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Abstract

Dopamine signaling in the nucleus accumbens (NAc) plays a critical role in the regulation of
motivational states. Recent studies in male rodents show that social defeat stress increases the
activity of ventral tegmental dopamine neurons projecting to the NAc, and that this increased
activity is necessary for stress-induced social withdrawal. Domestic female mice are not similarly
aggressive, which has hindered complementary studies in females. Using the monogamous
California mouse (Peromyscus californicus), we found that social defeat increased total dopamine,
DOPAC, and HVA content in the NAc in both males and females. These results are generally
consistent with previous studies in Mus, and suggest defeat stress also increases NAc dopamine
signaling in females. However, these results do not explain our previous observations that defeat
stress induces social withdrawal in female but not male California mice. Pharmacological
manipulations provided more insights. When 500 ng of the D1 agonist SKF38393 was infused in
the NAc shell of females that were naive to defeat, social interaction behavior was reduced. This
same dose of SKF38393 had no effect in males, suggesting that D1 receptor activation is sufficient
to induce social withdrawal in females but not males. Intra-accumbens infusion of the D1
antagonist SCH23390 increased social approach behavior in females exposed to defeat but not in
females naive to defeat. This result suggests that D1 receptors are necessary for defeat-induced
social withdrawal. Overall, our results suggest that sex differences in molecular pathways that are
regulated by D1 receptors contribute to sex differences in social withdrawal behavior.

1. Introduction

There is compelling evidence that the mesolimbic dopamine system has important effects on
behavior in aversive contexts. Social defeat stress induces an immediate increase in
dopamine turnover in ventral striatum (Mos and Van Valkenburg, 1979; Puglisi-Allegra and
Cabib, 1990) and dopamine release in the nucleus accumbens (NAc) (Tidey and Miczek,
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1996). In addition to these short term responses, defeat stress induces long lasting increases
in burst firing of ventral tegmental area (VTA) dopamine neurons (Anstrom et al., 2009;
Cao et al., 2010; Krishnan et al., 2007; Razzoli et al., 2011). Withdrawal from social
contexts is linked to hyperactivity of VTA dopamine neurons (Krishnan et al., 2007).
Inhibition of burst firing by VTA dopamine neurons through overexpressing potassium
channels (Krishnan et al., 2007) or direct optogenetic control (Chaudhury et al., 2013)
increases social interaction behavior in male Mus musculus exposed to defeat. Increases in
activity of VTA neurons projecting to the NAc, but not medial FC were especially critical
for inducing social avoidance. This suggests that sustained increases in dopaminergic
activity in the NAc are important for inducing social withdrawal behavior.

Social withdrawal is an important component of stress-induced mental disorders including
anxiety and depression. These disorders are more commonly diagnosed in women than men,
and there are important sex differences in neurobiological and endocrine responses to stress
(Trainor, 2011). A handful of studies have examined the effects of social defeat in female
rodents (Holly et al., 2012; Huhman et al., 2003; Solomon et al., 2007), but no study has
tested whether the mesolimbic dopamine system is affected by defeat in females. The most
widely studied rodent model species, M. musculus, is not optimal for studying sex
differences because female aggression levels are low (Jacobson-Pick et al., 2013). We
addressed this gap in the field through studying the monogamous California mouse
(Peromyscus californicus), a species in which both males and females (Silva et al., 2010)
exhibit territorial aggression.

Female California mice exposed to three episodes of social defeat stress exhibit social
withdrawal behavior whereas this effect is reduced or absent in males (Trainor et al., 2011;
Trainor et al., 2013). In females, defeat stress increased the number of phosphorylated
CREB (pCREB) positive cells in the NAc shell, and social interaction behavior is negatively
correlated with the number of pCREB cells in the NAc shell (Trainor et al., 2011).
Activation of dopamine D1 receptors increases cyclic AMP production (Kebabian et al.,
1972), which in turn facilitates phosphorylation of CREB (Yamamoto et al., 1988). We
hypothesized that increased activation of D1 receptors in the NAc shell would inhibit social
interaction behavior and that this effect would be enhanced in females compared to males.
We also examined, for the first time, the effects of social defeat on dopamine content and
receptor mRNA in the NAc in both males and females. Our results show that activation of
D1 receptors is indeed necessary and sufficient to induce social withdrawal in female
California mice, but that the mechanism for sex differences in behavior may be downstream
of D1-signaling.

2. Materials and Methods

2.1 Animals and housing conditions

Male and female California mice were obtained from our breeding colony at UC Davis.
They were group housed (2-3 same-sex animals per cage) unless otherwise stated for each
experiment. Animals were maintained in a temperature-controlled room on a 16L-8D cycle
with ad libitum water and food (Harlan Teklad 2016, Madison, WI). Cages were
polycarbonate plastic with corn-cob bedding, nestlets, and enviro-dri. All procedures were
approved by the Internal Animal Care and Use Committee (IACUC) and conformed to NIH
guidelines. All efforts were made to minimize animal suffering, to reduce the number of
animals used.
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2.2 Social defeat

Mice were randomly assigned to social defeat or control handling for three consecutive days
(Trainor et al., 2011; Trainor et al., 2013). Mice assigned to social defeat were introduced to
the home cage of an aggressive, same-sex sexually-experienced mouse during the dark
phase. Episodes of defeat were terminated following either 7 minutes or 10 bites from the
resident, whichever occurred first. Control mice were introduced to an empty cage for 7
minutes. This approach more closely resembles methods used in rats (Rattus norvegicus)
(Carnevali et al., 2012; Nikulina et al., 2012) and Syrian hamsters (Mesocricetus auratus)
(Morrison et al., 2012; Taylor et al., 2011).

2.3 Open field and social interaction test

Social interaction tests consisted of 3 phases, 3 minutes each (Trainor et al., 2013). In the
open field phase (OF), animals were introduced into a large open field (89x63%60 cm).
Durations within a center zone located 14cm from the sides were recorded using the Any-
Maze video tracking system (Stoelting, Wood Dale, IL). During the acclimation phase a
small wire cage was introduced against one side of the arena, the amount of time the mouse
spent within 8 cm of the empty cage was recorded. During the social interaction phase an
unfamiliar, same-sex virgin stimulus mouse was placed into the wire cage. We recorded the
amount of time the focal mouse spent interacting with the wire cage and the duration spent
in the two corners opposite the wire cage. We also calculated ratios for the interaction zone
and corner zones defined as time during social interaction phase/time during acclimation
phase x 100, as previously described (Krishnan et al., 2007; Vialou et al., 2010). Total
distance traveled during the open field was used as an estimate of total activity.

2.4 Experiment 1: Effects of defeat stress on dopamine content

Males and females were randomly assigned to social defeat or control conditions. Two
weeks after defeat or control handling, all mice were tested in the social interaction test. The
morning following social interaction testing (during lights on), cages were moved to the
necropsy area 30—45 minutes before euthanasia. After a brief increase in activity after
transfer, the mice returned to nests and were inactive. Each mouse was then lightly
anesthetized and decapitated. It should be noted that the isoflurane anesthesia can inhibit the
dopamine transporter and increase dopamine levels after > 15 minutes of anesthesia (Baba et
al., 2013; Byas-Smith et al., 2004; Votaw et al., 2003; Votaw et al., 2004). However,
because our mice experienced 90 seconds of isoflurane anesthesia we interpret these levels
as baseline differences in dopaminergic tone. Brains were rapidly removed and 2 mm slices
were dissected using a brain matrix (Trainor et al., 2003). The NAc and medial prefrontal
cortex were dissected using a 1 mm punch tool and samples were frozen on dry ice and
stored at —40° C. Punch samples were homogenized in 0.3 M perchloric acid and passed
through 0.22 um filters (Ultrafree Millipore, Billerica, MA). Total protein content in each
sample was assessed using the Pierce Protein Assay (660 nm). Samples were then frozen at
-40 C and then shipped to the Wisconsin National Primate Research Center for high
pressure liquid chromatography (HPLC) analysis.

For measurement of norepinephrine, epinephrine, dopamine, 3,4-dihydroxyphenylacetic acid
(DOPAC), serotonin and homovanillic acid (HVA), 150 pl of perfusate was thawed and
aliquotted into polypropylene inserts for HPLC vials. To this, 50 pl of internal standard, 3,4-
dihydroxybenzylamine (DHBA), was added at a concentration of 0.1 pg/mL. Samples were
loaded onto an autosampler (ESA #542) cooled to 5 °C. The injection volume was 50 pl
using 100 pl partial loop onto a 4.6 x 250 mm C18 100A column (#00G-4252-E, Luna,
Phenomenex, Torrance, CA). The detection system consisted of ESA (Chelmsford, MA,
USA\) isocratic pumps with a Coluochem I11 electrochemical detector. The mobile phase
consisted of 10% acetonitrile in phosphate buffer (pH 2.75) containing 1.73 mM 1-
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octanesulfonic acid. The flow rate was 1.0 mL/min and the pressure at that flow rate was
approximately 120 bar. The voltage was as follows: guard at —250 mV, E1 at —250 mV and
E2 at +250 mV. The gain for E1 and E2 was set at 500 nA. The analytes were purchased in
high purity powder form from Sigma (Sigma-Aldrich, St Louis, MO), and fresh stocks were
prepared on a weekly basis (10 pg/mL in 0.2 N perchloric acid). The standard curve was 10-
points, ranging from 250 to 0.488 ng/mL also in 0.2N perchloric acid with DHBA as the
internal standard. Linearity for each analyte was at least 0.999. The CV was 3.5% for
norepinephrine, 4.0% for epinephrine, 4.7% for dopamine, 5.2% for DOPAC, 4.6% for
serotonin and 9.1% for HVA.

2.5 Experiment 2: Effects of defeat stress on dopamine receptor expression

Males and females were randomly assigned to social defeat or control conditions. Two
weeks after defeat or control handling, all mice were tested in the social interaction test.
Immediately after testing each mouse was lightly anesthetized with isoflurane and
decapitated. Punch samples of the NAc were collected as in experiment 1.

RNA was extracted from punch samples using RNAqueous Kits (Life Technologies,) and
reverse transcribed using iScript Kits (BioRad). Transcripts were quantified using SYBR
Green chemistry on an ABI 7500 Sequencing Detection System. To detect specific
dopamine receptor subtypes, primer pairs were based on previously published sequences.
Each primer pair was tested with California mouse cDNA and sequenced via Sanger
Sequencing to confirm specificity (Table 1). For each sample, dopamine receptor gene
expression was normalized to an average of GAPDH and B-actin expression. There were no
significant differences in cycle thresholds between groups for GAPDH or B-actin.

2.6 Experiment 3: Effects of D1 agonist infusion in males and females naive to defeat

Males and females were anesthetized with isoflurane (3-5% in 1% O,) and implanted with
bilateral stainless steel guide cannula (Plastics One, C2351/SPC) aimed at the NAc shell
(Fig. 1, AP=0.51 mm, LM=1.1 mm, DV=6.85). The guide cannula (26ga, 0.d.=0.46 mm;
i.d.=0.24 mm; length=5.85 mm), was lowered into burr holes (#105 dremel bit, 1/16” tip)
and attached to the skull using acrylic dental cement and skull screws (plastics one, 00-96 X
1/16). Guide cannulae were maintained patent using bilateral dummy caps (Plastics One,
C235DC). Animals were given 37 days for recovery, during which the mice were observed
and handled daily.

Infusions were made using bilateral internals (Plastics One, C2351/SPC, 33ga, 0.d.=0.21
mm; i.d.=0.11 mm) that projected 1 mm past the cannula guide (6.85 mm total length). The
D1 agonist SKF38393 (Sigma, St. Louis, MO) was dissolved in artificial cerebrospinal fluid
(aCSF) and prepared fresh on the day of injection. Males and females were randomly
assigned to receive a 200 ul infusion containing either aCSF, 5ng, 50ng, or 500ng of
SKF38393. Hamilton syringes were attached to an automatic micropump delivery apparatus
(PHD 2000, Harvard Apparatus, Cambridge, MA) set to deliver 100nl/min. Internal guides
were kept in place for 1 min after injection to ensure delivery after which dummy guides
were placed back into cannula guide. Each mouse was returned to its home cage and after 30
min was tested in social interaction tests as described above. Immediately following testing,
each animal received a 200 nl infusion of blue food coloring to visualize both the injection
site and fluid diffusion. Each mouse was then anesthetized with isoflurane and decapitated.
Brains were removed and fixed in 5% acrolein and processed to confirm needle placement.
The brains were immersed in 20% sucrose overnight, frozen and sectioned coronally at 40
pm on a cryostat. In order to confirm needle placement, tracks were assessed in sections
stained using cresyl violet (Figure 1B). In addition, diffusion of fluid was examined by
visualization of blue dye in pictures of each brain during cryostat sectioning. Data from mice
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with needle tracks outside of the NAc shell were included in statistical analysis as
anatomical controls (Tables 4 and 5).

2.7 Experiment 4: Effects of D1 antagonist infusion in females exposed to defeat or control

conditions

Female California mice were randomly assigned to social defeat or control conditions as
described above. Two weeks later each female was implanted with guide cannula aimed at
the NAc shell as described in Experiment 3 (Fig. 2). After recovery, each female was
randomly assigned to receive an infusion of aCSF or 2.5 j1g of the D1 receptor antagonist
SCH23390 (Sigma, St. Louis, MO). The infusion procedure and behavioral testing was
conducted exactly as described in Experiment 3. After testing, dye infusion and histology
were performed as in Experiment 3.

2.8 Statistical Analyses

3. Results

In experiments 1 and 2, HPLC and gene expression data were log transformed and analyzed
with two way ANOVA (sex and stress). Analyses of Q-Q plots revealed that these data were
not normally distributed and so log transformations were used. For experiments 3 and 4
variation in behavioral data was heterogeneous across treatment groups, so nonparametric
analyses were used. Specifically, in experiment 3 Kruskal-Wallis tests were used to test for
an effect of SKF38393, followed by pair-wise Mann-Whitney U tests. In experiment 4
Mann-Whitney analyses were used to compare the effect of SCH23990 in control and
stressed females. In experiment 3 male and female experiments were run at separate times,
so male and female data were analyzed separately. In experiments 3 and 4, we also
calculated an interaction ratio, defined as the time spent in a zone during the social
interaction period divided by the time spent in the zone during the acclimation period
(Krishnan et al., 2007; Vialou et al., 2010). Interaction ratios were calculated for both the
cage zone and corners opposite the cage.

3.1 Experiment 1: Effects of defeat stress on dopamine content

In the NAc, males had higher dopamine (Fig. 3A, F1 31=16.5, p < 0.001), DOPAC (Fig. 3B,
F131=10.8, p < 0.01), and HVA (Fig. 3C, F1 31=12.5, p < 0.001) content compared to
females. In addition, defeat stress induced a significant increase in dopamine (F1 31=8.6, p <
0.01), and modest increases in DOPAC (F1 31=3.7, p = 0.06) and HVA (F1 31=3.2, p < 0.08)
content. There were no sex x stress interactions (all p’s >0.4). Norepinephrine levels were
significantly higher in males (Table 2, F1 33=17.3, p < 0.001) but there were no effects of
stress or interaction. There were no significant differences in 5-HT content (all p’s > 0.15).
In the mPFC, females had higher 5-HT content than males (F1 31=9.8, p < 0.01) but there
was no effect of stress or interaction. There were no significant differences in dopamine,
NE, DOPAC, or HVA.

3.2 Experiment 2: Effects of defeat stress on dopamine receptor expression

In the NAc, males had higher levels of D3 mRNA expression in NAc compared to females
(Table 3, F1 50 = 10.34, p < 0.01). However, there was no effect of stress or interaction on
D3 expression. There were no significant differences in D1, D2, or D5 gene expression.

3.3 Experiment 3: Effects of D1 agonist infusion in males and female naive to defeat

In females, SKF38393 infusions reduced time spent in the cage zone during the social
interaction phase in a dose dependent fashion (Fig. 4B, Kruskal-Wallis H3=9.44, p = 0.02).
Females treated with 500 ng of SKF38393 spent significantly less time in the interaction
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zone in the presence of a novel mouse compared to females treated with aCSF (Mann-
Whitney U=2.60, p < 0.01), the low dose (Mann-Whitney U=1.99, p < 0.05), or the medium
dose (Mann-Whitney U=2.65, p < 0.01). Similar differences were observed in the social
interaction ratio (Table 4, Kruskal-Wallis H3=8.76, p < 0.03). The effects of SKF38393
were specific to social contexts because there were no differences in time spent in the cage
zone during the acclimation phase (Fig. 4A). There were also no effects on locomotor
behavior or time spent in the center of the arena during the open field phase (all p’s > 0.62).
In males, there were no significant effects on time spent in the interaction zone during the
social interaction phase or during the acclimation phase (p’s > 0.50), and there were no
differences in the social interaction ratio. Furthermore, there were no significant differences
in locomotor behavior or time spent in the center during the open field phase (Table 4, all
p’s > 0.43). No significant difference on any behavioral measure was observed in the
anatomical misses (Table 4, all p’s >0.50).

3.4 Experiment 4: Effects of D1 antagonist infusion in females exposed to defeat or control

conditions

Although there were no significant differences in the absolute amount of time spent in the
interaction zone in this study (Table 5), significant differences were observed for ratio
scores (social interaction phase/acclimation phase) for the interaction and corner zones. In
stressed females, infusions of the D1 antagonist SCH23390 significantly increased the ratio
of time spent in the interaction zone in the presence of a novel mouse (Fig. 5A, Mann-
Whitney U = 152, p < 0.01) and significantly decreased the ratio of time spent in the corner
zones (Fig. 5B, Mann-Whitney U=42, p = 0.01) compared to aCSF treatment. In control
females there was no effect of SCH23390 infusions on the ratio of time spent in the
interaction zone in the presence of a novel mouse or the corner zones (p’s > 0.5). In contrast
to our study with SKF38393, infusions of SCH23390 did have an inhibitory effect on
locomotor behavior. Infusion of SCH23390 reduced locomotor activity in the open field for
stressed females (Mann-Whitney U= 41, p = 0.03). A similar trend was observed in control
females but was not statistically significant. No significant difference on any behavioral
measure was observed in the anatomical misses (Table 5, all p’s >0.50).

4. Discussion

Our results indicate that although defeat stress increases dopaminergic signaling in both
male and female California mice, dopamine D1-like receptor signaling induces social
withdrawal in females but not males. These data suggest that previous observations that
defeat stress increases the activity of VTA dopamine neurons (Anstrom et al., 2009;
Krishnan et al., 2007; Razzoli et al., 2011) generalize not only to different species of
rodents, but also to females. The sex difference in sensitivity to D1- like receptors does not
appear to occur at the level of receptor expression in the NAc, because there were no sex
differences in dopamine receptor gene expression. We hypothesize that sex differences in
the behavioral effects of D1-like receptors are mediated downstream of D1 neurons.

4.1 Effects of Defeat Stress on Dopamine Content and Receptor Expression

In male rats and Mus, social defeat induces a long term increase in dopamine activity. Both
male and female California mice exposed to social defeat stress had elevated levels of
dopamine and DOPAC in the NAc, two weeks after the last episode of defeat stress. Punch
samples were collected during the inactive phase, which suggests that these increases are
due to an increase in baseline dopaminergic tone. Three weeks after defeat, baseline rates of
in vivo VTA neuronal burst firing are increased in male Mus (Razzoli et al., 2011). In Mus,
there is strong evidence that this increase in neuronal activity inhibits social approach
behavior. In vivo recordings showed that the baseline activity of VTA neurons is negatively
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correlated with social interaction behavior, and that the activity of VTA neurons can be
normalized by chronic antidepressant treatment (Cao et al., 2010). Reducing burst firing of
VTA dopamine neurons by overexpressing potassium channels (Krishnan et al., 2007) or
direct optogenetic control (Chaudhury et al., 2013) also increases social interaction behavior
in male mice exposed to defeat. Interestingly, studies in Mus follow a standardized protocol
of 10 episodes of defeat combined with prolonged sensory contact (Golden et al., 2011). In
our studies, only three relatively brief episodes of defeat were sufficient to increase
dopamine and DOPAC levels in both males and females. However, this raises the question
of why social withdrawal was not observed in male California mice.

Increased reuptake could induce resistance to increased dopamine signaling. Studies using
the visible burrow system showed that subordinate rats had reduced dopamine transporter
(DAT) binding in NAc shell (Lucas et al., 2004). If DAT activity was elevated in stressed
males, we would expect defeat stress to have little or no effect on dopamine metabolites
(Huotari et al., 2002). However, DOPAC and HVA were elevated in stressed males.
Alternatively, resistance to increased dopamine activity could be achieved via reduced
expression of dopamine receptors. While male rats have been reported to have more intense
D1 receptor binding in NAc compared to females (Andersen and Teicher, 2000) this effect
has not been observed in every study (Ferris et al., 2007). We observed no sex differences in
D1-like receptor (D1 or D5) expression, nor did we observe any effects of stress. Thus there
is little support for the hypothesis that sex differences in behavioral responses to defeat
stress are mediated by differences in dopamine receptor expression. Sex differences in
behavior might instead be mediated by mechanisms downstream of receptor expression.
Indeed, most evidence suggests that the behavioral effects of psychostimulants (which
increase dopamine transmission) are stronger in females than males (Carroll and Anker,
2010). For example, amphetamine injections have stronger effects on rotational behavior in
female rats compared to males (Robinson et al., 1980). Similarly, female rats form cocaine-
based conditioned place preferences (CPP) at lower doses and with fewer conditioning
sessions than males (Russo et al., 2003). These data suggest that behavioral effects of
dopaminergic signaling may be stronger in females compared to males.

4.2 Sex differences in effects of D1 receptors on social withdrawal

Two observations suggested that D1 receptors would have important effects on stress-
induced social withdrawal. First, D1 receptors are more likely than D2 receptors to be
expressed in a low affinity state (Richfield et al., 1989), and several studies suggest that D1
activation occurs primarily in the presence of high dopamine levels (Cheer et al., 2007; Di
Chiara and Bassareo, 2007). Second, defeat stress increases the number of phospo-CREB
cells in the NAc shell of females but not males (Trainor et al., 2011). Thus, we used D1
receptor agonists and antagonists to test whether D1 receptors mediated stress-induced
social withdrawal in California mice. Increased dopamine D1 signaling induced social
aversion in females naive to defeat, suggesting that D1 receptor activation is sufficient to
induce social withdrawal behavior in females. Inhibition of D1 receptors in stressed females
increased social approach behavior, suggesting that D1 signaling plays an important role in
mediating the social withdrawal phenotypes. However, this effect appeared to be more
subtle than what was observed in experiment 3 (D1 agonist), because only social interaction
ratios were significantly changed. If social defeat induces a sustained increase in dopamine
signaling in the NAc, this might induce neuroadaptations that would reduce the sensitivity of
the NAc to dopaminergic signaling (Self, 2004).

Although D1 receptors in the NAc have been found to modulate locomotor behavior (Dreher
and Jackson, 1989; Essman et al., 1993; Smith-Roe and Kelley, 2000), our results can not be
explained by simple changes in locomotor behavior. The dose of SKF that reduced social
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interaction behavior in females was lower than those doses found to increase locomotor
behavior, and we observed no changes in locomotor behavior of California mice in the open
field test. While SCH infusions did reduce locomotor behavior in control and stressed
females, only stressed females showed an increase in social interaction behavior.
Furthermore, in stressed females SCH increased the relative time spent in the interaction
zone and decreased the relative time spent in the corners opposite the interaction zone
during the social interaction phase of the test. Together, these data indicate that D1 receptors
in NAc shell have important effects on social withdrawal behavior.

Systemic injection of D1 agonists reduces social interaction behavior in males (Sams-Dodd,
1998), but only a few studies have considered whether D1 receptors regulate neural circuits
controlling social behavior. Dopamine D1 receptors in the NAc shell play an intriguing role
in the formation and maintenance of pair bonds between male and female prairie voles
(Aragona and Wang, 2009). In males, activation of D1 receptors in the NAc shell prevents
the formation of new pair bonds (Aragona et al., 2006). However, once a pair bond is
formed, D1 receptor expression in the NAc is enhanced and facilitates the maintenance of
the bond by increasing aggressive behavior towards unfamiliar females (Aragona et al.,
2006). This effect appears to be mediated by endogenous opioid signaling. Medium spiny
neurons in the NAc that express D1 receptor also express dynorphin (Hara et al., 2006), the
primary endogenous ligand for the kappa opioid receptor (KOR). Infusion of the KOR
antagonist norbinaltorphimine (nor-BNI) into the NAc shell of pair-bonded prairie voles
reduces aggressive behavior (Resendez et al., 2012). These results suggest the possibility
that effects of D1 receptors on social withdrawal are mediated in part by KOR signaling.
However, we did not examine D1 receptor affinity or efficacy which could differ between
the sexes and be differentially altered by social stress between the sexes, thus the effects
could still be at the level of the D1 receptor.

Stress-induced anxiety and depression disorders are more common in women versus men
(Kessler et al., 1993). Rodent studies have demonstrated that females have exaggerated
glucocorticoid responses to stress (Weiser and Handa, 2009). Chronic stressors also lead to
stronger inductions of depression-like behaviors, such as anhedonia, in females compared to
males (Dalla et al., 2005; Dalla et al., 2008; Konkle et al., 2003). Less is known about
potential sex differences in neural circuits that may mediate these behavioral responses. Our
findings indicate that sex differences in the strength of D1 receptor signaling in the NAc
may contribute to increased vulnerability to psychosocial stress in females. These results
suggest that further study of molecular pathways downstream of D1 receptor expressing
neurons, particularly the dynorphin-KOR pathway, will provide new insights to
understanding sex differences in the behavioral effects of psychosocial stress.
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Figure 1.

(A) Reconstructions of a coronally cut series of sections through the nucleus accumbens
showing the histological verification of injection of D1 agonist SKF 38393 placement into
the nucleus accumbens shell. AcbC nucleus accumbens core; AcbSh nucleus accumbens
shell; aca anterior commissure; Al agranular insula; DI dysgranular insula; S1 primary
somatosensory cortex; Cgl cingulate cortex; PrL prelimbic cortex; M1 primary motor cortex;
M2 secondary motor cortex; IL infralimbic cortex; DP dorsal peduncular cortex; DTT dorsal
tenia tecta; fmi forceps minor or the corpus callosum; CPu caudate putamen; cl claustrum;
DEn dorsal endopiriform nucleus; VDB vertical limb of diagonal band nucleus. All images
are original work of the authors drawn from California mouse sections. (B)
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Photomicrograph of a Nissl stained section showing correct cannula placement and
microinjection into the nucleus accumbens shell. Injection sites are represented by filled
squares for vehicle, plus symbols for 5ng SKF 38393, filled triangles for 50ng SKF 38393
and filled circles for 500ng SKF 38393. Scale bar is 1 mm. Black arrow indicates
microinjection site.
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Figure2.

Reconstructions of a coronally cut series of sections through the nucleus accumbens
showing the histological verification of injection placement of D1 antagonist SCH 23390
into the nucleus accumbens shell. AcbC nucleus accumbens core; AcbSh nucleus
accumbens shell; aca anterior commissure; Al agranular insula; DI dysgranular insula; S1
primary somatosensory cortex; Cgl cingulate cortex; PrL prelimbic cortex; M1 primary
motor cortex; M2 secondary motor cortex; IL infralimbic cortex; DP dorsal peduncular
cortex; DTT dorsal tenia tecta; fmi forceps minor or the corpus callosum; CPu caudate
putamen; cl claustrum; DEn dorsal endopiriform nucleus; VDB vertical limb of diagonal
band nucleus. All images are original work of the authors drawn from California mouse
sections. Injection sites are represented by squares for vehicle and stars for 2.5, SCH
23390. Scale bar is 1 mm.
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Effect of stress and sex on dopamine (A), DOPAC (B), and HVA (C) levels in the nucleus

accumbens of control and stressed mice in both females and males using HPLC. Green bars
represent control females. Yellow bars represent stressed females. Blue bars represent
control males. Purple bars represent stressed males. Error bars are SEM. * indicates main
effect of sex, p<0.05. T indicates main effect of stress, p<0.05. Caret indicates a trend for

effect of stress, DOPAC p=0.06; HVA p=0.08.
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Effect of the D1 agonist SKF 38393 in the nucleus accumbens shell on time spent in the
cage zone in females (A-C) and males (D-F) naive to defeat. (A) Time spent in the cage
zone during the acclimation phase by females. (B) Time spent in the cage zone during the
social interaction phase by females. (C) Tracking plot of a representative female mouse path
when a same-sex novel mouse was present after aCSF (left) or 500ng SKF 38393 (right)
microinjection. (D) Time spent in the cage zone during the acclimation phase by males. (E)
Time spent in the cage zone during the social interaction phase by male mice. (C) Tracking
plot of a representative male mouse path during the social interaction phase after aCSF (left)
or 500ng SKF 38393 (right) microinjection.* indicates p<0.05 vs. aCSF.
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Effect of the D1 antagonist SCH 23390 in the nucleus accumbens shell on the interaction
ratios (social interaction/acclimation x 100) for the cage zone (A) and corner zones (B).
Infusions of SCH 23390 had no effect on control (C) mice but increased social interaction
behavior in stressed (S) mice. ** indicates p<0.01 vs. aCSF.
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Table 1

Primer pair sequences

D1
D2
D3
D5

forward reverse

GGCTCCATCTCCAAGGACTGTA AGCTTCTCCAGTGGCTTAGCTATTC
GCGTCGGAAGCGGGTCAACA TCGGCGGGCAGCATCCATTC
TGCGGCTGCATCCCATTCGG GCTTGGGTGCCATGGTGGGG
GGGCCTTTCGATCACATGTCT AAGGAAACCTCTTCCTCACAGTCA

Neuropharmacology. Author manuscript; available in PMC 2015 February 01.

Page 19



Page 20

Campi et al.

NIH-PA Author Manuscript

100>d

‘500>d
«

X3S J0 109449 Urew

80" ¥ G2’ 90'FOE 8T FL6 S00F90  TOFIT  EYTFOT9 80 T8y ..E5CF86TL  ssans
€0 F ¥ SOUFSY VEFLET S00F90  TOFIL €6 FLZE 0T F6E  «xCOCFEONST  jonuoo  spew
€0 FIT ZUF8E YZFTIOT  G00'F90 GO0 FTITT 06 F6ES LOFIE  OTTFSOL ssans
€0'F ST 80'F9S U'F20T T0F90  2OFTIT  T9FE6Y 80 FEZ  9TCFIVL  [0AUOD  Bfeway
VAH ovdod va VA/VAH  Ya/0vdod LHS 1d3 EIN
X2110D [ejuo i SURQWINJDY SMS[ONN

(W3S F ueaw) J1dH Aq painseaw (Jwy/Bu) uisroid JeniwsueioinaN
Z39l|qelL

NIH-PA Author Manuscript NIH-PA Author Manuscript

Neuropharmacology. Author manuscript; available in PMC 2015 February 01.



Page 21

Campi et al.

NIH-PA Author Manuscript

T0°0 > d X8s 40 108)48 Urew

*¥

TEF¢ET LT F0ET
8¢ F1S°T 2 F8TT
ST FVTT TTF02T
ST FeLT T ¥08T

WwOTTF66S Gz xe0T Gy FipT  ssans

«00TFLEY ez zgeT Ty F.TZ |oMU0d  Bfew
I8°F197 0T FeTUT 98 F/ST  SSans
I8°F20€ 0T FYYT 9S8 FrZT [0NUOD  s[ews)

uiydoukpo id ysa

dgea dcd dg1a

€9lgel

NIH-PA Author Manuscript

"uoIssaldxa anneal YNYw Joidadas saulwedoq

NIH-PA Author Manuscript

Neuropharmacology. Author manuscript; available in PMC 2015 February 01.



Page 22

Campi et al.

4508 sA 500 >d

*

LSTOT+98'TTT  60VSFV8TIT SCv+GL9T 86'€ ¥ 0T'E€C 86'C FE0'G 0S'€+ LZ0T TI9¢CYr +.E68 0€'9FE£5'6L
€0°LTF.0€9  96CEFVYLSGT 6€9F65GC  LT9+¥898¢C €9TF2T9 OTC+9¥'6  SLSTFOFeE8 OEYT+9r'8S
€998 ¥ GG'G0T  L¥'SEFG8'EIT L EF V66T 9C'SF ¥CEE 99TF¢C¢ 667 F9C'TT TS6TF¥6'0cT 967T +06°08
¥6°08 ¥ TL'G0T ¥6'9+80'6¢T 96’7+ 1061 96'T ¥ €0'GC 98 0FTLT ESTFICY 76'8 + €9°GTT LL'8FEV'T6
¢09TT +G9'/¢C 8EBEFIEVCT CECFIVIT 8T'SFCS€EE TV'8C+€EEEE v96+8061 TSOT+€EELL O00€T+0999
06'76 ¥ TZ'69T  T8'LT F.6C0T ZEC+.LEST 68°C F80'TE 83 T+9G'G ?8'CF€8'8 TT6T+v€08 CETT+SGT'GL
99°/¢FT¥'?8  998CF¢S6YT TOEFET0C  T9VF8ETC TOE+688 ¥9E€F9eGT TCLT+80€6  GO'6F18.9
TV'GLT+26'€9¢ 0€LT+GL'SO0T 6ST+029T 66'L F €8'TE YT'¢c*+06ve TLT+L0TT 8T0C+.¥88 TTTIT+6E9L
ITYSFYZr9T  LCCOLFVOV8  zop3oTvz €1 F6526  CTEF6rOT  LyzFoes »0TT¥66C9  ep1r7o66,
S6'6T + £€99 ¢6'6F99°GET 6TV +0T'0C 8LV ¥ E€TET ¥8'€ ¥ 019 6S€F/8TT GLOTFEZ0CT LELF6006
G6'¢GC #8982 OTEV FEGEST PPC¢+GT'0C  GT'OT ¥ 9L°6€ LGCF909 TLT+¥8L 028T+0C'€0T G8ET +69/8
9Z'T9 + vV v6T €0'8 + 60'60T €LCF16°¢C STSF8L1¢C 90'EF<CT'L 19TF vy V.'8¥86'TTT /88 FT090T
SJAu oo o Ie abed (w)aouesip (S)awi LB  asnow prou  afieo Aldwe  asnow pAou abeo A1dwe
ol1eJ uoloe Bl ppl uado (s)swisioulod (s)awiy ea re abeo

(e=u) Buoog
(=u) Buog
(g=u) Bug
(8=u) 4508

(9=u) Buoog
(8=u) Buog
(8=u) bug
(2=u) 4508
(6=U) Buoog
(2=u) Buog
(8=u) bug
(0T=U) 4508

sofewsy

S9SSIW [edIWoreuR

sofew

sofewsy

)Y [edIWoreue

NIH-PA Author Manuscript

v alqel

"uoIsnyul 1siuoBe T Js1Je elep uondrIgUI [B100S

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Neuropharmacology. Author manuscript; available in PMC 2015 February 01.



Page 23

Campi et al.

4soesA100>d
*x
"4S0e SA mo.ovg*
18'9L ¥ ££'981 62'6¢ F £L'56 Y FEY0T 899 F ¥9'/2 8990%8.C  98VFLL8 YYOEFETEL OTVIF¥eSL (L=u)brige
6V'vy F €€'8S L9VT ¥ 07°06 L0GFTT8T YE'EF EV'BT GZETFGZET 9L€¥88. 099T 87 .TT 66'82FGCZIT (€=u)d4SOe SSalls
LE'SVC ¥ LE'GYC G9°C0T ¥ 20°€8T €9°€F LT'0C 6y F 8T VT TLSFGL C60FELT 00'0¢ + 88'68 8582 ¥8T'88  (y=u) brigz
08°.G ¥ 9226 90'9 ¥ 08'0T €L'EF6E8T EVTFTEC 90020 CSTFLLT  YY8FEYEVT  BEVFOTOET  (€=U)4SOB  |0U0D
S3SSIW [ealWOYeUR
«BE0EFLOBOT C66T *BI'SET  EGEFCCST  gggrgogz  8LLTF800Z 099TF00L [EBTFv2e6  66'STFvo6.  (0T=U) brigg
CTTTT + 8T’ 1SV TS'0T ¥ ¢2'9L 9C'CF€ESC 88'CFCT'CE C6'GF86'LT EETF9E'S LTOT+ 0V’ LL 092 F.T€0T  (6T=U) 4SOe  ssans
90'T¢T * 25'85¢ 6T'9C F60°€TT Y2'C¥26'GT 06'9 ¥ 6T°0¢ 9€'C ¥ 199 GG’ F69'6 L29T ¥ 1.'88 029T+0878  (6=U) brigz
6.°¢S +92'90C ¢¢'0T ¥ 29'S6 0S¢ ¥ 8¢ €0V ¥ 8G'TE TE6FTT9T ¢6TFClL ¢9'0T + L6'T6 G99+ /216 (91=U) 4508  [04U0D
SJeulod ©o e abed (w)aouesip  (S)awil LIUBD  asnow pAou  abeo Aidwe  asnow pAoU abeo A1dwe S1y [edlworeue
ol1e . uoloe Bl pp1 uado (s)swnsioulod (s)awiy ea re abeo

NIH-PA Author Manuscript

G 9lgel

"Sa[eway Ul uoisnyul 1siuoBeiue TQ Ja1je Blep UoNoeIaIUI [190S

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Neuropharmacology. Author manuscript; available in PMC 2015 February 01.





