., 1 – q = 0.95) (B1) 

Let: 





i

k

kkki TrR
1

  (B2) 





i

k

kkki TDD
1

*   (B3) 





i

k

kkki TwW
1

  (B4) 





i

k

kki GG
1

*   (B5) 





i

k

ki K
1

  (B6) 





i

kr

rk K
1

 ≡ 1 if r > i (B7) 

with initial storage CgS 0  and where Gk, Kk, Tk were defined in equations (11a), 

(11b), and (11c), respectively. Expressing storage in terms of the initial condition S0 

yields: 
**

0 iiiiii GWDRSS   (B8) 

The constraint (C1) is rewritten as follows: 

  qSGWDSRP iiiii  10

**

min   (B9) 

The cumulative weighted inflow Ri is random, and the deterministic equivalent of 

equation (B9) is: 
)(

0

**

min

i

qiiii RSGWDS    (B10) 

in which 
)(i

qR  is such that: 

  qRRP i

qi  1)(
 (B11) 

Notice that Ri is the weighted sum of i reservoir inflows. The probability distribution 

function (pdf) of Ri is required to determine the quantile 
)(i

qR . In this work, we resort 
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to a bootstrapping method to obtain the quantile 
)(i

qR  (see main text). Equation (B10) 

implies that: 

min

**)(

1

SGDRTwCg ii

i

q

i

k

kkki  


  (B12) 

[see equation (14)]. 

Constraint on maximum capacity: 

  pCSP i  ,  (e.g., p = 0.95) (B13) 

Using equation (B8) in equation (B13) yields: 

  pSGWDCRP iiiii  0

**   (B14) 

and the deterministic equivalent becomes: 
)(

0

** i

piiii RSGWDC    (B15) 

in which the quantile 
)(i

pR  is such that: 

  pRRP i

pi  )(
 (B16) 

The determination of the quantile 
)(i

pR  is approached with the bootstrapping method 

described in the main text. Equation (B15) yields: 

  **)(

1

1 ii

i

p

i

k

kkki GDRTwgC  


  (B17) 

[see equation (15)].  
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