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Abstract

Best practice standards for measuring analyte levels in saliva recommend that all biospecimens be 

tested in replicate with mean concentrations used in statistical analyses. This approach prioritizes 

minimizing laboratory-based measurement error but, in the process, expends considerable 

resources. We explore the possibility that, due to advances in salivary assay precision, the 

contribution of laboratory-based measurement error in salivary analyte data is very small relative 

to more important and meaningful variability in analyte levels across biological replicates (i.e., 

between different specimens). To evaluate this possibility, we examine the utility of the 

repeatability intra-class correlation (rICC) as an additional index of salivary analyte data precision. 

Using randomly selected subsamples (Ns=200 and 60) of salivary analyte data collected as part of 

a larger epidemiologic study, we compute the rICCs for seven commonly assayed salivary 
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measures in biobehavioral research - cortisol, alpha-amylase, c-reactive protein, interlekin-6, uric 

acid, secretory immunoglobulin A, and testosterone. We assess the sensitivity of rICC estimates to 

assay type and the unique distributions of the underlying analyte data. We also use simulations to 

examine the bias, precision, and coverage probability of rICC estimates calculated for small to 

large sample sizes. For each analyte, the rICCs revealed that less than 5% of variation in analyte 

levels was attributable to laboratory-based measurement error. rICC estimates were similar across 

all analytes despite differences in analyte levels, average intra-assay coefficients of variation, and 

in the distributional properties of the data. Guidelines for calculating rICC are provided to enable 

investigators and laboratory staff to apply this metric and more accurately quantify, and 

communicate, the magnitude of laboratory-based measurement error in their data. By helping 

investigators scale measurement error relative to more scientifically meaningful variability 

between biological replicates, the application of the rICC has the potential to influence research 

strategies and tactics such that resources (e.g., finances, effort, number/volume of biospecimens) 

are allocated more efficiently and effectively.

Keywords

Salivary bioscience; Repeatability intra-class correlation; Technical replicate; Measurement error; 
Intra-assay coefficient of variation

1. Introduction

The past few decades have witnessed a macro-level trend that involves the widespread 

integration of biological measures in research studies across scientific disciplines. The ease 

of use and minimally invasive nature of saliva as a biospecimen has been especially valued 

in this endeavor as it enables the study of complex models of behavior, cognition, and health 

in laboratory, quasi-naturalistic, and real-world settings. There has been significant progress 

in developing and refining saliva collection and measurement methods, as well as expanding 

the number of salivary analytes involved in this research (see (Granger and Taylor, 2020) for 

review). Laboratory assay protocols for salivary biomeasures have evolved from in-house 

modifications of serum-based assays to modern methods specifically designed for saliva. 

These state-of-the-art assays are now widely commercially available, and, in many cases, 

designed to satisfy the immunodiagnostic industry’s rigorous criteria for precision and 

reproducibility (see (Granger and Gaitonde, 2020)).

Advances in salivary analyte measurement, however, have not necessarily been matched 

with comparable adjustments to research laboratory operating procedures. Current best 

practice standards in salivary analyte measurement generally require all biospecimens be 

tested in replicate. This approach prioritizes, and expends considerable resources to 

minimize, laboratory-based measurement error- a source of variability in analyte data that is 

generally very small. Further, this focus on measurement error at the level of individual 

analyte determinations is often misaligned with both our overarching research goals and the 

sophisticated statistical strategies we employ (see (Riis et al., 2020) for review).

We raise the possibility that, in some circumstances, inclusion of more data points per 

participant (i.e., biological replicates), or a larger sample size, or both, would be priority 
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over expending resources to test biospecimens in replicate (i.e., technical replicates). To 

explore this possibility, and objectively define these circumstances, we examine the 

repeatability intra-class correlation (rICC) as an index of biomeasure precision and data 

quality. We demonstrate the use and interpretation of the rICC in salivary bioscience and 

provide guidance for future researchers to use this index to inform their laboratory 

procedures, study designs, and resource allocation decisions.

1.1. Conventional metric of biomeasure precision: limitations of the intra-assay 
coefficient of variation (CV)

Currently, salivary bioscientists largely rely on the intra-assay CV as a measure of precision. 

The intra-assay CV is a point estimate reflecting variance in measured analyte levels for 

individual biospecimens tested in replicate. It is calculated by computing the relative 

variance across replicate determinations using the formula: 
SD replicate1, replicaten

mean replicate1, replicaten
× 100. 

The intra-assay CV is typically expressed as a percentage with perfect agreement indicated 

by an intra-assay CV of 0%. In general, immunodiagnostic industry standards expect an 

average intra-assay CV across all study samples ≤ 5% (Chard, 1990). The intra-assay CV 

has well-known limitations. It is percentage-based, and its magnitude depends on the level of 

the analyte. That is, the same variance across replicate determinations yields a small CV% 

when analyte concentrations are high and a large CV% when analyte concentrations are low. 

Also, as a measure of precision at the level of the individual biospecimen, the intra-assay CV 

does not relate variance across replicate determinations to the total variance in analyte levels 

across the study, thereby hindering the consideration of replicate variance within the larger 

context of the study.

1.2. The repeatability intra-class correlation

The rICC is an additional approach to measuring salivary biomeasure precision. Within the 

context of biospecimen testing, the rICC provides information about the proportion of total 

variation in analyte concentrations across a study that is attributable to variation across 

repeated measurements of the same biospecimen (Lessells and Boag, 1987; Shrout and 

Fleiss, 1979). The rICC is measured on a scale of 0–1 with perfect precision indicated by 1 

(meaning all the variation in analyte measurements in the study is due to differences in 

analyte levels across biospecimens and there is no laboratory-based measurement error). The 

rICC is estimated using the multilevel structure of the analyte data (replicates nested within 

biospecimen), and this estimation allows for the calculation of confidence intervals (CIs) 

around the rICC.

The rICC addresses two of the primary limitations of the intra-assay CV. First, by expressing 

measurement error in salivary determinations as a proportion of total variance in analyte 

levels across the study, rather than at the level of the individual biospecimen, the rICC 

allows the researcher to contextualize the relative importance of measurement error. Also, 

the estimation of CIs around the rICC provides a more detailed understanding of expected 

measurement error. When calculated during the early stages of a study, rICC CIs can 

objectively inform study planning for the number of technical replicates needed – more 

duplicate testing if measurement error is meaningful, or more singlet testing if measurement 
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error is negligible. These decisions have important implications for resource allocation 

(Table 1). For example, if measurement error is minimal and singlet testing is sufficient, 

resources (e.g., time, funds, reagents, lab supplies) otherwise reserved for and consumed by 

technical replicates could be used to assess additional participants, time points, and/or 

analytes.

1.3. Present study

This study examines the utility and value of the rICC as a metric for the salivary bioscience 

community, provides guidelines for its calculation and interpretation, and highlights its use 

in the effort to realign advances in the precision of modern salivary assays with salivary 

bioscience research design and resource allocation priorities. We explore the use of the rICC 

as an index of biomeasure precision for seven salivary analytes commonly employed in 

biobehavioral research: cortisol, alpha-amylase (sAA), c-reactive protein (CRP), interlekin-6 

(IL-6), uric acid (UA), secretory immunoglobulin A (SIgA), and testosterone. We compare 

rICCs across different assay types (singleplex vs. multiplex; immunoassay vs. kinetic 

reaction), examine the sensitivity of the rICC to data distribution issues common in salivary 

bioscience (i.e., skewed distributions and extreme/influential data points), and use simulated 

data to assess the stability of rICC estimates calculated using datasets of various sizes.

2. Material and methods

This study uses archival salivary analyte data assayed as part of a larger epidemiologic study 

- the Family Life Project (FLP) 12-year follow-up assessment. Descriptions of the FLP study 

(https://flp.fpg.unc.edu/) have been presented elsewhere (Vernon-Feagans and Cox, 2013). 

rICC analyses for all salivary analytes, except sAA, used data collected from a single, 

baseline saliva sample from 200 FLP participants (45% female; 44% African American). For 

sAA analyses, approximately 10% of saliva samples in the overall study were tested in 

duplicate, and all sets of complete duplicate determinations of sAA from baseline saliva 

samples were used in our analyses (N = 60; 38% female; 30% African American).

2.1. Collection of samples and determination of salivary analytes

Unstimulated whole saliva samples were self-collected by participants at home. Samples 

were immediately frozen, then transported frozen to the Institute for Interdisciplinary 

Salivary Bioscience Research (IISBR) laboratory at the University of California, Irvine 

where they were stored at − 80 °C. IISBR laboratory technicians operate under Good 

Laboratory Practice (GLP) guidelines. Liquid handling equipment, plate washers, and plate 

readers are maintained and calibrated following Standard Operating Procedures. On the day 

of assay, samples were thawed and centrifuged to remove mucins. All biospecimens were 

assayed in duplicate, and the average inter-assay CVs were less than 15%.

2.1.1. Cortisol—As described (see (Blair et al., 2011)), samples were assayed for 

salivary cortisol using commercially available, competitive immunoassay ELISA kits 

(Catalog #1-3002, Salimetrics, Carlsbad, CA). The test volume was 25 μL, and the assay 

limit of sensitivity was < 0.007 ug/dL with a measurement range up to 3.00 ug/dL.
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2.1.2. Alpha-amylase—As described (see (Granger et al., 2007)), samples were assayed 

for sAA using commercially available, kinetic enzymatic kits (Catalog #1-1902, Salimetrics, 

Carlsbad, CA). The test volume was 10 μL, and the sensitivity range for this assay was 0.4–

400 U/mL.

2.1.3. C-reactive protein—Samples were assayed for CRP using the Human CRP 

(Vascular Injury Panel 2) V-Plex kits (Ref# K0080900, MSD) following the manufacturer’s 

guidelines. CRP concentrations (pg/mL) were determined with MSD Discovery Workbench 

Software (v. 4.0) using curve fit models (4-PL with a weighting function option of 1/y2). 

Samples were diluted 5-fold in MSD Assay Diluent 101 with a test volume is 20 μL. The 

sensitivity range for this assay was 9.85–1010000 pg/mL.

2.1.4. Interleukin-6—Samples were assayed for IL-6 using a V-Plex Human 

Proinflammatory cytokine Panel (4-plex) manufactured by Meso Scale Discovery (MSD, 

Gaithersburg, MD, Ref# K008074) (Riis et al., 2014). A testing volume of 25 μL per sample 

was diluted 2-fold with MSD Assay Diluent 2 before being added to the plate for testing. 

The 4-plex Multi-Spot Array assay was run following the manufacturer’s recommended 

protocol without modification. Cytokine concentrations were determined with MSD 

Discovery Workbench Software (v. 4.0) using curve fit models (4-PL with a weighting 

function option of 1/y2). The sensitivity range for this assay was 0.38–1530 pg/mL.

2.1.5. Uric acid—Following Riis et al. (2018), samples were assayed for UA using 

enzymatic assay kits (Catalog #1-3802, Salimetrics, Carlsbad, CA). The test volume was 10 

μL, and the sensitivity for this assay was 0.07 mg/dL with a measurement range up to 20 

mg/dL.

2.1.6. Secretory IgA—As described (see (Laurent et al., 2015)), samples were assayed 

for salivary SIgA using commercially available, indirect competitive enzyme immunoassay 

kits (Catalog # 1–1602, Salimetrics, Carlsbad, CA). The manufacturer’s protocol was 

followed without modification. The test volume was 10 μL, and samples were tested at a 1:5 

dilution. The sensitivity for this assay ranged from 12.5 to 3000 μg/mL. SIgA concentrations 

were calculated from a standard curve generated using a 4-parameter non-linear regression 

curve fit (Gen5, BioTek, Winooski, VT).

2.1.7. Testosterone—As described (see (Rodriguez et al., 2020)), samples were assayed 

for testosterone using commercially available, enzyme-linked immunosorbent assay kits 

(Catalog # 1-2402, Salimetrics, Carlsbad, CA) following the manufacturer’s protocol. The 

test volume was 25 μL, and the sensitivity for this assay ranged from 1 to 600 pg/mL.

2.1.8. Salivary assay data quality assurance and quality control—Raw salivary 

analyte data were used as measured by the first round of assay testing. Determinations that 

would be flagged as requiring a repeat test during conventional quality assurance/quality 

control (QA/QC) processes at the first round (e.g., due to high intra-assay CVs) were 

included in the analyses to protect the rICC calculations against artificial inflation due to 

laboratory QA/QC processes.
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2.2. Analytic plan

2.2.1. Preliminary analyses—For each analyte, non-detect determinations (i.e., cases 

with analyte concentrations that fell outside the range of assay measurement) were removed 

prior to the random sampling of 200 individuals. The distribution and range of salivary 

analyte data were examined using descriptive statistics (Table 2), and the impact of 

transforming the data on the skew and kurtosis of the data was examined.

2.2.2. Repeatability intra-class correlations—The rICC was computed using the 

equation 
σa2

σa2 + σϵ2
 where σα2 is the between-individual variance and σϵ2 is the within-individual 

variance (Nakagawa and Schielzeth, 2010). We used a linear mixed modeling-based 

estimation of the rICC with two levels. Duplicate analyte determinations (level 1) were 

nested within participant (level 2; details provided in the Supplementary Materials, Methods 

section). CIs were estimated using a parametric bootstrap (see (Stoffel et al., 2019) for more 

details). We used restricted maximum likelihood estimation to minimize bias in the 

estimated variance components and examined the normality, homoscedasticity, and outliers 

of the level-1 and level-2 residuals to assess model fit.

2.2.3. Repeatability intra-class correlations and assay type, non-normal data, 
and influential data points—We compared rICC estimates across analyte to assess the 

sensitivity of the rICC to assay type and quality. For each analyte, rICC analyses were 

conducted using both the raw, untransformed salivary data as well as data that were 

transformed to improve the normality of the distributions. We then compared rICC estimates 

within analyte to assess the impact of non-normal data distributions on the rICC. Also, for 

each rICC analysis conducted with log-transformed analyte data, we identified potentially 

influential data points using Q–Q plots and Cook’s distance criteria. These data points were 

then excluded from the analytic dataset, creating a “trimmed” dataset. rICC estimates were 

recalculated using these trimmed datasets. Estimates generated using complete and trimmed 

datasets were compared within analyte to assess the impact of potentially influential data 

points on estimated rICC parameters.

2.2.4. Repeatability intra-class correlations and simulated sample size—
Salivary biomeasure data with two replicate determinations per participant were simulated 

using a two-level, linear mixed model shown in the Supplementary Materials, Methods 

section. Simulations were created by specifying between-individual (i.e., σα2) and within-

individual (i.e., σϵ2) variances which, in turn, would define the rICC. Three combinations of 

variance parameters were used to create rICCs of 0.90., 0.95, and 0.99: 1) σa2 = 0.99 & 

σϵ2 = 0.11 ICC = 0.90; 2) σa2 = 0.58 & σϵ2 = 0.03 ICC = 0.95; 3) σa2 = 0.99 & 

σϵ2 = 0.01 ICC = 0.99. Samples sizes of 50, 100, 150, and 200 were simulated for each 

rICC calculation. Sample sizes of 250, 300, and 350 were also simulated for rICCs of 0.90 

and 0.95. These analyses allowed us to assess the estimated variability around the “true” 

rICC that is expected when estimates are calculated using datasets of various sample sizes. 

Five-hundred simulations were created, and bootstrapped CIs were estimated (with 1000 

bootstrap iterations).
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We adopted a preliminary lower-limit threshold of 0.95 for the rICC (Harper, 1994) and 

evaluated estimated rICC CIs using this criterion. For a fixed rICC, the sample size at which 

the lower bound of the rICC CI was approximately ≥ 0.95 was identified as the smallest 

sample size that would support a reliably high rICC estimate using this preliminary criterion.

All analyses were conducted in R (R Core Team, 2019). rICC estimations and model checks 

were conducted using the rptR (Stoffel et al., 2019) and lme4 (Bates et al., 2020) packages, 

respectively. Our annotated R script is provided in the Supplementary Materials.

3.1. Preliminary analyses

Descriptive statistics and intra-assay CVs for all analytes are presented in Tables 2 and 3. 

Log-transforming the analyte data mostly improved the normality of the distributions for all 

analytes (Table 2). The average intra-assay CVs ranged from 1.91% to 8.00%, and the 

number of cases with intra-assay CVs exceeding 5% and 15% ranged from 10 to 105 (5.50–

52.50%) and from 0 to 24 (0.00–12.00%), respectively, across all analytes (Table 3).

3.2. Repeatability intra-class correlations and assay type, non-normal data, and 
influential data points

All analyte rICCs were very high (ranging from 0.971 to 1.000 across all analytes and 

conditions; Table 3). For all analytes, rICC point estimates were similar when comparing 

results from models using the raw vs. log-transformed data (Table 3). When rICC analyses 

excluded potentially influential points (6–22 cases excluded; Table 3), the rICC CIs 

overlapped for all analytes, except for CRP, UA, and sAA (using log-transformed data; Table 

3). Although not overlapping, the rICCs for CRP, UA, and sAA using the untrimmed and 

trimmed datasets were very precise with narrow CIs (Table 3).

3.3. Repeatability intra-class correlations and simulated sample size

For all simulations, the difference between the “true rICC” and the mean of estimated rICCs 

was ≤ 0.001. The coverage probability for all the sample sizes tested was ≥ 92%, meaning 

that our simulated CIs covered the true rICC value at least 92% of the time.

When the true rICC of the data was 0.99, our findings show that we can estimate reliably 

high rICCs (assuming a preliminary lower bound threshold of ≥0.95) using any sample size 

from 50 to 200 biospecimens (Fig. 1). For data with a true rICC of 0.95, however, the lower 

bound of the CI was as low as 0.92 when estimated with a sample size of 50 and as high as 

0.94 when estimated with a sample size of 200 (Fig. 1). With a true rICC of 0.90, estimation 

was relatively variable, ranging from 0.84 to 0.96 when calculated using 50 biospecimens 

and the range only improved to 0.87–0.93 when calculated using a sample size of 200 (Fig. 

1). Estimation of the rICCs with sample sizes > 200 showed limited added benefits in terms 

of precision, bias, and coverage probability (Supplementary Materials, Results section and 

Supplemental Fig. 1).
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4. Discussion

Our findings demonstrate the utility of the rICC in evaluating the precision of salivary 

analyte data. Among the advantages of using the rICC in salivary bioscience studies is its 

easy translation and application, meaningful interpretation which can inform study design 

and data quality decisions, and existing familiarity within the larger behavioral science 

community. There is also reasonable consensus regarding the thresholds of the rICC that 

represent acceptable, and excellent, levels of agreement between two measurements (Harper, 

1994).

When we applied the rICC to salivary analyte data, our findings revealed exceptionally high 

repeatability for all analytes with all rICC estimates exceeding 0.95. At this level of 

precision, the variability in our salivary data attributed to laboratory-based measurement 

error is < 5% with the remaining > 95% of variability reflecting differences in analyte levels 

across samples. Our rICC estimates indicate similarly low levels of measurement error for 

all our analytes despite variability in average intra-assay CVs across analytes and some 

instances of high across-replicate variability for individual biospecimens, as indicated by the 

percentage of samples with intra-assay CVs above 15%. These patterns of findings illustrate 

one of the added benefits of using the rICC to contextualize the contribution of measurement 

error relative to variability in the overall analyte data- a comparison that is not possible when 

measurement error is expressed at the individual biospecimen level (i.e., as with the intra-

assay CV). This contextualization of measurement error is especially important when 

modeling changes and/or differences in salivary biomeasure concentrations associated with 

hypothesized predictors, group memberships, or independent variables. For example, if 

researchers find that an intervention effect accounts for 10% of the variance in a salivary 

analyte’s concentration, and the study employed singlet testing with an analyte with a 

“known” rICC of 0.95, up to half of the “intervention effect” could be due to measurement 

error. While it is highly unlikely that all the remaining analyte variance in this example (5%) 

could be attributed to measurement error alone, indexing and contextualizing measurement 

error in this way provides a more measured understanding of model results. This is 

especially important when the estimated effects are relatively small. The rICC allows for this 

contextualization and aids in the interpretation of the overall study findings and the 

implications of these findings.

The rICC also provides distinct advantages when investigators have identified confounding 

variables and/or covariates that are important in the calculation of measurement precision 

(e.g., sampling method or sample quality characteristics) as these variables can be included 

in the rICC estimation. In contrast, the intra-assay CV, by nature of its measurement at the 

biospecimen level, is especially valuable when QA/QC procedures are essential during the 

assay process (e.g., when there is high variability in a study sample or when laboratory staff 

are inexperienced). Also, when the sample size is very small or the assumptions of an rICC 

model are not met, intra-assay CV calculations are more appropriate. Assessing both the 

rICC and individual biospecimen intra-assay CVs in salivary bioscience studies therefore 

provides a more nuanced understanding of laboratory-based measurement error and its 

potential impact on the study results and implications.
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The high level of precision demonstrated in salivary assay data is rarely required, nor 

expected, for self-report, interview, or behavioral observation data collected in biobehavioral 

research. Achieving this high bar for precision has several noteworthy implications. When 

the rICC indicates that laboratory-based measurement error is minimal, researchers may 

choose to reduce the number of technical replicates and instead prioritize biological 

replicates. Testing only a small percentage of technical replicates allows more data to be 

generated from finite saliva sample volumes and study resources. Shifting resources 

conventionally allocated for technical replicates (time, funds, disposable supplies, assay 

reagents) to support assaying more samples per participant, or additional salivary analytes 

per sample, can enable more complex study designs and research questions. Singlet testing 

also increases the possibility that sample volume can be reserved for archiving or 

biorepositories.

Researchers can use the rICC as an objective index to assist in these decision-making 

processes during the planning, piloting, and implementation phases of their projects. At the 

earliest stages of study design and proposal, documenting that the salivary assay protocols to 

be applied yield high rICC indices in a request for funding may add substantial value during 

the review process. This information would provide the context for an investigative team to 

objectively justify reducing the number of technical replicates. Reduced replicate testing can 

make resources available to improve the study design to minimize other, perhaps more 

important, sources of unsystematic variability (e.g., variability due to sample collection 

times or collection type). During the planning stages, investigators can also use laboratory- 

and analyte-specific rICC estimates to select a testing laboratory, refine assay testing 

protocols, and inform the selection of measurement panels, sampling schemas, and sample 

size determinations. Once preliminary data are available, rICC estimates can be calculated 

using these data, and this information can help researchers finalize study plans.

For investigators who have already completed data collection, monitoring or requesting rICC 

information from technicians conducting their biological testing may also be useful. The 

rICC indicates how well the assay performs in the hands of the operator. If the data from a 

particular assay, student, staff member, or laboratory yield a less than exceptional rICC, the 

investigator may need to adjust testing plans to support a higher percentage of technical 

replicates, use the rICC as a criterion to rework staff training, or, in the worst-case scenario, 

select another laboratory with above-threshold performance metrics.

When evaluating rICC estimates calculated from pilot data or reported by testing 

laboratories or specific operators, the simulation study findings presented here provide 

valuable information about expected variability in estimated rICCs. For example, if a 

researcher planning a large-scale salivary biomeasure study estimates a rICC of 0.95 using 

pilot data from 50 participants, they can be reasonably confident the rICC of their final 

analyte data will range from 0.92 to 0.98. Depending on the level of precision needed for the 

specific research question, the investigator may decide to test all or only a proportion of 

samples in replicate. For laboratories interested in using rICC estimates to help guide assay 

testing recommendations and demonstrate laboratory measurement precision, our findings 

suggest that very stable rICC estimates can be calculated using samples of 200 

biospecimens, and smaller sample sizes may provide adequate stability in rICC estimates 
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depending on the specific research question, potential clinical applications, and desired 

measurement precision. Sample sizes beyond 200 provided only marginal added benefits in 

rICC measurement precision. Our findings also suggest that laboratories and assay operators 

should aim to meet our preliminary lower-limit threshold of 0.95 for the rICC, as this 

criterion was surpassed for all analytes and conditions tested.

Regarding the statistical estimation of the rICC, there are several guidelines we believe 

should be considered by salivary bioscience researchers. First, we highlight the importance 

of checking the distribution of the analyte data prior to rICC estimation and evaluating 

model fit parameters after calculation. While we present rICCs estimated using both raw and 

log-transformed data, it is important to note that the validity of the rICC estimate could be 

sensitive to model fit, and non-normal distributions of salivary analyte data may compromise 

these indices (Schielzeth et al., 2020). Also, although not evaluated in the current study, the 

estimation of the rICC can be adapted to adjust for additional sources of variation in salivary 

measurements. For example, rICC models can control for confounding covariates thought to 

affect measurement precision such as biospecimen collection method and mucin content. In 

addition, multiplexing technology allows for the testing of multiple analytes in a single well. 

This introduces another level of variability to the rICC multilevel calculation and allows for 

shared variance at the level of the plate well. Similarly, future studies could examine 

adjustments to the rICC calculation that could account for multiple saliva sample collections 

per participant in the dataset. Modeling the shared variance among biospecimens from the 

same participant may strengthen rICC estimates. These approaches should be considered 

when estimating rICCs. Such modifications to the rICC calculations are important areas of 

investigation for future studies as they may increase the rICC estimates, along with their 

utility and reliability, for salivary bioscience researchers and testing laboratories.

4.1. Limitations

When applied to salivary biomeasure data, there are several sources of variance that could 

affect the level and stability of estimated rICCs. In this study, we address variation related to 

assay type, the distribution of the data, and sample size. However, it is important to note that 

an analyte’s rICC is specific to the testing laboratory, its equipment, and staff. The quality of 

the laboratory equipment and experience and performance of the laboratory staff are critical 

factors influencing the precision of analyte determinations. Laboratories and investigators 

conducting assay work should verify that their equipment is calibrated and in good working 

order. These factors will directly affect the level of the rICC estimated. Therefore, the rICCs 

we report should not be generalized beyond our laboratory. We were also not able to assess 

the sensitivity of rICC estimates to biospecimen quality and characteristics. Various factors 

related to saliva sample collection, storage, and constitution (e.g., swab vs. passive drool 

collection, cold chain procedures, and mucosal content) may increase the risk of within-

biospecimen variation, thereby reducing the rICC. Future research is needed to understand 

the effects of these factors on the rICC estimate. Finally, when evaluating the rICC estimates 

presented in this paper and calculated by other studies or laboratories, it is important to 

consider how differences in between-biospecimen variance will impact rICC estimates, even 

when the variance associated with measurement error is held constant (see (Dochtermann 

and Royauté, 2019) for additional discussion). While we found similarly high rICC 
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estimates for all our analytes regardless of their level of variation (as can be seen in the wide 

range of SDs in our analyte data), this is likely due to the small contribution of across-

replicate variation in our analyses. When using the rICC to assess biomeasure precision, 

future researchers should consider both the between-biospecimen and across-replicate 

variance estimates as well as the rICC estimate.

5. Conclusions

Estimates of the rICC demonstrated the exceptionally precise measurement of salivary 

analyte concentrations in our example data. The calculation of this additional index of 

biomeasure precision was easily implemented, and estimates were robust across assay and 

data characteristics. With additional studies that advance the use and utility of the rICC in 

salivary bioscience research, the further adoption of this index in biomeasure investigations 

could support the efficient allocation of study resources and the implementation of more 

complex and rigorous studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Results from a simulation study assessing the stability of repeatability intra-class correlation 

(ICC) estimates when calculated using sample sizes from 50 to 200. Note: 1000 bootstrap 

95% confidence intervals are presented for each estimated ICC. Dotted lines represent a 

repeatability ICC of 0.95. See the Methods section for information about the combinations 

of variance parameters used to generate the simulated data.
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